中考数学折叠专项复习
- 格式:ppt
- 大小:741.50 KB
- 文档页数:25
中考数学折叠知识点总结一、折叠的基本概念1. 折叠是指将平面图形按照一定的方式对折使其成为一个新的图形的过程。
2. 折痕是指将纸张折叠成新形状所需的折痕线。
3. 折叠时需要确保折线上的点重合,折线上的两个点到折线的距离分别相等。
二、折叠和几何1. 折叠与几何题目密切相关,我们可以通过折叠的方式来解决一些几何题目。
2. 折叠可以用来求解线段的垂直平分线、两点之间的最短距离、平行线的位置关系等问题。
三、折叠的技巧1. 折叠时需要仔细测量折痕的位置,可以使用尺子或折痕工具来辅助。
2. 折叠时需要保持手的稳定,避免折痕偏差,影响折叠结果。
3. 折叠后要仔细检查折线上的点是否重合,以确保折痕的正确性。
四、折纸作图1. 折纸作图是指通过对纸张进行折叠来完成一些几何图形的作图。
2. 折纸作图可以用来完成正多边形、平行四边形、圆等几何图形的作图。
3. 折纸作图可以通过折叠来求解一些几何问题,如平行线的位置关系、角的平分线、两点之间的最短路径等。
五、折纸拼图1. 折纸拼图是指通过折叠纸张来完成一些图形拼图的过程。
2. 折纸拼图可以用来完成一些常见的几何图形,如正方形、长方形、三角形等。
3. 折纸拼图可以通过分析图形的属性和对称关系来完成,需要灵活运用折叠的技巧来完成。
六、折纸数学问题1. 折纸数学问题是指通过折叠纸张来解决一些数学问题的过程。
2. 折纸数学问题可以用来求解一些几何题目,如平行线的位置关系、角的平分线、相似三角形等。
3. 折纸数学问题需要综合运用折叠的技巧和几何知识来完成,可以帮助我们更好地理解和应用几何知识。
七、折纸的启发1. 折纸可以培养学生的空间想象和创造力,有利于学生的综合能力发展。
2. 折纸可以激发学生对数学的兴趣,通过折叠来解决数学问题,有助于学生更好地理解和应用数学知识。
3. 折纸可以激发学生对数学的好奇心和求知欲,有助于培养学生的数学思维和创新能力。
总结:折叠知识是中考数学的重要知识点,通过对折叠的基本概念、折叠和几何、折叠的技巧、折纸作图、折纸拼图、折纸数学问题和折纸的启发等方面的学习,我们可以更好地掌握折叠知识,提高数学解题的能力和创新思维。
中考数学专题复习《四边形的折叠问题》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图所示 在长方形ABCD 中 610AD AB ==, 若将长方形ABCD 沿DE 折叠 使点C 落在AB 边上的点F 处 则线段CE 的长为( )A .13B .1730C .103D .102.如图 在ABCD 中 将ADC △沿AC 折叠后 点D 恰好落在DC 延长线上的点E 处.若=60B ∠︒ 1AB = 则ABCD 的周长为( )A .4B .43C .6D .33.如图 在ABC 中 已知8AB = 点DE 、分别在边AC AB 、上 现将ADE 沿直线DE 折叠 使点A 恰好落在点F 处 若将线段BC 向左平移刚好可以与线段EF 重合 连接CF 若215BC CF += 则2BC CF -的值为( )A .4B .5C .6D .74.如图 矩形ABCD 中 3AB = 4BC = 点E 是BC 边上一点 连接AE 把B ∠沿AE折叠 使点B 落在点B '处 当CEB '为直角三角形时 BE 的长为( )A .2B .3C .2或3D .3或1.55.如图 将长方形纸片ABCD 沿EF 折叠后 若170=︒∠ 则2∠的度数为( )A .110︒B .115︒C .120︒D .125︒6.如图 在平面直角坐标中 矩形ABCD 的边5,:1:4AD OA OD == 将矩形ABCD 沿直线OE 折叠到如图所示的位置 线段1OD 恰好经过点B 点C 落在y 轴的点1C 位置 点E 的坐标是( )A .()1,2B .1,2C .)1,2D .()12 7.如图 在平面直角坐标系中 已个纸片OACB 顶点10006A B (,),(,)点P 为BC 边上的动点 将OBP 沿OP 折叠得到OPD 连接CD AD 、.则下列结论中:①当45BOP ∠=︒时 四边形OBPD 为正方形 ①当30BOP ∠=︒时 OAD 的面积为15 ①当P 在运动过程中CD 的最小值为5 ①当OD AD ⊥时 2BP =.其中结论正确的有( )A .1个B .2个C .3个D .4个 8.如图 把一张长方形纸片沿对角线折叠 若30EDF ∠= 则长方形纸片的长宽比为( )A .2:1B 2:1C 31D .23二 填空题9.在平行四边形ABCD 中 点E F 在BC 边上 把ABE 沿直线AE 折叠 CDF 沿直线DF 折叠 使点B C 落在对角线AC 上的点G 处 若110AGD ∠=︒ 则B ∠的度数为 .10.如图 点O 是矩形ABCD 的中心 E 是边AB 上的点 沿CE 折叠后 点B 恰好与点O 重合 若9BC = 则折痕CE 长度为 .11.如图 将长方形ABCD 沿EF 折叠得到两个全等的小长方形 1210AB BC ==,, 点G 在AB 上运动 当点 A 关于DG 的对称点A '落在右侧长方形BCEF 内部(含边界)时 则AG 的长度 m 的取值范围为 .12.如图 菱形ABCD 的边5AB = 高4CE = F 是边CD 上一动点 将四边形AEFD 沿直线EF 折叠 A 点的对应点为P 当CP 的长度最小时 CF 的长为 .13.如图 把正方形纸片ABCD 进行如下操作:对折正方形ABCD 得折痕EF 连接CE 将CB 折叠到CE 上 点B 对应点H 得折痕CG .那么AG BG= .三 解答题14.如图1 点E 为矩形ABCD 边BC 上一点 且CE CD = 把ABE 沿着AE 折叠 点B 的对应点F 恰好落在线段DE 上.(1)求证:≌AFD DCE(2)如图2 延长CF 交AE 于点G 交AB 于点H .①求证:GE DF GF CD ⋅=⋅①求:GH GA 的值.15.如图 沿折痕AE 折叠矩形ABCD 的一边 使点D 落在BC 边上一点F 处.若6AB = 且ABF △的面积为24 则:(1)BF 的长为_______________(2)BC 的长为________________(3)求EC 的长.16.如图1 已知长方形纸片ABCD 点E 在边AD 上 F 为AB 上的一个动点 G 为DC 上的一个动点 将长方形ABCD 沿直线EF EG 、折叠 点A D 、的对应点分别是点A '和点D .(1)如图2 当点A '落在ED 上时 求FEG ∠的度数(2)如图3 若54A ED ''∠=︒ 求FEG ∠的度数(3)如图4 若10A ED ''∠=︒ 求FEG ∠的度数(4)若A ED n ''∠=︒直接写出FEG ∠的度数(用含n 的代数式表示)17.如图 在Rt ABC △中 90BAC ∠=︒ 30C ∠=︒ 点D 是ABC 外一点连接AD BD将ABD △沿DB 折叠使点A 落在边BC 上的点1A 处 连接1A D 若1A D AC ⊥.(1)求证:四边形1ABA D 是菱形(2)连接1AA DC 若2AB = 求四边形1ADCA 的面积.18.综合探究:如图 四边形ABCD 是正方形 点M 在边AD 上 直线MN AB ∥.将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 MN 与BD 交于点P 连接AP A P ' A P '交CD 与点F .(1)连接PC 猜想PC 与PA '的数量关系为________ A PC '∠=________°(2)连接B D ' CA ' 两线段交于点O 移动直线MN 若CD 平分PCA '∠ 求证:CP B D '∥(3)移动直线MN 若6=BC 2B C '= 直接写出PAD ∠的度数.参考答案:1.C2.C3.B4.D5.D6.D7.C8.C9.75︒10.11.10103m ≤≤ 12.41314.(1)解:证明:CD CE =CDE ∴为等腰直角三角形45CDE FDA ︒∴∠=∠= ABE 沿AE 折叠得到AEF △ 且四边形ABCD 是矩形 AB AF CD ∴== 90AFE AFD B ∠=∠=∠=︒ 在AFD △与ECD 中AFD ECD CDE FDA AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFD DCE ∴≌.(2)①证明:AFD DCE ≌△△AD DE ∴= AF DF DC CE ===()11804567.52DCF DFC ∴∠=∠=︒-︒=︒ 45DEC ∠=︒ 180135BED DEC167.52AEF AEB BEF ∴∠=∠=∠=︒ GEF DCF ∴∠=∠ GFE DFC ∠=∠GEF DCF ∴∽GE GF DC DF∴= GE DF GF CD ∴⋅=⋅.①在Rt CED 中 45CDE ∠=︒DE ∴=DF DC CE ==)()2121EF DE DF CD CE ∴=-== 21EF CE ∴ 由①知:67.5BEA DFC ∠=∠=︒18067.5112.5EFC GEC ∴∠=∠=︒-︒=︒ECF GCE ∠=∠CEG CFE ∴△∽△21GE EF GC CE∴==. 15.(1)由矩形的性质可得:90B C ∠=∠=︒ 6AB CD == ABF △的面积为24 ①1242ABF S AB BF =⨯⨯= ①24224286BF AB ⨯⨯=== 故答案为:8(2)在(1)中已得8BF =由矩形的性质可得:90B C ∠=∠=︒ 6AB CD == AD BC = 由折叠的性质可得:AF AD BC == 由勾股定理可得:22228610BC AF BF AB =++= 故答案为:10(3)由(1)(2)可得2CF BC BF =-=根据折叠的性质有:EF DE =设CE x = 则6EF DE x ==-在Rt CEF △中 222CE CF EF +=即()22226x x +=- 解得83x = 即83CE =.16.