2008年河南郑州中考数学试卷
- 格式:doc
- 大小:233.00 KB
- 文档页数:6
2018年河南省中考数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.−25的相反数是()A.−25B.25C.−52D.522.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿元”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.下列运算正确的是()A.(-x2)3=-x5B.x2+x3=x5C.x3·x4=x7D.2x3-x3=15.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%,关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是06.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.=5 +45, =7 +3B.=5 −45, =7 +3C.=5 +45, =7 −3D. =5 −45, =7 −37.下列一元二次方程中,有两个不相等实数根的是()A.x 2+6x +9=0B.x 2=xC.x 2+3=2xD.(x -1)2+1=08.现有4张卡片,其中3张卡片正面上的图案是“ ”,1张卡片正面上的图案是“♣”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面图案相同的概率是()A.169 B.43 C.83 D.219.如图,已知Y AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC于点G .则点G 的坐标为()-2,2)10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运到点B .图2是点F 运动时,△FBC 的面积y (cm2)随时间x (s)变化的关系图象,则a 的值为()B.2C.25D.2二、填空题(每小题3分,共15分)11.计算:-5=_______.12.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =50°,则∠BOC 的度数为_______.13.不等式组x 524x 3+>⎧⎨-≥⎩,的最小整数解是_______.14.如图,在△ABC 中,∠ACB =90°,AC =BC =2.将△ABC 绕AC 的中点D 逆时针旋转90°得到△A B C ''',其中点B 的运动路径为¼'BB ,则图中阴影部分的面积为______.15.如图,∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△'A BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交'A B 所在直线于点F ,连接'A E .当△'A EF 为直角三角形时,AB 的长为________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(+ − )÷2−,其中x =2+ .17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E 的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y =(k >0)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.治理杨絮——您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他19.(9分)如图,AB是圆0的直径,DO垂直于点O,连接DA交圆O于点C,过点C作圆O 的切线交DO于点E,连接BC交DO于点F。
河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。
2008年河南省高级中等学校招生统一考试试卷数学注意事项:1、本试卷共8页,三大题,满分120分,考试时间100分钟。
请用钢笔或圆珠笔答在试卷指定位置上。
2、答卷前请在指定的位置填好自己的座号,并将密封线内的项目填写清楚。
题号一二三总分16 17 18 19 20 21 22 23得分一、选择题(本题满分18分,共有6道小题,每小题3分)下列每小题都给出代号为A、B、C、D的四个答案,其中只有一个是正确的。
请将各小题所选答案的代号填写在下面的表格内相应题号下面。
选择题答题位置题号 1 2 3 4 5 6答案1.-7的相反数是()A. 7B. -7C.71D.17-2.直角三角形在正方形网格纸中的位置如图所示,则cosα的值是()A.43B.34C.53D.543.如图,是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则A B C D E∠+∠+∠+∠+∠等于()A. ︒360 B. ︒180 C. ︒150 D. ︒1204.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是()A. 9,10,11B.10,11,9C.9,11,10D.10,9,11得分评卷人A.k>14- B.k>14-且k≠C.k<14- D.14k≥-且0k≠6.如图,已知□ABCD中,AB=4,AD=2,E是AB边上的一动点(动点E与点A不重合,可与点B重合),设AE=x,DE的延长线交CB的延长线于点F,设CF=y,则下列图象能正确反映y与x的函数关系的是()二、填空题(本题满分27分,共有9道小题,每小题3分)7.16的平方根是8.如图,直线a,b被直线c所截,若a∥b,︒=∠501,则=∠29.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是10.如图所示,AB为⊙0的直径,AC为弦,OD∥BC交AC于点D,若AB=20cm,︒=∠30A,则AD= cm11.某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC= cm12.如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知CDE∆的周长为24cm,则矩形ABCD的周长是cm13、在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划得分评卷人14、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标 是15、如图,直线2-==kx y (k >0)与双曲线xky =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,则=k三、解答题(本题满分75分,共8道小题)16、(本小题满分8分)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x φ并把解集在已画好的数轴上表示出来。
河南郑州中考数学试卷及答案 一、填空题(16×2=32分)1.计算:=--59 .2.将207670保留三个有效数字,其近似值是 。
3.如果一个角的补角是150°,那么这个角的余角是 。
4.计算:3a ÷a ·a1= 。
5.如图1,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EC 平 分∠BEF ,若∠1=72°,则∠2= 度。
6.函数233---=x xy 的自变量的取值范围是 。
7.已知y 与(2x+1)成反比例,且当X=1时,y=2,那么当X=0时,y= 。
8.如图2,P 是正方形ABCD 内一点,将△ABP 绕点顺时针方向旋转能与△CBP ’重合,若PB=3,则PP ’= 。
9.如果分式1872+--x x x 的值为0,则x= 。
10.方程(x+2)3-x =0的根是 。
11.、满足︱+2︱+4-n =0,分解因式:( 22y x +)-( mxy+n )= .12.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是 . 13.若m 、n 是方程0120022=-+x x 的两个实数根,则mn mn n m -+22的值是 .14.为了解用电量的多少,李明在六月初连续几天同一时刻观察电表显示的度数.记录如下: 日期 1号 2号 3号 4号 5号 6号 7号 8号 电表显示(度) 117 120 124 129 135 138 142 145 估计李明家六月份的总用电量是 度.15.如图3,AB 为⊙O 的直径,P 点在AB 的延长线上,PM 切⊙O 于点M.若OA=a ,PM=a 3,那么△PMB 的周长是 .16.观察下面一列数的规律并填空:0,3,8,15,24,…,则它的第2002个数是 . 二、选择题(5×3=15分)17.下列计算正确的是( )(A )()()x x x x x x 41281324232---=-+•-(B )()()3322y xyx y x +=++MPB O A图3(C )()()21611414a a a -=---(D )()222422y xy x y x +-=-18.下列判断正确的是( )(A )有两边和其中一边的对角对应相等的两个三角形全等(B )有两边对应相等,且有一角为30°的两个等腰三角形全等 (C )有一角和一边对应相等的两个直角三角形全等 (D )有两角和一边对应相等的两个三角形全等19.小明的父亲到银行参入20000元人民币,存期一年,年利率为1.98%,到期应交纳所获利息的20%的利息税,那么小明的父亲存款到期交利息税后共得款( ) (A )20158.4元(B )20198元(C )20396元(D )20316.8元 20.已知a ,b ,c 是△ABC 三条边的长,那么方程()042=+++cx b a cx 的根的情况是( ) (A )没有实数根 (B )有两个不相等的正实数根 (C )有两个不相等的负实数根 (D )有两个异号实数根 21.如图4,⊙A ,⊙B ,⊙C ,⊙D ,⊙E 互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积是( )(A ) Π(B )1.5Π(C )2Π(D )2.5Π 三、(3×5=15分) 22.计算().21122323822+--+⨯-23.求使方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 都是正数的m 的取值范围.24.已知:如图5,以△ABC 的BC 边为直径的半圆交AB 于D ,交AC 于E ,过E 点作EF ⊥BC ,垂足为F ,且BF :FC=5:1,AB=8,AE=2.求EC 的长.四、(6+7=13分) 25.解方程.213122=⎪⎭⎫ ⎝⎛+-+x x x x26.已知,如图6,在Rt △ABC 中,AB=AC ,∠A=90°,点D 为BC 上任一点,DF ⊥AB 于F ,DE ⊥AC 于E ,M 为BC 的中点,试判断△MEF 是什么三角形,并证明你的结论.E ADC F 图5B27.某村计划开挖一条长1500米的水渠,渠道的断面为等腰梯形,渠道深0.8米,下底宽为1.2米,坡角为45°(如图7).实际开挖渠道时,每天比原计划多挖土20立方米,结果比原计划提前4天完工,求原计划每天挖土多少立方米.六、(8分)28.已知,如图8,△ABC内接于⊙O1,AB=AC,⊙O2与BC相切于点B,与AB相交于点E,与⊙O1相交于点D,直线AD交⊙O2于点F,交CB的延长线于点G.求证:(1)∠G=∠AFE;(2)AB·EB=DE·AG.29.已知,如图9,直线333+=x y 与x 轴、y 轴分别交于A 、B 两点,⊙M 经过原点O 及A 、B 两点.(1) 求以OA 、OB 两线段长为根的一元二方程;(2) C 是⊙M 上一点,连接BC 交OA 于点D ,若∠COD=∠CBO ,写出经过O 、C 、A 三点的二次函数的解析式;(3) 若延长BC 到E ,使DE=2,连接EA ,试判断直线EA 与⊙M 的位置关系,并说明理由.1. 42. 2.08×1053. 60°4. a5. 546. x ≤3且x ≠27. 68. 32 9. 8 10. x=311. (x+y+2)(x+y-2)12. a21或a 2313. 200314. 120 15. a )23(+16. 4008003(或20022-1) 17. C 18. D 19. D 20. C 21. B 22.-1123. 解为⎩⎨⎧>-=>+-=05207m y m x 得725<<m24. 连BE,则BE⊥AC,BE2=AB2-AE2=60。
2023年河南省近3年中考数学试卷结构按知识点归纳总结分引言数学作为一门重要的学科,对于学生的综合素质和思维能力的培养具有重要意义。
中考是学生完成初级数学学科的重要考试,在备考中,了解试卷结构和重点知识点是非常关键的。
本文将根据近3年河南省中考数学试卷,按照知识点对试卷结构进行归纳和总结,以供广大学生备考参考。
一、选择题部分选择题部分是中考数学试卷中占比较大的一部分,题型多样,覆盖的知识点广泛。
近3年河南省中考数学试卷选择题部分主要包括以下几个知识点:1. 数与式•整数、有理数、实数的性质和运算•各种数的比较和大小的判断•分数、百分数的相互转化和运算•基本计算(加、减、乘、除)及其应用2. 代数式与变量表达•代数式的计算与化简•代数式的应用问题解答•变量表达式的计算与应用3. 几何图形•线段、角的性质和计算•各种图形的性质、分类和计算•坐标系与直角坐标系上点的位置关系判断4. 数据的收集、整理和分析•图表的读取与应用•数据的整理与分类•数据的分析和解读二、解答题部分解答题部分是对学生的思维能力和综合运用知识的考察,要求学生能够灵活应用所学的知识解决实际问题。
以下列举了近3年河南省中考数学试卷解答题部分的主要知识点:1. 方程与不等式•一元一次方程与不等式•一元一次方程与不等式的应用•解方程问题的建立和解答2. 几何变换•平移、旋转、翻折、对称等几何变换的性质和计算•对称图形的性质和应用3. 空间与图形•空间几何体的性质与计算•几何体的表面积与体积的计算•平面图形的计算与应用4. 数据统计与概率•数据统计与概率的计算和应用•数据统计和概率问题的建立和解答总结通过对近3年河南省中考数学试卷结构按知识点的归纳总结,我们可以看出选择题部分主要涉及数与式、代数式与变量表达、几何图形和数据的收集、整理和分析等知识点;解答题部分主要包括方程与不等式、几何变换、空间与图形和数据统计与概率等知识点。
