第6章 连续时间信号与系统的复频域分析
- 格式:ppt
- 大小:10.52 MB
- 文档页数:108
《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,清华大学出版社,北方交通大学出版社,2003年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
第六章连续信号与系统复频域分析第六章习题6.1是非题(下述结论若正确,则在括号内填入√,若错误则填入某)1.若L[f(t)]F(),则L[f(tt0)]etF()()02.L1ein(t1)()211(1)3.拉氏变换法既能求解系统的稳态响应,又能求解系统的暂态响应。
()4.若已知系统函数H(),激励信号为某(t)e2tu(t),则系统的自由响应中必包含稳态响应分量。
()5.强迫响应一定是稳态响应。
()6.系统函数与激励信号无关()6.2求L[2e()d]t6.3已知系统函数的极点为p1=0,p2=-1,零点为z1=1,如该系统的冲激响应的终值为-10,求此系统的系统函数H()。
6.4对于题图所示的RC电路,若起始储能为零,以某(t)作为激励,v2(t)作为响应,0.5F+某(t)-2Ω+(1)…01234t某(t)v2(t)-1.求系统的冲激响应h(t)与阶跃响应g(t),并画出h(t)及g(t)的波形;2.若激励信号某1(t)u(t)u(t1),求系统响应v2(t);3.若激励信号某2(t)如题图所示,求系统响应v2(t)。
126.5系统如题图所示,L=1H,R=2Ω,C=RLEi(t)F,t=0以前开关位于“1”,电路已进入稳定状态;t=0开关从“1”倒向“2”,12RC1.画出系统的域模型;2.求电流i(t)。
6.6有一一阶低通滤波器,当激励为intu(t)时,自由响应为2e3tu(t),求强迫响应(设起始状态为零)。
6.7电路如题图所示,某(t)为激励信号,以vc(t)作为响应。
2Ω+某(t)-1H+1Fvc(t)-1.求该系统的系统函数H()及冲激响应h(t);2.画出该系统的域模型图(包含等效电源);3.求系统的起始状态iL(0),vc(0),使系统的零输入响应等于冲激响应;4.求系统的起始状态iL(0),vc(0),使系统对某(t)u(t)的全响应仍为u(t)。
6.8选择题(每小题可能有一个或几个正确答案,将正确的题号填入()内)1.若一因果系统的系统函数为H()论——————————()(1)若bi0(i0,1,n,且n2),则系统稳定。
信号与系统刘树棠课后答案【篇一:信号与系统复习指导】>本课程是电子信息与电气类专业本科生的一门重要的专业基础课程。
它主要讨论信号、线性时不变系统的分析方法,并通过实例分析,向学生介绍工程应用中的重要方法。
通过这门课程的学习,提高学生的分析问题和解决问题的能力,为学生今后进一步学习信号处理、网络分析综合、通信理论、控制理论等课程打下良好的基础。
本课程需要较强的数学基础,其主要任务是运用相关数学方法进行信号与线性时不变系统分析。
注重结合工程实际。
先修课程:“高等数学”、“大学物理”、“电路分析”等。
□ 课程的主要内容和基本要求1. 信号与系统的基本概念(1) 掌握信号的基本描述方法、分类及其基本运算。
(2) 掌握系统的基本概念和描述方法,掌握线性时不变系统的概念。
2. 信号与系统的时域分析(1) 掌握卷积积分的概念及其性质。
(2) 掌握卷积和的概念及计算。
(3) 掌握连续信号的理想取样模型及取样定理。
3. 连续时间信号与系统的频域分析 (1) 掌握周期信号的傅里叶级数展开。
(2) 掌握傅里叶变换及其基本性质。
(3) 掌握信号的频谱的概念及其特性。
(4) 掌握系统对信号响应的频域分析方法。
(5) 掌握系统的频域传输函数的概念。
(6) 掌握理想低通滤波器特性,了解系统延时、失真、因果等概念。
(7) 掌握线性系统的不失真传输条件。
4.离散时间信号与系统的频域分析 (1) 理解周期信号的傅里叶级数展开。
(2) 掌握傅里叶变换及其基本性质。
(4) 掌握系统的频率响应。
(5) 掌握系统对信号响应的频域分析方法。
5. 连续时间信号与系统的复频域分析(1) 掌握单边拉普拉斯变换的定义和性质。
(2) 掌握拉普拉斯反变换的计算方法(部分分式分解法)。
(3) 掌握系统的拉普拉斯变换分析方法。
(4) 掌握系统函数的概念。
(5) 掌握系统极零点的概念及其应用。
(6) 掌握系统稳定性概念。
(7) 掌握系统的框图与信号流图描述。
西安石油大学2021年硕士研究生招生考试(810)信号与系统考试大纲一、考察目标1.能够解释信号与系统的相关概念和术语,能利用常见基本信号的定义、性质、运算与变换方法,以及线性非时变系统的基本特性,运用时域及变换域方法分析信号、系统的基本特征。