(1)解:由翻折得:12A EF AEA ''∠=∠ 12D EG DED ''∠=∠ ①180AEA DED ''∠+∠=︒ ①()111809022FEG A EF D EG AEA DED ''''∠=∠+∠=∠+∠=⨯︒=︒(2)解:由 (1) 知12A EF AEA ''∠=∠ 12D EG DED ''∠=∠ ①54A ED ''∠=︒①126AEA DED ''∠+∠=︒①()1632A EF D EG AEA DED ''''∠+∠=⨯∠+∠=︒ ①5463117FEG A ED A EF D EG ''''∠=∠+∠+∠=︒+︒=︒ (3)解:①10A ED ''∠=︒ ①()()11180109522A EF D EG AEA DED ''''∠+∠=∠+∠=︒+︒=︒ ①951085FEG A EF D EG A ED ''''∠=∠+∠-∠=︒-︒=︒ (4)解:如图3 ①A ED n ''∠=︒①()180180AEA DED A ED n ''''∠+∠=︒-∠=-︒ ①2A EF AEA ''∠=∠ 2D EG DED ''∠=∠ ①1802n A EF D EG ︒-︒''∠+∠= ①18018022n n FEG A EF D EG A ED n ︒-︒︒+︒''''∠=∠+∠+∠=+︒= 如图4 ①180AEA DED A ED ''''∠+∠-∠=︒ ''A ED n ∠=︒ ①180AEA DED n ''∠+∠=︒+︒①2A EF AEA ''∠=∠ 2D EG DED ''∠=∠ ①1802n A EF D EG ︒+︒''∠+∠= ①18018022n n FEG A EF D EG A ED n ︒+︒︒-︒''''∠=∠+∠-∠=-︒= 综上 FEG ∠的度数为1802n ︒+︒或 1802n ︒-︒. 17.(1)证明:如图1 连接1AA 设1A D 交AC 于点E由折叠的性质得:1AB A B = 1AD A D =90BAC ∠=︒ 30C ∠=︒903060ABC ∴∠=︒-︒=︒1ABA ∴是等边三角形1AB AA ∴= 160BAA ∠=︒11906030CAA BAC BAA ∴∠=∠-∠=︒-︒=︒1A D AC ⊥190AEA ∴∠=︒1903060AA D ∴∠=︒-︒=︒∴1AA D △是等边三角形1AD AA ∴=11AB A B AD A D ∴===∴四边形1ABA D 是菱形(2)解:如图2由(1)可知 四边形1ABA D 是菱形 12A D AB ∴==90BAC ∠=︒ 30ACB ∠=︒24BC AB ∴==22224223AC BC AB ∴--1A D AC ⊥∴四边形1ADCA 的面积=1AA C ADC S S + 111111232232222AC A E AC DE AC A D =⋅+⋅=⋅=⨯= 18.(1)解:①四边形ABCD 是正方形 ①AB BC CD DA === 90BAD ABC BCD CDA ∠∠∠∠====︒ 四边形ABCD 是轴对称图形 BD 所在直线是其一条对称轴①45ADP ∠=︒ PA PC = PAM PCF ∠∠= ①MN AB ∥①90PMD BAD ∠∠==︒①MN AD ⊥18090A DF CDA '∠=︒-∠=︒①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①MN AA '⊥①点A D A '三点共线同理:点B C B '三点共线①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①PA PA '= PA D PAM PCF '∠=∠=∠ 90CB A B A D ABC BAD ''''∠=∠=∠=∠=︒ ①PC PA '=①90A DF '∠=︒ 180A DF PA M DFA PCF PFC A PC ''''∠+∠+∠=∠+∠+∠=︒ PA M PCF '∠=∠ DFA PFC '∠=∠ ①90A D A PC F '∠=︒'∠=故答案为:PC PA '= 90(2)证明:由(1)得PC PA '= 90A PC '∠=︒ ①45PCA PA C ''∠=∠=︒①CD 平分PCA '∠①22.5OCD PCD ∠=∠=︒①90CB A B A D ''''∠=∠=︒ 90A DF '∠=︒ ①四边形A B CD ''是矩形①OA OD OB OC ''===①ODC OCD ∠∠==22.5︒①45A ODC O A OD PC CD ''∠=︒=∠+∠=∠ ①CP B D '∥(3)解:如图 在AN 上取一点N 使得AN =①四边形A B CD ''是矩形 ①2,A D B C ''=①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①MN 垂直平分AA ' ①62MA MA +'== 90PMD PMN ∠∠==︒ ①MN AM AN =-=6232662+-=①45PDM ∠=︒ ①904545MPD PDM ∠∠=︒-︒=︒= ①PM DM AD AM ==-62626+-==①在Rt PMN 中6232tan 326PM PNM MN -∠===-①30PNM ∠=︒ ①262N PN PM A === ①PAD APN ∠∠==130152⨯︒=︒.。
C DEB A图② 中考数学专题复习——四边形中的折叠、剪切、旋转与动点最值问题一、折叠、剪切类问题1、折叠后求度数(1)将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( )A .600B .750C .900D .950(2)如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB =65°,则∠AED′等于( )A .50°B .55°C .60°D .65°(3)用一条宽相等的足够长的纸条,打一个结,如图①所示,然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE ,其中∠BAC =____________度.2、折叠后求长度(1)将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ). A 、B 、2C 、3D 、(2)如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且,则CE 的长是( ) (A )(B )(C ) (D )图①ABCDEF(3)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm(4)如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.(5)如图,是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6cm ,则CD =(6)如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A . B . C .D .3、折叠后求面积(1)如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( )N M FEDCBAmnnn (2(1A .4B .6C .8D .10(2)如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( ) A .2 B .4 C .8 D .10(3)如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm 。
几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
年中考数学专题复习:折叠题1.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将∠DEF 沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF∠EN;③∠BEN是等边三角形;④S∠BEF=3S∠DEF.其中,将正确结论的序号全部选对的是()A.①②③B.①②④C.②③④D.①②③④解答:解:∠四边形ABCD是矩形,∠∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM∠BE,CF∠BC,∠BF平分∠EBC,∠CF=MF,∠DF=CF;故①正确;∠∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∠∠BFM=∠BFC,∠∠MFE=∠DFE=∠CFN,∠∠BFE=∠BFN,∠∠BFE+∠BFN=180°,∠∠BFE=90°,即BF∠EN,故②正确;∠在∠DEF和∠CNF中,,∠∠DEF∠∠CNF(ASA),∠EF=FN,∠BE=BN,但无法求得∠BEN各角的度数,∠∠BEN不一定是等边三角形;故③错误;∠∠BFM=∠BFC,BM∠FM,BC∠CF,∠BM=BC=AD=2DE=2EM,∠BE=3EM,∠S∠BEF=3S∠EMF=3S∠DEF;故④正确.故选B.点评:此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④∠BEG和∠HEG的面积相等;⑤若,则.A.2个B.3个C.4个D.5个解答:解:①由折叠的性质可知∠DEF=∠GEF,∠EB为∠AEG的平分线,∠∠AEB=∠GEB,∠∠AED=180°,∠∠BEF=90°,故正确;②可证∠EDF∠∠HCF,DF>CF,故DE≠CH,故错误;③只可证∠EDF∠∠BAE,无法证明BE=EF,故错误;④可证∠GEB,∠GEH是等腰三角形,则G是BH边的中线,∠∠BEG和∠HEG的面积相等,故正确;⑤过E点作EK∠BC,垂足为K.设BK=x,AB=y,则有y2+(2y﹣2x)2=(2y﹣x)2,解得x1=y(不合题意舍去),x2=y.则,故正确.故正确的有3个.故选B.点评:本题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.3.如图,矩形ABCD中,E是AD的中点,将∠ABE沿BE折叠后得到∠GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3B.2C.2D.2解答:解:过点E作EM∠BC于M,交BF于N,∠四边形ABCD是矩形,∠∠A=∠ABC=90°,AD=BC,∠∠EMB=90°,∠四边形ABME是矩形,∠AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∠EG=BM,∠∠ENG=∠BNM,∠∠ENG∠∠BNM(AAS),∠NG=NM,∠CM=DE,∠E是AD的中点,∠AE=ED=BM=CM,∠EM∠CD,∠BN:NF=BM:CM,∠BN=NF,∠NM=CF=,∠NG=,∠BG=AB=CD=CF+DF=3,∠BN=BG﹣NG=3﹣=,∠BF=2BN=5,∠BC===2.