非晶硅太阳电池
- 格式:pdf
- 大小:1.40 MB
- 文档页数:65
非晶硅太阳电池非晶硅太阳电池是一种薄膜太阳能电池,也被称为非晶硅薄膜电池。
其特点是能够将光能转化为电能,具有较高的光电转换效率和较低的制造成本,因此在太阳能应用领域有着广泛的应用前景。
以下是与非晶硅太阳电池相关的参考内容。
1. "非晶硅太阳电池的制备与性能研究进展"(《光学学报》)这篇论文系统地介绍了非晶硅太阳电池的制备方法、性能研究以及光电转换效率的提高等方面的研究进展。
从材料选择到薄膜制备、器件结构设计和性能测试等方面进行了深入的探讨,对于非晶硅太阳电池的研究提供了很多有价值的信息。
2. "非晶硅薄膜太阳电池的工艺研究及性能提升"(《半导体学报》)这篇论文主要研究了非晶硅薄膜太阳电池的工艺方法,包括制备工艺和后处理工艺等方面。
通过对各种工艺参数的优化调整,实现了非晶硅太阳电池性能的显著提升。
研究结果表明,合理的工艺设计和优化对于改善非晶硅太阳电池性能具有重要意义。
3. "纳米结构在非晶硅太阳电池中的应用"(《材料导报》)这篇综述性文章讨论了纳米结构在非晶硅太阳电池中的应用。
通过引入纳米结构材料,如纳米线、纳米颗粒等,可以增强光吸收和光电转换效率,提高非晶硅太阳电池的性能,并且可以通过合理设计纳米结构的形状和尺寸来调控电子传输行为,进一步提高光电转换效率。
4. "非晶硅太阳电池的商业化应用前景"(《太阳能材料与太阳能电池》)这篇综述性文章讨论了非晶硅太阳电池的商业化应用前景。
随着清洁能源的需求增加,非晶硅太阳电池作为一种低成本、高效率的太阳能电池,具有广泛应用的潜力。
在文章中,介绍了非晶硅太阳电池在建筑领域、电动汽车领域和户外设备领域的应用案例,并讨论了相关市场发展和商业化应用的前景。
5. "非晶硅太阳电池的发展趋势及挑战"(《太阳能学报》)这篇综述性文章回顾了非晶硅太阳电池的发展历程,并展望了未来的发展趋势和面临的挑战。
非晶硅太阳电池分类非晶硅太阳电池是一种新型的太阳能电池,也被称为非晶硅薄膜太阳能电池。
它是利用非晶硅材料制成的薄膜,通过吸收太阳光的能量来产生电流,从而转化为可用的电能。
非晶硅太阳电池具有高效能转换、柔性和轻便等特点,被广泛应用于太阳能光伏发电领域。
非晶硅太阳电池主要分为非晶硅薄膜太阳电池和非晶硅多晶太阳电池两种类型。
非晶硅薄膜太阳电池是将非晶硅薄膜沉积在透明导电玻璃基板上制成的,它具有较高的光吸收能力和较高的光电转换效率。
非晶硅多晶太阳电池则是将非晶硅薄膜沉积在多晶硅基底上制成的,它能够在相对较低的光照条件下产生较高的电流输出。
非晶硅太阳电池相比于传统的结晶硅太阳电池具有以下几个优点。
首先,非晶硅薄膜太阳电池可以在室温下制备,而结晶硅太阳电池需要高温制备,因此非晶硅太阳电池的制备成本更低。
其次,非晶硅太阳电池具有较高的光吸收能力,可以在较低的光照条件下产生较高的电流输出。
此外,非晶硅太阳电池可以制成柔性的薄膜形式,可以用于制作柔性太阳能电池板,具有更广阔的应用前景。
非晶硅太阳电池的工作原理是光吸收-电荷分离-电流输出。
当太阳光照射到非晶硅薄膜上时,光子的能量被吸收并转化为电子的能量。
这些电子被激发到导带中,并在电场的作用下形成电流。
同时,光生电子和空穴的复合过程也会发生,这使得非晶硅太阳电池的光电转换效率相对较低。
为了提高非晶硅太阳电池的效率,可以采用掺杂和多层结构等方法进行优化。
非晶硅太阳电池的应用领域非常广泛。
首先,它可以应用于家庭和商业建筑的太阳能光伏发电系统中,用于发电和供电。
其次,非晶硅太阳电池还可以用于太阳能充电器、太阳能通信设备等小型电子设备中,为这些设备提供可再生的电能。
此外,非晶硅太阳电池还可以应用于太阳能电池板、太阳能路灯等领域,为城市提供清洁的能源。
非晶硅太阳电池是一种高效能转换、柔性和轻便的太阳能电池。
它具有较高的光吸收能力和较高的光电转换效率,可以在室温下制备,制备成本较低。
非晶硅太阳电池非晶硅太阳电池,也被称为非晶硅薄膜太阳电池,是一种利用非晶硅材料制成的光伏电池。
非晶硅太阳电池具有柔性、轻薄和低造价等优点,适用于一些特殊场合和应用领域。
本文将从非晶硅材料的特性、非晶硅太阳电池的结构和工作原理、非晶硅太阳电池的优缺点以及应用领域等方面进行详细介绍。
非晶硅是一种非晶态的硅材料,其原子结构杂乱无序,与晶体硅相比,非晶硅具有更高的能量转换效率和更低的制造成本。
