圆柱与圆锥
- 格式:doc
- 大小:96.50 KB
- 文档页数:3
圆锥与圆柱体圆锥和圆柱体是几何学中常见的二维和三维图形,它们具有一些共同的特点,同时也有着各自独特的性质和用途。
一、定义与性质1. 圆锥圆锥是由一个圆锥面和一个封闭的尖点组成的几何形体。
圆锥面是一个由直线和圆相交而形成的曲面,封闭的尖点又被称为顶点。
圆锥的底面是一个圆,底面的圆心与顶点的连线称为轴线。
圆锥常用的性质有:- 每一个右圆锥都可以看作是一个直角三角形绕其一条直角边旋转一周而成。
- 圆锥的侧面是由无数个生成直线连成的,这些生成直线都过圆锥的顶点,并与底面圆相交于不同的点。
- 圆锥的底面和侧面之间没有交点,形成了尖锐的锥尖部分。
2. 圆柱体圆柱体是由一个圆柱面和两个平行圆形底面组成的几何图形。
圆柱面是一个由圆和平行于底面的直线构成的曲面,底面之间的连线称为轴线。
圆柱体常用的性质有:- 圆柱体的两个底面是相等的圆,其圆心与轴线上的任意一点连成的线段称为直径。
- 圆柱体的两个底面平行,并且与轴线垂直。
- 圆柱体的侧面由无数个生成直线连成的,这些生成直线与底面圆相交于不同的点。
二、特殊的1. 正圆锥与正圆柱体正圆锥是底面圆和轴线垂直的圆锥,同时侧面各个生成直线与底面相交的线段长度相等。
正圆柱体是底面圆和轴线垂直的圆柱体,底面圆的半径和轴线的长度相等。
正圆锥和正圆柱体的共同性质有:- 所有生成直线的倾角都相等,并且垂直于底面圆和轴线。
- 侧面形成的是一个等腰三角形,其底边就是底面圆的周长。
2. 角锥与斜圆柱体角锥是底面圆和轴线之间有一个倾斜角度的圆锥,斜圆柱体是底面圆和轴线之间有一个倾斜角度的圆柱体。
角锥和斜圆柱体具有一些特殊性质:- 所有侧面的生成直线都与底面圆相交于不同的点,并且倾斜于底面圆和轴线。
- 侧面形成的图形不再是一个等腰三角形,而是一个斜三角形。
三、应用与实际意义圆锥和圆柱体在实际生活中有着广泛的应用,下面举几个例子:1. 灯罩灯罩常常采用圆锥形状,底面圆形可以更好地散发光线,而圆锥形状的侧面可以使灯光更加集中和聚焦。
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
圆柱与圆锥知识点整理六年级一、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h1.圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh2.圆柱的特征:①底面的特征:圆柱的底面是完全相等的两个圆。
②侧面的特征:圆柱的侧面是一个曲面。
③高的特征:圆柱有无数条高。
3.圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形二、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h1.圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh2.圆锥的特征:①底面的特征:圆锥的底面一个圆。
②侧面的特征:圆锥的侧面是一个曲面。
③高的特征:圆锥有一条高。
3.圆柱和圆锥的关系①圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
②圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
③圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
④圆柱与圆锥等底等高,体积相差2/3Sh专项练习题一、填空。
1. 把圆柱的侧面沿高剪开,得到一个( ),这个( )的长等于圆柱底面的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )。
2. 415平方厘米=( )平方分米 4.5立方米=( )立方分米2.4立方分米=( )升( )毫升 4070立方分米=()立方米3立方分米40立方厘米=()立方厘米325 立方米=()立方分米538 升=()升()毫升3. 将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是( )平方分米,体积是( )立方分米。
圆柱体与圆锥体圆柱体和圆锥体是几何学中常见的三维几何体。
它们具有一些相似的特征,但也有一些显著的区别。
本文将介绍圆柱体和圆锥体的定义、性质以及它们在现实生活中的应用。
一、圆柱体圆柱体是由两个平行的圆底面和连接它们的侧面组成的三维几何体。
它的形态特征包括以下几个要素:1. 圆柱体的底面直径(d):底面上两点处的距离。
2. 圆柱体的高(h):两个底面之间的距离。
3. 圆柱体的侧面积(S):底面周长与高的乘积。
4. 圆柱体的表面积(A):底面面积与侧面积的和。
5. 圆柱体的体积(V):底面面积与高的乘积。
圆柱体有许多实际应用,例如:1. 管道和筒体:很多管道和容器都采用圆柱体的形状,例如水管、油罐等。
