2020高中数学《集合》综合训练 (654)
- 格式:doc
- 大小:345.00 KB
- 文档页数:5
集合专题训练(含答案)1.对集合中有关概念的考查在2020年校运动会中,集合A表示参加比赛的运动员,集合B表示参加比赛的男运动员,集合C表示参加比赛的女运动员。
那么下列关系正确的是()A。
A是B的子集B。
B是C的子集C。
A与B的交集等于CD。
B与C的并集等于A解析:根据题意,A包含了所有参加比赛的运动员,B只包含了男运动员,C只包含了女运动员。
因此,B是A的子集。
选项A正确。
点评:此题考查了集合的子集概念和集合运算,需要注意从元素的角度理解集合的含义。
2.对集合性质及运算的考查已知全集U={2,3,4,5,6,7},集合M={3,4,5,7},集合N={2,4,5,6},那么下列哪个选项是正确的?A。
M与N的交集为{4,6},N等于全集UB。
M与N的并集为{2,3,4,5,6,7},N等于全集UC。
(C并N)与M的并集等于全集UD。
(C并M)与N的交集等于N解析:根据题意,M与N的交集为{4,5},N不等于全集U;M与N的并集为{2,3,4,5,6,7},N不等于全集U;(C并N)与M的并集包含了全集U中的所有元素,因此选项C正确;(C并M)与N的交集为{4},不等于N。
因此选项D错误。
点评:此题考查了集合的并、交、补运算以及集合间的关系应用。
可以使用文氏图来帮助理解。
3.对与不等式有关集合问题的考查已知集合M={x|x+3<x-1},集合N={x|-3<x<1},那么集合{ x | x-1<x }等于哪个选项?A。
M并NB。
M交NC。
实数集RD。
(M交N)的补集解析:将集合M中的不等式化简得到-3<x,将集合N中的不等式化简得到-3<x<1,因此集合M交N等于{x|-3<x<1}。
而{x|x-1<x}等价于{x|x<1},因此选项C正确。
点评:此题考查了解不等式的知识内容,同时也考查了集合的运算。
需要注意参数的取值范围以及数形结合思想的应用。
高中数学集合练习题及答案一、单选题1.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,52.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( )A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,4 3.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( )A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2-4.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .{}21x x -≤≤ C .102x x ⎧⎫-≤≤⎨⎬⎩⎭ D .102x x ⎧⎫<≤⎨⎬⎩⎭ 5.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤- C .{}3a a > D .{}1a a <- 6.已知集合22{(,)|3,Z,Z}A x y x y x y =+≤∈∈,则A 中元素的个数为( ) A .9 B .8 C .5 D .47.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,3 8.已知集合{|12}A x x =-≤≤,{}0B x x =>,则A B ⋃=( )A .{|2}x x ≤B .{|1}x x ≥-C .{}|1x x >D .{}0x x 9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3- B .[2,3)- C .(2,2)- D .[2,2)- 10.已知集{}23A x x =+≥合,{}3,1,1,3B =--,则A B =( )A .{}3B .{}1,3C .{}3,1--D .{}1,1,3-11.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( ) A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,112.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( )A .6B .7C .8D .9 13.集合A ={x |y =log 2(x +12)},B ={y |y =x 2-2x ,x ∈[0,2]}.则A ∩B =( )A .1,02⎡⎤-⎢⎥⎣⎦B .1,02⎛⎤- ⎥⎝⎦C .1,02⎡⎫-⎪⎢⎣⎭D .(102-,) 14.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}3 15.已知集合A ={1,2,3,4,5},集合B ={1,2},若集合C 满足:B C A ⊆,则集合C的个数为( )A .6个B .7个C .8个D .9个 二、填空题16.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________ 17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.已知{}21,,3A a =,{}22,1,1B a a =+-.若A B =,则=a ______.19.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________. 20.若集合(){}2381x A x ==,集合(){}23log 1B x x ==,则A B =_________. 21.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________.22.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.23.若{}231,13a a ∈--,则=a ______.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______. 25.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.(1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”?(2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.设集合{}53A x x =-≤≤,{2B x x =<-或}4x >.(1)求A B ;(2)求R R ()()A B ⋃.28.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.29.记E 为平面上所有点组成的集合并且A E ∈,B E ∈,说明下列集合的几何意义: (1){}5P E PA ∈<; (2){}P E PA PB ∈=.30.已知集合6|32M x x ⎧⎫=>⎨⎬+⎩⎭,{|53}N x t x t =<<+. (1)当1t =-时,求M N ⋂;(2)若M N ⊆,求实数t 的取值范围.【参考答案】一、单选题1.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C2.A【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得;【详解】 解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =.故选:A3.C【解析】【分析】首先用列举法表示集合A ,再根据并集的定义计算可得;【详解】 解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C4.B【解析】【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案.【详解】解22320x x +-≤ 可得122x -≤≤ , 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭, 所以{}21A B x x ⋃=-≤≤,故选:B .5.B【解析】【分析】根据集合的包含关系,列不等关系,解不等式即可.【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-.故选:B6.A【解析】【分析】根据x ,y 满足的关系式求得x ,y 的可能值,从而求得集合元素个数.【详解】由223x y +≤,得x ≤≤y ≤又Z x ∈,Z y ∈,所以{1,0,1}x ∈-,{1,0,1}∈-y ,易知x 与y 的任意组合均满足条件,所以A 中元素的个数为339⨯=.故选:A.7.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D8.B【解析】【分析】进行并集的运算即可.【详解】{|12}A x x =-≤≤,{}0B x x =>,{|1}A B x x ∴⋃=≥-.故选:B .9.D【解析】【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答.【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-.故选:D10.B【解析】【分析】化简集合A ,由交集定义直接计算可得结果.【详解】化简可得{|1}A x x =≥,又{}3,1,1,3B =--所以{1,3}A B =.故选:B.11.C【解析】【分析】求出集合M ,N ,然后进行并集的运算即可.【详解】 ∵{}02M x x =<<,{}11N x x =-≤≤,∴[1,2)M N ⋃=-.故选:C .12.B【解析】【分析】解对数不等式化简A ,求出B 可得答案.【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<,所以N B A ={2,3,4,5,6,7,8}=,则B 中元素的个数为7.故选:B13.B【解析】【分析】分别解出A 、B 集合,再求交集即可.【详解】集合A :11 022x x +>⇒>-; 集合B :222(1)1,[0,2]y x x x x =-=--∈,[1,0]y ∈- 所以:1(,0]2A B -=故选:B.【点睛】本题考查集合的交集运算.属于基础题.正确解出A 、B 集合是本题的基础.14.D【解析】【分析】利用补集和交集的定义可求得结果.【详解】由已知可得{}0,3U A =,因此,(){}U 3A B ⋂=,故选:D.15.B【解析】【分析】根据集合间的关系写出所有满足条件的集合C 可得出答案.【详解】根据B C A ⊆,集合C 可写成如下形式: {}{}{}{}{}{}{}12312412512341235124512345,,,,,,,,,,,,,,,,,,,,,,, 所以满足条件的集合C 的个数为7个,选项B 正确.故选:B.二、填空题16.[)1,+∞【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞17.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】 因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.2【解析】【分析】根据集合A 与集合B 相等列式即可求解【详解】因为A B =所以22213a a a ⎧=+⎨-=⎩解之得:2a = 故答案为:219.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:120.{1,2,33} 【解析】【分析】求解集合,根据集合的并集运算即可.【详解】(){}{}23812x A x ===,(){}231log 13,3B x x ⎧⎫===⎨⎬⎩⎭,则A B ={1,2,33}. 故答案为:{1,2,33}. 21.1,1,22⎧⎫-⎨⎬⎩⎭ 【解析】【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】 因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 故答案为:1,1,22⎧⎫-⎨⎬⎩⎭22.26【解析】【分析】由题知{}4,10T =,再结合韦达定理求解即可.【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根, 因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q =所以26p q +=故答案为:2623.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.24.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去.当3a =时,满足题意.故答案为:3.25.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){}52x x -≤<-; (2){5x x <-或}2x ≥-.【解析】【分析】(1)根据给定条件利用交集的定义直接计算作答.(2)利用补集的定义求出R A ,R B ,再利用并集的定义求解作答. (1) 因集合{}53A x x =-≤≤,{2B x x =<-或}4x >,所以{|52}A B x x ⋂=-≤<-.(2) 依题意,R {5A x x =<-或3}x >,{}R 24B x x =-≤≤,所以{R R ()()5A B x x ⋃=<-或}2x ≥-.28.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈ 【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 29.(1)以A 为圆心,5为半径的圆内部分(2)线段AB 的垂直平分线【解析】【分析】(1)由圆的定义可得;(2)由线段垂直平分线的定义可得.(1)表示到A 点距离小于5的点组成的集合,即以A 为圆心,5为半径的圆内部分;(2)P 到,A B 距离相等,即线段AB 的垂直平分线.30.(1){}|20x x -<< (2)23,5⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)解不等式得M ,再求,M N 交集(2)由题意列不等式组求解(1) 由632x >+化简得302x x <+,解得20x -<<,故{}|20M x x =-<<, 当1t =-时,{}52N x x =-<<,因此{}|20MN x x =-<<.(2) 因{}|20M x x =-<<,{}53N x t x t =<<+,M N ⊆, 所以355230t t t t +>⎧⎪≤-⎨⎪+≥⎩,经计算得235t-≤≤-,故实数t的取值范围是2 3.5⎡⎤--⎢⎥⎣⎦,。