非晶硅太阳电池通常由玻璃或塑料基底、透明导电薄膜、非晶硅光伏层、背电极和接线等部分组成。
非晶硅太阳电池使用非晶硅材料作为光伏层,其中掺杂了少量的杂质元素,使得材料具有较高的光电转换效率。
非晶硅太阳电池的工作原理主要基于光伏效应,即光子入射到非晶硅光伏层上后被吸收,释放出电子和空穴,并在电场的作用下分别流向背电极和透明导电薄膜,从而形成电流。
非晶硅太阳电池的光伏转换效率与光伏层的材料性能、光伏层的厚度、非晶硅材料的电学性质等因素密切相关。
非晶硅太阳电池具有以下优点:首先,非晶硅太阳电池可以制备成柔性和轻薄的结构,适应各种复杂的曲面和形状,具有更广阔的应用空间;其次,非晶硅太阳电池的制造成本较低,生产工艺简单,可以实现大规模生产和应用;此外,非晶硅太阳电池在低光强和低温环境下具有较高的光电转换效率,适用于一些特殊应用领域。
然而,非晶硅太阳电池也存在一些缺点:首先,非晶硅太阳电池的光电转换效率相比于其他材料的太阳电池要低一些;其次,非晶硅太阳电池对光强和温度的变化较为敏感,在高温和强光环境下效果较差;另外,非晶硅太阳电池的使用寿命较短,一般在10年左右。
非晶硅太阳电池在一些特殊领域有广泛应用。
例如,在电子设备领域,非晶硅太阳电池可以用于制备柔性和可折叠的光伏电池组件,为电子设备提供可持续的电力;在建筑领域,非晶硅太阳电池可以嵌入到建筑材料中,如玻璃幕墙、屋顶瓦片等,实现建筑一体化太阳能利用;此外,非晶硅太阳电池还可以应用于一些便携式充电设备、户外太阳能供电系统等领域。
太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。
太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。
本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。
一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。
1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。
2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。
3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。
4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。
二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。
不同类型的太阳能电池材料有着不同的工作原理。
1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。
当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。
这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。
2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。
其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。
3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。
三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。
非晶硅太阳电池的原理2010-11-1314:54目录一、非晶硅薄膜太阳电池基础知识简介二、非晶硅薄膜太阳电池生产线及制造流程简介三、国产提供的非晶硅薄膜太阳电池生产线介绍一、非晶硅薄膜太阳电池基础知识简介1976年美国RCA实验室的D.E.Conlson和C.R.Wronski在Spear形成和控制p-n结工作的基础上利用光生伏特(PV)效应制成世界上第一个a-Si太阳能电池,揭开了a-Si在光电子器件或PV组件中应用的幄幕。
目前a-Si多结太阳能电池的最高光电转换效率己达15%。
图1为一般单结的非晶硅太阳能电池结构图,图2为非晶硅太阳能电池图1非晶硅太阳能电池结构图图2非晶硅柔性太阳能电池第一层,为普通玻璃,是电池载体。