2. 圆桶和罐子:许多物品的包装容器都是圆柱体的形状,如饮料罐、垃圾桶等。
3. 圆柱体的转动:圆柱体的特性使得它在摩擦力小、转动稳定等方面具有优势,因此在机械和工程上的运动过程中应用广泛。
二、圆锥体圆锥体是由一个圆锥面和一个圆底面组成的三维几何体。
其主要特征如下:1. 圆锥体的底面半径(r):圆底面的半径。
2. 圆锥体的高(h):锥尖到底面的距离。
3. 圆锥体的母线(l):连接锥尖与底面圆心的直线距离。
4. 圆锥体的侧面积(S):底面圆周长与母线的乘积。
5. 圆锥体的表面积(A):底面面积与侧面积的和。
6. 圆锥体的体积(V):底面面积与高的乘积的三分之一。
圆锥体也有许多实际应用,例如:1. 圆锥体的锥形状使它在流体力学、流体静力学和流体动力学等领域中应用广泛。
例如,喷水器的喷头和消防水枪的喷嘴大多采用圆锥形状。
2. 圆锥体的空间利用率高,因此在建筑设计中经常采用圆锥体的形状,如太阳能光热利用的半球面镜等。
3. 圆锥体也常用于雕塑和艺术设计中,因为它具有优美的外形和良好的比例。
总结:圆柱体和圆锥体是常见的三维几何体,它们在形态特征、性质和应用方面存在一些差异。
圆柱体具有底面直径、高、侧面积、表面积和体积等要素,应用领域包括管道、容器等。
人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
圆柱体和圆锥体的不同点和相同点
圆柱体和圆锥体是几何体中常见的形状,它们都有一些相似之处,同时也存在一些显著的不同点。
让我们来探讨一下它们的相同
点和不同点。
相同点:
1. 都是由圆形的底面和侧面构成的。
圆柱体的底面和侧面都是
圆形,而圆锥体的底面是圆形,侧面是由一条直线和底面上的点连
接而成的锥形。
2. 都具有体积和表面积。
它们的体积都可以通过相似的公式计算,即V = 底面积× 高,而表面积也可以通过类似的公式计算,
包括底面积和侧面积。
不同点:
1. 形状不同。
圆柱体是由两个平行的圆形底面和连接两个底面
的侧面构成的,而圆锥体则是由一个圆形底面和侧面构成的锥形体。
2. 体积和表面积的计算公式不同。
由于形状的差异,圆柱体和圆锥体的体积和表面积计算公式也不同,圆柱体的体积为V =
πr²h,表面积为S = 2πr² + 2πrh,而圆锥体的体积为V = (1/3)πr²h,表面积为S = πr² + πrl。
3. 应用场景不同。
由于形状的特性,圆柱体和圆锥体在实际生活中的应用也不同。
圆柱体常常用于容器、管道等的设计,而圆锥体则常见于锥形容器、锥形灯罩等的设计中。
综上所述,圆柱体和圆锥体在形状、体积和表面积的计算公式以及应用场景上存在着一些明显的不同点,但它们都具有圆形底面和侧面构成的共同特点。
这些几何体的特性不仅在数学中有着重要的意义,也在工程设计和日常生活中有着广泛的应用。
圆柱和圆锥有关知识点一、圆柱和圆锥各部分的名称以及特征1、圆柱(1)认识圆柱各部分的名称:上下两个圆面叫做底面,圆柱的周围叫侧面,圆柱两个底面之间的距离叫做高。
(2)圆柱的特征:圆柱的上下底面是两个圆,它们是完全相同的;圆柱的侧面是曲面;圆柱的高有无数条,高的长度都相等。
(3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长与高相等时,展开后是正方形)。
这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
2. 圆锥(1)认识圆锥各部分的名称:下面一个圆面叫做底面,它周围叫侧面,从圆锥的顶点到底面圆心的距离叫做高。
(2)圆锥的特征圆锥的底面都是一个圆。
圆锥的侧面是曲面。
一个圆锥只有一条高。
(3)圆锥的侧面沿着一条母线展开后是一个扇形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。
(如下图所示)二、基本公式1、圆的知识圆的周长=直径×π=半径×2×πC=πd =2πr逆推公式有:直径=圆的周长÷π d = C÷π半径=圆的周长÷π÷2 r = C÷π÷2圆的面积=半径的平方×π=(直径÷2)2×π=(圆的周长÷π÷2)2×πS=πr2=(d÷2)2×π=(C÷π÷2)2×π2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。
圆柱的侧面积=底面周长×高=直径×π×高=半径×2×π×高S 侧=C h=πd h=2πr h逆推公式有:圆柱的高=圆柱的侧面积÷底面周长=圆柱的侧面积÷(π×高)=圆柱的侧面积÷(半径×2×π)h=S 侧÷C圆柱的底面周长=圆柱的侧面积÷高 C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2 S表=S 侧+2S底(3) 圆柱的体积=底面积×高V柱=S h=πr2 h逆推公式有:圆柱的高=圆柱的体积÷底面积h=V柱÷S圆柱的底面积=圆柱的体积÷高h=V柱÷S3 ( 1 )如果圆柱的侧面展开是一个正方形,那么这个圆柱的高和底面周长相等。
圆柱与圆锥的相关概念
面的旋转
点的运动形成线;线的运动形成面;面的运动形成体.