2.能够利用数学和电路相关知识建立电系统的数学模型,能够利用变换域方法描述并分析复杂系统,解决滤波、调制解调、系统稳定性等工程问题。
二、考试主要内容第一章绪论(1)信号、系统的常见分类,以及常用基本信号的时域描述方法,主要包括奇异函数的定义、特点与性质、相互间的关系;(2)信号的时域分解、变换与运算,会应用信号的基本特点与变换、运算方法对信号作相应的变换;(3)掌握线性非时变因果系统的性质,会利用性质分析求解不同状态下系统的响应。
第二章连续时间系统的时域分析(1)利用数学和电路知识建立系统输入和输出之间的微分方程,并会写出或者直接列写微分方程的算子形式,会求转移算子;(2)通过转移算子,会求解系统的自然频率,系统的单位冲激响应;(3)会求解系统在不同类型自然频率下的系统零输入响应;(4)会利用卷积积分的定义、性质求信号的卷积积分,并利用卷积积分求解系统零状态响应;(5)利用系统的零输入响应与零状态响应求解系统的全响应,并从最后的结果指出自然响应分量与受迫响应分量,暂态响应分量与稳态响应分量。
第三章连续信号的正交分解(1)在了解周期信号频谱特点的基础上,掌握非周期信号频谱的最大特点,即连续谱;(2)掌握非周期信号的傅里叶变换及其反变换的定义、常用信号的傅里叶变换、傅里叶变换的基本性质;(3)利用常用信号的傅里叶变换及傅里叶变换的基本性质,会求解非周期信号的傅里叶变换以及反变换。
第四章连续时间系统的频域分析(1)对连续时间系统的数学模型,即微分方程或者连续时间系统的电路模型,会利用信号的傅里叶变换知识建立方程或者电路的频域模型;(2)会求解系统的频域系统函数以及不同激励下系统响应;(3)利用频域法分析几类特殊系统,包括无失真传输系统的系统不失真的时域与频域条件,理想低通滤波器的单位冲激响应与频域系统函数,调制与解调系统的基本性质,解决滤波、调制解调等工程问题。
信号与系统的频域分析信号与系统是电子、通信、自动控制、计算机等领域的重要基础课程,频域分析是其中的重要内容之一。
频域分析是指将信号在频域上进行分析和处理,通过分析信号的频谱特性和频率分量来了解信号的频率成分和频率响应。
一、频域分析的基本概念和原理频域分析是将时域信号转换为频域信号的过程,可以通过傅里叶变换来实现。
傅里叶变换是一种将非周期信号或有限时长的周期信号分解为一系列基础频率分量的技术,可以将信号在频域上进行表达和处理。
在频域中,信号的频率成分和相对能量分布可以清晰地呈现出来,方便人们对信号进行分析和理解。
二、傅里叶级数和傅里叶变换傅里叶级数是用来分解周期信号为一系列余弦和正弦函数的技术,适用于周期信号的频域分析。
傅里叶级数展开后,通过求解各个频率分量的振幅和相位,可以得到该周期信号在频域中的频率成分和能量分布。
傅里叶变换是对非周期信号或有限时长的周期信号进行频域分析的方法。
傅里叶变换将信号从时域转换到频域,得到信号的频谱特性。
通过傅里叶变换,可以将时域中的信号分解为一系列基础频率分量,同时还可以得到每个频率分量的相位和振幅信息。
三、频域分析的应用频域分析在信号处理和系统分析中广泛应用。
在通信系统中,频域分析可以用于信号调制、解调和信道估计等方面。
在音频和视频信号处理中,频域分析可以用于音频和视频编码、去噪和增强等技术。
在自动控制系统中,频域分析可以用于系统的稳定性和响应特性分析。
四、常见的频域分析方法除了傅里叶变换外,还有一些常见的频域分析方法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、功率谱密度分析(PSD)等。
这些方法在不同的领域和应用中有着各自的优缺点和适用范围。
熟练掌握这些方法的原理和使用技巧,可以更好地进行频域分析和信号处理。
五、总结频域分析是信号与系统领域中重要的理论和实践内容,通过分析信号在频域上的频率成分和能量分布,可以深入理解信号的特性和系统的行为。
傅里叶变换作为频域分析的核心工具,能够将信号在时域和频域之间进行转换,为信号处理和系统分析提供了强有力的工具。
《信号与系统》期末复习重点一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,高等教育出版社,2007年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章 周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章 非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier 变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。