故选B.点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN∠BE于N.则下列结论:①BG=DE 且BG∠DE;②∠ADG和∠ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的是()A.③④B.①②③C.①②④D.①②③④解答:解:由两个正方形的性质易证∠AED∠∠AGB,∠BG=DE,∠ADE=∠ABG,∠可得BG与DE相交的角为90°,∠BG∠DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∠四边形ADQG是平行四边形;作CW∠BE于点W,FJ∠BE于点J,∠四边形CWJF是直角梯形;∠AB=DA,AE=DQ,∠BAE=∠ADQ,∠∠ABE∠∠DAQ,∠∠ABE=∠DAQ,∠∠ABE+∠BAH=∠DAQ+∠BAH=90°.∠∠ABH是直角三角形.易证:∠CWB∠∠BHA,∠EJF∠∠AHE;∠WB=AH,AH=EJ,∠WB=EJ,又WN=NJ,∠WN﹣WB=NJ﹣EJ,∠BN=NE,③正确;∠MN是梯形WGFC的中位线,WB=BE=BH+HE,∠MN=(CW+FJ)=WC=(BH+HE)=BE;易证:∠ABE∠∠DAQ(SAS),∠AK=AQ=BE,∠MN∠AK且MN=AK;四边形AKMN为平行四边形,④正确.S∠ABE=S∠ADQ=S∠ADG=S∠ADQG,②正确.所以,①②③④都正确;故选D.点评:当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.5.如图,在∠ABC中,∠C=90°,将∠ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∠AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.解答:解:连接CD,交MN于E,∠将∠ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∠MN∠CD,且CE=DE,∠CD=2CE,∠MN∠AB,∠CD∠AB,∠∠CMN∠∠CAB,∠,∠在∠CMN中,∠C=90°,MC=6,NC=,∠S∠CMN=CM•CN=×6×2=6,∠S∠CAB=4S∠CMN=4×6=24,∠S四边形MABN=S∠CAB﹣S∠CMN=24﹣6=18.故选C.点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.6.如图,D是∠ABC的AC边上一点,AB=AC,BD=BC,将∠BCD沿BD折叠,顶点C 恰好落在AB边的C′处,则∠A′的大小是()A.40°B.36°C.32°D.30°解答:解:连接C'D,∠AB=AC,BD=BC,∠∠ABC=∠ACB=∠BDC,∠∠BCD沿BD折叠,顶点C恰好落在AB边的C′处,∠∠BCD=∠BC'D,∠∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∠四边形BCDC'的内角和为360°,∠∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∠∠A=180°﹣∠ABC﹣∠ACB=36°.故选B.点评:本题考查了折叠的性质,解答本题的关键是掌握翻折前后的对应角相等,注意本题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.7.如图,已知∠ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把∠ABC沿AD翻折使AB与AC重合,得∠AB′D,则∠ABC与∠AB′D重叠部分的面积为()A.B.C.3﹣D.解答:解:过点D作DE∠AB′于点E,过点C作CF∠AB,∠∠ABC中,∠CAB=∠B=30°,AB=2,∠AC=BC,∠AF=AB=,∠AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∠∠B′CD=∠CAB+∠B=60°,∠∠CDB′=90°,∠B′C=AB′﹣AC=2﹣2,∠CD=B′C=﹣1,B′D=B′C•cos∠B′=(2﹣2)×=3﹣,∠DE===,∠S阴影=AC•DE=×2×=.故选A.点评:此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.8.如图,已知∠ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把∠ABC沿AD翻折,使AB与AC重合,得∠AED,则BD的长度为()A.B.C.D.解答:解:作CF∠AB于点F.∠∠CA B=∠B∠AC=BC,∠BF=AB=,在直角∠BCF中,BC==2,在∠CD E中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∠∠CDE=90°,设BD=x,则CD=DE=2﹣x,在直角∠CDE中,tanE===tan30°=,解得:x=3﹣.故选B.点评:本题考查了图形的折叠,以及三线合一定理、三角函数,正确理解折叠的性质,找出图形中相等的线段、相等的角是关键.9.如图,在Rt∠ABC中,∠C=90°,AC=,BC=1,D在AC上,将∠ADB沿直线BD翻折后,点A落在点E处,如果AD∠ED,那么∠ABE的面积是()A.1B.C.D.解答:解:∠∠C=90°,AC=,BC=1,∠AB==2,∠∠BAC=30°∠∠ADB沿直线BD翻折后,点A落在点E处,∠BE=BA=2,∠BED=∠BAD=30°,DA=DE,∠AD∠ED,∠BC∠DE,∠∠CBF=∠BED=30°,在Rt∠BCF中,CF==,BF=2CF=,∠EF=2﹣,在Rt∠DEF中,FD=EF=1﹣,ED=FD=﹣1,∠S∠ABE=S∠ABD+S∠BED+S∠ADE=2S∠ABD+S∠ADE=2×BC•AD+AD•ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选A.点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.。
中考前压轴题专项训练3——折叠专题中考数学中的折叠问题为了考查学生的数形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题几何图形的折叠问题,实际是轴对称问题。
处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。
所以一定要注意折叠前后的两个图形是全等的。
即对应角相等,对应线段相等有时可能还会出现平分线段、平分角等条件。
这一类问题,把握住了关键点,并不难解决。
例1、(成都市中考题) 把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ’M 或B ’M 的延长线上,那么∠EMF 的度数是( ) A 、85度 B 、90度 C 、95度 D 、100度例2、(武汉市实验区中考题) 将五边形ABCDE 纸片按如图的方式折叠,折痕为AF ,点E 、D 分别落在E ’、D ’。
已知∠AFC=76°,则∠CFD ’等于( ) A 、31° B 、28° C 、24° D 、20°例3、(河南省实验区中考题) 如图把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、 y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点A ’的位置,若0B=5,tan ∠BOC=21。
则点A ’的坐标为________。
例4、(南京市中考题) 已知矩形纸片,AB=2,AD=1。
将纸片折叠后,使顶点A 与边CD 上的点E 重合。
(1) 如果折痕FG 分别与AD 、AB 交于点F 、G(如图1),AF=32,求DE 的长; (2)如果折痕FG 分别与CD 、AB 交于点F 、G(如图2),△AED 的外接圆与直线BC 相切,求折痕FG 的长。
中考实战:一、选择题1 (德州市) 如图,四边形ABCD 为矩形纸片,把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为 AF 。
中考专题折叠题型25道一.试题(共25小题)1.如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.2.如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是()A.6﹣2B.3C.2D.6+23.如图,点E是矩形ABCD的边BC上的点,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C1、D1处,且点C1、D1、B在同一条直线上,折痕与边AD交于点F,D1F与BE 交于点G.若AB=,那么△EFG的周长为()A.4B.2+2C.D.64.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B 落在点F处,连接FC,则tan∠ECF=()A.B.C.D.5.如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是.6.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN =1,则OD的长为()A.B.C.D.7.如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A.6B.5C.4D.38.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,把它沿CE折叠,使点B落在AD上的B′处,点F 在折痕CE上且F到AD的距离与F到点B的距离相等.则点F到AD的距离是()A.3B.4C.D.59.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.10.如图,在边长为4的正方形ABCD中,E为AB边的中点,F是BC边上的动点,将△EBF沿EF所在直线折叠得到△EB'F,连接B'D.则当B'D取得最小值时,tan∠BEF的值为.11.