备考时,学生应重点复习这些知识点,了解各个知识点在试卷中的分布和考察形式,有针对性地进行复习和训练,提高解题的能力和应对考试的水平。
郑州9中九年级期中考试数学试题全卷分试题卷、答题卷。
试题卷有3个大题,27个小题。
满分为l20分。
考试时间为120分钟。
允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示。
抛物线y=a x 2+bx+c 的顶点坐标为24(,)24b ac b a a--。
一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.在反比列函数4y x=-中,比列系数等于( ▲ ) (A)-4 (B)4 (C)-x (D) x 2.在反比列函数6y x=中,若x=-2,则函数y 的值是( ▲ ) (A)12 (B)3 (C)-12 (D)-3 3.已知⊙O 的半径为5,OP=6,则点P 与⊙O 的位置关系是 ( ▲ )(A) 点P 在⊙O 内 (B) 点P 在⊙O 上 (C) 点P 在⊙O 外 (D) 不能确定 4.抛物线y=3x 2+1的图像是由抛物线y=3x 2怎样平移得到?答( ▲ ) (A) 向左平移1个单位 (B) 向右平移1个单位 (C) 向上平移1个单位 (D) 向下平移1个单位 5.设半径为r 的圆的面积为s ,则s 关于r 的函数关系式是( ▲ )(A)s=2πr (B) )s=r 2 (C) )s=πr (D) )s=πr 26.二次函数y=3(x -1)2+2的最小值是( ▲ )(A)2 (B)-2 (C)1 (D)-1 7.如图,A 、B 、C 三点在⊙O 上,且∠A OB=70°, 则∠A CB 等于( ▲ )(A )110° (B) 55° (D)35° 8.已知反比列函数ky x=(x>0)的图像如图,若图像经过点(1,1y )、(2,2y ), 则1y 与2y 的大小关系是( ▲ )(A) 1y >2y (B) 1y =2y (C) 1y <2y (D) 不能确定9.二次函数y=a x 2+bx+c 的部分图像如图,其对称轴是x=1,则一元一次方程ax 2+b x+c =0的一个解是( ▲ )(A )4 (B) 3 (C) 2 (D) 110.如图,已知⊙O 的弦AB 的长为6cm, OC ⊥AB, OC=4cm, 则⊙O 的半径为( ▲ ) (A)6cm (B) 5cm (C)4cm (D) 3cm11.如图,现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( ▲ ) A .4cmB .3cmC .2cmD .1cm12.如图,⊙O 的半径OA 、OB,且OA ⊥OB,连接AB.现在⊙0上找一点C,使OA 2+AB 2=BC 2, 则∠OAC的度数为( ▲ )(A ) 15°或 75° (B) 20°或 70° (C) 20°21分13.抛物线y=-x 2+4x-3的开口方向是 ▲ .14.如果反比列函数的图像经过点(1,2),则其函数关系式是 ▲ _. 15.二次函数y=2x 2-6x +1的顶点坐标是 ▲ .16. 已知扇形的半径为10cm ,圆心角为36°. 则这个扇形的面积为 ▲ _ cm 2.17. 已知直角三角形的两条直角边长分别为 6 cm 和8 cm,则这个直角三角形的外接圆的半径为▲ _ cm.18. 如图,圆锥的底面半径为1,母线长为3.一只蚂蚁从圆锥底面圆周上一点A 出发, 要沿圆锥的侧面爬过一圈再回到点A,则蚂蚁爬过的最短路程是 ▲ _.19.如图,△P 1OA 1 、△P 2A 1A 2 、△P 3A 2A 3 、……、△P 100A 99A 100是等腰直角三角形 ,点P 1 、P 2 、 P 3 、……、P 100在反比列函数4y x=的图像上,斜边OA 1 、A 1A 2 、A 2A 3 、……、A 99A 100都在x 轴上, 则点A 100的坐标是 ▲ .AO三、解答题(第20题5分,21~23题各6分,24题8分,25~26题各10分, 27题12分,共63分)20.已知反比列函数ky x=的图像的一个分支如图, 请你在图中画出另一个分支.21.已知△ABC 请用圆规和直尺作出△ABC 的外接圆.22.已知二次函数y=ax 2+4x+c 的图像经过点(-2,-1)、(1,5),求这个函数的解析式.23. 已知: 如图, 在⊙0中, 弦AB 和CD 相交,连接AC 、BD,且AC=BD.求证: AB=CD.24.设面积为12cm 2的三角形的一条边长为x cm,这条边上的高为y cm . (1)求y 关于x 的函数关系式,写出自变量x 的取值范围; (2) 当边长x=4cm 时,求这条边上的高.25. 已知二次函数215322y x x =+-. (1)求函数图像的对称轴;(2) 自变量x在什么范围内时y随x增大而增大?何时y随x减小而减小?(3) 何时函数y有最大值或最小值? 最大(小)值是多少?26. 如图, 在平面直角坐标系x0y中,直径为10的⊙E交x轴于点A、B,交y轴于点C、D,且点A、B的坐标分别为(-4,0)、(2,0)。
2016年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.题号 一 二 三总分 1~8 9~15 16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是( ) (A )31- (B )31(C )-3 (D )32.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为 ( )A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-83. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )4.下列计算正确的是 ( ) (A )=(B )(-3)2=6(C )3a 4-2a 3= a 2(D )(-a 3)2=a 55. 如图,过反比例函数y=(x> 0)的图象上一点A ,作AB ⊥x 轴于点B ,S △AOB =2,则k 的值为( )(A )2 (B )3 (C )4 (D )56. 如图,在ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB 于点E ,则DE 的长为( )(A)6 (B)5 (C)4 (D)37、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()(A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2)二、填空题(每小题3分,共21分)9.计算:(-2)0-= .10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是 .11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围= .12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 .13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是 .14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C.若OA=2,则阴影部分的面积为______.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上的一个动点,连接AE,将△ABE 沿AE 折叠,点B 落在点B'处,过点B'作AD 的垂线,分别交AD 、BC 于点M 、N,当点B'为线段MN 的三等份点时,BE 的长为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)121()1(222++-÷-+x x x x x x ,其中x 的值从不等式组的整数解中选取。
2024年河南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点P表示的数是()A.1-B.0C.1D.2【答案】A【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P表示的数为1-,从而求解.【详解】解:根据题意可知点P表示的数为1-,故选:A.2.据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为()A.8⨯D.12⨯0.5784105.78410⨯C.11⨯B.105784105.784103.如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A .60︒B .50︒C .40︒D .30︒【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A .B .C .D .【答案】A【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5.下列不等式中,与1x ->组成的不等式组无解的是( )A .2x >B .0x <C .<2x -D .3x >-【答案】A 【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x ->,可得1x <-,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <-,不符合题意;C 、此不等式组解集为<2x -,不符合题意;D 、此不等式组解集为31x -<<-,不符合题意;故选:A6.如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A .12B .1C .43D .2故选:B .7.计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭ 个的结果是( )A .5a B .6a C .3a a +D .3aa 【答案】D 【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A .19B .16C .15D .13【答案】D【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,9.如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A .8π3B .4πC .16π3D .16π∵O 是边长为43∴43B C =,A ∠=∴120BDC ∠=︒,∵点D 是 BC的中点,10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A .当440W P =时,2A I =B .Q 随I 的增大而增大C .I 每增加1A ,Q 的增加量相同D .P 越大,插线板电源线产生的热量Q 越多【答案】C 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题11.请写出2m 的一个同类项: .【答案】m (答案不唯一)【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为 分.【答案】9【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案为:9.13.若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为 .14.如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=︒,∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20-,,点F 的坐标为()06,,∴2AO =,6FO =,∴2BO AB AO a =-=-,在Rt BOF △中,222BO FO BF +=,∴()22226a a -+=,解得10a =,∴4FG OG OF =-=,8GE CD DG CE CE =--=-,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE -+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15.如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .则CD AE ⊥,∴90ADE CDE ∠=∠=︒,∴222231AD AC CD =-=-∵ AC AC =,∴45CED ABC ==︒∠∠,∵90CDE ∠=︒,则CD AE ⊥,∴90CDE ∠=︒,∴222231AD AC CD =-=-=∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =︒-=︒∠∠,∴18045CED CEA =︒-=︒∠∠,∵90CDE ∠=︒,三、解答题16.(1(01;(2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭.【答案】(1)9(2)2a +【分析】本题考查了实数的运算,分式的运算,解题的关键是:17.为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.18.如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为________.(3)解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=,解得32x =,∴平移距离为39622-=.故答案为:9.19.如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析(2)见解析【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是:(2)证明:∵ECM A ∠=∠∴CM AB ∥,∵∥B E DC ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边20.如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈).则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.(2)解:在Rt AHP 中,APH ∠∵tan AH APH PH∠=,答:塑像AB的高约为6.9m.21.