集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题 :1.设集合,则( ) A .{75}x x -<<-∣ B .{35}xx <<∣ C .{53}xx -<<∣ D .{|75}x x -<< 【答案】C【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可.解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}ST x x =-<<, 故选C2.已知集合,则集合等于( )A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】 A3.若集合,且,则实数m 的可取值组成的集合是( )A .B .C .D . {}()(){}5,730S x x T x x x =<=+-<S T ⋂={}}{Z n n x x N x x M ∈+==<-=,12,042N M ⋂{}{}260,10P x x x T x mx =+-==+=T P ⊆11,32⎧⎫-⎨⎬⎩⎭13⎧⎫⎨⎬⎩⎭11,,032⎧⎫-⎨⎬⎩⎭12⎧⎫-⎨⎬⎩⎭C4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是( )A .6B .7C .8D .9【答案】C5.设P={x|x ≤8},,则下列关系式中正确的是( ).A .a PB .a PC .{a}PD .{a}P【答案】D6.已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为( )A .3B .6C . 8D .10 【答案】 D【解析】考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,⊆⊆⊆∉∈⊂综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B A故选B点评:本题主要考查了集合之间关系的判断,属于基础试题8.不等式﹣x2﹣5x+6≤0的解集为()【答案】D【解析】考点:一元二次不等式的解法。
高中数学集合练习与答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .42.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞ 3.已知集合,,则( )A .B .C .D .4.已知全集,集合为A .B .C .D .5. 若命题p 为:为A .B .C .D .6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .37.设集合, ,则( )A .B .C .D . 8. 已知,则( )A .B .C .D .9. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题10. 设集合,集合,则集合( ) A .B .C .D .11 已知集合,,则=( ) A .B .C .D .12. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】在等比数列中,“是方程的两根”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a <14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题 15. 设集合,,则( )A .B .C .D .16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥ C {13}x x ≤≤. D.{2}x x ≥-17.已知全集U=R ,则A .B .C .D .18.集合,,,若,则的取值范围是( )A .B .C .D . 19. 设集合{|1},{|1}A x x B x x =>-=≥,则“x A ∈且x B ∉”成立的充要条件是( )A .11x -<≤B .1x ≤C .1x >-D .11x -<<20.下列命题中的假命题是( )A .B .C .D .21. 已知全集,集合和的关系的韦恳(V enn )图如图所示,则阴影部分所示的集合的元素共有( )A .1个B .2个C .3个D .无穷个22. 设,,a b c R ∈,则“1abc =”是a b c a b c≤+=”的 A .充分条件但不是必要条件, B .必要条件但不是充分条件 C .充分必要条件 D .既不充分也不必要的条件23. 已知集合{|1}A x x =<,{|1x B x e =< },则( ) A .{|1}A B x x ⋂=< B .()R A C B R ⋃=C .{|}A B x x e ⋃=<D .(){|01}R C A B x x ⋂=<< 二、填空题 1.已知下列命题:①命题“2,35x R x x ∀∈+<”的否定是“2,35x R x x ∃∈+<”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝⌝∧为真命题”;③“2015a >”是“2017a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是__________.答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .4【答案】C【解析】∵{}6A x N x =∈<, ∴{}0,1,2,3,4,5A =, 又{}2,xB y y x A ==∈, ∴{}1,2,4,8,16,32B =, ∴{}1,2,4AB =,有3个元素,故选:C .2.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞【答案】A【解析】(){}|1001A x x x x =-≤⇒≤≤(){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A 3.已知集合,,则( )A .B .C .D .【答案】A 【解析】集合集合,则,故选A.4. 已知全集,集合为A .B .C .D .【解析】因为,所以或.所以.故选B.5.若命题p为:为A.B.C.D.【答案】C【解析】根据的构成方法得,为.故选C.6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3【答案】C分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.7.设集合,,则()A.B.C.D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.8.已知,则()A.B.C.D.【解析】试题分析:因为,,所以,.选.9.下列有关命题的说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“若,则,互为相反数”的逆命题是真命题C.命题“,使得”的否定是“,都有”D.命题“若,则”的逆否命题为真命题【答案】B【解析】“若,则”的否命题为“若,则”,错误;逆命题是“若则,互为相反数,”,正确;“,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.10.设集合,集合,则集合()A.B.C.D.【答案】C【解析】由题意得,,∴,∴.故选C.11已知集合,,则=()A.B.C.D.【答案】B【解析】由题知,,则故本题答案选.12.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,所以2a ≤,故选C.14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题【答案】B 【解析】 “若,则”的否命题为“若,则”,错误;逆命题是 “若则,互为相反数,”,正确; “,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.15. 设集合,,则( )A .B .C .D .【答案】B【解析】由题意可得:,则集合=.本题选择B 选项.16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥C {13}x x ≤≤. D.{2}x x ≥-【答案】C【解析】由题意知集合2{|60}{|23}A x x x x x =--≤=-≤≤,所以{|13}AB x x =≤≤ ,故选C 。
高中数学集合练习题含答案一、单选题1.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R2.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( )A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-3.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.已知集合{}21A x x =<,{}02B x x =<<,则A B =( )A .1,2B .0,1C .()0,2D .1,25.设集合(){}2log 1A x y x ==-,{}1,0,3B =-,则A B =( ) A .{}0 B .{}1,1- C .{}1,0-D .1,0,1,26.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞ 7.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .38.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}9.已知集合{|A x y ==,{}2|24x B x -=<,则A B =( )A .3,22⎛⎫ ⎪⎝⎭B .3,22⎡⎫⎪⎢⎣⎭C .3,42⎛⎫ ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭10.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-11.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}312.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,313.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2,3B =,则()UB A =( )A .{}2-B .{}2,2-C .{}2,1,0,3--D .{}2,1,0,2,3--14.设全集U =R ,集合{}21A x x =-≤,{}240xB x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,215.已知集合2,Z ,,Z 333k A k k B k πππααπββ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭∣∣,下列描述正确的是( ) A .A B A = B .A B B = C .A B =∅D .以上选项都不对二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________.17.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.18.组成平面图形的点的集合是P ,这个平面图形所在的平面上的所有点组成的集合为Q ,那么P 与Q 的关系是___________.19.已知a 、R b ∈,若不等式20ax x b -+<的解集为112A x x ⎧⎫=<<⎨⎬⎩⎭,不等式210ax bx +-≤的解集为B ,则()R A B ⋂=______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________. 22.写出集合{1,1}-的所有子集______. 23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.24.设{}|11A x x =-<<,{}|0B x x a =->若A B ⊆,则a 的取值范围是_____.25.已知集合21A x x ⎧⎫=≥⎨⎬⎩⎭,{}1B x x a =->,若A B =∅,则实数a 的取值范围是______.三、解答题26.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ; (3)若A 中至少有一个元素,求a 的取值范围.27.已知集合{}{}|26,|3782A x x B x x x =≤≤=-≥-. (1)求A B ,R()A B ;(2)若{}|44C x a x a =-<≤+,且A ⊆C ,求a 的取值范围.28.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.29.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.30.设全集U =R ,已知集合2{|2350}A x x x =+-≤,{(8)0}B xx x =->∣. (1)求()R ,A B A B ⋂⋃; (2)求()R,A B A B ⋂⋃.【参考答案】一、单选题 1.C 【解析】 【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 2.C 【解析】 【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<, 故选:C. 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.B 【解析】解一元二次不等号求集合A ,再由集合的交运算求A B . 【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<< 所以{|01}A B x x =<<. 故选:B 5.C 【解析】 【分析】由对数函数定义域可求得集合A ,根据交集定义可得结果. 【详解】由10x ->得:1x <,即{}1A x x =<,{}1,0A B ∴=-. 故选:C. 6.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D7.