已知矩形ABCD中,AB=4,AD=7,点E是边AD上的点,点F是边DC上的点,分别沿BE,EF折叠得到点A1,D1,恰好使D1落在BC上,且E,A1,D1同线,AE>2,则AE=()A.B.C.D.12.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A,折痕为DE.若将∠B 沿EA'向内翻折,点B落在DE上,记为B',则AB的长为()A.B.1C.2D.13.如图,正方形纸片ABCD的边长为15,E、F分别是CD、AD边上的点,连接AE,把正方形纸片沿BF 折叠,使点A落在AE上的一点G,若CE=7,则GE的长为.14.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为.15.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+216.如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于()A.B.C.D.217.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E为AC、BC上两个动点,若将∠C沿DE 折叠,使点C的对应点C′落在AB上,且△ADC′恰好为直角三角形,则此时CD的长为()A.B.C.或D.或18.如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为.19.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD 沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为.20.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.421.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是.22.如图,在边长为8的正方形纸片ABCD中,E是边BC上的一点,BE=6,连结AE,将正方形纸片折叠,使点D落在线段AE上的点G处,折痕为AF,则DF的长为()A.2B.3C.4D.523.如图,已知△ABC中,∠A=90°,AB=AC,AB=3+3,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是.24.如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A'处.在EF上任取一点G,连接GC,GA',CA’,则△CGA'的周长的最小值为.25.如图,矩形ABCD中,AB=6,BC=8.点E、F分别为边BC、AD上一点,连接EF,将矩形ABCD 沿着EF折叠,使得点A落到边CD上的点A'处,且DA'=2A'C,则折痕EF的长度为()A.3B.2C.D.中考专题折叠题型25道参考答案与试题解析一.试题(共25小题)1.【解答】解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt△A'CB中,A'C8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x,在Rt△CDE中,根据勾股定理得,(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2,在Rt△ABE中,根据勾股定理得,BE2,∴sin∠ABE,故答案为:.2.【解答】解:如图,连接EC,∵四边形ABCD为矩形,∴∠A=∠D=90°,BC=AD=12,DC=AB=3,∵E为AD中点,∴AE=DE AD=6,由翻折知,△AEF≌△GEF,∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,∴GE=DE,∴EC平分∠DCG,∴∠DCE=∠GCE,∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,∴∠GEC=∠DEC,∴∠FEC=∠FEG+∠GEC180°=90°,∴∠FEC=∠D=90°,又∵∠DCE=∠GCE,∴△FEC∽△EDC,∴,∵EC3,∴,∴FE=2,方法二:易得△EDC≌△EGC(HL),∴CD=CG=3,由勾股定理可得:(FG+GC)2=FB2+BC2,解得:FG=2,∴AF=2,∴EF2,故选:C.3.【解答】解:如图,过点F作FH⊥BC于H,∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠D=90°,且FH⊥BC,∴四边形ABHF是矩形,∴AB=FH∵将矩形沿着过点E的直线翻折后,∴EC=EC1,∠C=∠C1=90°,∠FEC=∠FEC1,∠D=∠FD1C1=90°,∵BE=2CE,∴BE=2C1E,∴sin∠EBC1,∴∠EBC1=30°,∴∠BGD1=60°=∠BEC1,∴∠FGE=60°,∠FEC120°,∴∠FEG=60°=∠FGE,∴△FEG是等边三角形,∴EF=GF=GE,∵FH,FH⊥GE,∠FEG=60°,∴HE=1,EF=2EH=2,∴△EFG的周长=3×2=6,故选:D.4.【解答】解:∵BC=12,点E是BC的中点,∴EC=BE=6,由翻折变换的性质可知,BE=FE,∠BEA=∠FEA,∴EF=EC,∴∠EFC=∠ECF,∵∠BEA+∠FEA=∠EFC+∠ECF,∴∠BEA=∠ECF,∵tan∠BEA,∴tan∠ECF,故选:B.5.【解答】解:设A′B=x,∵△ABC是等边三角形,∴∠B=60°,∵DA′⊥BC,∴∠BDA′=90°﹣60°=30°,∴BD=2A′B=2x,由勾股定理得,A′D x,由翻折的性质得,AD=A′D x,所以,AB=BD+AD=2x x=4+2,解得x=2,即A′B=2.故答案为:2.6.【解答】解一:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG,∴BE=DF=MG,∴OF:BE=2:3,解得OF,∴OD.故选:B.解二:连接AA'.∵EN=1,∴由中位线定理得AM=2,∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,∴A'A=A'B,∵把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,∴A'B=AB,∠ABM=∠A'BM,∴△ABA'为等边三角形,∴∠ABA′=∠BA′A=∠A′AB=60°,又∵∠ABC=∠BAM=90°,∴∠ABM=∠A'BM=∠A'BC=30°,∴BM=2AM=4,AB AM=2CD.在直角△OBC中,∵∠C=90°,∠OBC=30°,∴OC=BC•tan∠OBC=5,∴OD=CD﹣OC=2.故选:B.方法3:∵N是BM中点,∴BN=NA′,∴∠NBA′=∠NA′B,又∵∠ABN=∠A′BN,又∵∠BEN=90°,∴∠ABN=∠NBA′=∠A′BN=30°,又∵EN=1,∴AM=A′M=2=A′N,∴BE,AB=DC=2,∠OBC=30°,BC=5,∴OC,∴DO=2.故选:B.7.【解答】解:设CD=x,则AE=x﹣1,由折叠得:CF=BC=3,∵四边形ABCD是矩形,∴AD=BC=3,∠A=90°,AB∥CD,∴∠AED=∠CDF,∵∠A=∠CFD=90°,AD=CF=3,∴△ADE≌△FCD,∴ED=CD=x,Rt△AED中,AE2+AD2=ED2,(x﹣1)2+32=x2,x=5,∴CD=5,故选:B.8.【解答】解:过B′点作B′H⊥BC于H点,交CE于F点,∵矩形纸片ABCD沿CE折叠,使点B落在AD上的B′处,∴∠BCE=∠B′CE,CB=CB′=10,EB=EB′,在Rt△DCB′中,DB′8,∴AB′=AD﹣DB′=10﹣8=2,在Rt△AEB′中,设EB′=x,则BE=x,AE=6﹣x,∵AE2+AB′2=EB′2,∴(6﹣x)2+22=x2,∴x,在△BCF和△B′CF中,∴△BCF≌△B′CF,∴FB=FB′,设B′F=y,在Rt△BHF中,FH=6﹣y,BH=AB′=2,BF=y,∴y2=22+(6﹣y)2,∴y,∴点F到AD的距离是.故选:C.9.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE.根据折叠的性质可知AG=AB=4,所以GE4.在Rt△GEF中,利用勾股定理可得EF2=(4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(4)2+x2=(4﹣x)2+22,解得x2.则FC=4﹣x=6.故答案为:(6).10.【解答】解:如图,连接ED,则Rt△ADE中,DE2,当B'在ED上时,B'D最小,在ED上截取EB'=EB=2,连接B'F,FD,则B'D=ED﹣EB'=22,设BF=x,则B'F=x,CF=4﹣x,在Rt△B'FD和Rt△FCD中,利用勾股定理,可得DB'2+B'F2=DF2=CF2+DC2,即(22)2+x2=(4﹣x)2+42,解得x,∴Rt△BEF中,tan∠BEF.故答案为:.11.【解答】解:设AE=x,由折叠的性质得到;BA1=AB=4,D1E=DE=7﹣x,A1E=AE=x,∠AEB=∠BEA1,∠BA1E=∠A=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEB=∠EBC,∴∠EBD1=∠BED1,∴BD1=ED1=7﹣x,∴A1D1=7﹣2x,在R t△A1BD1中,A1B2+A1D12=BD12,即:42+(7﹣2x)2=(7﹣x)2,解得:x,∴AE.故选:B.12.【解答】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE,设AB=DC=x,则BE=B'E=x,∵AE2+AD2=DE2,∴()2+22=(x+x)2,解得,x1(负值舍去),x2,故选:A.13.【解答】解:∵四边形ABCD为正方形,∴AB=AD=15,∠BAD=∠D=90°,∵CE=7,∴DE=15﹣7=8,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠F AH+∠BAH=90°,∴∠ABH=∠F AH,在△ABF与△DAE中∴△ABF≌△DAE(ASA),∴AF=DE=8,BF=AE,在Rt△ABF中,BF17,S△ABF AB•AF BF•AH,∴15×8=17AH,∴AH,∴AG=2AH,∵AE=BF=17,∴GE=AE﹣AG=17,故答案为:.14.