为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?【答案】(1)选用A种食品4包,B种食品2包(2)选用A种食品3包,B种食品4包【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A种食品x包,B种食品y包,根据“从这两种食品中摄入4600kJ热量和70g蛋白质”列方程组求解即可;(2)设选用A种食品a包,则选用B种食品()7-a包,根据“每份午餐中的蛋白质含量不低于90g”列不等式求解即可.【详解】(1)解:设选用A种食品x包,B种食品y包,根据题意,得7009004600, 101570.x yx y+=⎧⎨+=⎩解方程组,得4,2. xy=⎧⎨=⎩答:选用A种食品4包,B种食品2包.(2)解:设选用A种食品a包,则选用B种食品()7-a包,根据题意,得()1015790a a +-≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∵2000-<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a -=-=.答:选用A 种食品3包,B 种食品4包.22.从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.23.综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B Ð=°,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=︒,∵180ABC ABE ∠+∠=︒,∴ABE D ∠=∠,∵AE AC =,∴()()1112222m n CF CE BC BE BC DC +==+=+=,∵2BCD θ∠=,∴ACD ACB θ∠=∠=,∴22218AM AB BM =+=,在Rt AMN 中22MN AM AN =-在Rt CMN 中22MN CM CN =-∴()()22218435AN AN -=---∵AM AM =,∵90MNC ABC ∠=∠=︒,C ∠∴CMN CAB ∽△△,∴CN MN BC AB=,即543CN CN -=解得20CN =,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;。
2016年河南省普通高中招生考试试卷数学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.题号一二三总分1~8 9~15 16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.的相反数是()(A)(B)(C)-3 (D)32.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-83. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()4.下列计算正确的是()(A)=(B)(-3)2=6(C)3a4-2a3 = a2(D)(-a3)2=a55. 如图,过反比例函数y=(x> 0)的图象上一点A,作AB⊥x轴于点B,S△AOB=2,则k的值为()(A)2 (B)3 (C)4 (D)56. 如图,在ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为()(A)6 (B)5 (C)4 (D)37、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()(A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2)二、填空题(每小题3分,共21分)9.计算:(-2)0-= .10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是 .11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围= .12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 .13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是 .14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C.若OA=2,则阴影部分的面积为______.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上的一个动点,连接AE,将△ABE沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD、BC于点M、N,当点B'为线段MN的三等份点时,BE的长为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中x的值从不等式组的整数解中选取。
河南中考1987年数学试卷一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1、已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P()A、在⊙O外B、在⊙O上C、在⊙O内D、不能确定2、已知△ABC中,∠C=90°,AC=6,BC=8,则cose的值是()A、0.6B、0.75C、0.8D、0.853、△ABC中,点M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是()A、1B、2C、3D、44、既是中心对称图形又是轴对称图形的是()A、1B、-1C、2D、-25、已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=cm,则⊙O1和⊙O2的位置关系是()A、外离B、外切C、内切D、相交6、某二次函数y=ax2+bx+c的图像,则下列结论正确的是()A、a0,b0,c0B、a0,b0,c;0C、a0,b0,c0D、a0,b0,c07、下列命题中,正确的是()A、平面上三个点确定一个圆B、等弧所对的圆周角相等C、平分弦的直径垂直于这条弦D、与某圆一条半径垂直的直线是该圆的切线8、把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是()A、y=-(x+3)2-2B、y=-(x+1)2-1C、y=-x2+x-5D、前三个答案都不正确二、填空题(本题共16分,每小题4分)9、已知两个相似三角形面积的比是2∶1,则它们周长的比_____。
10、在反比例函数y=中,当x0时,y随x的增大而增大,则k的取值范围是_________。
11、水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________。
12、已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为_________cm。
2008年河南省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)(2012•铁岭)﹣7的相反数是()A.7B.﹣7 C.D.﹣考点:相反数.分析:根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(﹣7的相反数)+(﹣7)=0,则﹣7的相反数是7.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2008•濮阳)三角形在正方形网格中的位置如图所示,则cosa的值是()A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:根据网格的特点及三角函数的定义解答即可.解答:解:读图可得:α的对边是4个单位,邻边是3个单位,则斜边是5个单位,故cosa=.故选C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.3.(3分)(2008•濮阳)如图,是中国共产主义青年团团旗上的图案,点A,B,C,D,E五等分圆,则∠A+∠B+∠C+∠D+∠E等于()A.360°B.180°C.150°D.120°考点:圆周角定理;三角形内角和定理.分析:连接CD,根据圆周角定理,可得∠ECD=∠B,∠BDC=∠E;此时这五个角的度数和正好是△ACD的三个内角的和,根据三角形内角和定理可得,这五个角的度数和应是180°.解答:解:连接CD,则有∠B=∠ECD,∠E=∠CDB;∴∠A+∠B+∠C+∠D+∠E=∠A+∠ECD+∠C+∠D+∠CDB=∠A+∠ADC+∠ACD=180°.故选B.点评:本题综合考查圆周角定理、三角形的内角和定理的应用.4.(3分)(2008•濮阳)初三某班10名男同学“引体向上”的测试成绩(单位:次数)分别是:9,14,10,15,7,9,16,10,11,9,这组数据的众数,中位数,平均数依次是()A.9,10,11 B.10,11,9 C.9,11,10 D.10,9,11考点:中位数;算术平均数;众数.分析:先把数据按大小排列,然后根据众数、中位数和平均数的定义求解.解答:解:从小到大排列此数据为:7,9,9,9,10,10,11,14,15,16.数据9出现了三次最多为众数;处在第5位、第6位的均为10,所以10为中位数;平均数为:(7+9+9+9+10+10+11+14+15+16)÷10=11.故选A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2008•濮阳)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0C.k<D.k≥且k≠0考点:根的判别式.专题:压轴题.分析:若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.解答:解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意方程若为一元二次方程,则k≠0.6.(3分)(2008•濮阳)如图,已知▱ABCD中,AB=4,AD=2,E是AB边上的一动点(动点E与点A不重合,可与点B重合),设AE=x,DE的延长线交CB的延长线于点F,设CF=y,则下列图象能正确反映y与x的函数关系的是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:本题考查动点函数图象的问题.解答:解:∵动点E与点A不重合,可与点B重合,AB=4,AE=x.∴0<x≤4.即包括4;故选B.点评:本题各个x的取值范围都不同,所以只需从x的取值考虑即可.二、填空题(共9小题,每小题3分,满分27分)7.(3分)(2013•盐城)16的平方根是±4.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.(3分)(2008•濮阳)如图,直线a,b被直线c所截,若a∥b,∠1=50°,则∠2=50度.考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:先利用平行线的性质可得∠3=∠1,又由对顶角相等推出∠2=∠3,故∠2的度数可求.解答:解:∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2=∠3,∴∠2=∠1=50°.点评:本题应用的知识点为:两直线平行,同位角相等;对顶角相等.9.(3分)(2008•濮阳)样本数据:3,6,a,4,2的平均数是5,则这个样本的方差是8.考点:方差;算术平均数.分析:本题可先求出a的值,再代入方差的公式即可.解答:解:依题意得:a=5×5﹣3﹣6﹣4﹣2=10,方差S2=[(3﹣5)2+(6﹣5)2+(10﹣5)2+(4﹣5)2+(2﹣5)2]=×40=8.故填8.点评:本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.10.(3分)(2008•濮阳)如图所示,AB为⊙O的直径,AC为弦,OD∥BC交AC于点D,若AB=20cm,∠A=30°,则AD=5cm.考点:圆周角定理;特殊角的三角函数值.分析:由圆周角定理,可知∠C=90°,已知OD∥BC,因此△AOD是直角三角形,在这个直角三角形中,半径OA=10cm,∠A=30°,通过解直角三角形可求出AD的长.解答:解:∵AB是⊙O的直径,∴∠C=90°;∵OD∥BC,∴∠ADO=90°;在Rt△AOD中,OA=10cm,∠A=30°;AD=AO•cosA=10×=5cm.点评:本题主要考查了圆周角定理、平行线的性质、余弦函数等知识的应用.11.(3分)(2008•濮阳)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC=20cm.考点:等腰梯形的性质;三角形中位线定理.分析:利用等腰梯形和中位线定理和已知条件,即可推出结论.解答:解:∵等腰梯形的对角线相等,EF、HG、GF、EF均为梯形的中位线,∴EF=HG=GF=EF=AC.又∵EF+HG+GF+EF=40cm,即2AC=40cm,则AC=20cm.对角线AC=20cm.故答案为:20.点评:本题考查的是等腰梯形的性质即三角形中位线的性质,属一般题目.12.(3分)(2008•濮阳)如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是48cm.考点:矩形的性质.专题:计算题.分析:利用FE垂直平分AC可得到AE=CE,那么△CDE的周长就可以表示为AD+CD,也就求出了矩形的周长.解答:解:∵OA=OC,EF⊥AC,∴AE=CE,∵矩形ABCD的周长=2(AE+DE+CD),∵DE+CD+CE=24,∴矩形ABCD的周长=2(AE+DE+CD)=48cm.点评:本题主要是利用矩形的对角线相互平分的性质和垂直平分线的性质求得DE+CD+CE=AE+DE+CD=24.13.(3分)(2008•濮阳)在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm2,设金色纸边的宽为xcm,那么x满足的方程为x2+40x﹣75=0.考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:如果设金色纸边的宽为xcm,那么挂图的长和宽应该为(50+2x)和(30+2x),根据总面积即可列出方程.解答:解:设金色纸边的宽为xcm,那么挂图的长和宽应该为(50+2x)和(30+2x),根据题意可得出方程为:(50+2x)(30+2x)=1800,∴x2+40x﹣75=0.