圆柱的认识
1、圆柱:把一个长方形绕它的一条边旋转一周形成的图形就是圆柱.
2、圆柱上下两个面叫做底面,它们是面积相等的两个圆,也就是说圆柱上下一样粗。
3、圆柱两底面之间的距离叫做高。
周围的面叫做侧面,圆柱的侧面是曲面.
4、圆柱的侧面展开后是长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。
5、将一个长方形绕着它的一条边旋转一周可以得到一个圆柱,这时长方形的长等于圆柱的高,宽等于底面圆的半径。
圆柱体特点:
1、一个圆柱体是由两个底面和一个侧面组成的,圆柱体的两个底面是完全相同的两个圆。
2、圆柱有无数条高,且高的长度都相等。
3、圆柱体的侧面是一个曲面。
截一个圆柱:
横着截:截面是一个与上下底面一样大的圆竖着截(沿着高或直径截):截面是一个长方形
斜着截:截面是一个椭圆
侧面展开图:
侧面是长方形:底面圆的周长≠高侧面是正方形:底面圆的周长=高
圆锥的认识
1、圆锥:把一个直角三角形绕它的一条直角边旋转一周形成的图形就是圆锥。
2、圆锥只有一个底面,底面是个圆。
圆锥的侧面是个曲面。
3、从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。
4、把圆锥的侧面展开得到一个扇形。
圆锥体特点:
将圆锥的侧面展开,它是一个扇形.
圆锥有两个面,但只有一个底面,一个顶点,一条高。
截一个圆锥:
横着截:截面是一个下底面不一样大的圆竖着截(沿着高或直径截):截面是一个三角形斜着截:截面是一个椭圆。
圆锥和圆柱的体积公式关系
圆锥和圆柱都是由一个圆形平面旋转而成的几何体。
它们的体积公式存在一定的关系。
1. 圆锥的体积公式:
V = (1/3) × π × r^2 × h
其中:
V 是圆锥的体积
π 约等于 3.14159
r 是底面半径
h 是圆锥的高度
2. 圆柱的体积公式:
V = π × r^2 × h
其中:
V 是圆柱的体积
π 约等于 3.14159
r 是底面半径
h 是圆柱的高度
通过比较这两个公式,我们可以发现:
- 圆锥和圆柱的体积公式都包含了π、r和h这三个因素。
- 圆柱的体积公式中没有其他常数因子,而圆锥的体积公式中有一个
(1/3)的常数因子。
事实上,如果一个圆锥的底面半径和高度与一个圆柱相同,那么该圆锥的体积正好是该圆柱体积的1/3。
这就是圆锥体积公式中(1/3)常数因子的来源。
圆锥和圆柱的体积公式关系在于:圆锥的体积等于等底等高的圆柱体积的1/3。
这种关系反映了这两种几何体在形状上的差异。
圆柱与圆锥教案(集锦7篇)篇1:圆柱与圆锥知识要点:圆柱:(1)特征:是由两个底面和一个侧面三部分组成的。
底面是两个完全相同的圆侧面是一个曲面。
(2)圆柱的侧面及其与底面之间的关系:沿高剪开的展开图是一个长方形(或正方形)这个长方形的长等于圆柱底面圆的周长,宽等于圆柱的高。
(3)圆柱的高:圆柱两个底面之间的距离叫做高,有无数条高。
(4)侧面积:圆柱的侧面积=底面周长某高,用字母表示为S侧?Ch(5)表面积:圆柱的表面积=侧面积+底面积某2(6)体积:圆柱的体积=底面积某高,用字母表示为V?Sh圆锥:(1)特征:由一个底面和一个侧面两部分组成,它的底面是一个圆,侧面是一个曲面。
(2)圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。
圆锥的体积等于和它等底等高的圆柱体积的?(3)体积:?11?公式:V?V?Sh圆锥圆柱?33?13解题大智慧一、用圆柱的特征解题1、填空(1)把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的(),圆柱的高就是它的()(2)当圆柱的()和()相等时,它的侧面展开图是一个正方形。
(3)把一个底面半径是 2 cm 的圆柱的侧面展开,得到一个正方形,这个圆柱的高是()cm。