第二层为绒面的TCO。
所谓TCO就是透明导电膜,一方面光从它穿过被电池吸收,所以要求它的透过率高;另一方面作为电池的一个电极,所以要求它导电。
TCO制备成绒面起到减少反射光的作用。
太阳能电池就是以这两层为衬底生长的。
太阳能电池的第一层为P层,即窗口层。
下面是i层,即太阳能电池的本征层,光生载流子主要在这一层产生。
再下面为n 层,起到连接i和背电极的作用。
最后是背电极和Al/Ag电极。
目前制备背电极通常采用掺铝ZnO(A1),或简称AZO。
由于a-Si(非晶硅)多缺陷的特点,a-Si的p-n结是不稳定的,而且光照时光电导不明显,几乎没有有效的电荷收集。
所以,a-Si太阳能电池基本结构不是p-n 结而是p-i-n结。
掺硼形成P区,掺磷形成n区,i为非杂质或轻掺杂的本征层(因为非掺杂的a-Si是弱n型)。
重掺杂的p、n区在电池内部形成内建势,以收集电荷。
同时两者可与导电电极形成欧姆接触,为外部提供电功率。
i区是光敏区,光电导/暗电导比在105~106,此区中光生电子、空穴是光伏电力的源泉。
非晶体硅结构的长程无序破坏了晶体硅电子跃迁的动量守恒选择定则,相当于使之从间接带隙材料变成了直接带隙材料。
非晶硅太阳电池的光致衰减效应非晶硅太阳电池是一种新型的太阳能电池,它具有高效率、低成本、易制备等优点,因此备受关注。
然而,非晶硅太阳电池在使用过程中会出现光致衰减效应,这对其性能和寿命产生了一定的影响。
本文将从光致衰减效应的原理、影响因素和解决方法三个方面进行探讨。
一、光致衰减效应的原理光致衰减效应是指在太阳电池中,光照射会使得电池的电流输出下降,这种现象被称为光致衰减效应。
其原理是在光照射下,非晶硅太阳电池中的电子会被激发,从而跃迁到导带中,形成电流输出。
然而,随着时间的推移,电子会逐渐被捕获,形成缺陷态,从而导致电流输出下降,这就是光致衰减效应的原理。
二、影响因素光致衰减效应的发生受到多种因素的影响,主要包括以下几个方面:1.光照强度:光照强度越大,光致衰减效应越明显。
2.温度:温度越高,光致衰减效应越明显。
3.电压:电压越高,光致衰减效应越明显。
4.时间:时间越长,光致衰减效应越明显。
5.材料:不同的材料对光致衰减效应的影响不同。
三、解决方法为了减轻光致衰减效应对非晶硅太阳电池性能和寿命的影响,可以采取以下措施:1.降低光照强度:通过降低光照强度来减轻光致衰减效应的影响。
2.降低温度:通过降低温度来减轻光致衰减效应的影响。
3.降低电压:通过降低电压来减轻光致衰减效应的影响。
4.优化材料:通过优化材料的制备工艺和材料组成来减轻光致衰减效应的影响。
5.采用多层结构:通过采用多层结构来减轻光致衰减效应的影响。
光致衰减效应是非晶硅太阳电池中不可避免的现象,但可以通过降低光照强度、降低温度、降低电压、优化材料和采用多层结构等措施来减轻其影响,从而提高非晶硅太阳电池的性能和寿命。
非晶硅太阳电池一、简介非晶硅太阳电池是一种新型的太阳能电池,它是利用非晶硅薄膜制成的。
与传统的多晶硅太阳电池相比,非晶硅太阳电池具有更高的光电转换效率和更低的制造成本。
二、原理非晶硅太阳电池采用了一种称为“堆垛结构”的设计,这种设计可以使得光线在薄膜中反复折射,从而增强了光吸收效果。
在吸收到光线后,光子会激发出电子-空穴对,在外加电场作用下,这些电子-空穴对会分别向两端移动,并产生一个电压差。
通过将多个这样的单元串联在一起,就可以得到一个具有较高输出功率的太阳能电池。
三、制造工艺1. 清洗基板:首先需要清洗基板表面以去除表面杂质。
2. 沉积非晶硅层:在基板上沉积一层非晶硅薄膜。
3. 氧化处理:经过氧化处理后形成氧化硅层。
4. 刻蚀:利用刻蚀技术去除氧化硅层的一部分,形成电极。
5. 沉积金属层:在电极上沉积一层金属,形成另一个电极。
6. 制成单元:将多个这样的单元串联在一起,就可以得到一个具有较高输出功率的太阳能电池。
四、优缺点1. 优点:(1)光电转换效率高:非晶硅太阳电池可以将光线转换为电能的效率达到了10%-13%左右,比传统的多晶硅太阳电池要高。
(2)制造成本低:非晶硅太阳电池制造工艺简单,生产成本低。
(3)适用范围广:非晶硅太阳电池可以适用于各种不同环境下的太阳能利用场合。
2. 缺点:(1)稳定性差:由于非晶硅薄膜中存在大量的缺陷和杂质,因此其稳定性较差。
(2)寿命短:由于材料缺陷和杂质等原因,非晶硅太阳电池寿命较短。