【解答】解:设AB=a,AD=b,则ab=32,由△ABE∽△DAB可得:,∴b a2,∴a3=64,∴a=4,b=8,设P A交BD于O.在Rt△ABD中,BD12,∴OP=OA,∴AP.故答案为.15.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE2,∴GE=BE﹣BG=21,在Rt△DGE中,DG GE=2,∴EF=DE=2,在Rt△DEF中,DF DE=21,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2)+2(21)=32,故选:D.16.【解答】解:如图延长CD交AE于点H,作CF⊥AB,垂足为F.∵在Rt△ABC中,AC=4,BC=3,∴AB=5.∵D为AB的中点,∴AD=BD=DC.∵AC•BC AB•CF,∴3×45×CF,解得CF.由翻折的性质可知AC=CE,AD=DE,∴CH⊥AE,AH=HE.∵DC=DB,BD•CF DC•HE,∴HE=CF.∴AE.∵AD=DE=DB,∴△ABE为直角三角形.∴BE.故选:A.17.【解答】解:①如图,当∠ADC'=90°时,∠ADC'=∠C,∴DC'∥CB,∴△ADC'∽△ACB,又∵AC=3,BC=4,∴,设CD=C'D=x,则AD=3﹣x,∴,解得x,经检验:x是所列方程的解,∴CD;②如图,当∠DC'A=90°时,∠DCB=90°,由折叠可得,∠C=∠DC'E=90°,∴C'B与CE重合,由∠C=∠AC'D=90°,∠A=∠A,可得△ADC'∽△ABC,Rt△ABC中,AB=5,∴,设CD=C'D=x,则AD=3﹣x,∴,解得x,∴CD;综上所述,CD的长为或.故选:C.18.【解答】解:①如图,当∠NC'B=90°时,C'落在AB边上,则AC'=AC=8,∴BC'=2,由△ACB∽△NC'B可得,,∴CN=CN';②如图,当∠NBC'=90°时,过A作AD⊥BC'于D,由AC'=AC=8,AD=BC=6,可得C'D=2,BC'=8﹣2,由△ADC'∽△C'BN,可得,∴CN=C'N(8﹣2);综上所述,当△NC'B是直角三角形时,CN的长为或.故答案为:或.19.【解答】解:①如图1中,当∠EDB=90°,四边形ACDE是正方形,此时CD=AC=6,∵BC8,∴BD=BC﹣CD=8﹣6=2,∵tan∠ABC,∴,∴DF.②如图2中,当∠DEB=90°时,AC=AE=6,则BE=4,设CD=DE=x,在Rt△BDE中,(8﹣x)2=x2+42,∴x=3,综上所述,满足条件的DF的值为3或.故答案为3或.20.【解答】解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH AC,AH CH,∴AE=2,∵AB=BE,∠ABE=90°,∴BE2,故选:C.21.【解答】解:如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE2,∴B′D=22.22.【解答】解:∵四边形ABCD是边长为8的正方形纸片,BE=6,∴AB=BC=CD=DA=8,∠B=∠D=∠C=90°,∴AE10,CE=BC﹣BE=8﹣6=2,由翻折可知:DF=FG,AG=AD=8,∠AGF=∠D=90°,∴EG=AE﹣AG=10﹣8=2,∵FC=DC﹣DF=8﹣DF,在Rt△FGE和Rt△FCE中,FG2+GE2=FC2+EC2,∴DF2+22=(8﹣DF)2+22,解得DF=4.故选:C.23.【解答】解:设A′B=x,∵△ABC是等腰直角三角形,∴∠B=45°,∵DA′⊥BC,∴∠BDA′=90°﹣45°=45°,∴BD A′B x,∴A′D=A′B=x,由翻折的性质得,AD=A′D=x,所以,AB=BD+AD x+x=3+3,解得x=3,即A′B=3.故答案为:3.24.【解答】解:如图,当点F固定时,连接AC交EF于G,连接A′G,此时△A′GC的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四边形ABCD是矩形,∴∠D=90°,AD=BC=6,CD=AB=8,∴AC10,∴△A′CG的周长的最小值=10+CA′,当CA′最小时,△CGA′的周长最小,∵AE=DE=EA′=3,∴CE,∵CA′≥EC﹣EA′,∴CA′3,∴CA′的最小值为3,∴△CGA′的周长的最小值为7,故答案为:7.25.【解答】解:如图,过点E作EM⊥AD,垂足为M,∵DA'=2A'C,DC=6,∵DA'DC=4,A'C DC=2,由折叠得,AF=F A′,AB=A′B′=6,设DF=x,则F A=F A′=8﹣x,在Rt△DF A′中,由勾股定理得,x2+42=(8﹣x)2,解得x=3,即DF=3,∴F A=F A′=8﹣3=5,∵∠NA′C+∠DA′F=180°﹣90°=90°,∠NA′C+∠A′NC=90°,∴∠DA′F=∠A′NC,∴∠C=∠D=90°,∴△A′NC∽△F A′D,∴,即,解得NC,A′N,∴B′N=A′B′﹣A′N=6NC,∴△A′CN≌△ENB′(AAS),∴EN=A′N,∴EC=EN+NC6=MD,∴MF=6﹣3=3,在Rt△EFM中,EF3,故选:A.。
中考几何——折叠专项【一,折叠与平行线性质结合求角度】1.如图,矩形纸片ABCD ,M 为AD 边的中点将纸片沿BM 、CM 折叠,使A 点落在1A 处,D 点落在1D 处,若130∠=︒,则(BMC ∠= )A .75︒B .150︒C .120︒D .105︒2.将长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,若35ABC ∠=︒,则DBE ∠的度数为( )A .55︒B .50︒C .45︒D .60︒3.将一张长方形纸片按如图所示的方式折叠,EC ,ED 为折痕,折叠后点A ',B ',E 在同一直线上,则CED ∠的度数为( )A .75︒B .95︒C .90︒D .60︒4.如图,将一条两边沿互相平行的纸带折叠( )A .若132∠=∠,则1108∠=︒B .若122∠=∠,则198∠=︒C .若12∠=∠,则155∠=︒D .若1122∠=∠,则140∠=︒5.如图,将对边平行的纸带按如图所示进行折叠,已知165∠=︒,则2∠的大小为( )A .115︒B .65︒C .55︒D .50︒6.如图①,在长方形ABCD 中,E 点在AD 上,并且30ABE ∠=︒,分别以BE 、CE 为折痕进行折叠并压平,如图②,若图②中AED n ∠=︒,则BCE ∠的度数为( )度.A .602n+ B .60n +C .302n +D .30n +7.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB∠的度数是.8.如图,把一张长方形纸片ABCD沿EF折叠后,点A与点A'重合(点A在BC边上),点∠+∠=︒.B落在点B'的位置上,若40∠'=︒,则12DEA9.如图1,长方形ABCD沿着直线DE和EF折叠,使得AB的对应点A',B'和点E在同一条直线上.(1)求DEF∠的度数;(2)如图2,若再次沿着直线EM和EN折叠使得A、B的对应点A''、B''分别落在DE和EF上,34∠的度数.∠=︒,求BENAEM10.如图a是长方形纸带(提示://)AD BC,将纸带沿EF折叠成图b,再沿GF折叠成图c.(1)若20DEF ∠=︒,则图b 中EGB ∠= ,CFG ∠= ; (2)若20DEF ∠=︒,则图c 中EFC ∠= ; (3)若DEF α∠=,把图c 中EFC ∠用α表示为 ;(4)若继续按EF 折叠成图d ,按此操作,最后一次折叠后恰好完全盖住EFG ∠,整个过程共折叠了9次,问图a 中DEF ∠的度数是 .【二.折叠和三角形内角和,外角和结合求角度】1.如图,三角形纸片ABC 中,80A ∠=︒,60B ∠=︒,将纸片的角折叠,使点C 落在ABC ∆内,若30α∠=︒,则β∠的度数是( )A .30︒B .40︒C .50︒D .60︒2.如图,65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC ∆外,若218∠=︒,则1∠的度数为( )A .50︒B .98︒C .75︒D .80︒3.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆外的A '处,折痕为DE .如果A α∠=,CEA β∠'=,BDA γ'∠=,那么α,β,γ三个角的关系是 .4.如图,将ABC ∆纸片沿DE 折叠,使点A 落在点A '处,且A B '平分ABC ∠,A C '平分ACB ∠,若1288∠+∠=︒,则BA C '∠的度数是 .5.将纸片ABC ∆沿DE 折叠使点A 落在A '处的位置.(1)如果A '落在四边形BCDE 的内部(如图1),A ∠'与12∠+∠之间存在怎样的数量关系?并说明理由.(2)如果A '落在四边形BCDE 的外部(如图2),这时A ∠'与1∠、2∠之间又存在怎样的数量关系?并说明理由.6.动手操作:一个三角形的纸片ABC,沿DE折叠,使点A落在点A'处.观察猜想(1)如图1,若40∠+∠=︒;∠=︒,则12A若55∠+∠=︒;∠=︒,则12A若A n∠+∠=︒.∠=︒,则12探索证明:(2)利用图1,探索1∠、2∠与A∠有怎样的关系?请说明理由.拓展应用(3)如图2,把ABC∠,若12108∠+∠=︒,利∠,CA'平分ACB∆折叠后,BA'平分ABC用(2)中结论求BAC∠'的度数.【三.折叠和勾股定理结合求边长】1.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.43C.32D.22.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C'处,点B落在点B'处,其中9AB=,6BC=,则FC'的长为()A.103B.4 C.4.5 D.53.如图所示,有一块直角三角形纸片,两直角边6AB=,8BC=,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=.4.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D/落在∠ABC的角平分线上时,DE的长为5.如图,将正方形纸片ABCD 沿MN 折叠,使点D 落在边AB 上,对应点为D ’,点C 落在C ’处.