点评:一元二次方程的运用,此类题是看准题型列面积方程,题目不难,重在看准题.14.(3分)(2008•濮阳)如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是(1,0).考点:二次函数的图象.专题:压轴题.分析:由二次函数y=a(x+1)2+2可知对称轴x=﹣1,从图象上看出与x轴左侧交点为(﹣3,0),利用二次函数的对称性可知该图在对称轴右侧与x轴交点坐标.解答:解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).点评:要求熟悉二次函数图象的对称性,能从图象和解析式中分析得出对称轴和关于对称轴对称的点,并利用对称性求得另一个点.15.(3分)(2008•濮阳)如图,直线y=kx﹣2(k>0)与双曲线y=在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积比是4:1,则k=.考点:反比例函数综合题;相似三角形的判定与性质.专题:压轴题.分析:先通过相似三角形的性质得到OQ:RM=2:1,得到RM=1,即R的纵坐标为1,于是有R的坐标为(,1),再代入y=即可求出k的值.解答:解:∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积比是4:1,∴OQ:RM=2:1,∵Q为y=kx﹣2与y轴交点,∴OQ=2,∴RM=1,即R的纵坐标为1,把y=1代入直线y=kx﹣2,得x=,所以R的坐标为(,1),把它代入y=,得×1=k(k>0),解得k=±.∵图象在第一三象限,∴k=,故答案为.点评:观察图象,函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值.三、解答题(共8小题,满分75分)16.(8分)(2008•濮阳)解不等式组并把解集在已画好的数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先解不等式组中的每一个不等式,再根据“大大取较大,小小取较小,大小小大取中间,大大小小无解”,把它们的解集用一条不等式表示出来.解答:解:解不等式1,得x≤3;解不等式2,得x>.把解集在数轴上表示为:∴原不等式组的解集是<x≤3.点评:本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.17.(9分)(2008•濮阳)如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究,四边形BECF是什么特殊的四边形?(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)考点:菱形的判定;线段垂直平分线的性质;正方形的判定.专题:几何综合题.分析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,根据四边相等的四边形是菱形即可判断;(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.解答:解:(1)四边形BECF是菱形.证明:∵BC的垂直平分线为EF,∴BF=FC,BE=EC,∴∠1=∠3,∵∠ACB=90°,∴∠1+∠2=90°,∠3+∠A=90°,∴∠2=∠A,∴EC=AE,又∵CF=AE,BE=EC∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵∠A=45°,∠ACB=90°,∴∠1=45°,∴∠EBF=2∠A=90°,∴菱形BECF是正方形.点评:本题利用了:菱形的判定和性质及中垂线的性质、直角三角形的性质.18.(9分)(2008•濮阳)已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.考点:根与系数的关系;解一元二次方程-直接开平方法;根的判别式.专题:压轴题.分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围,再利用根与系数的关系,x12x22﹣x1﹣x2=115.即x12x22﹣(x1+x2)=115,即可得到关于k的方程,求出k的值.(2)根据(1)即可求得x1+x2与x1x2的值,而x12+x22+8=(x1+x2)2﹣2x1x2+8即可求得式子的值.解答:解:(1)∵x1,x2是方程x2﹣6x+k=0的两个根,∴x1+x2=6,x1x2=k,∵x12x22﹣x1﹣x2=115,∴k2﹣6=115,解得k1=11,k2=﹣11,当k1=11时,△=36﹣4k=36﹣44<0,∴k1=11不合题意当k2=﹣11时,△=36﹣4k=36+44>0,∴k2=﹣11符合题意,∴k的值为﹣11;(2)∵x1+x2=6,x1x2=﹣11∴x12+x22+8=(x1+x2)2﹣2x1x2+8=36+2×11+8=66.点评:总结:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)根与系数的关系是:x1+x2=,x1x2=.根据根与系数的关系把x12x22﹣x1﹣x2=115转化为关于k的方程,解得k的值是解决本题的关键.19.(9分)(2008•濮阳)某校300名优秀学生,中考数学得分范围是70﹣119(得分都是整数),为了了解该校这300名学生的中考数学成绩,从中抽查了一部分学生的数学分数,通过数据处理,得到如下频率分布表和频率分布直方图.请你根据给出的图标解答:(1)填写频率分布表中未完成部分的数据;(2)指出在这个问题中的总体和样本容量;(3)求出在频率分布直方图中直角梯形ABCD的面积;(4)请你用样本估计总体,可以得到哪些信息?(写一条即可)考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.专题:图表型.分析:(1)根据各小组频数之和等于数据总和,各小组频率之和等于1,可得答案;(2)由总体及样本容量的意义,可得:总体是300名学生的中考数学成绩.样本容量为50;(3)由图形的对称性可得S梯形ABCD=S矩形ABGF+S矩形CDEG,可求出答案;(4)根据样本中的频率就等于总体的频率,用样本估计总体即可,答案不唯一.解答:解:(1)根据第一组的频数为15,频率为0.30,所以这次被抽查的学生人数是50人,第三组的频率为=0.36,分数在79.5~89.5之间的人数为50﹣15﹣10﹣18﹣3=4人,频率为=0.08,如图:(2)总体是300名学生的中考数学成绩,样本容量为50;(3)∵∠DOE=∠AOF,∠E=∠AFO=90°,DE=AF,∴△DOE≌△AOF,∴S梯形ABCD=S矩形ABGF+S矩形CDEG=0.08+0.36=0.44;(4)本题有多个结论,例如,300名初中毕业年级学生数学分数在89.5~99.5的人数最多,约为108人;或300名初中毕业年级学生数学分数在69.5~79.5的人数最少,约为18人.点评:本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.20.(9分)(2008•濮阳)在暴雨到来之前,武警某部承担了一段长150米的河堤加固任务,加固40米后,接到上级抗旱防汛指挥部的指示,要求加快施工进度,为此,该部队在保证施工质量的前提下,投入更多的兵力,每天多加固15米,这样一共用了3天完成了任务.问接到指示后,该部队每天加固河堤多少米?考点:分式方程的应用;解一元二次方程-因式分解法.专题:应用题.分析:求的是原计划的工效,工作总量明显,一定是根据工作时间来列等量关系,本题的关键描述语是:一共用了3天完成了任务.等量关系为:40米所用时间+其余米数所用时间=3.解答:解:设接到指示后,该部队每天加固河堤x米,则接到指示前每天加固(x﹣15)米(1分)根据题意,得(5分)两边乘以x(x﹣15)得40x+110(x﹣15)=3x(x﹣15)整理,得x2﹣65x+550=0(6分)解得,x1=55,x2=10(7分)经检验,x1=55,x2=10都是原方程的根,但当x=10时x﹣15=10﹣15<0,∴x=10不合题意,只取x=55.(8分)答:接到指示后,该部队每天加固河堤55米.(9分)点评:应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(10分)(2008•濮阳)如图,在小山的西侧A处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C处,这时热气球上的人发现,在A处的正东方向有一处着火点B,十分钟后,在D处测得着火点B的俯角为15°,求热气球升空点A与着火点B的距离.(结果保留根号,参考数据:sin15°=,cos15°=,tan15°=2﹣,cot15°=2+)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造等量关系,进而可求出答案.解答:解:由题意可知,AD=(40+10)×30=1500(米)过点D作DH⊥BA,交BA延长线于点H.在Rt△DAH中,DH=AD•sin60°,=1500×=750(米).AH=AD•cos60°=1500×=750(米).在Rt△DBH中,BH=DH•cot15°=750×(2+)=(1500+2250)(米),∴BA=BH﹣AH=1500+2250﹣750=1500(+1)(米).答:热气球升空点A与着火点B的距离为1500(+1)(米).点评:本题要求学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)(2008•濮阳)如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.(1)求证:AB=AC;(2)当=时,①求tan∠ABE的值;②如果AE=,求AC的值.考点:切割线定理;勾股定理;解直角三角形.专题:几何综合题;压轴题.分析:(1)BE切⊙O于点B,根据弦切角定理得到∠ABE=∠C,把求证AB=AC的问题转化为证明∠ABC=∠C 的问题.(2)①连接AO,交BC于点F,tan∠ABE=tan∠ABF=,转化为求AF的问题.②在△EBA和△ECB中,∠E=∠E,∠EBA=∠ECB,得到△EBA∽△ECB,再由切割线定理,得EB2=EA×EC=EA(EA+AC),就可以求出AC的长.解答:(1)证明:∵BE切⊙O于点B,∴∠ABE=∠C.∵∠EBC=2∠C,即∠ABE+∠ABC=2∠C.∴∠ABC=∠C.∴AB=AC.(2)解:①如图,连接AO,交BC于点F∵AB=AC,∴;∴AO⊥BC,且BF=FC.∵∴∴;设AB=m,BF=2m,由勾股定理,得AF==;∴tan∠ABE=tan∠ABF=.②在△EBA和△ECB中,∵∠E=∠E,∠EBA=∠ECB,∴△EBA∽△ECB,∴;∵,∴EB=EA(※);由切割线定理,得EB2=EA×EC=EA(EA+AC);将(※)式代入上式,得EA2=EA(EA+AC);∵EA≠0,∴AC=EA=×=4.点评:本题主要考查了相似三角形的性质,对应边的比相等,以及切割线定理.23.(11分)(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x﹣16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.考点:二次函数综合题.专题:压轴题.分析:(1)x=O和x=4时,y的值相等,即可得到函数的对称轴是x=2,把x=2和x=3分别代入直线y=4x﹣16就可以求出抛物线上的两个点的坐标,并且其中一点是顶点,利用待定系数法,设出函数的顶点式一般形式,就可以求出函数的解析式;(2)根据待定系数法可以求出直线OM的解析式,设OQ的长为t,即P,Q的横坐标是t,把x=t代入直线OM的解析式,就可以求出P点的纵坐标,得到PQ的长,四边形PQCO的面积S=S△COQ+S△OPQ,很据三角形的面积公式就可以得到函数解析式;(3)从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显当然点P运动到点M时,S最值;(4)在直角△OPQ中,根据勾股定理就可以求出点P的坐标.解答:解:(1)∵当x=0和x=4时,y的值相等,∴c=16a+4b+c,(1分)∴b=﹣4a,∴x=﹣=﹣=2将x=3代入y=4x﹣16,得y=﹣4,将x=2代入y=4x﹣16,得y=﹣8.(2分)∴设抛物线的解析式为y=a(x﹣2)2﹣8将点(3,﹣4)代入,得﹣4=a(x﹣2)2﹣8,解得a=4.∴抛物线y=4(x﹣2)2﹣8,即y=4x2﹣16x+8.(3分)(2)设直线OM的解析式为y=kx,将点M(2,﹣8)代入,得k=﹣4,∴y=﹣4x.(4分)则点P(t,﹣4t),PQ=4t,而OC=8,OQ=t.S=S△COQ+S△OPQ=×8×t+×t×4t=2t2+4t(5分)t的取值范围为:0<t≤2(6分)(3)随着点P的运动,四边形PQCO的面积S有最大值.从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显然当点P运动到点M时,S值最大(7分)此时t=2时,点Q在线段AB的中点上(8分)因而S=×2×8+×2×8=16.当t=2时,OC=MQ=8,OC∥MQ,∴四边形PQCO是平行四边形.(9分)(4)随着点P的运动,存在t=,能满足PO=OC(10分)设点P(t,﹣4t),PQ=4T,OQ=t.由勾股定理,得OP2=(4t)2+t2=17t2.∵PO=OC,∴17t2=82,t1=<2,t2=﹣(不合题意)∴当t=时,PO=OC.(11分)点评:本题主要考查了待定系数法求二次函数的解析式.注意数与形的结合是解决本题的关键.。
专题08三角函数的应用选题介绍本题型属于河南省中招考试的必考题型,每年解答题中均有体现。
本专题整理的三角函数的应用主要是解答题型,所考知识点主要是锐角三角函数在直角三角形中的应用,本题型首先会引入一个环境,然后让学生通过利用解直角三角型的思想求长度。
该题一般为解答题,分值9分,难度系数中等,得分率偏高。
利用三角函数解直角三角形的解题思路:①找直角三角形(注意找哪些角所在的直角三角形);②构造直角三角形(题目中涉及的角如果在直角三角形中不需构造,直接解直角三角形,如果不再则需作垂线构造);③解直角三角形;④设直角边为x;(直角三角形中有边长时直接求其它边,没有边长时需要设x);⑤利用三角函数构造关于x的方程。
真题展现2022年河南中招填空题第19题19.开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑。