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 8.A 【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .9.D 【解析】 【分析】分别解出A ,B 集合的范围,求出交集即可. 【详解】{{}3|=|230=,2⎡⎫==-≥+∞⎪⎢⎣⎭A x y x x ,{}{}()2|24|22,4-=<=-<=-∞x B x x x ,所以,432⎡⎫⋂=⎪⎢⎣⎭A B ,故选D . 10.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 11.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 12.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 13.A 【解析】 【分析】利用并集和补集的定义可求得结果. 【详解】由已知可得{}1,0,1,2,3A B ⋃=-,因此,(){}2UAB =-.故选:A. 14.C 【解析】 【分析】解不等式化简集合A ,B ,再利用补集、交集的定义计算作答. 【详解】解不等式21-≤x 得:13x ≤≤,则[1,3]A =, 解不等式240x -≥得:2x ≥,则[2,)B =+∞,(,2)UB =-∞,所以()[1,2)UA B =.故选:C 15.A 【解析】 【分析】将两个集合等价变形,从而可判断两个集合的关系,从而可得出答案. 【详解】解:()13,Z ,Z 33k A k k k ππααπαα⎧⎫+⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭∣∣,分子取到3的整数倍加1,()22,Z ,Z 333k k B k k πππββββ⎧⎫+⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭∣∣,分子取全体整数,所以A B ≠⊂, 所以A B A =. 故选:A.二、填空题 16.2-【解析】 【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数.【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}1 18.P Q ≠⊂ 【解析】 【分析】根据两个集合中的元素可判断出包含关系. 【详解】集合P 包含的所有元素都在集合Q 中,且集合Q 包含集合P 所不包含的其他元素,P Q ≠∴⊂.故答案为:P Q ≠⊂ 19.3122x x ⎧-≤≤⎨⎩或}1x =【解析】 【分析】分析可知x 的方程20ax x b -+=的两根分别为12、1,利用韦达定理求出a 、b 的值,然后解不等式210ax bx +-≤可得集合B ,利用补集和交集的定义可求得()A B R . 【详解】由题意可知,关于x 的方程20ax x b -+=的两根分别为12、1,所以11121120a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得2313a b ⎧=⎪⎪⎨⎪=⎪⎩, 不等式210ax bx +-≤即为2211033x x +-≤,即2230x x +-≤,解得312x -≤≤,则312B x x ⎧⎫=-≤≤⎨⎬⎩⎭,因为112A x x ⎧⎫=<<⎨⎬⎩⎭,则R 12A x x ⎧=≤⎨⎩或}1x ≥,因此,()R3122A B x x ⎧⋂=-≤≤⎨⎩或}1x =.故答案为:3122x x ⎧-≤≤⎨⎩或}1x =.20.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃21.2a ≥【解析】 【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解. 【详解】 由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立; 当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥ ∴实数a 的取值范围是2a ≥. 故答案为:2a ≥. 22.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-. 23.35,88⎡⎤⎢⎥⎣⎦【解析】【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】 因为()()294sin32311644x x xf x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦24.(],1-∞-【解析】 【分析】由数轴法可得到A B ⊆,则只要1a ≤-即可. 【详解】 根据题意作图:由图可知,A B ⊆,则只要1a ≤-即可,即a 的取值范围是(],1-∞-. 故答案为:(],1-∞-. 25.[)1,+∞. 【解析】 【分析】先解出集合A ,B ,再根据A B =∅即可求得a 的范围. 【详解】 对集合A ,222211000x x x x x x--≥⇒-≥⇒≥⇒≤,则(0,2]A =,又()1,B a =++∞,而A B =∅,所以121a a +≥⇒≥.故答案为:[1,)+∞.三、解答题26.(1)9,8⎛⎫+∞ ⎪⎝⎭ (2)当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)9,8⎛⎤-∞ ⎥⎝⎦ 【解析】【分析】(1)利用A 是空集,则Δ00a <⎧⎨≠⎩即可求出a 的取值范围; (2)对a 分情况讨论,分别求出符合题意的a 的值,及集合A 即可; (3)分A 中只有一个元素和有2个元素两种情况讨论,分别求出参数的取值范围,即可得解.(1)解: A 是空集,0a ∴≠且∆<0,9800a a -<⎧∴⎨≠⎩,解得98a >, a ∴的取值范围为:9,8⎛⎫+∞ ⎪⎝⎭; (2)解:①当0a =时,集合2{|320}3A x x ⎧⎫=-+==⎨⎬⎩⎭, ②当0a ≠时,0∆=,980a ∴-=,解得98a =,此时集合43A ⎧⎫=⎨⎬⎩⎭, 综上所求,当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)解:A 中至少有一个元素,则当A 中只有一个元素时,0a =或98a =; 当A 中有2个元素时,则0a ≠且0∆>,即9800a a ->⎧⎨≠⎩,解得98a <且0a ≠; 综上可得98a ≤时A 中至少有一个元素,即9,8a ⎛⎤∈-∞ ⎥⎝⎦ 27.(1)[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂(2)[)2,6【解析】【分析】(1)解不等式求得集合B ,由此求得A B ,进而求得R ()A B . (2)根据A 是C 的子集列不等式组,由此求得a 的取值范围.(1)3782,515,3x x x x -≥-≥≥,所以{}|3B x x =≥, 所以[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂.(2)由于{}|44C x a x a =-<≤+,且A ⊆C ,所以422646a a a -<⎧⇒≤<⎨+≥⎩, 所以a 的取值范围是[)2,6.28.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦. 29.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤ (2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤ 所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A 是B 的真子集,故21231m m +≤-⎧⎨+≥⎩即322m -≤≤- 所以实数m 的取值范围是32,2⎡⎤--⎢⎥⎣⎦. 30.(1)()[](]()R 0,5,,58,A B A B ⋂=⋃=-∞⋃+∞(2)[)()(]R 7,0,5,8A B A B ⋂=-⋃= 【解析】【分析】(1)解不等式求得集合,A B ,由此求得()R ,A B A B ⋂⋃. (2)结合(1)来求得()R ,A B A B ⋂⋃.(1) ()()2235750x x x x +-=+-≤,解得75x -≤≤, 所以[]7,5A =-,()()R ,75,A =-∞-⋃+∞.()80x x ->,解得0x <或8x >,所以()(),08,B =-∞⋃+∞,[]R 0,8B =,所以()[](]()R 0,5,,58,A B A B ⋂=⋃=-∞⋃+∞.(2)由(1)得[)()(]R 7,0,5,8A B A B ⋂=-⋃=.。
高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设全集为R , 函数()f x M , 则C M R 为(A) [-1,1] (B) (-1,1)(C) ,1][1,)(∞−⋃+∞− (D) ,1)(1,)(∞−⋃+∞−(2013年高考陕西卷(理))2.设集合{|1A x =−≤x ≤2},B={x |0≤x ≤4},则A ∩B=A(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4](2006年高考浙江理)3.设集合{}6,5,4,3,2,1=P ,{}62≤≤∈=x R x Q ,那么下列结论正确的是A. P Q P =B. Q Q P ≠⊃C. Q Q P =D. ≠⊂Q P P (2007)4.已知集合M={1,2,3},N={2,3,4},则A .M N ⊆ B.N M ⊆ C .{2,3}M N ⋂= D.{1,4}M N ⋃ (2010湖南理数)5.已知全集U=R ,集合M={x||x-1|≤2},则U C M=(A ){x|-1<x<3} (B){x|-1≤x ≤3} (C){x|x<-1或x>3} (D){x|x ≤-1或x ≥3}(2010山东理数)1.6.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M .B MN U =C .U M N C u = )( D. N N M C u = )((2008湖南文1)7. i 是虚数单位,若集合{}1,0,1S =−,则( ).A .i S ∈B .2i S ∈C . 3i S ∈D .2iS ∈(2011福建理)8.若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集CuA 为A |x ∈R |0<x <2|B |x ∈R |0≤x <2|C |x ∈R |0<x≤2|D |x ∈R |0≤x≤2|9.设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)=( ) A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}(2012浙江文)10.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为 ( )A .5B .4C .3D .2(2012江西理) C11.集合{ 1−x ,2,12−x }中的x 不能取的值是( B )A. 2B. 3C. 4D. 512.设全集为I ,非空集合A ,B 满足A ⊂B ,则下列集合中为空集的是-----------------------------( )A.I A B ðB.A ∩BC.I I A B 痧D.I A B ð13.若关于x 的一元二次不等式20ax bx c ++<的解集为实数集R ,则a 、b 、c 应满足的条件为-----------------------------------------------------------------------( )(A ) a >0,b 2―4ac >0 (B ) a >0,b 2―4ac <0(C ) a <0,b 2―4ac >0 (D ) a <0,b 2―4ac <0二、填空题14.已知数集{}1 0 2M x =−−,,中有3个元素,则实数x 不能取的值构成的集合为 ▲ .15.给出四组对象:①所有的直角三角形;②圆221x y +=上的所有点;③高一年级中家离学校很远的学生;④高一年级的任课老师.其中能形成集合的序号有 ①②④ .16.期中考试,某班数学优秀率为70%,语文优秀率为75%.则上述两门学科都优秀的百分率至少为( )。
最新高考数学专项训练“集合”专题(20道题,后附答案解析)1.已知集合A={x|a−3≤x≤2a+1},B={x|−5≤x≤3},全集U=R.(1)当a=1时,求(∁U A)∩B;(2)若A⊆B,求实数a的取值范围.2.已知全集U=R,集合A={x|1≤2x≤64},B={x|2m−1<x<m+1}.(1)当m=−1时,求∁U(A∪B);(2)若B⊆A,求实数m的取值范围.3.已知集合A={x|1<x<3},集合B={x|m<x<1−m}.(1)当m=−1时,求A∪B;(2)若A∩B=A,求实数m的取值范围.4.已知a∈R,集合A={x|x2−2x−3≤0},B={x|x2−ax−2=0}.(1)若a=1,求A∩B,C R A;(2)若A∪B=A,求实数a的取值范围.5.已知集合A={x∈R∣(x−a)(x−a−1)≤0},B={x∈R∣−2≤x≤5}.(1)若a=0,求A∪B;(2)若A∩B=∅,求实数a的取值范围.6.已知集合A={x|log2(x+2)<2},B={x|3a−2<x<2a+1}.(1)当a=1时,求A∩B;(2)若A,B满足:①若A∩B=∅,② A∪B=A,从①②中任选一个作为条件,求a的取值范围.7.已知p:x2−4x+3≤0,q:(x+1)(x−m)<0.(1)若m=2,q为真命题,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.8.已知集合A={x|−1<x<3},B={x|k+1<x<3−k}.(1)当k=−1时,求A∩B;(2)若A∪B=A,求实数k的取值范围.9.在① {1,a}⊆{a2−2a+2,a−1,0},②关于x的不等式1<ax+b≤3的解集为{x|3<x≤4},③一次函数y=ax+b的图象过A(−1,1),B(2,7)两点,这三个条件中任选一个,补充在下面的问题中并解答.问题:已知▲,求关于x的不等式ax2−5x+a>0的解集.)x,−2≤x≤0},B={x|0≤lnx≤1},C={x|t+1<x<2t,t∈R}. 10.设集合A={y|y=(12(1)求A∩B;(2)若A∩C=C,求t的取值范围.11.已知集合A={x|a≤x≤a+2},B={x|x2−2x−8≤0}.(1)当a=3时,求A∪B;12.已知集合 A ={x|2<x <4} , B ={x|x 2−4ax +3a 2<0} .