若AB=6,AD ’=2,则折痕MN 的长为 .6.如图,在矩形ABCD 中,点E 是边CD 的中点,将ADE ∆沿AE 折叠后得到AFE ∆,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若1CG GB k =,则ADAB= 用含k 的代数式表示).7.如图,在矩形纸片ABCD 中,6AB =,10BC =,点E 在CD 上,将BCE ∆沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG ∆沿BG 折叠,点A 恰落在线段BF 上的点H 处,①45EBG ∠=︒;②DEF ABG ∆∆∽;③32ABG FGH S S ∆∆=;④AG DF FG +=.则下列结论正确的有( )A .①②④B .①③④C .②③④D .①②③8.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △A B G =S △F G H ;④AG+DF=FG .其中正确的是.9.如图,长方形ABCD 中,点E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,连接EF .若AB=6,BC=8,则DF 的长为( )10.如图,在矩形ABCD 中,AD=5,AB=8,点E 为射线DC 上一个动点,把△ADE 沿直线AE 折叠,当点D 的对应点F 刚好落在线段AB 的垂直平分线上时,则DE 的长为多少?【四.折叠综合证明类型题】FEDB CA1.综合与实践:折纸中的数学数学活动课上,老师组织各学习小组同学动手操作,大胆猜想并加以验证.动手操作:如图,将长与宽的比是2:1 的矩形纸片ABCD 对折,使得点B 与点A 重合,点C 与点D 重合,然后展开,得到折痕EF,BC 边上存在一点G,将角B 沿GH 折叠,点B落到AD 边上的点B′处,点B 在AB 边上;将角C 沿GD 折叠,点C 恰好落到B′G 上的点C′处,HG 和DG 分别交EF 于点M 和点N,B′G 交EF 于点O,连接B′M,B′N.提出猜想:①“希望”小组猜想:HG⊥DG;②“奋斗”小组猜想:B′N⊥DG;③“创新”小组猜想:四边形B′MGN 是矩形.独立思考:(1)请你验证上述学习小组猜想的三个结论;(写出解答过程)(2)假如你是该课堂的一名成员,请你在现有图形中,找出一个和四边形B′MGN 面积相等的四边形.(直接写出其名称,不必证明)2.探究学习:矩形折纸中的数学动手操作:如图1,四边形ABCD 是一张矩形纸片,AB=3cm,AD=4cm,点E,F 分别在AD,BC 边上,连接BE,DF,且BE∥DF。
中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。
中考数学中的折叠问题专题复习1 / 6 中考数学中的折叠问题专题复习一、教学目标1、基础知识目标:、基础知识目标:使学生进一步巩固掌握折叠图形的性质,会利用其性质进行有关的计算和证明。
和证明。
2、能力训练目标:、能力训练目标:提升学生的空间想象能力、抽象思维能力、逻辑推理能力及综合运用数学知识解决问题的能力。
学知识解决问题的能力。
3、情感态度与价值观要求:、情感态度与价值观要求:鼓励学生积极参与数学学习活动,对数学证明有好奇心和求知欲。
鼓励学生积极参与数学学习活动,对数学证明有好奇心和求知欲。
二、教学重点、难点重点:会利用折叠图形的性质进行有关的计算和证明。
重点:会利用折叠图形的性质进行有关的计算和证明。
难点:综合运用所学数学知识进行有关的计算和证明。
难点:综合运用所学数学知识进行有关的计算和证明。
三、教学方法讲、练、测相结合的教学方法,在老师的引导下,通过讲、练、测的有机结合,达到知识、技能、方法的全线突破。
机结合,达到知识、技能、方法的全线突破。
四、教学程序及设想 1、巧设情景,设疑引入、巧设情景,设疑引入观察与发现:小明将纸片ABC(AB>AC )沿过A 的直线折叠,使得AC 落在AB 边上,折痕为AD,展开纸片;展开纸片;再次折叠该三角形纸片,再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF,展开纸片后得到AEF (如图1)。
小明认为AEF 是等腰三角形,你同意吗?请说明理由。
引出课题。
说明理由。
引出课题。
2、运用性质,折叠问题实质上就是轴对称变换归类探究。
、运用性质,折叠问题实质上就是轴对称变换归类探究。
归类一:折叠后求角的度数归类一:折叠后求角的度数典例解析:将矩形纸片ABCD 折叠,使得D 点与B重合,点C 落在点C '处, 折痕为EF ,如果∠ABE =20°,则∠EFC'=( )A. 125°A. 125°B. 80°C. 75°C. 75°D. 无法确定无法确定 评析:本题只要抓住折叠的本质特征,折叠前后的两个图形全等,找出翻折前后的一些不变量,其次要注意利用矩形的性质,如矩形的每个角都是90°、对边互相平行等。
中考数学压轴题---《与折叠有关的计算》题型讲解1、(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4【答案】C【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,由折叠得,∠EFC=∠AFE,∴∠AFE=∠AEF,∴AE=AF=5,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.2、如图,在△ABC纸片中,∠B=30°,AB=AC=,点D在AB上运动,将纸片沿CD折叠,得到点B的对应点B′(D在A点时,点D的对应点是本身),则折叠过程对应点B′的路径长是()A.3B.6C.πD.2π【答案】C【解答】解:过点A作AE⊥BC于点E,∵∠B=30°,AB=AC=,∴BE=AB cos∠B=,∴BC=2BE=3,由折叠的性质可得:∠BCB''=2∠ACB=60°,∴B′的路径长==π.故选:C.3、(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.【答案】C【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.4、(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是()A.3B.C.D.【答案】D【解答】解:连接BF,交AE于O点,∵将△ABE沿AE折叠得到△AFE,∴BE=EF,∠AEB=∠AEF,AE垂直平分BF,∵点E为BC的中点,∴BE=CE=EF=3,∴∠EFC=∠ECF,∵∠BEF=∠ECF+∠EFC,∴∠AEB=∠ECF,∴AE∥CF,∴∠BFC=∠BOE=90°,在Rt△ABE中,由勾股定理得,AE==,∴BO==,∴BF=2BO=,在Rt△BCF中,由勾股定理得,CF===,故选:D.5、(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10B.HG=2C.EG∥FH D.GF⊥BC 【答案】D【解答】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD,∵AB=6,BC=8,∴BD===10,故A选项不符合题意;∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴AB=BG=6,CD=DH=6,∴GH=BG+DH﹣BD=6+6﹣10=2,故B选项不符合题意;∵四边形ABCD是矩形,∴∠A=∠C=90°,∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴∠A=∠BGE=∠C=∠DHF=90°,∴EG∥FH.故C选项不符合题意;∵GH=2,∴BH=DG=BG﹣GH=6﹣2=4,设FC=HF=x,则BF=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴CF=3,∴,又∵,∴,若GF⊥BC,则GF∥CD,∴,故D选项符合题意.故选:D.6、(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB∥CD,故选:D.7、(2022•滨州)正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()A.线段B.圆弧C.折线D.波浪线【答案】A【解答】解:建立如图平面直角坐标系,设正方形ABCD的边长为1,∵四边形ABCD是正方形,∴∠OAE=∠OBF=45°,OA=OB,∵∠AOB=∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,设AE=BF=a,则F(a,0),E(0,1﹣a),∵EG=FG,∴G(a,﹣a),∴点G在直线y=﹣x+上运动,∴点G的运动轨迹是线段,故选:A.8、(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】D【解答】解:∵△EDC旋转得到△HBC,∴∠EDC=∠HBC,∵ABCD为正方形,D,B,H在同一直线上,∴∠HBC=180°﹣45°=135°,∴∠EDC=135°,故①正确;∵△EDC旋转得到△HBC,∴EC=HC,∠ECH=90°,∴∠HEC=45°,∴∠FEC=180°﹣45°=135°,∵∠ECD=∠ECF,∴△EFC∽△DEC,∴,∴EC2=CD•CF,故②正确;设正方形边长为a,∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,∴∠BHC=∠HGB=∠DEC,∵∠GBH=∠EDC=135°,∴△GBH∽△EDC,∴,即,∵△HEC是等腰直角三角形,∴,∵∠GHB=∠FHD,∠GBH=∠HDF=135°,∴△HBG∽△HDF,∴,即,解得:EF=3,∵HG=3,∴HG=EF,故③正确;过点E作EM⊥FD交FD于点M,∴∠EDM=45°,∵ED=HB=2,∴,∴,∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,∴∠DEC=∠EFC,∴,故④正确综上所述:正确结论有4个,故选:D.9、(2022•单县一模)如图,将边长为8cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG 的周长是cm.