某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得浮云阁顶端D的仰角儿为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°。
已知测角仪的高度为1.5m,测量点A、B与拂云阁DC的底部C在同一水平线上,求浮云阁DC的高度。
(结果精确到1m,参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).2021年河南中招填空题第19题19.(9分)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).2020年河南中招填空题第18题18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.2019年河南中招填空题第19题19.(9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)2018年河南中招填空题第20题20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE(结为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)模拟演练字母型1.黄河全长约5464千米,是中国第二长河.位于郑州市黄河文化公园东部的黄河滩地公园,集休闲观光、农业采摘、林间漫步、亲子研学等多项功能,成为省会郑州的“大氧吧”“后花园”和网红打卡地.周末,小明一家来到黄河滩地公园游玩,小明想测量某段黄河的宽度.如图,小明利用自制测角仪,在河岸A处测得对岸C处在南偏东40°方向,沿岸边向东走100步到达B处,并测得对岸C处在南偏东30°方向,请根据以≈︒≈︒≈,上信息,估算此段黄河的宽度.(结果精确到0.1m.参考数据:一步0.8m,sin400.64,cos400.77︒≈≈tan40 1.73)2.无塔位于河南汝南城南,俗传冬至正午无塔影,故称无影塔.某数学活动小组到汝南测无影塔的高度.如图,他们在点D处测得塔顶A的仰角为30°,沿直线前行23米至点C,在点C处测得塔顶4的仰角为50︒.已如点B,C,D在同一直线上,请依据相关数据求无影塔的商度(结果精确到0.1m.参考数据:sin500.77,cos500.64,tan50 1.117︒≈︒≈︒≈≈9.3).背靠背型3.如图,小明在某森林公园的一处观景台观赏垂直而下的瀑布,从D点看到瀑布顶端B的仰角为45︒,看到瀑布底端E的俯角为30︒,若瀑布底有一水潭,D点到水潭水平面的距离DA为4m,求瀑布顶端到水潭水平面的距离BE的长.(结果保留整数.参考数据:2 1.414≈≈,3 1.732)4.被誉为“天下第一塔”的开封铁塔,八角十三层,其设计精巧,单是塔砖就有数十种图案.铁塔位于铁塔公园的东半部,是园内重要的文物,也是主要的景点,始建于公元1049年(北宋皇祐元年),是1961年我国首批公布的国家重点保护文物之一,素有“天下第一塔”之称.某数学兴趣小组开展了“测量开封铁塔的高度”的实践活动,具体过程如下:工具准备:皮尺,测角仪.方案设计:如图2,开封铁塔AB 垂直于地面,在地面上选取C ,D 两处分别测得ACB ∠和ADB ∠的度数(,,C B D 在同一条直线上)数据收集:通过实地测量:地面上C ,D 120m ,45ACB ∠=︒,42ADB ∠=︒.问题解决:(1)求开封铁塔AB 的高度(精确到0.1m).景点介绍开封铁塔的高度为55.88米,则计算结果的误差为多少?并说出一条导致计算结果产生误差的原因可能是什么?(参考数据:sin420.67︒≈,cos420.74︒≈,tan420.9︒≈ 1.41≈)(2)根据上述方案及数据,请你完成求解过程.活动阅读型5.嵩岳寺塔位于登封市区西北6千米嵩山南麓嵩岳寺院内,为北魏时期佛塔.该塔是我国现存最早的砖塔,反映了中外建筑文化交流融合创新的历程,在结构、造型等方面具有很大价值,对后世砖塔建筑有着巨大影响.某数学兴趣小组通过调查研究把“如何测量嵩岳寺塔的高度”作为一项课题活动,他们制订了测量方案,并利用课余时间实地测量.请你根据表中信息结合示意图帮助该数学兴趣小组求嵩岳寺塔AB 的高度.(精确到0.1米,参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)6.手机测距APP 可以测量物体高度、宽度等,这些测距软件是基于几何学原理设计的.测量时只需要输入身高,再用手机拍摄功能将准星对准物体顶端和底部拍摄图片,程序就会计算出物体的高度.某款测距APP 提供的测高模式如下:点,,,A B C D 都在同一平面内,手机位置为A 点,待测物体为CD ,且AB 和CD 均与地面BD 垂直.从点A 处测得顶端C 的仰角为α,底部D 的俯角为β.奋进小组的同学想用上述方式手动计算某景区宣传广告牌的高度.如图2,经过测量得到 1.65m AB =,仰角35α=︒,俯角28β=︒,求出广告牌CD 的高度(参考数据:sin 350.57,cos350.82,tan 350.70,sin 280.47,cos 280.88,tan 280.53︒≈︒≈︒≈︒≈︒≈︒≈,结果精确到0.1).垂直构造型7.宝轮寺塔-中国四大回音建筑之一,位于三门峡市陕州风景区,始建于隋唐时期,因能发出“呱-呱”的声音而俗称“蛤蟆塔”.当地某校数学实践活动小组的同学们一起对该塔的高度()AB进行测量.因塔底部B无法直接到达,制定了如下的测量方案:先在该塔正前方广场地面C处测得塔尖A的仰角()∠为45︒,因ACB广场面积有限,无法再向C点的正后方移动,故操控无人机飞到C点正上方10米的D处测得塔尖A的仰角为32︒,A,B,C,D四点在同一个平面内,求塔高()AB为多少米.(结果精确到0.1米,参考数据:︒≈︒≈,tan320.62)sin320.53︒≈,cos320.858.如图,活动课上,小玥想要利用所学的数学知识测量某个建筑地所在山坡AE的高度,她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1:1的斜坡按速度20米/分步行15分钟到达C处,此时,测得点A的俯角是15°.图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出建筑地所在山坡AE的高度AB.(精确到0.1米,参考数据:2≈1.41).不规则图形构造直角三角形9.郑州外国语中学数学兴趣小组借助无人机测量一条河流的宽度CD .如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行60米至B 处,测得正前方河流右岸D 处的俯角为30°.线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一条直线上.其中tan 2α=,MC =米.(1)求无人机的飞行高度AM ;(结果保留根号)(2)求河流的宽度CD .(结果精确到1 1.41≈, 1.73≈)10.如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角∠EOA=30°,在OB 的位置时俯角∠FOB=60°,若OC ⊥EF ,点A 比点B 高7cm ,求单摆的长度(结果精确到0.1,1.73).。
2007年河南郑州中考数学真题及答案一、选择题(共6小题,每小题3分,满分18分)1.(3分)计算(﹣1)3的结果是()A.﹣1 B.1C.﹣3 D.3考点:有理数的乘方.分析:本题考查有理数的乘方运算.解答:解:(﹣1)3表示3个(﹣1)的乘积,所以(﹣1)3=﹣1.故选A.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.(3分)使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2 C.x>﹣2 D.x<2考点:分式有意义的条件.分析:本题主要考查分式有意义的条件:分母不等于0,故可知x+2≠0,解得x的取值范围.解答:解:∵x+2≠0,∴x≠﹣2.故选B.点评:本题考查的是分式有意义的条件.当分母不为0时,分式有意义.3.(3分)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°考点:轴对称的性质;三角形内角和定理.分析:由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.解答:解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.点评:主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.4.(3分)为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数 3 421则关于这10户家庭的月用水量,下列说法错误的是()A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨考点:方差;加权平均数;中位数;众数.分析:根据中位数的确定方法,将一组数据按大小顺序排列,位于最中间的两个的平均数或最中间一个数据是中位数,众数的定义是在一组数据中出现次数最多的就是众数,极差是一组数据中最大值与最小值的差,运用加权平均数求出即可.解答:解:∵这10个数据是:4,4,4,5,5,5,5,6,6,9;∴中位数是:(5+5)÷2=5吨,故A正确;∴众数是:5吨,故B正确;∴极差是:9﹣4=5吨,故C错误;∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故D正确.故选C.点评:此题主要考查了极差与中位数和众数等知识,准确的记忆以上定义是解决问题的关键.5.(3分)由一些大小相同的小立方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上立方体的个数,那么该几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:压轴题.分析:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.解答:解:从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.点评:找到从左面看所得到的图形即可.6.(3分)二次函数y=ax2+x+a2﹣1(a≠0)的图象可能是()A.B.C.D.考点:二次函数的图象.专题:压轴题.分析:采用逐一排除的方法.因为a≠0,b=1,对称轴不是y轴,排除C、D;再根据开口方向,确定a的符号及对称轴的位置,排除A.解答:解:∵对称轴x=﹣≠0,故对称轴不是y轴,排除C、D;当a>0时,对称轴x=﹣<0,排除A;当a<0时,对称轴x=﹣>0,B正确.故选B.点评:应熟练掌握二次函数的图象有关性质:讨论a的取值,再利用对称轴选择答案.二、填空题(共9小题,每小题3分,满分27分)7.(3分)的相反数是﹣.考点:相反数.分析:求一个数的相反数就是在这个数前面添上“﹣”号.解答:解:根据相反数的定义,得的相反数是﹣.点评:本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.8.(3分)计算:(﹣2x2)•3x4= ﹣6x6.考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:(﹣2x2)•3x4=﹣2×3x2•x4=﹣6x6.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.9.(3分)写出一个图象经过点(1,﹣1)的函数的表达式y=﹣.考点:反比例函数的性质.专题:开放型.分析:根据反比例函数的性质解答.解答:解:设函数的解析式为y=,把点(1,﹣1)代入得k=﹣1,故函数的表达式y=﹣.点评:用待定系数法求函数解析式.10.(3分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P=50 度.考点:切线的性质;圆周角定理.分析:连接OA,OB.根据圆周角定理和四边形内角和定理求解.解答:解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°﹣∠AOB=50°.点评:本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解.11.(3分)如图,在直角梯形ABCD中,AB∥CD,AD⊥CD,AB=1cm,AD=2cm,CD=4cm,则BC= cm.考点:直角梯形.分析:过点B作BE⊥CD,则四边形ABED是矩形,从而可得到AD,DE,CE的长,再根据勾股定理可求得BC的长.解答:如图,过点B作BE⊥CD,则四边形ABED是矩形,∴AD=BE=2cm,DE=AB=1cm∴CE=CD﹣DE=4﹣1=3cm∴BC==cm.点评:本题考查梯形,矩形、直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.12.(3分)已知x为整数,且满足,则x= ﹣1,0,1 .考点:估算无理数的大小.分析:首先找到题中的无理数在哪两个和它接近的整数之间,然后判断出所求的整数的范围.解答:解:∵﹣2<﹣<﹣1,1<<2,∴x应在﹣2和2之间,则x=﹣1,0,1.故答案为:﹣1,0,1.点评:此题主要考查了无理数的大小估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13.(3分)将图①所示的正六边形进行进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割…,则第n个图形中,共有(3n﹣2)个正六边形.考点:规律型:图形的变化类.分析:要求学生首先分析题意,找到规律,并进行推导得出答案.解答:解:分析可得:将图①所示的正六边形进行进行分割得到图②,增加了3个正六边形,共4个;再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,又增加了3个正六边形,共4+3=7个;故每次分割,都增加3个正六边形,那么第n个图形中,共有1+3(n﹣1)=3n﹣2.点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力.14.(3分)如图,四边形OABC为菱形,点B、C在以点O为圆心的上,若OA=3,∠1=∠2,则扇形OEF的面积为3π.考点:扇形面积的计算.专题:压轴题.分析:根据扇形的面积公式计算即可.解答:解:连接BO,∵四边形OABC为菱形,∴AO=CO=AB=CB,∵OEF是扇形,∴EO=BO=FO,∴OA=OB=OC=OF=3,∴△ABO和△COB是等边三角形,∴∠AOC=120°,∵∠1=∠2,∴∠EOF=∠AOC=120°故扇形OEF的面积为=3π.