五、应用领域非晶硅太阳电池可以广泛应用于各种不同的领域,包括:1. 太阳能电池板:非晶硅太阳电池可以制成太阳能电池板,用于发电、供电等。
2. 光伏发电系统:非晶硅太阳电池可以作为光伏发电系统中的核心部件,用于将光能转换为电能。
3. 便携式充电器:非晶硅太阳电池可以制成便携式充电器,用于为手机、平板等设备充电。
六、结语随着可再生能源的需求不断增加,非晶硅太阳电池将会有更广阔的应用前景。
单晶硅_多晶硅_非晶硅的区别和性能差异单晶硅,多晶硅,非晶硅的区别和性能差异一、单晶硅太阳能电池名称:单晶硅英文名: Monocrystalline silicon单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分。
硅的单晶体,具有基本完整的点阵结构的晶体。
不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999,,甚至达到99.9999999,以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。
超纯的单晶硅是本征半导体。
在超纯单晶硅中掺入微量的?A族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的?A族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
单晶硅主要用于制作半导体元件。
用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。
二、多晶硅太阳能电池名称:多晶硅英文名:polycrystalline silicon性质:灰色金属光泽。
密度2.32~2.34。
熔点1410?。
沸点2355?。
溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。
硬度介于锗和石英之间,室温下质脆,切割时易碎裂。
加热至800?以上即有延性,1300?时显出明显变形。
常温下不活泼,高温下与氧、氮、硫等反应。
高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。
具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。
多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
三、非晶硅太阳能电池尽管单晶硅和多晶硅太阳能电池经过多年的努力已取得很大进展,特别是转换效率已超过20%,这些高效率太阳能电池在空间技术中发挥了巨大的作用。
但在地面应用方面,由于价格问题的影响,长久以来一直受到限制。
太阳能电力如果要与传统电力进行竞争,其价格必须要不断地降低,而这对单晶硅太阳能电池而言是很难的,只有薄膜电池,特别是下面要介绍的非晶硅太阳能电池最有希望。
因而它在整个半导体太阳能电池领域中的地位正在不断上升。
从其诞生到现在,全世界以电力换算计太阳能电池的总生产量的约有1/3是非晶硅系太阳能电池,在民用方面其几乎占据了全部份额。
1、非晶态半导体与晶态半导体材料相比,非晶态半导体材料的原子在空间排列上失去了长程有序性,但其组成原子也不是完全杂乱无章地分布的。
由于受到化学键,特别是共价键的束缚,在几个原子的微小范围内,可以看到与晶体非常相似的结构特征。
所以,一般将非晶态材料的结构描述为:“长程无序,短程有序”。
晶硅的结构模型很多,左面给出了其中的一种,即连续无规网络模型的示意图。
可以看出,在任一原子周围,仍有四个原子与其键合,只是键角和键长发生了变化,因此在较大范围内,非晶硅就不存在原子的周期性排列。
在非晶硅材料中,还包含有大量的悬挂键、空位等缺陷,因而其有很高的缺陷态密度,它们提供了电子和空穴复合的场所,所以,一般说,非晶硅是不适于做电子器件的。
1975年,研究人员通过辉光放电技术分解硅烷,得到的非晶硅薄膜中含有一定量的氢,使得许多悬挂键被氢化,大大降低了材料的缺陷态密度,并且成功地实现了对非晶硅材料的p型和n 型掺杂。
电导激活能的变化说明了材料的费米能级随着掺杂浓度的变化而被调制,表明确实可以对非晶硅进行掺杂以控制它的导电类型和导电能力。