(1)若 a =1 ,求 (∁R B)∩A ;(2)若 a >0 ,设命题 p : x ∈A ,命题 q : x ∈B .已知 p 是 q 的充分不必要条件,求实数 a 的取值围.13.已知命题 p : x 2−6x +8<0 ,命题 q : m −2<x <m +1 .(1)若 p 为假命题,求实数 x 的取值范围;(2)若 p 是 q 的充分条件,求实数 m 的取值范围.14.己知集合 A ={x|x 2−2x −3<0} , B ={x|(x −m)(x −m −1)≥0} .(1)当 m =1 时,求 A ∪B ;(2)若 x ∈A 是 x ∈B 的充分不必要条件,求实数m 的取值范围.15.已知集合 A ={x|x−73x+1<0},B ={x|2x−1>1} .(1)求 A ∩(∁R B) ;(2)若集合 C ={x|2t <x <2t +1} ,且 C ⊆A ,求实数 t 的取值范围.16.若函数 f(x) 和 g(x) 的图象均连续不断, f(x) 和 g(x) 均在任意的区间上不恒为0, f(x) 的定义域为 I 1 , g(x) 的定义域为 I 2 ,存在非空区间 A ⊆(I 1∩I 2) ,满足: ∀x ∈A ,均有 f(x)g(x)≤0 ,则称区间A 为 f(x) 和 g(x) 的“ Ω 区间” (1)写出 f(x)=sinx 和 g(x)=cosx 在 [0,π] 上的一个“ Ω 区间”(无需证明....);(2)若 f(x)=x 3 , [−1,1] 是 f(x) 和 g(x) 的“ Ω 区间”,证明: g(x) 不是偶函数; (3)若 f(x)=πlnxe x−1e +x +sin2x ,且 f(x) 在区间 (0,1] 上单调递增, (0,+∞) 是 f(x) 和 g(x) 的“ Ω 区间”,证明: g(x) 在区间 (0,+∞) 上存在零点.17.已知集合 M ={x|x+3x−3<0} ,集合 N ={x|x 2−mx −2m 2<0 ,其中 m >0} .(1)当 m =2 时,求 M ∩N ;(2)若 x ∈M 是 x ∈N 的必要不充分条件,求实数m 的取值范围.18.在① A ∪B =B ;②“ x ∈A ”是“ x ∈B ”的充分不必要条件;③ A ∩B =∅ 这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合 A ={x|a −1≤x ≤a +1} , B ={x|−1≤x ≤3} .(1)当 a =2 时,求 A ∪B ;(2)若 ▲ , 求实数 a 的取值范围.19.已知集合 A ={x |x 2-7x +10<0},B ={x |(x −a)(x −a −2)<0} ;(1)若 B ⊆A ,求实数 a 的取值范围 M ;(2)若 m =log 25−log 240,n =lg40+2lg5 ,求 m,n 的值,并从下列所给的三个条件中任选一个,说明它是(1)中 a ∈M 的什么条件.(请用“充要条件”“充分不必要条件”“必要不充分条件”“既不充分也不必要条件”回答)① a ∈[m,56n) ;② a ∈[m,53n] ;③ a ∈[56n,−m] .20.已知集合 M ={x|x 2−3x −10≤0} , N ={x|a +1≤x ≤2a +1} .(1)若 a =2 ,求 (∁R M)∩(∁R N) ;答案解析部分1.【答案】 (1)解:依题意,当 a =1 时, A ={x|−2≤x ≤3} ,则 ∁U A ={x|x <−2 或 x >3} , 又 B ={x|−5≤x ≤3} ,则 (∁U A)∩B ={x|x <−2 或 x >3}∩{x|−5≤x ≤3}={x|−5≤x <−2}(2)解:若 A ⊆B ,则有 {x|a −3≤x ≤2a +1}⊆{x|−5≤x ≤3} ,于是有: 当 A =ϕ 时, A ⊆B 显然成立,此时只需 a −3>2a +1 ,即 a <−4 ;当 A ≠ϕ 时,若 A ⊆B ,则{a −3≥−52a +1≤3a −3≤2a +1⇒{a ≥−2a ≤1a ≥−4 ,所以: −2≤a ≤1综上所述, a 的取值范围为: a <−4 或 −2≤a ≤12.【答案】 (1)解:当 m =−1 时, B ={x|2m −1<x <m +1}={x|−3<x <0} , ∵A ={x|1≤2x ≤64}={x|0≤x ≤6} , ∴A ∪B ={x|−3<x ≤6} ,因此, ∁U (A ∪B)={x|x ≤−3 或 x >6}(2)解:当 B =∅ 时, 2m −1≥m +1 ,即 m ≥2 ,这时 B ⊆A ;当 B ≠∅ 时,有 {2m −1<m +12m −1≥0m +1≤6,解得 12≤m <2 .综上, m 的取值范围为 [12,+∞)3.【答案】 (1)解:当 m =−1 时, B ={x|−1<x <2} ,∴A ∪B ={x|−1<x <3}(2)解: ∵A ∩B =A , ∴A ⊆B ,∴{1−m ≥3m ≤1,且 m <1−m ,解得 m ≤−2 4.【答案】 (1)解:由题意知: A ={x|x 2−2x −3≤0}=[−1,3] ,当a=1时, B ={x|x 2−x −2=0}={−1,2} ,所以 A ∩B ={−1,2} , C R A =(−∞,−1)∪(3,+∞)(2)解: ∵A ∪B =A ,∴B ⊆A ,因为 Δ=(−a)2+8>0 恒成立,所以 B ≠∅ ,所以要使 B ⊆A ,则需 {−1<a 2<3(−1)2−a ×(−1)−2≥032−3a −2≥0,解得 1≤a ≤73 ,所以实数 a 的取值范围为: [1,73]5.【答案】 (1)解:因为 a =0 ,所以 A =[0,1] ,因为 B ={x ∈R|−2≤x ≤5} ,所以 A ∪B =[−2,5](2)解:因为 a +1>a ,所以 A =[a,a +1] .若 A ∩B =∅ ,所以 a >5 或 a +1<−2所以 a <−3 或 a >5 ,即 a ∈(−∞,−3)∪(5,+∞)故 a ∈(−∞,−3)∪(5,+∞)6.【答案】 (1)解: ∵A ={x|log 2(x +2)<2},∴log 2(x +2)<log 24,∴0<x +2<4 ∴−2<x <2 即 A ={x|−2<x <2},a =1 时, B ={x|1<x <3} ,∴ A ∩B ={x|1<x <2}(2)解:当选①∵ A ∩B =∅ ,∴当 B =∅ 时, 3a −2≥2a +1 ,即 a ≥3 ,符合题意;当 B ≠∅ 时, {a <32a +1≤−2 或 {a <33a −2≥2, 解得 a ≤−32 或 43≤a <3 ,综上, a 的取值范围为 (−∞,−32]∪[43,+∞) .当选② ∵A ∪B =A,∴B ⊆A∴当 B =∅ 时, 3a −2≥2a +1 ,即 a ≥3 ,符合题意;当 B ≠∅ 时, {a <3−2≤3a −22≥2a +1,解得 0≤a ≤12 , 综上, a 的取值范围为 [0,12]∪[3,+∞) 7.【答案】 (1)解:当 m =2 时,命题 q 为 (x +1)(x −2)<0 ,若该命题为真,解得 −1<x <2 .所以实数 x 的取值范围是 −1<x <2(2)解:命题 p 为真时 x 的取值范围是 [1,3] .若 q 为真时,则①当 m <−1 时, x 的取值范围为 (m,−1) ,不合题意;②当 m =−1 时, x 的取值范围为 ∅ ,不合题意;③当当 m >−1 时, x 的取值范围为 (−1,m) .∵ p 是 q 的充分不必要条件,∴ [1,3] 为(-1,m)真子集,那么 m >3 .∴ m 的取值范围是 (3,+∞)8.【答案】 (1)解:当 k =−1 时, B ={x|0<x <4} ,又集合 A ={x|−1<x <3} ,所以 A ∩B ={x|0<x <3}(2)解:因为 A ∪B =A ,则 B ⊆A .当 B =∅ 时, k +1≥3−k ,解得 k ≥1 ;当 B ≠∅ 时,由 B ⊆A 得 {k +1<3−k k +1≥−13−k ≤3 ,即 {k <1k ≥−2k ≥0,解得 0≤k <1 .综上, k 的取值范围是 [0,+∞)9.【答案】 解:若选①,若 1=a 2−2a +2 ,解得 a =1 ,不符合条件; 若 1=a −1 ,解得 a =2 ,则 a 2−2a +2=2 符合条件.将 a =2 代入不等式整理得 (x −2)(2x −1)>0 ,解得 x >2 或 x <12 ,故原不等式的解集为: (−∞,12)∪(2,+∞) .若选②,因为不等式 1<ax +b ≤3 的解集为 {x|3<x ≤4} ,所以 {3a +b =14a +b =3, 解得 {a =2b =−5,将 a =2 代入不等式整理得 (x −2)(2x −1)>0 , 解得 x >2 或 x <12 ,故原不等式的解集为: (−∞,12)∪(2,+∞) .若选③,由题得 {−a +b =12a +b =7,解得 {a =2b =3 . 将 a =2 代入不等式整理得 (x −2)(2x −1)>0 ,解得 x >2 或 x <12 ,故原不等式的解集为: (−∞,12)∪(2,+∞) .10.【答案】 (1)解:因为集合 A ={y|1≤y ≤4} , B ={x|1≤x ≤e} , 所以 A ∩B ={x|1≤x ≤e}(2)解:因为 A ∩C =C ,则CÍA , 当 C =∅ 时, t +1≥2t ,解得 t ≤1 ,当 C ≠∅ 时,则 {t +1<2tt +1≥12t ≤4,解得 1<t ≤2 ,综上:实数 t 的取值范围是 t ≤211.【答案】 (1)解: a =3 时, A ={x|3≤x ≤5} , B ={x|−2≤x ≤4} ∴ A ∪B ={x|−2≤x ≤5}(2)解:∵ A ∩B =A ,∴ A ⊆B ,∴ {a ≥−2a +2≤4,即 −2≤a ≤2 ,故a的取值范围是{a|−2≤x≤2}12.【答案】(1)解:当a=1时,B={x|x2−4x+3<0}=(1,3),则∁R B=(−∞,1]∪[3,+∞),所以(∁R B)∩A=[3,4)(2)解:a>0时,B={x|x2−4ax+3a2<0}=(a,3a),因为命题p是命题q的充分不必要条件,则AÜB,所以{a>0 a≤23a≥4且等号不能同时成立,解得43≤a≤2,所以实数a的取值范围为[43,2]13.【答案】(1)解:∵p为假命题,则x2−6x+8≥0成立,解x2−6x+8≥0得x≤2或x≥4,∴实数x的取值范围是(−∞,−2]∪[4,+∞)(2)解:∵p是q的充分条件,又∵p:2<x<4,q:m−2<x<m+1,∴{x|2<x<4}⊆{x|m−2<x<m+1},∴{m−2≤24≤m+1.解得3≤m≤4.∴实数m的取值范围是{m|3≤m≤4}.14.【答案】(1)解:∵A={x|x2−2x−3<0}={x|(x−3)(x+1)<0}={x|−1<x<3},当m=1时,B={x|(x−1)(x−2)≥0}={x|x≤1或x≥2},所以A∪B=R(2)解:A={x|−1<x<3},B={x|x≤m或x≥m+1}.又x∈A是x∈B的充分不必要条件,所以A是B的真子集.所以m+1≤−1或m≥3,解得m≥3或m≤−2;即实数m的取值范围为(−∞,−2]∪[3,+∞)15.【答案】(1)解:因为x−73x+1<0,等价于(x−7)(3x+1)<0,解得−13<x<7,所以A={x|−13<x<7},因为2x−1>1=20,解得x>1,所以B={x|x>1},所以∁R B={x|x≤1},所以A∩(∁R B)={x∈R|−13<x≤1}(2)解:若C⊆A,因为2t<2t+1恒成立,所以C≠∅所以 {2t +1≤72t ≥−13,解得 −16≤t ≤316.【答案】 (1)解: [π2,π] 及其非空子集均可(2)解:由题知:当 x ∈[−1,0) 时, f(x)=x 3<0 ,所以 g(x)≥0 当 x ∈(0,1] 时, f(x)=x 3>0 ,所以 g(x)≤0因为 g(x) 在任意区间上不恒为0,所以存在 x 1∈[−1,0) ,使得 g(x 1)>0 又因为 g(−x 1)≤0 ,所以 g(−x 1)≠g(x 1)所以 g(x) 不是偶函数(3)解:当 x ∈(1,+∞) 时, f(x)=πlnxe x−1e +x +sin2x >0+1+sin2x ≥0当 x ∈(0,1] 时,因为 f(1)=1+sin2>0 , f(1e )=−π+1e +sin 2e <0由已知, f(x) 在区间 (0,1] 上单调递增,所以存在唯一 t ∈(1e ,1) ,使得 f(t)=0且当 x ∈(0,t) 时, f(t)<0 ;当 x ∈(t,1) 时, f(t)>0 ;当 x ∈(0,t) 时, f(x)<0 ,所以 g(x)≥0 且存在 α∈(0,t) 使得 g(α)>0 ; 当 x ∈(t,+∞) 时, f(x)>0 ,所以 g(x)≤0 且存在 β∈(t,+∞) 使得 g(β)<0 ; 所以存在 λ∈(α,β) ,使得 g(λ)=0所以, g(x) 在区间 (0,+∞) 上存在零点17.【答案】 (1)解:由 x+3x−3<0 ,得 −3<x <3 ,所以 M ={x|−3<x <3} ; 当 m =2 时,由 x 2−2x −8<0 ,得 −2<x <4 ,所以 N ={x|−2<x <4} .所以 M ∩N ={x|−2<x <3}(2)解:由 x 2−mx −2m 2<0 及 m >0 ,得 −m <x <2m .即 N ={x|−m <x <2m} 因为 x ∈M 是 x ∈N 的必要不充分条件,所以 N ⊊M所以 {−m ≥−32m ≤3 ,且等号不同时成立,解得 m ≤32 . 又 m >0 ,所以实数m 的取值范围是 (0,32]18.【答案】 (1)解:当 a =2 时,集合 A ={x|1≤x ≤3} , B ={x|−1≤x ≤3} , A ∪B ={x|−1≤x ≤3}(2)解:若选择①, A ∪B =B ,则 A ⊆B ,因为 A ={x|a −1≤x ≤a +1} ,所以 A ≠∅ ,又 B ={x|−1≤x ≤3}所以 {a −1≥−1a +1≤3解得: 0≤a ≤2所以实数 a 的取值范围是 [0,2]若选择②,“ x ∈A ”是“ x ∈B ”的充分不必要条件,则集合 A 为集合 B 的真子集因为 A ={x|a −1≤x ≤a +1} ,所以 A ≠∅ ,又 B ={x|−1≤x ≤3}所以 {a −1≥−1a +1≤3, 解得: 0≤a ≤2 ;所以实数 a 的取值范围是 [0,2]若选择③, A ∩B =∅ ,又因为 A ={x|a −1≤x ≤a +1} , B ={x|−1≤x ≤3} ,所以 a −1>3 或 a +1<−1解得: a >4 或 a <−2所以实数 a 的取值范围是 (−∞,−2)∪(4,+∞)19.【答案】 (1)解:由 A ={x ∣x 2−7x +10<0} ,解得 A ={x|2<x <5} . 由 B ={x ∣(x −a)(x −a −2)<0} ,解得 B ={x|a <x <a +2} .因为 B ⊆A ,所以 {a ⩾2,a +2⩽5,解得 2⩽a ⩽3 ,所以实数 a 的取值范围 [2,3](2)解: m =log 25−log 240=log 218=log 22−3=−3 ,n =lg40+2lg5=lg1000=lg103=3 .若选①,“ a ∈[−3,52] ”是“ a ∈[2,3] ”的既不充分也不必要条件.若选②,“ a ∈[−3,5] ”是“ a ∈[2,3] ”的必要不充分条件:若选③,“ a ∈[52,3] ”是“ a ∈[2,3] ”的充分不必要条件20.【答案】 (1)解: a =2 时, M ={x|−2≤x ≤5},N ={x|3≤x ≤5} , ∁R M ={x|x <−2 或 x >5} , ∁R N ={x|x <3 或 x >5} ,∴(∁R M)∩(∁R N)={x|x <−2 或 x >5}(2)解: ∵M ∪N =M,∴N ⊆M①若 N =∅ ,则 a +1>2a +1 ,解得 a <0 ,符合题意;②若 N ≠∅ ,则 {a +1≤2a +12a +1≤5a +1≥−2,解得 0≤a ≤2 .综合可得实数 a 的取值范围是 (−∞,2]。