点评:主要考查了扇形的面积求法.解此题的关键是能利用菱形的性质求出扇形的半径和圆心角,从而求出扇形的面积.15.(3分)如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交OB于点C.若∠AOB=60°,OC=4,则点P 到OA的距离PD等于.考点:含30度角的直角三角形.专题:计算题;压轴题.分析:在△OCP中,由题中所给的条件可求出OP的长,根据直角三角形的性质可知,在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半,故PD=OP.解答:解:如图,过C点作CE⊥OA,垂足为E,∵PC∥OA,PD⊥OA,垂足为D,∴PD=CE,∵∠AOB=60°,OC=4,在Rt△OCE中,CE=OC•sin60°=4×=2,∴PD=CE=.点评:本题主要考查三角形的性质及计算技巧.三、解答题(共8小题,满分75分)16.(8分)解方程:+=3考点:解分式方程.专题:计算题.分析:观察可得方程最简公分母为:(x+2)(x﹣2).方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘(x+2)(x﹣2),得3x(x﹣2)+2(x+2)=3(x+2)(x﹣2),整理得﹣6x+2x+4=﹣12,解得x=4.检验:将x=4代入(x+2)(x﹣2)≠0.∴x=4是原方程的解.点评:解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.17.(9分)如图,点E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA的中点.求证:△BEF≌△DGH.考点:全等三角形的判定;平行四边形的性质.专题:证明题.分析:由三角形全等的判定定理和平行四边形的性质,结合已知条件,利用SAS判定.解答:证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,BC=AD.又∵E、F、G、H分别是平行四边形ABCD的四边中点,∴BE=DG,BF=DH.∴△BEF≌△DGH.点评:本题重点考查了三角形全等的判定定理和平行四边形的性质的综合运用.18.(9分)下图是根据2006年某省各类学校在校生人数情况制作的扇形统计图和不完整的条形统计图.已知2006年该省普通高校在校生为97. 41万人,请根据统计图中提供的信息解答下列问题:(1)2006年该省各类学校在校生总人数约多少万人;(精确到1万人)(2)补全条形统计图;(3)请你写出一条合理化建议.考点:条形统计图;扇形统计图.专题:开放型;图表型.分析:(1)由普通高校在校生人数和占的比例求出各类学校在校生总数;(2)再由普通高中在校生人数占的比例求出普通高中在校生人数;补出条形统计图,可以看出成人高校人数最少,应发展成人教育;(3)答案不唯一,回答合理即可.解答:解:(1)2006年该省各类学校在校生总数为97.41÷4.87%≈2000(万人).(2)普通高中在校生人数约为2000×10.08%=201.6(万人).(没有计算,但图形正确者可给满分)(3)可以看出成人高校人数最少,应发展成人教育.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中,从中随机取出上个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平?考点:游戏公平性.专题:阅读型;方案型.分析:本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.解答:解:张彬的设计方案:因为P(张彬得到入场券)=,P(王华得到入场券)=,因为,所以,张彬的设计方案不公平.王华的设计方案:可能出现的所有结果列表如下:∴P(王华得到入场券)=P(和为偶数)=,P(张彬得到入场券)=P(和不是偶数)=因为,所以,王华的设计方案也不公平.1 23第一次第二次1 2 342 3 453 4 56点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(9分)如图,ABCD是边长为1的正方形,其中、、的圆心依次是A、B、C.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断直线GB与DF的位置关系,并说明理由.考点:弧长的计算;直角三角形全等的判定.专题:几何综合题.分析:本题考查的是弧长公式以及全等三角形的判定求出△FDC≌△GBC.解答:解:(1)∵AD=1,∠DAE=90°,∴的长,同理,的长,的长,所以,点D运动到点G所经过的路线长l=l1+l2+l3=3π.(2)直线GB⊥DF.理由如下:延长GB交DF于H.∵CD=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴∠F=∠G,又∵∠F+∠FDC=90°,∴∠G+∠FDC=90°,即∠GHD=90°,故GB⊥DF.点评:求出弧长后可算出周长.“化曲面为平面”.21.(10分)请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC.(1)求tan B和sinB的值;(2)在你所画的等腰△ABC中,假设底边BC=5米,求腰上的高BE.考点:解直角三角形.专题:计算题;作图题.分析:(1)本题可根据三角形的特殊性(等腰三角形)和AD=BC,先求出AD和BD,CD的关系,进而求出tan B 和sinB的值;(2)由于是等腰三角形,∠B=∠C,求出了sinB也就是求出了sinC,直角三角形BCE中,已知了BC的长,BE就不难求出了.解答:解:如图,正确画出图形,(1)∵AB=AC,AD⊥BC,AD=BC,∴BD=BC=AD.即AD=2BD.∴AB=BD.∴tanB=,sinB=.(2)在Rt△BEC中,sinC=sin∠ABC=,又∵sinC=,∴.故(米).点评:本题考查了等腰三角形的性质,解直角三角形等知识点,只要熟练掌握这些知识点,解本题并不难.22.(10分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元?考点:一元一次不等式组的应用.专题:应用题;压轴题.分析:(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.解答:解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.准确的解不等式组是需要掌握的基本能力.23.(11分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x 的函数关系式进而可得出S与x的函数关系式.①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.解答:解:(1)因为抛物线的对称轴是x=,设解析式为y=a(x﹣)2+k.把A,B两点坐标代入上式,得,解得a=,k=﹣.故抛物线解析式为y=(x﹣)2﹣,顶点为(,﹣).(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x﹣)2﹣,∴y<0,即﹣y>0,﹣y表示点E到OA的距离.∵OA是OEAF的对角线,∴S=2S△OAE=2××OA•|y|=﹣6y=﹣4(x﹣)2+25.因为抛物线与x轴的两个交点是(1,0)和(6,0),所以自变量x的取值范围是1<x<6.①根据题意,当S=24时,即﹣4(x﹣)2+25=24.化简,得(x﹣)2=.解得x1=3,x2=4.故所求的点E有两个,分别为E1(3,﹣4),E2(4,﹣4),点E1(3,﹣4)满足OE=AE,所以平行四边形OEAF是菱形;点E2(4,﹣4)不满足OE=AE,所以平行四边形OEAF不是菱形;②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形,此时点E的坐标只能是(3,﹣3),而坐标为(3,﹣3)的点不在抛物线上,故不存在这样的点E,使平行四边形OEAF为正方形.点评:本题主要考查了二次函数解析式的确定、图形面积的求法、平行四边形的性质、菱形和正方形的判定等知识.综合性强,难度适中.。
2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1.如图,数轴上点P 表示的数是()A.1-B.0C.1D.2【答案】A 【解析】【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P 表示的数为1-,从而求解.【详解】解:根据题意可知点P 表示的数为1-,故选:A .2.据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为()A.8578410⨯B.105.78410⨯ C.115.78410⨯ D.120.578410⨯【答案】C 【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为10n a ⨯,其中110a ≤<,确定a 和n 的值是解题的关键.用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,且n 比原来的整数位数少1,据此判断即可.【详解】解:5784亿11578400000000 5.78410==⨯.故选:C .3.如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A.60︒B.50︒C.40︒D.30︒【答案】B 【解析】【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为()A. B.C. D.【答案】A 【解析】【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可.从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5.下列不等式中,与1x ->组成的不等式组无解的是()A.2x >B.0x < C.<2x - D.3x >-【答案】A 【解析】【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x ->,可得1x <-,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <-,不符合题意;C 、此不等式组解集为<2x -,不符合题意;D 、此不等式组解集为31x -<<-,不符合题意;故选:A6.如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为()A.12B.1C.43D.2【答案】B 【解析】【分析】本题考查了相似三角形的判定与性质,平行四边形的性质等知识,利用平行四边形的性质、线段中点定义可得出14CE AC =,证明CEF CAB ∽△△,利用相似三角形的性质求解即可.【详解】解∶∵四边形ABCD 是平行四边形,∴12OC AC =,∵点E 为OC 的中点,∴1124CE OC AC ==,∵EF AB ∥,∴CEF CAB ∽△△,∴EF CE AB AC =,即144EF =,∴1EF =,故选:B .7.计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是()A.5aB.6a C.3a a + D.3aa 【答案】D 【解析】【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···aaa a a a a a == 个,故选D8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为()A.19B.16C.15D.13【答案】D 【解析】【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,∴两次抽取的卡片图案相同的概率为3193=.故选∶D .9.如图,O 是边长为的等边三角形ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为()A.8π3B.4πC.16π3D.16π【答案】C 【解析】【分析】过D 作DE BC ⊥于E ,利用圆内接四边形的性质,等边三角形的性质求出120BDC ∠=︒,利用弧、弦的关系证明BD CD =,利用三线合一性质求出12BE BC ==,1602BDE BDC ∠=∠=︒,在Rt BDE △中,利用正弦定义求出BD ,最后利用扇形面积公式求解即可.【详解】解∶过D 作DE BC ⊥于E ,∵O 是边长为ABC 的外接圆,∴B C =,60A ∠=︒,180∠+∠=︒BDC A ,∴120BDC ∠=︒,∵点D 是 BC的中点,∴ BDCD =,∴BD CD =,∴12BE BC ==,1602BDE BDC ∠=∠=︒,∴234sin sin 60BE BD BDE ===∠︒,∴21204163603ππS ⋅==阴影,故选:C .【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是()A.当440W P =时,2A I =B.Q 随I 的增大而增大C.I 每增加1A ,Q 的增加量相同D.P 越大,插线板电源线产生的热量Q 越多【答案】C 【解析】【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题(每小题3分,共15分)11.请写出2m 的一个同类项:_______.【答案】m (答案不唯一)【解析】【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.【答案】9【解析】【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案为:9.13.若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为___________.【答案】12##0.5【解析】【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx c a ++=≠的根的判别式为24b ac ∆=-,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =--⨯=,再求解即可.