【答案】16【解答】解:设EF=x,∵EF=DF,∴DF=x,则AF=8﹣x;而AE=4,由勾股定理得:x2=42+(8﹣x)2,解得:x=5;AF=8﹣5=3;∠GEF=∠D=90°,∠A=∠B=90°,∴∠AEF+∠AFE=∠AEF+∠BEG,∴∠AFE=∠BEG;∴△AEF∽△BGE,∴==,∴EG==,BG==,∴△EBG的周长=++4=16.故答案为16.10、如图,在矩形ABCD中,AB=3,BC=5,点P在CD边上,联结AP.如果将△ADP沿直线AP翻折,点D恰好落在线段BC上,那么的值为.【答案】【解答】解:如图:∵将△ADP沿直线AP翻折,点D恰好落在线段BC上的D',∴AD'=AD=5,PD=PD',∠AD'P=∠D=90°,在Rt△ABD'中,BD'===4,∴CD'=BC﹣BD'=5﹣4=1,设CP=x,则PD=PD'=3﹣x,在Rt△CPD'中,CD'2+CP2=PD'2,∴12+x2=(3﹣x)2,解得x=,∴CP=,PD=,∴S△ADP=AD•PD=×5×=,S四边形ABCP=S矩形ABCD﹣S△ADP=3×5﹣=,∴==,故答案为:.11、(2022•铜仁市)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE 上的动点,过点N作NP∥EM交MC于点P,则MN+NP的最小值为.【答案】【解答】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≥MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE==,∵CE×DO=CD×DE,∴DO=,∴EO=,∵MF⊥CD,∠EDC=90°,∴DE∥MF,∴∠EDO=∠GMO,∵CE为线段DM的垂直平分线,∴DO=OM,∠DOE=∠MOG=90°,∴△DOE≌△MOG,∴DE=GM,∴四边形DEMG为平行四边形,∵∠MOG=90°,∴四边形DEMG为菱形,∴EG=2OE=,GM=DE=1,∴CG=,∵DE∥MF,即DE∥GF,∴△CFG∽△CDE,∴,即,∴FG=,∴MF=1+=,∴MN+NP的最小值为;方法二:同理方法一得出MN+NP的最小值为MF的长,DO=,∴OC==,DM=2DO=,∵S△CDM=DM•OC=CD•MF,即×=2×MF,∴MF=,∴MN+NP的最小值为;故答案为:。
中考数学中的折叠问题专题复习一、教学目标1、基础知识目标:使学生进一步巩固掌握折叠图形的性质,会利用其性质进行有关的计算和证明。
2、能力训练目标:提升学生的空间想象能力、抽象思维能力、逻辑推理能力及综合运用数学知识解决问题的能力。
3、情感态度与价值观要求:鼓励学生积极参与数学学习活动,对数学证明有好奇心和求知欲。
二、教学重点、难点重点:会利用折叠图形的性质进行有关的计算和证明。
难点:综合运用所学数学知识进行有关的计算和证明。
三、教学方法讲、练、测相结合的教学方法,在老师的引导下,通过讲、练、测的有机结合,达到知识、技能、方法的全线突破。
四、教学程序及设想1、巧设情景,设疑引入观察与发现:小明将纸片ABC(AB>AC)沿过A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片;再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展开纸片后得到AEF(如图1)。
小明认为AEF是等腰三角形,你同意吗?请说明理由。
引出课题。
2、运用性质,折叠问题实质上就是轴对称变换归类探究。
归类一:折叠后求角的度数典例解析:将矩形纸片ABCD折叠,使得D点与B重合,点C落在点C'处,折痕为EF,如果∠ABE=20°,则∠EFC'=()A. 125°B. 80°C. 75°D. 无法确定评析:本题只要抓住折叠的本质特征,折叠前后的两个图形全等,找出翻折前后的一些不变量,其次要注意利用矩形的性质,如矩形的每个角都是90°、对边互相平行等。
体验感悟:随后给学生一定的时间去感悟和体会这类题的解题思路和方法。
1、如图所示,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=20°,那么,∠BAF为多少度时,才能使AB'∥BD?(∠BAF=55°)利用折叠的性质求角的度数,当条件中有某些角的度数时,综合题中的其他条件,找已知角和未知角的关系,从而求的未知角的度数。
方法必备09几何综合题的三类折叠问题题型一:翻折与几何基本图形题型二:翻折与隐形圆题型三:翻折与二次函数题型一:翻折与几何基本图形1.(2024·山东泰安·一模)如图,把平行四边形纸片ABCD 沿BD 折叠,点C 落在点C 处,BC 与AD 相交于点E .求证:EB ED 【答案】见详解【分析】本题主要考查利用平行四边形的性质和折叠得性质证明ABE C DE ≌ ,即可证明结论成立.【详解】证明:∵四边形ABCD 为平行四边形,∴A C ,AB CD ,∵沿BD 折叠,点C 落在点C 处,∴C C A ,C D CD AB ,在ABE 和C DE 中AEB C ED A C AB C D∴ ABE C DE AAS ≌,∴EB ED .2.(2023·江苏泰州·二模)如图1,将 Rt 90ABC A 纸片按照下列图示方式折叠:①将ABD △沿BD 折叠,使得点A 落在BC 边上的点M 处,折痕为BD ;②将BEF △沿EF 折叠,使得点B 与点D 重合,折痕为EF ;③将DEF 沿DF 折叠,点E 落在点'E 处,展开后如图2,BD 、PF 、DF 、DP 为图1折叠过程中产生的折痕.(1)求证:DP BC ∥;(2)若'DE 落在DM 的右侧,求C 的范围;(3)是否存在C 使得DE 与MDC 的角平分线重合,如存在,请求C 的大小;若不存在,请说明理由.【答案】(1)见解析;(2)030C ;(3)不存在,理由见解析.【分析】本题考查了直角三角形的性质,折叠的性质,菱形的判定与性质,角平分线的性质,熟练掌握折叠的性质是解题的关键.(1)由第二次翻折可得EF 垂直平分BD ,由第一次翻折可得EF EP ,证出四边形PBFD 是菱形,则可得出结论;(2)设ABD ,求出BDF ,902ADP FDM C ,当DE 落在DM 的右侧时,902 ,求出30a ,则可得出答案;(3)设ABD ,902ADP FDM C ,2MDC ,得出902 ,求出45 ,0C ,则可得出结论.【详解】(1)证明:由第二次翻折可得EF 垂直平分BD ,由第一次翻折可得EF EP ,PF 与BD 垂直且互相平分,四边形PBFD 是菱形,DP BC ∥;(2)解:设ABD ,∵四边形PBFD 是菱形,PB DF ∥,BDF ,902ADP FDM C ,当'DE 落在DM 的右侧时,902 ,30a ,90230 ,030C ;(3)解:不存在.若存在C 使得DE 与MDC 的角平分线重合,设ABD ,902ADP FDM C ,2MDC ,902 ,45 ,0C ,不存在C 使得DE 与MDC 的角平分线重合.3.(2023·吉林松原·三模)如图①,在Rt ABC △中,90ACB ,60A ,CD 是斜边AB 上的中线,点E 为射线CA 上一点,将ADE V 沿DE 折叠,点A 的对应点为点F .(1)若AB a =,直接写出CD 的长(用含a 的代数式表示);(2)若点E 与点C 重合,连接BF ,如图②,判断四边形DBFC 的形状,并说明理由;(3)若DF AB ,直接写出CDE 的度数.【点睛】本题主要考查了折叠问题,菱形的判定,直角三角形的性质,等边三角形的判定与性质,灵活运用相关知识是解答本题的关键.4.(2023·广东茂名·二模)如图,正方形ABCD中,E是边BC的中点,将ABE沿AE折叠,得到AFE,延长EF 交边CD于点P.(1)求证:DP FP;AB ,求CP的长.(2)若6连接AP,∵四边形ABCD是正方形,∴AD AB,B D5.(2023·广西贵港·二模)综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD ,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF ,然后展开,沿过点A 与点E 所在的直线折叠,点B 落在点B 处,连接 B C ,如图1,请直接写出AEB 与ECB 的数量关系.【能力提升】把正方形对折,折痕为EF ,然后展开,沿过点A 与BE 上的点G 所在的直线折叠,使点B 落在EF 上的点P 处,连接PD ,如图2,猜想APD 的度数,并说明理由.【拓展延伸】在图2的条件下,作点A 关于直线CP 的对称点A ,连接PA ,BA ,AC ,如图3,求PA B 的度数.【答案】初步尝试:AEB ECB ;能力提升:猜想:60APD ,理由见解析;拓展延伸:15PA B【分析】初步尝试:连接BB ,由折叠的性质可知,BE CE ,BE BE ,AEB AEB ,BB AE ,根据等边对等角的性质和三角形内角和定理,得出90BB C ,推出AE CB ∥,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证 SAS AFP DFP ≌,从而证明APD △是等边三角形,即可得到答案;拓展延伸:连接A C 、AA ,由(2)得APD △是等边三角形,进而得出30PDC ,再结合等边对等角的性质和三角形内角和定理,求得15PAC ,30ACP ,由对称性质得:AC A C ,30ACP A CP ,证明 SSS AA B CA B ≌,得到30CA B ,再由15CA P CAP ,即可求出PA B 的度数.【详解】解:初步尝试:AEB ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE CE ,BE BE ,AEB AEB ,BB AE ,∴BE CE BE ,∴EBB EB B ,ECB EB C ,∵ 2180EBB EB B EB C ECB EB B EB C ,∴90BB C ,即BB CB ,∴AE CB ∥,∴AEB ECB ,∴AEB ECB ;解:能力提升:猜想:60APD ,理由如下:理由:∵四边形ABCD 是正方形,∴AB AD ,90ADC ,由折叠性质可得:AF DF ,EF AD ,AB AP ,在AFP 和DFP △中,90AF DF AFP DFP FP FP,∴ SAS AFP DFP ≌,∴AP PD ,∴AP AD PD ,由(2)得APD △是等边三角形,∴PAD PDA APD ∵90ADC ,∴30PDC ,又∵PD AD DC ,∴12DPC DCP ∴PAC PAD DAC 由对称性质得:AC 6.