2、非晶硅太阳能电池的特点及发展历史It wasn't until 1974 that researchers began to realize that amorphous silicon could be used in PV devices by properly controlling the conditions under which it was deposited and by carefully modifying its composition. Today, amorphous silicon is commonly used for solar-powered consumer devices that have low power requirements (e.g., wrist watches and calculators).非晶硅太阳能电池的特点非晶硅太阳能电池之所以受到人们关注和重视,是因为它具有以下优点:1、非晶硅具有较高的光吸收系数。
特别是在0.3-0.75µm的可见光波段,它的吸收系数比单晶硅要高出一个数量级。
因而它比单晶硅对太阳辐射的吸收效率要高40倍左右,用很薄的非晶硅膜(约1 µm厚)就能吸收90%有用的太阳能。
这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素。
2、非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高。
3、制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产。
4、由于非晶硅没有晶体所要求的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题。
因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化。
5、制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短得多。
非晶硅太阳能电池的发展历史自1974年人们得到可掺杂的非晶硅薄膜后,就意识到它在太阳能电池上的应用前景,开始了对非晶硅太阳能电池的研究工作。
1976年:RCA公司的Carlson报道了他所制备的非晶硅太阳能电池,采用了金属-半导体和p-i-n两种器件结构,当时的转换效率不到1%。
1977年:Carlson将非晶硅太阳能电池的转换效率提高到5.5%。
1978年:集成型非晶硅太阳能电池在日本问世。
1980年:ECD公司作成了转换效率达6.3%的非晶硅太阳能电池,采用的是金属-绝缘体-半导体(MIS)结构;同年,日本三洋公司向市场推出了装有面积为5平方厘米非晶硅太阳能电池的袖珍计算器。
1981年:开始了非晶硅及其合金组成的叠层太阳能电池的研究。
1982年:市场上开始出现装有非晶硅太阳能电池的手表,充电器、收音机等商品。
1984年:开始有作为独立电源用的非晶硅太阳能电池组合板。
3、非晶硅薄膜的制备非晶硅薄膜的制备技术有很多,包括电子束蒸发、反应溅射、低压化学气相淀积(LPCVD)、辉光放电等离子体化学气相淀积以及光化学气相淀积和电子回旋共振等离子体化学气相淀积技术等。
其中最常用的是辉光放电等离子体化学气相淀积方法。
下面我们将作一简单介绍。
典型的辉光放电淀积非晶硅的装置包含反应腔系统,真空抽气系统和反应气体流量控制系统。
反应腔内抽上真空,充入氢气或氩气稀释的硅烷气体,直流或高频电源用电容或电感耦合的方式加在反应腔内的电极上,腔内气体在电源作用下电离分解,形成辉光的等离子体。
非晶硅薄膜就淀积在加热的衬底上,一般衬底温度在250-500度之间。
若在反应气体中加入适当比例的PH3或B2H6气体,便可以得到n型或p型的掺杂非晶硅薄膜。
非晶硅薄膜的光电性质强烈依赖于制备的工艺参数,如气压、衬底温度、气体流量,电源功率等条件,只有严格控制好工艺条件,才能得到质量良好的非晶硅膜。
利用单反应腔来制备非晶硅太阳能电池时,由于要连续淀积不同掺杂原子的p层和n层,这样,反应腔内壁和电极上残存的杂质很难避免不掺入所制造的太阳能电池中,造成交叉沾污,得到的太阳能电池的重复性和性能都不好。
为了避免这种情况,研究者发展了一种多反应腔装置,非晶硅太阳能电池的p、I、n各层分别在专用的反应腔内沉积,因此没有残存杂质的污染,能很好地重复制造出高效率非晶硅太阳能电池。
并且,这种装置适宜批量生产,因而目前生产的非晶硅电池基本上采用这种装置。