【详解】解∶∵方程2102x x c -+=有两个相等的实数根,∴()21Δ1402c =--⨯=,∴12c =,故答案为:12.14.如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.【答案】()3,10【解析】【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=︒,∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20-,,点F 的坐标为()06,,∴2AO =,6FO =,∴2BO AB AO a =-=-,在Rt BOF △中,222BO FO BF +=,∴()22226a a -+=,解得10a =,∴4FG OG OF =-=,8GE CD DG CE CE =--=-,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE -+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15.如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.【答案】①.1+##1+②.1-##1-+【解析】【分析】根据题意得出点D 在以点C 为圆心,1为半径的圆上,点E 在以AB 为直径的圆上,根据cos AE AB BAE =⋅∠,得出当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,根据当AE与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,分别画出图形,求出结果即可.【详解】解:∵90ACB ∠=︒,3CA CB ==,∴190452BAC ABC ∠=∠=⨯︒=︒,∵线段CD 绕点C 在平面内旋转,1CD =,∴点D 在以点C 为圆心,1为半径的圆上,∵BE AE ⊥,∴90AEB ∠=︒,∴点E 在以AB 为直径的圆上,在Rt ABE △中,cos AE AB BAE =⋅∠,∵AB 为定值,∴当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,∴当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥,∴90ADE CDE ∠=∠=︒,∴AD =∵ AC AC=,∴45CED ABC ==︒∠∠,∵90CDE ∠=︒,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =+=+,即AE 的最大值为1+;当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥,∴90CDE ∠=︒,∴AD =∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =︒-=︒∠∠,∴18045CED CEA =︒-=︒∠∠,∵90CDE ∠=︒,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =-=-,即AE 的最小值为1-;故答案为:1+;1-.【点睛】本题主要考查了切线的性质,圆周角定理,圆内接四边形的性质,勾股定理,等腰三角形的性质,解直角三角形的相关计算,解题的关键是作出辅助线,熟练掌握相关的性质,找出AE 取最大值和最小值时,点D 的位置.三、解答题(本大题共8个小题,共75分)16.(1)计算:(01-;(2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭.【答案】(1)9(2)2a +【解析】【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式1=-101=-9=;(2)原式()()3212222a a a a a a -+⎛⎫=+÷ ⎪--+-⎝⎭()()22121a a a a a +-+=⋅-+2a =+.17.为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【答案】(1)甲29(2)甲(3)乙队员表现更好【解析】【分析】本题考查了折线统计图,统计表,中位数,加权平均数等知识,解题的关键是∶(1)根据折线统计图的波动判断得分更稳定的球员,根据中位数的定义求解即可;(2)根据平均每场得分以及得分的稳定性求解即可;(3)分别求出甲、乙的综合得分,然后判断即可.【小问1详解】解∶从比赛得分统计图可得,甲的得分上下波动幅度小于乙的的得分上下波动幅度,∴得分更稳定的队员是甲,乙的得分按照从小到大排序为14,20,28,30,32,32,最中间两个数为28,30,∴中位数为2830292+=,故答案为∶乙,29;【小问2详解】解∶因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好;【小问3详解】解∶甲的综合得分为()26.518 1.52136.5⨯+⨯+⨯-=,乙的综合得分为()26110 1.53138⨯+⨯+⨯-=,∵36.538<,∴乙队员表现更好.18.如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.【答案】(1)6y x=(2)见解析(3)92【解析】【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出1x =,2x =,6x =对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【小问1详解】解:反比例函数k y x =的图象经过点()3,2A ,∴23k =,∴6k =,∴这个反比例函数的表达式为6y x =;【小问2详解】解:当1x =时,6y =,当2x =时,3y =,当6x =时,1y =,∴反比例函数6y x=的图象经过()1,6,()2,3,()6,1,画图如下:【小问3详解】解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x =,解得32x =,∴平移距离为39622-=.故答案为:92.19.如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥BE DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析(2)见解析【解析】【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是:(1)根据作一个角等于已知角的方法作图即可;(2)先证明四边形CDBF是平行四边形,然后利用直角三角形斜边中线的性质得出12CD BD AB==,最后根据菱形的判定即可得证.【小问1详解】解:如图,;【小问2详解】证明:∵ECM A∠=∠,∴CM AB∥,∵∥BE DC,∴四边形CDBF是平行四边形,∵在Rt ABC△中,CD是斜边AB上的中线,∴12CD BD AB==,∴平行四边形CDBF是菱形.20.如图1,塑像AB在底座BC上,点D是人眼所在的位置.当点B高于人的水平视线DE时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B两点的圆与水平视线DE相切时(如图2),在切点P处感觉看到的塑像最大,此时APB∠为最大视角.(1)请仅就图2的情形证明APB ADB∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m .参考数据: 1.73≈).【答案】(1)见解析(2)塑像AB 的高约为6.9m【解析】【分析】本题考查了圆周角定理,三角形外角的性质,解直角三角形的应用等知识,解题的关键是:(1)连接BM ,根据圆周角定理得出AMB APB ∠=∠,根据三角形外角的性质得出AMB ADB ∠>∠,然后等量代换即可得证;(2)在Rt AHP 中,利用正切的定义求出AH ,在Rt BHP △中,利用正切的定义求出BH ,即可求解.【小问1详解】证明:如图,连接BM .则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=︒,6PH =.∵tan AH APH PH∠=,∴tan 606AH PH =⋅︒==∵30APB ∠=︒,∴603030BPH APH APB ∠=∠-∠=︒-︒=︒.在Rt BHP △中,tan BH BPH PH ∠=,∴tan 3063BH PH =⋅︒=⨯=.∴()4 1.73 6.9m AB AH BH =-=≈⨯≈.答:塑像AB 的高约为6.9m .21.为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?【答案】(1)选用A种食品4包,B种食品2包(2)选用A种食品3包,B种食品4包【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A种食品x包,B种食品y包,根据“从这两种食品中摄入4600kJ热量和70g蛋白质”列方程组求解即可;(2)设选用A种食品a包,则选用B种食品()7-a包,根据“每份午餐中的蛋白质含量不低于90g”列不等式求解即可.【小问1详解】解:设选用A种食品x包,B种食品y包,根据题意,得7009004600, 101570.x yx y+=⎧⎨+=⎩解方程组,得4,2. xy=⎧⎨=⎩答:选用A种食品4包,B种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7-a 包,根据题意,得()1015790a a +-≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∵2000-<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a -=-=.答:选用A 种食品3包,B 种食品4包.22.从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)010v (2)()20m /s (3)小明的说法不正确,理由见解析【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把010v t =,20h =代入205h t v t =-+求解即可;(3)由(2),得2520h t t =-+,把15h =代入,求出t 的值,即可作出判断.【小问1详解】解:205h t v t=-+220051020v v t ⎛⎫=--+ ⎪⎝⎭,∴当010v t =时,h 最大,故答案为:010v ;【小问2详解】解:根据题意,得当010v t =时,20h =,∴20005201010v v v ⎛⎫-⨯+⨯= ⎪⎝⎭,∴()020m /s v =(负值舍去);【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =-+,当15h =时,215520t t =-+,解方程,得11t =,23t =,∴两次间隔的时间为312s -=,∴小明的说法不正确.23.综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B Ð=°,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.【答案】(1)②④(2)①ACD ACB ∠=∠.理由见解析;②2cos m nθ+(3)5或7【解析】【分析】(1)根据邻等对补四边形的定义判断即可;(2)①延长CB 至点E ,使BE DC =,连接AE ,根据邻等对补四边形定义、补角的性质可得出ABE D ∠=∠,证明()SAS ABE ADC ≌,得出E ACD ∠=∠,AE AC =,根据等边对等角得出E ACB ∠=∠,即可得出结论;②过A 作AF EC ⊥于F ,根据三线合一性质可求出2m n CF +=,由①可得ACD ACB θ∠=∠=,在Rt AFC △中,根据余弦的定义求解即可;(3)分AB BM =,AN AB =,MN AN =,BM MN =四种情况讨论即可.【小问1详解】解:观察图知,图①和图③中不存在对角互补,图2和图4中存在对角互补且邻边相等,故图②和图④中四边形是邻等对补四边形,故答案为:②④;【小问2详解】解:①ACD ACB ∠=∠,理由:延长CB 至点E ,使BE DC =,连接AE ,∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=︒,∵180ABC ABE ∠+∠=︒,∴ABE D ∠=∠,∵AB AD =,∴()SAS ABE ADC ≌,∴E ACD ∠=∠,AE AC =,∴E ACB ∠=∠,∴ACD ACB ∠=∠;②过A 作AF EC ⊥于F ,∵AE AC =,∴()()1112222m nCF CE BC BE BC DC +==+=+=,∵2BCD θ∠=,∴ACD ACB θ∠=∠=,在Rt AFC △中,cos CFθAC =,∴cos 2cos CFm nAC θθ+==;【小问3详解】解:∵90B Ð=°,3AB =,4BC =,∴5AC ,∵四边形ABMN 是邻等对补四边形,∴180ANM B ∠+∠=︒,∴90ANM =︒,当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H ,∴22218AM AB BM =+=,在Rt AMN 中222218MN AM AN AN =-=-,在Rt CMN 中()()22222435MN CM CN AN =-=---,∴()()22218435AN AN -=---,解得 4.2AN =,∴45CN =,∵90NHC ABC ∠=∠=︒,C C ∠=∠,∴NHC ABC ∽ ,∴NC NH CHAC AB CB ==,即45534NHCH ==,∴1225NH =,1625CH =,∴8425BH =,∴BN =;当AN AB =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴BM NM =,故不符合题意,舍去;当AN MN =时,连接AM ,过N 作NH BC ⊥于H ,∵90MNC ABC ∠=∠=︒,C C ∠=∠,∴CMN CAB ∽△△,∴CN MN BC AB =,即543CN CN -=,解得207CN =,∵90NHC ABC ∠=∠=︒,C C ∠=∠,∴NHC ABC ∽ ,∴NC NH CH AC AB CB ==,即207534NHCH ==,∴127NH =,167CH =,∴127BH =,∴221227BN BH NH =+;当BM MN =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;综上,BN 的长为1225或1227.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等知识,明确题意,理解新定义,添加合适辅助线,构造全等三角形、相似三角形是解题的关键.。