2、把一个圆柱的侧面展开后得到一个正方形,那么这个圆柱的高与底面直径的比是多少?3、一个底面周长是9.42cm,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?二、用圆柱的侧面积和表面积解题1、一个圆柱,底面周长是31.4dm,高是10dm,求它的侧面积?如果不是已知底面周长,而是已知底面半径或直径呢?2、一个圆柱的底面周长是94.2cm,高是25cm,求它的表面积。
3、一顶圆柱形厨师帽,高28cm,冒顶直径20cm,做这样10顶帽子需要多少面料?4、用铁皮制作1节通风管,它的长是60cm,底面圆的直径是10cm。
至少需要铁皮多少平方厘米?5、做一对无盖的圆柱形铁皮水桶,高是40cm,底面直径是30cm,至少需要铁皮多少平方厘米?6、把一张长16cm,宽6.5cm的长方形围成一个圆柱形纸筒,这个圆柱形纸筒的侧面积是多少平方厘米?7、挖一个圆柱形的蓄水池,已知它的底面直径是3m,池深2.5m。
圆锥与圆柱的相交与切割在几何学中,圆锥和圆柱是常见的几何图形,它们之间的相交和切割问题一直是学习者们关注的焦点。
本文将通过几个具体案例,详细讨论圆锥与圆柱的相交和切割情况,并给出相应的解决方法。
希望本文能够帮助读者更好地理解和应用这一知识点。
一、圆锥与圆柱的相交情况圆锥与圆柱的相交情况主要分为以下三种:不相交、相切和相交。
1. 不相交情况:当圆锥与圆柱的底面不相重合,且两者的轴线不重合时,它们不会相交。
这种情况下,圆锥和圆柱之间存在一定的空间隔离。
2. 相切情况:当圆锥与圆柱的底面相切时,两者之间存在一个点的交集。
这种情况下,可以通过计算底面的半径和圆锥的高度以确定相切点的位置。
3. 相交情况:当圆锥与圆柱的侧面相交时,它们之间存在一条或多条交线。
这种情况下,我们需要确定交线的具体形态和位置。
二、圆锥与圆柱的切割情况圆锥与圆柱的切割情况分为以下两种:切割和未切割。
1. 切割情况:当圆锥与圆柱的侧面互相截割时,它们之间存在切割体积。
切割的形态可以是部分圆柱,也可以是部分圆锥,取决于互相切割的角度和位置。
2. 未切割情况:当圆锥和圆柱的侧面没有相交时,它们之间不存在切割体积。
这种情况下,圆锥和圆柱保持各自的完整形状,没有互相影响。
三、解决方法和应用案例1. 解决方法:要确定圆锥与圆柱的相交和切割情况,需要先确定它们的几何参数,如底面半径、高度、轴线位置等。
通过计算这些参数的数值关系,可以判断出相交和切割的具体形态。
2. 应用案例:a. 圆锥塔切割问题:考虑一个圆锥塔底面半径为r,高度为h,与一个半径相等的圆柱体相交。
通过计算可得,当圆锥塔的高度不超过圆柱体的高度时,圆锥体与圆柱体相切;当圆锥塔的高度大于圆柱体的高度时,圆锥体与圆柱体相交;当圆锥塔的高度等于圆柱体的高度时,圆锥体完全包含圆柱体。
b. 圆锥切割木板问题:考虑一个圆锥底面半径为r,高度为h,要用它来切割一块矩形木板。
通过计算可得,当圆锥底面的直径小于矩形木板的对角线长度时,圆锥无法完全切割木板;当圆锥底面的直径等于矩形木板的对角线长度时,圆锥可完全切割木板;当圆锥底面的直径大于矩形木板的对角线长度时,圆锥能够切割掉一部分木板。
圆柱与圆锥的考点的归纳总结考点一:圆柱与圆锥的特征。
1、圆柱是生活中比较常见的由3个面围成的立体图形。
2、圆柱的底面:圆柱的上下两个面叫作底面,圆柱的两个底面是大小相同的两个圆。
圆柱的侧面:圆柱周围的面(上下底面除外)叫作侧面。
圆柱的侧面是曲面。
圆柱的高:圆柱的两个底面之间的距离叫作高。
一个圆柱有无数条高。
3、圆锥的特征:圆锥是由一个底面和一个侧面围成的立体图形。
圆锥的底面是一个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥只有一条高。
4、圆锥高的测量方法:①把圆锥的底面水平放好;②把一块平板水平地放在圆锥的顶点上面;③平板和底面之间的距离就是圆锥的高。