高中数学集合练习题及答案一、单选题1.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<2.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -3.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃4.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R5.已知全集U =R ,集合{}1,2,3,4,5A =,{}04B x x =<<,则图中阴影部分表示的集合为( )A .{}1,2,3,4B .{}1,2,3C .{}4,5D .{}56.已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( ) (1){}∅(2){}{}∅(3)∅(4){}{},∅∅ A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)7.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,8.已知0a >且1a ≠,若集合{}{}22,log ||a M x x x N x x x =<=<,且N M ⊆﹐则实数a 的取值范围是( ) A .()1e 0,11,e ⎛⎤ ⎥⎝⎦B .()1e0,1e ,⎡⎫+∞⎪⎢⎣⎭C .()12e 0,11,e ⎛⎤ ⎥⎝⎦D .()12e 0,1e ,⎡⎫+∞⎪⎢⎣⎭9.已知集合{}21A x x =≤,{}01B x x =<<,则A B =( )A .()1,1-B .[)1,1-C .[]1,1-D .()0,110.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞11.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+12.正确表示图中阴影部分的是( )A .R M ∪NB .R M ∩NC .R(M ∪N )D .R(M ∩N )13.已知集合21|01x M x x -⎧⎫=>⎨⎬+⎩⎭,集合{}2|40N x x x =-<,则集合M N =( )A .{}|0x x >B .{}|14x x <<C .{|0x x <或}1x >D .{|0x x <或}4x >14.设(){}2log 1A x y x ==+,{}24B x x =≥,则()RAB =( )A .()1,2-B .[)1,2-C .()2,+∞D .()1,-+∞15.设集合{|12}A x x =-<<,{|2}B x a x a =-<<,若{|10}A B x x =-<<,则A B ⋃=( ) A .(2,1)- B .(2,2)- C .(1,2)-D .(0,2)二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个. 17.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.18.已知集合{}37A x x =≤<,{}C x x a =>,若A C ⊆,求实数a 的取值范围_______. 19.已知平面上两个点集(){},112,,M x y x y x y x R y R =++++->∈∈,(){},11,,N x y x a y x R y R =-+-≤∈∈,若M N ⋂=∅,则实数a 的取值集合是___________.20.已知集合A ={x |(x -3)(x +1)<0},B ={x |x -1>0},则A ∪B =___________.21.用符号“∈”和“∉”填空:(1)12______N ; (2)1______Z -; (3)2-______R ; (4)π______Q +; (5)23______N ; (6)0______∅.22.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 23.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.不等式5212xx ->+的解集是A ,关于x 的不等式22450x mx m --≤的解集是B . (1)若1m =,求A B ;(2)若A B B ⋃=,求实数m 的取值范围.(3)设:p 实数x 满足22430x ax a -+<,其中>0a ,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.若p 是q 的必要不充分条件,求实数a 的取值范围.27.已知集合{}1A x a x a =≤≤+,{}2280B x x x =--≤.(1)若A B B ⋃=,求a 的取值范围; (2)若A B =∅,求a 的取值范围.28.设全集U =R ,集合{}15A x x =≤<,非空集合{}212B x x a =≤≤+,其中a R ∈. (1)若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围; (2)若命题“x B ∃∈,x A ∈R ”是真命题,求a 的取值范围.29.已知全集U =R ,集合{}32A x x =-<<,{}|16B x x =≤≤,{}|121C x a x a =-≤≤+. (1)求()U A B ;(2)若()C A B ⊆⋃,求实数a 的取值范围.30.已知条件{}22:4410p A xx ax a =-+-≤∣,条件{}2:20q B x x x =--≤∣.U =R . (1)若1a =,求()UA B ⋂.(2)若q 是p 的必要不充分条件,求a 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 2.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 3.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123II I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 4.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤, 所以{}12A B x x ⋂=<≤; 故选:B 5.C 【解析】【分析】根据韦恩图中阴影部分所表示的含义,由集合的补集和交集定义可得. 【详解】集合{}1,2,3,4,5A =,{}04B x x =<<,图中阴影部分表示UA B ,又{|4,UB x x =≥或0}x ≤,所以{}4,5UAB =.故选:C 6.B 【解析】 【分析】根据元素与集合的关系判断. 【详解】集合A 有两个元素:{}∅和∅, 故选:B 7.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 8.D 【解析】 【分析】求出集合M ,再由给定条件,对集合N 分类讨论,构造函数,利用导数探讨函数最小值求解作答. 【详解】依题意,{}(1)0|{|01}x M x x x x =<<=<-,{}2lo |g 0a N x x x =-<,令2(g )lo a f x x x -=,当01a <<时,函数()f x 在(0,)+∞上单调递增,而2(1)10,()10f f a a =>=-<,则0(,1)x a ∃∈,使得0()0f x =,当00x x <<时,()0f x <,当0x x >时,()0f x >,此时{}0|0N x x x M =<<⊆,因此,01a <<,当1a >时,若01x <≤,log 0a x ≤,则()0f x >恒成立,N =∅,满足N M ⊆, 于是当1a >时,N M ⊆,当且仅当N =∅,即不等式()0f x ≥对(0,)∀∈+∞x 成立,2n (l )1x f x x a '-=,由()0f x '=得x =,当0x <<()0f x '<,当x >()0f x '>,则函数()f x 在上单调递减,在)+∞上单调递增,min 1111ln(2ln )log ()222ln 2n ln 2l ln a a a a a af x f =-=+=,于是得1ln(2ln )220ln ln a a a +≥, 即1ln(2ln )0a +≥,变形得1ln 2ea ≥,解得12e e a ≥,从而得当12e e a ≥时,()0f x ≥恒成立,N =∅,满足N M ⊆,所以实数a 的取值范围是01a <<或12e e a ≥. 故选:D 【点睛】思路点睛:涉及函数不等式恒成立问题,可以利用导数探讨函数的最值,借助函数最值转化解决问题. 9.D 【解析】 【分析】根据一元二次不等式解法求出集合A ,再根据交集的定义即可求解. 【详解】解:因为集合{}{}2111A x x x x =≤=-≤≤,{}01B x x =<<,所以()0,1A B =, 故选:D. 10.C 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得结果. 【详解】对于函数2x y =,0x ≥,则0221xy =≥=,故[)1,B =+∞,(){}{}()2log 220,2A x y x x x ∞==-=->=-,因此,[)1,2A B =.故选:C. 11.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 12.B 【解析】 【分析】根据韦恩图直接分析即可 【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂, 故选:B. 【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题 13.B 【解析】 【分析】分别化简集合M ,N 再求交集即可 【详解】2101011x x x x ->⇒->⇒>+ ()2404004x x x x x -<⇒-<⇒<< 则{}|1M x x =>,{}04|N x x =<<, 所以{}|14M N x x ⋂=<< 故选:B 14.A 【解析】 【分析】根据函数定义域的求解,以及简单二次不等式的求解,解得集合,A B ,再根据集合的补运算和交运算,即可求得结果. 【详解】因为(){}2log 1A x y x ==+{}{}|101x x x x =+>=-,{}24B x x =≥{|2x x =≤-或2}x ≥,故B R{|22}x x =-<<,则()RAB ={}()|121,2x x -<<=-.故选:A. 15.B 【解析】 【分析】由{}10A B x x ⋂=-<<,求出0a =,{}20B x x =-<<,由此能求出A B . 【详解】集合{}12A x x =-<<,{}2B x a x a =-<<,{}10A B x x ⋂=-<<,0a ∴=,{}20B x x ∴=-<<,满足题意则(2,2)=-A B . 故选:B .二、填空题16.4 【解析】 【分析】根据并集的定义,列举集合A . 【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个. 故答案为:417.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.18.(),3-∞【解析】 【分析】根据集合的包含关系画出数轴即可计算. 【详解】 ∵A C ⊆, ∴A 和C 如图:∴a <3.故答案为:(),3-∞.19.{}1-【解析】【分析】结合点到直线距离公式可知M 表示到直线10x y ++=与10x y +-=的距离之和大于2的所有点的集合,又两平行线间距离为2,可得可行域;N 是以(),1a 为中心,2为边长的正方形及其内部的点集,采用数形结合的方式可确定a 的取值. 【详解】由112x y x y ++++->得:11222x y x y +++-+>,则M 表示到直线10x y ++=与10x y +-=的距离之和大于2的所有点的集合; 直线10x y ++=与10x y +-=之间的距离2d =,则集合()10,10x y M x y x y ⎧⎫+->⎧=⎨⎨⎬++<⎩⎩⎭,则其表示区域如阴影部分所示(不包含10x y ++=与10x y +-=上的点); 集合N 是以(),1a 为中心,2为边长的正方形及其内部的点集, 若M N ⋂=∅,则,M N 位置关系需如图所示,由图形可知:当且仅当1a =-时,M N ⋂=∅, ∴实数a 的取值集合为{}1-.【点睛】思路点睛:本题考查集合与不等式的综合应用问题,解题基本思路是能够确定集合所表示的点构成的区域图形,进而采用数形结合的方式来进行分析求解. 20.{x |x >-1} 【解析】 【分析】利用集合的并集运算求解. 【详解】解:因为集合A ={x |(x -3)(x +1)<0}={x |-1<x <3},B ={x |x >1}, 所以A ∪B ={x |x >-1}. {x |x >-1}21. ∉ ∉ ∈ ∉ ∈ ∉【解析】【分析】根据元素与集合的关系判断.【详解】由,,,,N Z R Q -+∅所表示的集合,由元素与集合的关系可判断(1)∉(2)∉(3)∈(4)∉(5)∈(6)∉.故答案为:(1)∉(2)∉(3)∈(4)∉(5)∈(6)∉.22.5【解析】【分析】直接求出集合A 、B ,再求出A B ,即可得到答案.【详解】因为集合{}{}352,1,0,1,2,3,4A x Zx =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =,所以A B 的元素个数为5.故答案为:5.23.()5,1-【解析】【分析】根据逻辑条件关系与集合间的关系、一元二次不等式的解法即可求解.