Hot-wire deposition promises to improve the efficiency and stability of amorphous silicon devices.4、非晶硅太阳能电池的结构非晶硅太阳能电池的结构最常采用的是p-i-n结构,而不是单晶硅太阳能电池的p-n结构。
这是因为:轻掺杂的非晶硅的费米能级移动较小,如果用两边都是轻掺杂的或一边是轻掺杂的另一边用重掺杂的材料,则能带弯曲较小,电池的开路电压受到限制;如果直接用重掺杂的p+和n+材料形成p+-n+结,那么,由于重掺杂非晶硅材料中缺陷态密度较高,少子寿命低,电池的性能会很差。
因此,通常在两个重掺杂层当中淀积一层未掺杂的非晶硅层作为有源集电区。
非晶硅太阳能电池内光生载流子主要产生于未掺杂的i层,与晶态硅太阳能电池中载流子主要由于扩散而移动不同,在非晶硅太阳能电池中,光生载流子主要依靠太阳能电池内电场作用做漂移运动。
在非晶硅太阳能电池中,顶层的重掺杂层的厚度很薄几乎是半透明的,可以使入射光最大限度地进入未掺杂层并产生自由的光生电子和空穴。
而较高的内建电场也基本上从这里展开,使光生载流子产生后立即被扫向n+侧和p+侧。
由于未掺杂的非晶硅实际上是弱n型材料,因此,在淀积有源集电区时适当加入痕量硼,使其成为费米能级居中的i型,有助于提高太阳能电池的性能。
因而在实际制备过程中,常常将淀积次序安排为p-i-n,以利用淀积p层时的硼对有源集电区进行自然掺杂。
这一淀积顺序决定了透明导电衬底电池总是p+层迎光,而不透明衬底电池总是n+层迎光。
在单结非晶硅太阳能电池中,利用微晶硅来做掺杂层的电池结构也是较为常用的一种。
微晶硅有较高的掺杂效率,在同样的掺杂水平下,其费米能级远离带隙中央的程度比非晶硅高。
另一方面,微晶硅的带隙不会因为掺杂而有明显的降低,因此用微晶硅做太阳能电池的接触层,既可减小串联电阻,也可增加开路电压,是理想的n+或p+材料。
单结非晶硅异质结电池非晶硅太阳能电池内光生载流子的生成主要在i层,入射光在到达i层之前,一部分被掺杂层所吸收。
因为对于非晶硅材料,掺杂将会使材料带隙降低,造成对太阳光谱中的短波部分的吸收系数变大,研究表明,即使掺杂层厚度仅有10nm,仍会将入射光的20%左右吸收掉。
从而削弱了电池对短波长光的响应,限制了短路电流的大小。
为了减少入射方向掺杂层对光的吸收以使到达i层的光增加的目的,人们提出了单结非晶硅异质结太阳能电池结构。
所谓单结非晶硅异质结太阳能电池,是指在迎光面采用宽带隙的非晶碳化硅膜来代替带隙较窄的非晶硅做窗口的结构。
利用宽带隙的非晶碳化硅膜可以明显改善太阳能电池在短波区域的收集效率。
(如图所示)利用宽带隙材料做成异质结结构,不仅是通过窗口作用提高短路电流,还可以通过内建电势的升高提高开路电压。
因为在p层中加碳,能隙变宽,p、i两层中的费米能级的相对位置被相应拉开,因而对升高内建电势也有好处。
在非晶硅太阳能电池的发展过程中,转换效率的一次幅度较大的提高就是用p型的非晶碳化硅膜代替p型的非晶硅的结果。
对于带隙为1.7eV左右的i层,要求p层材料的带隙最好在2.0eV左右。
当非晶碳化硅膜中碳的成分比在20-30%时,就能满足这一要求,而且并没有给电池的制造工艺增加多少麻烦,而电池的性能却得到很大改善。
非晶硅叠层电池对于单结太阳能电池,即便是用晶体材料制备的,其转换效率的理论极限一般在AM1.5的光照条件下也只有25%左右。
这是因为,太阳光谱的能量分布较宽,而任何一种半导体只能吸收其中能量比自己带隙值高的光子。
其余的光子不是穿过电池被背面金属吸收转变为热能,就是将能量传递给电池材料本身的原子,使材料发热。
这些能量都不能通过产生光生载流子变成电能。
不仅如此,这些光子产生的热效应还会升高电池工作温度而使电池性能下降。
为了最大程度的有效利用更宽广波长范围内的太阳光能量。
人们把太阳光谱分成几个区域,用能隙分别与这些区域有最好匹配的材料做成电池,使整个电池的光谱响应接近与太阳光光谱,如图所示,具有这样结构的太阳能电池称为叠层电池。
左面是叠层太阳能电池的结构和原理示意图。
从迎光面开始,材料的带隙依次下降,即最外面的材料带隙宽,有利与吸收短波长的光,而透过的长波长的光则被里层带隙较窄的材料吸收,这样可以最大限度的吸收太阳光能量,同时。
由于各个子电池是串联在一起的,总的开路电压比单个电池高很多,因而有可能大幅度提高转换效率。