练习:1、一个圆柱形蛋糕盒的底面直径是40cm,高是14cm,用彩绳将它捆扎(如图),打结处在上底面圆的圆心,打结部分的彩绳长30cm。
一共需要()cm彩绳。
考点二:展开图1、圆柱的侧面展开可能是长方形、正方形、平行四边形、不规则图形。
2、圆锥的侧面展开是一个扇形。
3、圆柱的侧面沿高剪开后,展开图是一个长方形(或正方形),这个长方形(或正方形)的一条边的长度等于圆柱的底面周长,另一条边的长度等于圆柱的高。
4、当底面周长和高相等时,圆柱的侧面展开时一个正方形。
练习:1、把一个圆锥的侧面展开可以得到一个()A.平行四边形 B.梯形C.长方形D.扇形2、一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()A.πB.2πC.r3、沿圆柱的高将圆柱的侧面展开后是一个()A.三角形B.长方形或正方形C.圆形D.扇形4、一个圆柱形油桶的侧面展开图是一个正方形.已知这个油桶的底面半径是45厘米,那么油桶的高是厘米.5、做一个有底无盖的圆柱形水桶,高为6.28分米,将它的侧面展开,正好是正方形。
做这个水桶要用多少平方分米的铁皮?6、如图,把这个圆柱的侧面沿高剪开后,可以得到一个长是()dm,宽是()dm的长方形。
考点三:旋转将长方形的长或者宽粘在小棒上旋转可得到一个圆柱。
一、填空
1、一个圆柱的底面半径是3分米,高2分米,它的侧面积是()平方分米,表面积是()平方分米,体积是()立方分米。
2、一个圆柱的底面周长6.28厘米,高是3厘米,与它等底等高的圆锥体积是()立方厘米。
3、一个圆柱形油桶,侧面展开是一个正方形,已知这个油桶的底面半径是10厘米,那么油桶的高是()厘米。
4、一根长4米,横截面半径为2分米的圆柱形木料截成同样长的4段,表面积比原来增加()平方厘米。
5、圆柱的高不变,底面半径扩大2倍,底面周长扩大()倍,底面积扩大()倍,它的体积就扩大()倍,如果高也扩大2倍,体积扩大()倍。
6、圆柱形水桶的侧面积是18.84平方分米,水桶的底面半径是1分米。
水桶的
体积是()。
7、把一个底面直径4厘米,高6厘米的圆柱形木块削成一个最大的圆锥,圆锥的体积是()立方厘米,削去()立方厘米。
三、看图计算,求下列图形中圆柱的表面积与圆锥的体积。
(单位:厘米)
15
四、 应用题:
1、一个长5分米、宽3分米、高4分米的长方体铁块,熔铸成底面积为6平方分米的圆柱体。
圆柱体的高是多少分米?
2、有一块立方体木料,棱长总和是96厘米,把这块木料削成一个最大的圆锥,求圆锥的体积是多少?削去部分的体积占原木料体积的几分之几?
3、有一个圆锥形的小麦堆,底面周长是18.84米,高1.5米,把这些小麦全部装入一个底面直径是3米的圆柱形粮囤,结果最上面的小麦离囤口还有0.5米,求这个粮囤的高。
4、如图,一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积将增加25.12平方厘米,求原来圆柱的体积。
5、把一个圆柱削成一个等底等高的圆锥后,体积减少了6.28立方分米。
原来的圆柱和后来的圆锥的体积各是多少?
6、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是多少立方米?圆锥的体积是多少立方米?
7、等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆柱的体积是多少
立方分米?圆锥的体积是多少立方分米?
8、一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形。
量得圆柱底面的周长
是62.8米,高2米,圆锥的高是1.2米。
这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤能装稻谷多少吨?(保留一位小数)。