【详解】 由题意得,{}{}228024A x x x x x =--<=-<<,由x B ∈是x A ∈成立的一个充分而不必要条件,得B A ,即2334m m -<+⎧⎨+<⎩解得,51m -<<, 故答案为:()5,1-.24.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去.当3a =时,满足题意.故答案为:3.25.[)2020,∞+【解析】【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围.【详解】由2202120200x x -+<,解得:12020x <<,∴()1,2020A =,又A B ⊆,且{}|B x x a =<,∴2020a ≥,故a 的取值范围为[)2020,∞+.故答案为:[)2020,∞+三、解答题26.(1){}|11A B x x ⋂=-≤<;(2)(][),12,-∞-⋃+∞(3)(]1,2【解析】【分析】(1)分别解出解出集合A ,B ,再求A B ;(2)由A B B ⋃=得到A B ⊆.对m 分类讨论,分0m >, 0m =和0m <三种情况,分别求出m 的范围,即可得到答案;(3)用集合法列不等式组,求出a 的范围.(1) 由5212x x ->+的解集是A ,解得:{}|21A x x =-<<. 当m =1时,22450x mx m --≤可化为2450x x --≤,解得{}|15B x x =-≤≤. 所以{}|11A B x x ⋂=-≤<.(2)因为A B B ⋃=,所以A B ⊆.由(1)得:{}|21A x x =-<<.当0m >时,由22450x mx m --≤可解得{}|5B x m x m =-≤≤.要使A B ⊆,只需512m m ≥⎧⎨-≤-⎩,解得:2m ≥;当0m =时,由22450x mx m --≤可解得{}0B =.不符合A B ⊆,舍去;当0m <时,由22450x mx m --≤可解得{}|5B x m x m =≤≤-.要使A B ⊆,只需152m m -≥⎧⎨≤-⎩,解得:1m ≤-;所以,1m ≤-或2m ≥.所以实数m 的取值范围为:(][),12,-∞-⋃+∞.(3)设关于x 的不等式22430x ax a -+<(其中>0a )的解集为M ,则(),3M a a =;不等式组2260280x x x x ⎧--≤⎨+->⎩的解集为N ,则(]2,3N =; 要使p 是q 的必要不充分条件,只需N M ,即233a a ≤⎧⎨>⎩,解得:12a <≤. 即实数a 的取值范围(]1,2.27.(1)[2,3]-(2)(,3)(4,)∞∞--⋃+【解析】【分析】(1)首先解一元二次不等式,求出集合B ,由A B B ⋃=,得A B ⊆,即可得到不等式组,解得即可;(2)由A B =∅,则4a >或12a +<-,解得即可;(1)解:由2280x x --≤,即()()420x x -+≤,解得24x -≤≤,所以{}{}228024B x x x x x =--≤=-≤≤,因为A B B ⋃=,得A B ⊆,则214a a ≥-⎧⎨+≤⎩, 即23a -≤≤,所以a 的取值范围是[2,3]-. (2)解:由A B =∅,则4a >或12a +<-,即4a >或3a <-,所以a 的取值范围是()(),34,-∞-⋃+∞.28.(1)1,22⎡⎫⎪⎢⎣⎭(2)[)2,+∞【解析】【分析】(1)由题意得出B A ⊆,从而列出不等式组,求a 的范围即可,(2)由题意R BA ≠∅,列出不等式,求a 的范围即可.(1)解:若“x A ∈”是“x B ∈”的必要条件,则B A ⊆,又集合B 为非空集合, 故有122125a a +⎧⎨+<⎩,解得122a <, 所以a 的取值范围1,22⎡⎫⎪⎢⎣⎭, (2)解:因为{}15A x x =≤<,所以{|1R A x x =<或5}x ,因为命题“x B ∃∈,x A ∈R ”是真命题,所以R B A ≠∅,即125a +,解得2a .所以a 的取值范围[)2,+∞.29.(1){})1(|3U x x A B ⋂=-<<; (2)5(,2)(2,]2-∞-⋃-. 【解析】【分析】(1)利用补集及交集的定义运算即得;(2)利用并集的定义可得{}36A B x x ⋃=-<≤,然后分C =∅和C ≠∅讨论即得.(1)∵全集U =R , {}|16B x x =≤≤, ∴{1U B x x =<或}6x >,又集合{}32A x x =-<<,∴{})1(|3U x x A B ⋂=-<<;(2)∵{}32A x x =-<<,{}|16B x x =≤≤,∴{}36A B x x ⋃=-<≤,又()C A B ⊆⋃,∴当C =∅时,121a a ->+,∴2a <-,当C ≠∅时,则12113216a a a a -≤+⎧⎪->-⎨⎪+≤⎩, 解得522a -<≤, 综上,实数a 的取值范围为5(,2)(2,]2-∞-⋃-. 30.(1)(){12}U A B x x x ⋂=<>∣或(2)10,2⎡⎤⎢⎥⎣⎦【解析】【分析】(1)首先求出集合,A B ,代入1a =,得出A ,进而利用集合的交集、补集的定义即可求解.(2)由(1)知,得出集合,A B ,再根据q 是p 的必要不充分条件转化为集合A 是集合B的真子集,即A B ≠⊂即可求解. (1)由224410x ax a -+-≤,得2121a x a -≤≤+,所以{}2121A xa x a =-≤≤+∣, 由220x x --≤,得12x -≤≤,所以{12}B xx =-≤≤∣ 当1a =时,{13}A xx =≤≤∣.所以{12}A B x x ⋂=≤≤∣ 所以(){12}UA B x x x ⋂=<>∣或; (2) 由(1)知,{}2121A xa x a =-≤≤+∣,{12}B x x =-≤≤∣, q 是p 的必要不充分条件,A B ≠∴⊂, 所以212211a a +≤⎧⎨-≥-⎩,解得102a ≤≤ 所以实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.。
高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(2005全国1理)2.设集合{}12A =,,则满足{}123AB =,,的集合B 的个数是(C ) A.1B.3 C.4 D.8(2006辽宁文)3.设集合(){}22,1,,M x y x y x R y R =+=∈∈,(){}2,0,,N x y x y x R y R =−=∈∈,则集合M N 中元素的个数为( )A.1B. 2C. 3D. 4(2004全国3文)(1)4.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( )A. {}|11x x −≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅(2010江西理数)2.5.已知集合{|0}A x x =>,{|12}B x x =−≤≤,则A B =( )(A ){|1}x x ≥− (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x −≤≤(2008浙江文) (1)6.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B=________.7.已知集合11{|,},{|,}623n M x x m m Z N y y n Z ==+∈==−∈,则M 和N 之间的关系为 -----( ) A.M =N B.M N Ü C.M N Ý D.不确8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的9.已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则AB = (A) }{3,5 (B) }{3,6 (C) }{3,7 (D) }{3,9 (2009宁夏海南卷文)二、填空题10.已知集合(){}(){},|2,,|4M x y x y N x y x y =+==−=,那么集合M N = ▲ .11.已知数集{}x lg 10,,中有三个元素,那么x 的取值范围为 ▲ .12.若集合A ={a 、b 、c }则集合A 的子集共有 个;13.满足集合{}2,1{}5,4,3,2,1⊆⊆M 的集合的个数是___________。
数学高中集合大题练习题及讲解集合是数学中描述对象的集合体,是高中数学中的重要组成部分。
以下是一些集合相关的大题练习题及讲解:### 练习题1:集合的运算设集合A = {1, 2, 3},集合B = {2, 3, 4},求以下集合运算的结果:1. A ∪ B(A并B)2. A ∩ B(A交B)3. A - B(A减B)讲解:1. A ∪ B表示A和B中所有元素的集合,不重复地列出,即{1, 2, 3, 4}。
2. A ∩ B表示A和B中共有的元素,即{2, 3}。
3. A - B表示A中有而B中没有的元素,即{1}。
### 练习题2:子集与幂集设集合S = {a, b, c},求:1. S的所有子集。
2. S的幂集。
讲解:1. S的所有子集包括空集以及S中所有元素的所有组合,即:∅,{a},{b},{c},{a, b},{a, c},{b, c},{a, b, c}。
2. S的幂集是S所有子集的集合,即:{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}。
### 练习题3:集合的包含关系设集合A = {1, 2, 3},集合B = {2, 3, 4, 5},判断A是否是B的子集,并说明理由。
讲解:A不是B的子集,因为A中的元素1不在B中。
子集的定义是如果集合A的所有元素都在集合B中,那么A是B的子集。
### 练习题4:集合的相等集合A = {1, 2, 3}和集合C = {3, 2, 1}是否相等?为什么?讲解:集合A和C相等。
根据集合的性质,集合的元素是无序的,即元素的排列顺序不影响集合的相等性。
### 练习题5:描述法和列举法用描述法表示集合{x | x是小于10的正整数},并用列举法表示集合{x | x是偶数}。
讲解:1. 描述法表示为{x | x ∈ N, 1 ≤ x < 10},其中N表示自然数集合。
2. 列举法表示为{2, 4, 6, 8, 10}。
集合专题训练(带答案)1.对集合中有关概念的考查例1我校举办的2020年校运动会中,若集合A={参加比赛的运动员},集合B={参加比赛的男运动员},集合C={参加比赛的女运动员},则下列关系正确的是 ( )A .AB B .BC C .A ∩B=CD .B ∪C=A 分析:本例主要考查子集的概念及集合的运算.解析:易知选D .点评:本题是典型的送分题,对于子集的概念,一定要从元素的角度进行理解.集合与集合间的关系,寻根溯源还是元素间的关系.2.对集合性质及运算的考查例2.已知,,,则 ( ) A . B . C . D . 分析:本题主要考查集合的并、交、补的运算以及集合间关系的应用.解析:由,,,故选B .点评:对集合的子、交、并、补等运算,常借助于文氏图来分析、理解.高中数学中一般考查数集和点集这两类集合,数集应多结合对应的数轴来理解,点集则多结合对应的几何图形或平面直角坐标系来理解.3.对与不等式有关集合问题的考查例3.已知集合,则集合为 ( ) A . B . C . D .分析:本题主要考查集合的运算,同时考查解不等式的知识内容.可先对题目中所给的集合化简,即先解集合所对应的不等式,然后再考虑集合的运算.解析:依题意:,∴, ∴故选C .点评:同不等式有关的集合问题是高考命题的热点之一,也是高考常见的命题形式,且多为含参数的不等式问题,需讨论参数的取值范围,主要考查分类讨论的思想,此外,解决集合运算问题还要注意数形结合思想的应用.4.对与方程、函数有关的集合问题的考查例4.已知全集,集合, ,则集合中元素的个数为 ( )A .1B .2C .3D .4分析:本题集合A 表示方程的解所组成的集合,集合B 表示在集合A 条件下函数的值域,故应先把集合A 、B 求出来,而后再考虑. 解析:因为集合,所以,所以⊆⊆{}7,6,5,4,3,2=U {}7,5,4,3=M {}6,5,4,2=N {}4,6M N =M N U =U M N C u = )(N N M C u = )({}7,6,5,4,3,2=U {}7,5,4,3=M {}6,5,4,2=N {}30,31x M x N x x x ⎧+⎫=<=-⎨⎬-⎩⎭{}1x x M N M N ()R M N ()R M N {}{}31,3M x x N x x =-<<=-{|1}M N x x ⋃=<()R M N ={}1.x x {12345}U =,,,,2{|320}A x x x =-+={|2}B x x a a A ==∈,)(B A C U )(B A C U {}{}1,2,2,4A B =={}1,2,4A B =故选B .点评:在解决同方程、函数有关的集合问题时,一定要搞清题目中所给的集合是方程的根,或是函数的定义域、值域所组成的集合,也即要看清集合的代表元素,从而恰当简化集合,正确进行集合运算.【专题综合】1. 对新定义问题的考查例1.定义集合运算:设,,则集合的所有元素之和为 ( )A .0B .2C .3D .6分析:本题为新定义问题,可根据题中所定义的的定义,求出集合,而后再进一步求解.解析:由的定义可得:,故选D .点评:近年来,新定义问题也是高考命题的一大亮点,此类问题一般难度不大,需严格根据题中的新定义求解即可,切忌同脑海中已有的概念或定义相混淆.【专题突破】1.满足M {a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={a 1·a 2}的集合M 的个数是( )(A )1 (B)2 (C)3 (D)42.设集合,则( ) (A) (B)(C) (D)3.设集合,则的取值范围是(A) (B)(C) 或 (D) 或二.填空题:1.已知集合,,则= .2.已知集合,,若;则实数m 的取值构成的集合为3. 已知集合,,则.三.解答题:1.设,,问是否存在非零整数,使?若存在,请求出的值及{}()3,5.U C A B ={},,.A B z z xy x A y B *==∈∈{}1,2A ={}0,2B =A B **A B *A B *A B *{0,2,4}A B =⊆{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===()U A B ={}2,3{}1,4,5{}4,5{}1,5{}|23,S x x =->{}|8,T x a x a S T R =<<+=a 13-<<-a 13-≤≤-a 3-≤a 1-≥a 3-<a 1->a {}(1)0P x x x =-≥Q ={})1ln(|-=x y x P Q }06{2=-+=x x x M }01{=-=mx x N M N ⊆______}{2x y y A ==}2{x y y B ==____AB =},12|),{(*N x x y y x A ∈-==},|),{(*2N x a ax ax y y x B ∈+-==a A B ≠∅a;若不存在,请说明理由答案:一.选择题:1.〖解析〗本小题主要考查集合子集的概念及交集运算。