2008年河南省初中毕业生学业暨高级中等学校招生考试数学试卷一、选择题(每小题3 分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确的答案的代号字母填入题后的括号内。
1. —71的绝对值是……………………………………………………( B ) (A )—71 (B ) 71(C ) 7 (D ) —72。
为支援四川地震灾区,中央电视台于5月18日晚举行了《爱的奉献》赈灾晚会,晚会现场捐款达1 514 000 000元,1 514 000 000用科学法表示正确的是……( C )(A )1514×106 (B ) 15.14×108 (C )1.514×109 (D ) 1.514×10103.不等式—x —5≤0的解集在数轴上表示正确的是 ( B )4、如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是 ( B )5、如图,阴影部分组成的图案既是关于x 轴成轴对称的图形, 又是关于坐标原点O 成中心对称的图形,若点A 的坐标是(1,3), 则点M 和点N 的坐标分别为 ( C )(A ) M (1,-3),N (-1,-3) (B ) M (-1,-3),N (-1,3) (C ) M (-1,-3),N (1,-3) (D ) M (-1, 3),N (1,-3)6、如图所示,有一张一个角为600的直角三角形纸片,沿其一 条中位线剪开后,不能拼成的四边形是 ( D ) (A )邻边不等的矩形 (B )等腰梯形 (C )有一角是锐角的菱形 (D )正方形二、填空题(每小题3分,共27分) 7、比-3小2的数是 -58、图象经过点(1,2)的正比例函数的表达式为 y=2x6009、如图,直线L 1∥L 2,AB ∥CD ,∠1=340,那么∠2的 度数是__560___。
10、学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投井篮框的球数由小到大排序后这6、7、8、9、9、9、9、10、10、10、12。
2023年河南省郑州市中考数学试题(解析版)题目一题干:请计算下列各式的结果:5 + 7 × 2 - 4 ÷ 2解析:根据运算法则,先进行乘法和除法运算,再进行加法和减法运算。
所以,首先计算7 × 2得到14,然后计算4 ÷ 2得到2。
最后将结果进行加法和减法运算,得到最终答案13。
题目二题干:某校学生参加数学考试的人数比参加英语考试的人数多20人,参加英语和数学考试的人数之和为120人。
请问参加数学考试的人数是多少?解析:设参加数学考试的人数为x,根据题目条件,参加英语考试的人数为x-20。
题目中已经给出参加英语和数学考试的人数之和为120,即\[x + (x-20) = 120\]。
将方程化简,得到\[2x - 20 = 120\]。
移项得\[2x = 140\],再解方程得\[x = 70\]。
所以,参加数学考试的人数是70人。
题目三题干:一项工程需要2个工人连续工作18天才能完成。
现在已经工作了12天,还剩下多少天才能完成这项工程?解析:题目中已经给出完成工程所需时间是18天,已经工作的时间是12天。
所以,还剩下的天数可以通过计算18减去12来求得。
将18减去12,得到还剩下6天才能完成这项工程。
题目四题干:某商品原价100元,现在打8折出售,请问打折后的价格是多少?解析:打8折表示价格打了80%,所以打折后的价格可以通过将原价100元乘以80%来计算。
将100乘以0.8,得到打折后的价格为80元。
题目五题干:一个长方形的宽是3cm,周长是12cm,请问它的长度是多少?解析:周长是指长方形的四边长度之和,题目已经给出周长为12cm,宽为3cm。
长可以通过将周长12cm减去两倍的宽3cm来求得。
将12减去2乘以3,得到长为6cm。
2008年河南省初中毕业生学业暨高级中等学校招生考试试卷数学一、选择题(每小题3 分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确的答案的代号字母填入题后的括号内。
1. —71的绝对值是……………………………………………………( B ) (A )—71 (B ) 71(C ) 7 (D ) —72。
为支援四川地震灾区,中央电视台于5月18日晚举行了《爱的奉献》赈灾晚会,晚会现场捐款达1 514 000 000元,1 514 000 000用科学法表示正确的是……( C ) (A )1514×106 (B ) 15.14×108 (C )1.514×109 (D ) 1.514×10103.不等式—x —5≤0的解集在数轴上表示正确的是 ( B )4、如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是 ( B )5、如图,阴影部分组成的图案既是关于x 轴成轴对称的图形, 又是关于坐标原点O 成中心对称的图形,若点A 的坐标是(1,3), 则点M 和点N 的坐标分别为 ( C )(A ) M (1,-3),N (-1,-3) (B ) M (-1,-3),N (-1,3) (C ) M (-1,-3),N (1,-3) (D ) M (-1, 3),N (1,-3)6、如图所示,有一张一个角为600的直角三角形纸片,沿其一 条中位线剪开后,不能拼成的四边形是 ( D ) (A )邻边不等的矩形 (B )等腰梯形 (C )有一角是锐角的菱形 (D )正方形二、填空题(每小题3分,共27分) 7、比-3小2的数是 -58、图象经过点(1,2)的正比例函数的表达式为 y=2x9、如图,直线L 1∥L 2,AB ∥CD ,∠1=340,那么∠2的 度数是__560___。
10、学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投井篮框的球数由小到大排序后这6、7、8、9、9、9、9、10、10、10、12。
这组数据的众数和中位数分别是_9_,_9__11、已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为_-3_12、如图所示,边长为1的小正文形构成的风格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的 正切值等于2113、某商店一套夏装的进价为220元,按标价的80% 销售可获利72元,则该服装的标价为 340 元。
14、如图,小刚制作了一个高12cm ,底面直径为10cm 的圆锥,这个圆锥的侧面积是65π cm 215、如图,在矩形ABCD 中,E 、F 分别是边AD 、BC 的中 点,点G 、H 在DC 边上,且GH =21DC ,若AB =12, 则图中阴影部分的面积为 35 。
三、解答题(本大题8个小题,共75分) 16(8分)先化简,再求值:11-+a a -122+-a a a ÷a1,其中a =1-2 解:原式=11-+a a -122+-a a a×a ………………………………2分=222)1(1---a a a =2)1(1--a ………………………………6分 当a =12-时,原式=2)121(1--=21…………………8分 17.(9分)图①、图②反映的是综合商场今年1-5月份的商品销售额统计情况,观察图①、图②,解答下面问题:商场各月销售总额统计图 服装各月销售额占商场当月销售总额的百分比(1)来自商场财务部的报告表明,商场1-5月份的销售总额一共是370元,请你根据这一信息补全图①,并写出两条由如上两图获得的信息;(2)商场服装5月份的销售额是多少万元?(3)小华观察图②后认为,5月份服装部的销售额比4月份减少了,你同意他的看法吗?为什么?解:(1)图略:4月份销售总额为65万元。
正确得2分答案不唯一,回答正确即可 4分(2)70×15%=10.5(万元)6分(3)不同意7分因为4月份服装销售额为65×16%=10.4(万元)≤10.5(万元),所以5月份销售额比4 月份销售额啬了,不是减少了。
9分18.(9分)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP则BQ=CP。
”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABC≌△ACP,从而证得BQ=CP。
之后,他将点P移到等腰三角形ABC外,原题中其它条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明。
证明:∵∠QAP=∠BAC∴∠QAP+∠PAB=∠PAB+∠BAC即∠QAB=∠PAC 4分在△ABQ和△ACP中AQ=AP∠QAB=∠PACAB=AC19.(9分)如图,有四张不透明的卡片,除正面写有不同的数字外,其它均相同。
将这四张卡片背面向上洗匀,从中随机抽取一张,记录数字。
试用列表或画树状图的方法,求抽出的两张卡片上的数字都是正数的概率。
解:可以用下表列举所有可能性:………………………………6分由上表知,共有16种情况,每种情况发生的可能性相同,两张卡片都是正数的情况出现了四次,因此,两张卡片上的数都是正数的概率P=164=41…………9分 20.(9分)如图所示,A 、B 两地之间有条河,原来从A 地到B 地需要经过桥DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地。
已知BC =11km ,∠A =450,∠B =370,桥DC 和AB 平行,则现在从A 地到B 地可比原来少走多少路程?(结果精确到0.1km ,参考数据: 2≈1.14, sin370≈0.60,cos370≈0.80)解:如图,过点D 作DH ⊥AB 于H ,DG ∥CB 交AB 于G 。
∵DC ∥AB ,∴四边形DCBG 为平行四边形, ∴DC =GB ,GD =BC =11。
∴两条路线路程之差为AD +DG -AG 。
…………3分 在Rt △DGH 中,DH =DG ●sin370≈11×0.60=6.60,GH =DG ●cos370≈11×0.80=8.80. …………5分 在Rt △ADH 中,AD=2DH ≈1.41×0.60=9.31AH=DH ≈6.60∴AD +DG -AG =(9.31+11)-(6.60+8.80)≈4.9(km ) 即现在从A 地到B 地可比原来少走约4.9km ………………9分 21.(9分)如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,求点C 的坐标。
解:∵四边形OCDB 是平行四边形,B (8,0),∴CD ∥OA ,CD =OB =8 …………2分 过点M 作MF ⊥CD 于点F ,则CF =21CD =4 …………………………5分 过点C 作CE ⊥OA 于点E , ∵A (10,0),∴OE =OM -ME =OM -CF =5-4=1…………7分 连结MC ,则MC =210A =5。
∴在Rt △CFM 中,MF =22CF MC -=2245-=3∴点C 的坐标为(1,3) …………………………9分 22.(10分)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A ,B 两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本。
(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A 种笔记本的数量要少于B 种笔记本数量的32,但又不少于B 种笔记本数量的31,如果设他们买A 种笔记本n 本,买这两种笔记本共花费w 元。
①请写出w (元)关于n (本)的函数关系式,并求出自变量n 的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元? 解:(1)设能买A 种笔记本x 本,则能买B 种笔记本(30-x )本依题意得:12x+8(30-x)=300,解得x=15.因此,能购买A ,B 两种笔记本各15本 …………………………3分 (2)①依题意得:w=12n+8(30-n), 即w=4n+240,且n <32(30-n )和n ≥)30(31n - 解得 215≤n <12所以,w (元)关于n (本)的函数关系式为:w=4n+240, 自变量n 的取值范围是215≤n <12,n 为整数。
………………7分 ②对于一次函数w=4n+240, ∵w 随n 的增大而增大,且215≤n <12,n 为整数, 故当n 为8 时,w 的值最小此时,30-n =30-8=22,w =4×8+240=272(元)。
因此,当买A 种笔记本8本、B 种笔记本22本时,所花费用最少,为272 元 …………10分23.(12分)如图,直线y=434+-x 和x 轴、y 轴的交点分别为B ,C 。
点A 的坐标是(-2,0)(1) 试说明△ABC 是等腰三角形;(2) 动点M 从点A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度,当其中一个动点到达终点时,它们都停止运动,设点运动t 秒时,△MON 的面积为s 。
① 求s 与t 的函数关系式;② 当点M 在线段OB 上运动时,是否存在s=4的情形?若存在,求出对应的t 值;若不存在,说明理由;③ 在运动过程中,当△MON 为直角三角形时,求t 的值。
解:(1)将y=0代入y=434+-x ,得到x=3,∴点B 的坐标为(3,0); 将x=0,代入y=434+-x ,得到y=4, ∴点C 的坐标为(0,4) …………2分在Rt △OBC 中,∵OC =4,OB =3,∴BC =5。
又A (-2,0),∴AB =5,∴AB =BC ,∴△ABC 是等腰三角形。
………………4分 (2)∵AB=BC=5,故点M 、N 同时开始运动,同时停止运动。
过点N 作ND ⊥x 轴于D , 则ND =NB ●sin ∠OBC =t 54, ① 当0<t <2时(如图甲)OM =2-t,∴s=ND OM ∙21=t t 54)2(21∙- =t t 54522+- ……………………7分当2<t ≤5时(如图乙),OM =t -2,∴s=ND OM ∙21=t t 54)2(21∙- =t t 54522- …………………………8分 (注:若将t 的取值范围分别写为0≤t ≤2和2≤t ≤5,不扣分) ② 存在s =4的情形。