1ABC集合综合检测题班级姓名一、选择题(每小题5分,共50分). 1.下列各项中,不可以组成集合的是()A .所有的正数B .约等于2的数C .接近于0的数D .不等于0的偶数2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为()A .1B .—1C .1或—1D .1或—1或03.设U ={1,2,3,4,5} ,若B A ⋂={2},}4{)(=⋂B A C U ,}5,1{)()(=⋂BC A C U U ,则下列结论正确的是()A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈34.以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φ}0{,其中正确的个数是()A .1B .2C .3D .45.下面关于集合的表示正确的个数是()①}2,3{}3,2{≠;②}1|{}1|),{(=+==+y x y y x y x ;③}1|{>x x =}1|{>y y ;④}1|{}1|{=+==+y x y y x x ;A .0B .1C .2D .36.下列四个集合中,是空集的是()A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x 7.设集合},412|{Z k k x x M ∈+==,},214|{Z k kx x N ∈+==,则()A .N M =B .MN C .N MD .φ=⋂N M 8.表示图形中的阴影部分()A .)()(CBC A ⋃⋂⋃B .)()(C A B A ⋃⋂⋃C .)()(C B B A ⋃⋂⋃D .CB A ⋂⋃)(9.设U 为全集,Q P ,为非空集合,且PQU ,下面结论中不正确...的是()A .U Q P C U =⋃)(B .=⋂Q PC U )(φC .Q Q P =⋃D .=⋂P Q C U)(φ10.已知集合A 、B 、C 为非空集合,M=A ∩C ,N=B ∩C ,P=M ∪N ,则()A .C ∩P=CB .C ∩P=PC .C ∩P=C ∪PD .C ∩P=φ二、填空题:请把答案填在题中横线上(每小题5分,共20分).11.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则_____=b .12.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围.13.已知}1,0,1,2{--=A ,{|,}B y y x x A ==∈,则B =. 14.设集合2{1,,},{,,}A a b B a a ab ==,且A=B ,求实数a =,b =三、解答题:解答应写出文字说明、证明过程或演算步骤(共52分).15.(13分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值?取值?(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m ?1616..(12分)在1到100的自然数中有多少个能被2或3整除的数?整除的数?17.(13分)在某次数学竞赛中共有甲、乙、丙三题,共25人参加竞赛,每个同学至少解出一题。
高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若全集U={x∈R|x 2≤4} A={x∈R||x+1|≤1}的补集CuA 为( ) A .|x∈R |0<x<2|B .|x∈R |0≤x<2|C .|x∈R |0<x≤2|D .|x∈R |0≤x≤2|(2012江西文) C2.设集合{}20M x x x =−<,{}2N x x =<,则A .MN =∅ B .M N M = C .MN M = D .M N R =(2006全国1理)3.若{1},P x x =<{1}Q x x >−,则( )(A )P Q ⊆ (B )Q P ⊆ (C )R P Q ⊆ð (D )R Q P ⊆ð(2011浙江文1)4.已知集合{|0}A x x =>,{|12}B x x =−≤≤,则A B =( )(A ){|1}x x ≥− (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x −≤≤(2008浙江文) (1)5.集合A= {x ∣12x −≤≤},B={x ∣x<1},则()R A B ð= (D )(A ){x ∣x>1} (B) {x ∣x ≥ 1} (C) {x ∣12x <≤ } (D) {x ∣12x ≤≤} (2007)6.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为 ( )A .5B .4C .3D .2(2012江西理) C7.若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=−<=<⎨⎬−⎩⎭则A ∩B 是_____________________8.若集合{}21|21|3,0,3x A x x B xx ⎧+⎫=−<=<⎨⎬−⎩⎭则A ∩B 是(A ) 11232x x x ⎧⎫−<<−<<⎨⎬⎩⎭或 (B) {}23x x <<(C ) 122x x ⎧⎫−<<⎨⎬⎩⎭ (D) 112x x ⎧⎫−<<−⎨⎬⎩⎭ (2009安徽卷理)9.设全集U=R ,集合M={x ∣x>l},P={x ∣x 2>l},则下列关系中正确的是(A)M=P (B) M P ⊂ (C) P M ⊂ (D) ∅=⋂P M C U (2005北京理)10.已知集合M ={x |x =m +61,m ∈Z},N ={y |y =312−n ,n ∈Z},则M 和N 之间的关系为 -------------------( )A.M=NB.M ⊂NC.M ⊃ND.不确定二、填空题11.设集合A R ⊆,如果0x R ∈满足:对任意0a >,都存在x A ∈,使得00||x x a <−<,那么称0x 为集合A 的一个聚点,则在下列集合中:(1)Z Z +−(2)R R +−(3)*1|,x x n N n ⎧⎫=∈⎨⎬⎩⎭(4)*|,1n x x n N n ⎧⎫=∈⎨⎬+⎩⎭ 以0为聚点的集合有 (写出所有你认为正确结论的序号)12.已知全集,U R =且{}{}2|12,|680,A x x B x x x =−>=−+<则()U C A B = 13.若log log (0,0,1,1,),x y y x x y x y x y =>>≠≠≠则xy = .14.集合{}{}35,A x x B x x a =−<=<,且A B ⊆,则a 的范围是 15.给出下列关系:①}0{0⊆;②}1,0{0∈;③}0{⊆∅;④}0{∈∅;⑤}1,0{}0{⊆;⑥}0{}0{⊇,其中正确的个数是________;16.设集合A ={x |x ≤1},B ={x |x ≥-2},则A ∩B =___________.17.设集合M={-1,1},N ={x |21<12+x <4,Z x ∈},则M ⋂N= 。
高中数学集合习题附详解一、单选题1.集合,2k M x x k π⎧⎫==∈⎨⎬⎩⎭Z ,,2P x x k k ππ⎧⎫==+∈⎨⎬⎩⎭Z ,则M 、P 之间的关系为( ) A .M P =B .M P ⊆C .P M ⊆D .M P ⋂=∅2.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,33.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-4.已知集合{}0,1,2A =,{},B ab a A b A =∈∈,则集合B 中元素个数为( ) A .2B .3C .4D .55.集合{}13A x x =-<<,集合{}2B x x =<,则A B =( ) A .()2,2-B .()1,3-C .()2,3-D .()1,2-6.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-17.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤8.集合{}2{}|5,8,3100x x A B x =--≤=,则A B ⋂=R( )A .{}5B .{}8C .{}2,5,8-D .{}5-9.下列关系中正确的是( )A .{}0=∅B .{}0∅⊆C .{}(){}0,10,1⊆D .(){}(){},,a b b a =10.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( )A .4B .5C .6D .711.已知集合{}{}{}21,2,20,1A B xx mx A B ==+-=⋂=∣,则B =( ) A .{}1,1-B .{}2,1-C .{}1,2D .{}1,1,2-12.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >- D .{}28x x <≤13.设全集2,1,0,1,2U ,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( )A .{}2,1-B .{}0,1C .{}1,0,1-D .{}2,1,0,1--14.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( )A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤ 15.下面给出的四类对象中,构成集合的是( )A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______ 18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________. 21.设集合(){},A x y y x ==,()3,1x B x y y x +⎧⎫==⎨⎬-⎩⎭,则A B =______.22.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.23.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围为______.24.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.25.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______.三、解答题26.已知函数()23f x x x =+-A ,函数2()1g x x =+在[1,2]-的值域为B .(1)求A B ,A B ;(2)若{}|9C x m x m =<<+且()R C A ⊆,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知不等式()x a x a <210-++的解集为M . (1)若2∈M ,求实数a 的取值范围; (2)当M 为空集时,求不等式1x a-<2的解集.29.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ; (2)若______,求实数a 的取值范围.30.已知a ∈R ,集合(){}222log log 2A x R x x =∈≥,集合()(){}10B x R x x a =∈--<. (1)求集合A ; (2)若RB A ⊆,求a 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】用列举法表示集合M 、P ,即可判断两集合的关系; 【详解】解:因为335,,2,,,,0,,,,2,,222222k M x x k Z ππππππππππ⎧⎫⎧⎫==∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 5335,,,,,,,,2222222P x x k k Z ππππππππ⎧⎫⎧⎫==+∈=---⎨⎬⎨⎬⎩⎭⎩⎭,所以P M ⊆, 故选:C 2.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 3.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 4.C 【解析】 【分析】由列举法列出集合B 的所有元素,即可判断; 【详解】解:因为{}0,1,2A =,a A b A ∈∈,,所以0ab =或1ab =或2ab =或4ab =, 故{}{},0,1,2,4B ab a A b A =∈∈=,即集合B 中含有4个元素; 故选:C5.D 【解析】 【分析】解不等式可求得集合B ,由交集定义可得结果. 【详解】{}{}222B x x x x =<=-<<,{}()121,2A B x x ∴⋂=-<<=-.故选:D. 6.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 7.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 8.B 【解析】 【分析】先求出集合B ,进而求出集合B 的补集,根据集合的交集运算,即可求出A B ⋂R.【详解】因为{}()(){}{}2310052025x x x x x B x x x ===--≤-+≤-≤≤,所以{5B x x =>R 或}2x <-, 所以{}8A B =R故选:B. 9.B 【解析】 【分析】明确∅和{}0的含义,可判断A,B;说明{}0,1是数集,而(){}0,1是点集,判断C; 当在ab 时(){}(){},,a b b a =不成立,判断D;【详解】对于A, {}0是单元素集合,元素为0,而∅是空集,二者不相等,故A 错误; 对于B ,空集为任何一个集合的子集,故{}0∅⊆正确;对于C ,{}0,1 的元素为0,1,而(){}0,1的元素为点()0,1,二者没有包含关系,故错误; 对于D, (,),(,)a b b a 当a b 表示不同的点,故(){}(){},,,a b b a 在ab 时不相等,故错误,故选:B 10.A 【解析】 【分析】求出集合B ,再根据并集的定义即可求出答案. 【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=,所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4. 故选:A. 11.B 【解析】 【分析】根据交集性质求解即可. 【详解】因为{}1A B ⋂=,所以1B ∈, 所以120m +-=,解得1m =.所以{}{}2|202,1B x x x =+-==-,满足{}1A B ⋂=.故选:B 12.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 13.B 【解析】 【分析】 先求UA ,再求()UA B ⋂即可. 【详解】UA ={0,1},()U A B ={0,1}.故选:B. 14.B 【解析】 【分析】先求出集合A 的解集,然后进行交集运算即可. 【详解】因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤. 故选:B. 15.D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.{}0,1-【解析】 【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可. 【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意; 当0a ≠时,若集合A 中只有一个元素, 则一元二次方程2210ax x 有二重根, 即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.- 故答案为:{}0,1.-18.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-,故答案为:[1,1]-19.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃20.[2,+∞) 【解析】 【分析】根据A B ⊆结合数轴即可求解. 【详解】∵{}22A x x =-≤≤≠∅,A B ⊆, ∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).21.()(){}1,1,3,3--【解析】 【分析】联立方程组,求出交点坐标,即可得到答案. 【详解】解方程组31y xx y x =⎧⎪+⎨=⎪-⎩,得11x y =-⎧⎨=-⎩或33x y =⎧⎨=⎩. 故答案为:()(){}1,1,3,3--.22.0a ≤【解析】 【分析】根据并集的运算结果列出不等式,即可得解. 【详解】解:因为A B R =, 所以0a ≤. 故答案为:0a ≤.23.9[1,]8【解析】 【分析】由()()sin()04f x x πωω=+>的单调递减区间包含2,43ππ⎡⎤⎢⎥⎣⎦可计算ω 的取值范围. 【详解】()()sin()04f x x πωω=+> 在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减 令(),42x k k Z ππωπ+=+∈ 得14ππωω=+k x 令(),4x k k Z πωππ+=+∈得234k x ππωω=+ 23,+,4344k k ππππππωωωω⎡⎤⎡⎤∴⊂+⎢⎥⎢⎥⎣⎦⎣⎦442334k k πππωωπππωω⎧+≤⎪⎪∴⎨⎪≤+⎪⎩419382k k ωω⎧≥+⎪∴⎨≤+⎪⎩ 93110041082420k k k k Z k ω>∴<+<+∴-<<∈∴=ω∴∈9[1,]8故答案为:9[1,]824.3【解析】【分析】根据集合相等的概念得到方程组,解之即可求出结果.【详解】∵A B =,∴325a a =⎧⎨+=⎩,解得3a =, 或523a a =⎧⎨+=⎩,无解 所以3a =.故答案为:3.25.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.三、解答题26.(1)[][]1,3,2,5A B A B ⋂=⋃=-(2)11m ≤-或3m ≥.【解析】【分析】(1)根据函数的定义域求得集合A ,根据函数的值域求得集合B ,由此求得A B ,A B ;(2)先求得R A ,然后根据()R C A ⊆列不等式从而求得m 的取值范围. (1) []20232,330x x A x +≥⎧⇒-≤≤⇒=-⎨-≥⎩, 2()1g x x =+开口向上,对称轴为y 轴,所以最大值为()25g =,最小值为()01g =, 所以[]1,5B =,所以[][]1,3,2,5A B A B ⋂=⋃=-.(2)由(1)得()()R ,23,A =-∞-⋃+∞,由于()R C A ⊆,所以92m +≤-或3m ≥,解得11m ≤-或3m ≥.27.(1)1{|03A B x x ⋂=-<≤或1}x =; (2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1)a >2(2)(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)由已知2∈M 可得,2满足已知不等式,代入即可求解;(2)由M 为空集,可求得a ,然后代入解分式不等式即可求解.(1)由已知2∈M 可得,4-2(a +1)+a <0,解得a >2,所以实数a 的取值范围为()2,+∞;(2)当M 为空集,则()a a -∆=≤2410+,即()a -≤210;所以10a -=,即1a =∴1x a -<2,即11x -<2, ∴231x x -->0,解得x >32或x <1. ∴此不等式的解集为(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭. 29.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤, 所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤, 所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.30.(1)[)2,A =+∞(2)(],2a ∈-∞【解析】【分析】(1)根据对数函数的单调解不等式即可; (2)先求()R ,2A =-∞,再分类讨论并满足R B A ⊆可得答案. (1) ()()2222222log log 2log log 220x x x x x x ≥⇒≥⇒≥> 解得2x ≥,故[)2,A =+∞(2)由(1)()R ,2A =-∞当1a =时,B =∅,满足题意; 当1a >时,()1,B a =,只需2a ≤; 当1a <时,(),1B a =,满足题意. 综上所述,(],2a ∈-∞.。
高中数学《集合》测试题
学校:__________ 姓名:__________ 班级:__________ 考号:__________
一、选择题
1.设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则()U C S T ⋃等于( )
A .∅
B .{2,4,7,8}
C .{1,3,5,6}
D .{2,4,6,8} (2006安徽文)
2.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( ) (A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}(2004江苏) 3.若集合M={-1,0,1},N={0,1,2},则M∩N 等于( )
(A).{0,1} (B).{-1,0,1}(C).{0,1,2} (D).{-1,0,1,2}(2011福建文1)
4.已知集合{}30,31x M x N x x x ⎧+⎫
=<=≤-⎨⎬-⎩⎭
,则集合{}1x x ≥为( )
A.M N
B.M N
C.
()R
M N D.
()R
M N (2008辽宁
理) 1.
5.已知全集I =N *,集合A ={x |x =2n ,n ∈N *},B ={x |x =4n ,n ∈N },则( ) A .I =A ∪B
B .I =(I
C A )∪B
C .I =A ∪(I C B )
D .I =(I C A )∪(I C B )(1996
全国理,1)
6.集合{}
|25A x R x =∈-≤中最小整数位 .
7.设集合A ={x |1<x <4},B ={x |x 2
-2x -3≤0},则A ∩(C R B )= ( )
A .(1,4)
B .(3,4)
C .(1,3)
D .(1,2) (2012浙江
理)
8.集合{|lg 0}M x x =>,2
{|4}N x x =≤,则M N =( ) A. (1,2) B. [1,2)
C. (1,2]
D. [1,2]
9.设○
+是R 上的一个运算,A 是R 的非空子集,若对任意,a b A ∈有a ○+b A ∈,则称A 对运算○
+封闭,下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( ) (A)自然数集 (B)整数集 (C)有理数集 (D)无理数集(2006辽宁理)
二、填空题
10. 若集合{}1,0,1A =-,{}|cos(),B y y x x A ==π∈,则A B = ▲ .
11.若{}
3A x R x =∈<,{}
21x B x R =∈>,则A B = .
12. 已知集合{}0,1,3M =,{}
3,N x x a a M ==∈,则M
N = {}0,1,3,9
13.设集合A={m|关于x 的方程x 2
-2x+m=0有实根,m ∈R}, B={m|关于x 的二次方程mx 2
-x+1=0无实根,m ∈R},则A ∪B= .
14.两边长分别为3,5的三角形中,第三条边可取的整数的集合用列举法表示为 {3,4,5,6,7} ,用描述法表示为 {x|2<x<8,x ∈N} 。
15. 已知:A=(){}0,=+y x y x ,B=(){}
2,=-y x y x ,则A∩B=_________.
16.设P 和Q 是两个集合,定义集合{|,}P Q x x P x Q -=∈∉且.若{1234}P =,,,,
1
{|2,}2
Q x x x R =+
<∈,则P Q -= ▲ . 17.设集合{}
(,)6A x y y ax ==+,集合{}
(,)53B x y y x ==-.若点(1,)()∈b A
B ,则
a b -= .
18.若集合{
}
4,12,32
+--=a a a M ,且M ∈-3,则实数a 的取值是 ▲ .
19.已知集合若则
▲ .
20.已知集合{}
{}2
|320,|1M x x x N x x =+->=≥,则M
N = .
21.已知集合{}
{}2|23,|2A x x x B x x =-<=≤,则A B =
22. 设集合11,,,3663k k P x x k Z Q x x k Z ⎧⎫⎧⎫
==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭
,则______P Q
23.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。
则U (A∩B)=__________
24.设集合(1,2),(,)A B a ==-∞,若A
B ,则实数a 的取值集合为
[2,)+∞ .
25.含有三个实数的集合既可表示成}1,,
{a
b
a ,又可表示成}0,,{2
b a a +,则20072008a b += -1 .
26.设全集{1,2,3,4,5}U =,集合{1,3,5}A =,集合{3,4}B =,则()
U C A B = .
27.若2
{1,2,3,4,5},{|230}A B x x x ==--<,则A B ⋂ 的非空真子集.....有________个; 28.已知全集为R ,若集合,{}{}
012,01>+=≥-=x x N x x M ,则=⋂N M 。
29.已知集合A={1,2,3},B={0,2,3},则A ∩B= ▲
30.设集合{
}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A =【】 A .{
}3,2,1 B .{}4,2,1 C .{}4,3,2 D .{}4,3,2,1(江苏2005年5分) 31.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =__________
32.已知}4{<-=a x x A ,}056{2
>+-=x x x B ,且R B A = ,则a 的取值范围是 。
33.已知集合22
{|230},{|0}A x x x B x x ax b =-->=++≤ , 若A
B R =,{|34}A B x x =<≤,则a b +的值等于 .
三、解答题
34. 已知集合{}]3,2[,2∈-==x y y A x ,{}
03322>--+=a a x x x B .(1)当4a =时,求A B ; (2)若A B ⊆,求实数a 的取值范围.
35.已知集合A={x|x 2﹣2x ﹣3≤0},B={x|x 2﹣2mx+m 2﹣9≤0},m ∈R . (1)若m=3,求A ∩B .;
(2)若A ⊆B ,求实数m 的取值范围.(14分)
36.集合2
{|3100},{|121}A x x x B x m x m =--≤=+≤≤-, (1)如果A B B =,求m 的取值范围;
(2)当x R ∈时,没有元素x 使x A ∈与x B ∈同时成立,求实数m 的取值范围。
37.已知2
2
{|320},{|(1)0}A x x x B x x a x a =-+≤=-++≤. (1)若A
B ,求a 的取值范围;
(2)若B A ⊆,求a 的取值范围;
(3)若A ∩B 中仅含有一个元素,求a 的数值.
38.设函数2
21
)(x x x f -=的定义域为E ,值域为F .
(1)若{1,2}E =,判断实数12
2
lg 2lg 2lg 5lg 516
λ-=++-与集合F 的关系;
(2)若{}1,2,E a =,30,4F ⎧⎫=⎨⎬⎩⎭
,求实数a 的值. (3)若11
[,]E m n
= ,[23,23]F m n =--,求n m ,的值.(本小题满分16分)
39.记关于x 的不等式
01
x a
x -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围.
40.奇数集A={ x ∣x =2n+1,n ∈Z}可看成是除以2所得余数为1的所有整数的集合,偶数集B={ x ∣x =2n ,n ∈Z}可看成是除以2所得余数为0的所有整数的集合。
(1) 试分别写出除以3所得余数为i(i=0,1,2)的所有整数的集合; (2)
判断集合A={ x ∣x =2n+1,n ∈Z}与集合C={ x ∣x =4k ±1,n ∈Z}的关系。
(1){x|x=3n,n ∈Z} {x|x=3n+1,n ∈Z} {x|x=3n+2,n ∈Z} (2)A=B。