(2023·吉林长春·模拟预测)如图1,平面上,四边形ABCD 中,4AB ,6CD ,BC 3DA ,90A ,点M 在AD 边上,且1DM .点P 沿折线AB BC 以1个单位速度向终点C 运动,点A 是点A 关于直线MP 的对称点,连接A P ,设点P 在该折线上运动的时间为 0t t .(1)直接写出线段BP的长;(2)如图2,连接BD.的度数,并直接写出当A 、M、A共线时t的值;①求CBD②若点P到BD的距离为1,求tan A MP 的值;t 时,请直接写出点A 到直线AD的距离(用含t的式子表示).(3)当04∵PM 平分A MA ,90PMA ,∴PM AB ∥,DNM DBA △∽△,DN DM MN ,3sin 5AD DBA BD,153sin 5PQ BP DBA ,90PQB CBD DAB ∵,90QPB PBQ DBA ,PQB BAD △∽△,,PQ QB PB 即,PQ QB PB 由A PE MA F ∽,7.(2023·河南周口·模拟预测)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠ABE到△,如图(2)所示;AFE操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,4BC ,按照(1)中的方式操作,得到图(6)或图(7).请AB ,6完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;8.(2023·山东枣庄·中考真题)问题情境:如图1,在ABC 中,1730AB AC BC ,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.∵1122CHG S CH HG ∴154302CG HE,9.(2023·内蒙古通辽·中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在正方形内部点M 处,把纸片展平,连接PM 、BM ,延长PM 交CD 于点Q ,连接BQ .(1)如图1,当点M 在EF 上时,EMB ___________度;(2)改变点P 在AD 上的位置(点P 不与点A ,D 重合)如图2,判断MBQ 与CBQ 的数量关系,并说明理由.10.(2023·辽宁大连·中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A ,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB .”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE △由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ;(2)如图2,若点E 为AC 中点,43AC CD ,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A 的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD .若1CD ,则求BC 的长.∵AB BD,∴AM MD,ABM ,∵2BDC ABD,∴BDC DBM∥,∴BM CD,∴CD AD又CG BM,∴四边形CGMD是矩形,则CD GM,在Rt ACD△中,1CD ,11.(2023·江苏无锡·中考真题)如图,四边形ABCD 是边长为4的菱形,60A ,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q .(1)当45QPB 时,求四边形BB C C 的面积;(2)当点P 在线段AB 上移动时,设BP x ,四边形BB C C 的面积为S ,求S 关于x 的函数表达式.12.(2023·重庆·中考真题)在Rt ABC 中,90ACB ,=60B ,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC,BD ,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ,求证:GF BF BE .(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.∵F 是DE 的中点则DF FE ,FH FG , ∴ SAS GFD HFE ≌,∴H G ,∴EH GC ∥,在CD 取得最小值的条件下,即CD 设4AB a ,则2BC a ,23AC a∵S 是AB 的中点,60ABC∴SC SB BC ,∴BCS △是等边三角形,则60PCB ,∴30PCA ACB BCP ,∵2BC a ,4AB a ,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA即PU 是ANR 的中位线,同理可得PT 是ANR ∴54NU UR PT a,12PU AR AT ∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至∴2120QCP BCP【点睛】本题考查了解直角三角形,全等三角形的性质与判定,等腰三角形的性质,三角形中位线的性质,折叠的性质,圆外一点到圆上距离的最值问题,垂线段最短,矩形的性质,等边三角形的性质与判定,熟练掌握以上知识是解题的关键.题型二:翻折与隐形圆一、单选题1.(湖北鄂州·中考真题)如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点A ′.当CA ′的长度最小时,CQ 的长为()A.5B.7C.8D.13 22.如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值是()A .B C .2D .3【点睛】本题考查翻折变换、菱形的性质、勾股定理、两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,突破点是正确寻找点3.(22-23九年级上·浙江金华·期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且EAB EBC .连结AE ,BE ,PD ,PE ,则PD PE 的最小值为()A.2 B.2C.2D.2作正方形ABCD关于直线BC对称的正方形则点D的对应点是F,连接FO交BC于P,交半圆O于根据对称性有:PD PF,则有:PE PD PE PF,二、填空题4.(2022·广东汕头·一模)如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD=3,E是BC 边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为.【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题5.△ABC 中,AB =AC =5,BC =6,D 是BC 的中点,E 为AB 上一动点,点B 关于DE 的对称点B 在△ABC 内(不含△ABC 的边上),则BE 长的范围为.②如图所示,当点B 恰好落在由题意,BD DB DC ,∴DBB DB B ,DB ∴DBB DCB DB22综上,BE长的范围为9 5故答案为:95 52BE.【点睛】本题考查等腰三角形的性质和判定,以及勾股定理解直角三角形等,能够根据题意准确分析出动点的运动6.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB'F,连接B'D,则B'D的最小值是.故答案为210 2.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、B 'D 的值最小是解决问题的关键.7.(22-23九年级下·江苏宿迁·阶段练习)如图,矩形ABCD ,4AB ,8BC ,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足12APB AGB ,则DP 的最小值.【答案】21022【分析】由题意可知,90AGB 上,(要使DP 最小,则点P 要靠近蒂点∴90AGB ,∵12APB AGB ,即1452APB AGB ,8.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.9.(2022·天津河东·二模)已知,平面直角坐标系中有一个边长为6的正方形OABC,M为线段OC上的动点,将AOM沿直线AM对折,使O点落在O 处.(1)如图①,当30OAM 时,求点O 的坐标;(2)如图②,连接 CO ,当CO AM ∥时.①求点M 的坐标;②连接OB ,求AO M △与AOB 重叠部分的面积;(3)当点M 在线段OC (不包括端点)上运动时,请直接写出线段O C 的取值范围.由①得:tan AO AMO OM 设,CE x 则3,ME x O ¢=-()()222332,x x \=-+解得:6,5x =(不符合题意的根舍去)当,Q O ¢重合时, CO 取得最小值,此时226662,6,AC AQ AO =+===626,CO ¢\=-所以 CO 的取值范围为:626CO ¢-£【点睛】本题考查的是正方形的性质,等边三角形的判定与性质,轴对称的性质,一次函数的几何应用,圆的基本性质,锐角三角函数的应用,熟练的利用一次函数的性质解决几何图形面积问题,利用圆的基本性质求解线段长度的最小值是解本题的关键.10.(2022·重庆·三模)在ABC 中,90ACB ,CA =2CB .将线段CA 绕点C 旋转得到线段CD .(1)如图1,当点D 落在AB 的延长线上时,过点D 作DE AD 交AC 的延长线于点E ,若BC =2,求DE 的长;(2)如图2,当点D 落在CB 的延长线上时,连接AD ,过点C 作CF ⊥AB 于点F ,延长CF 交AD 于点E ,连接BE ,求证:AB CE BE ;(3)如图3,在(2)的条件下,将ACF △沿AC 翻折得到ACF △,M 为直线AD 上一个动点.连接BM ,将BDM 沿BM 翻折得到BMD △.当D F 最小时,直接写出F D FF 的值.由题意得,D ¢在以B 为圆心,BC 长为半径的圆上运动,当设1CB ,∵2CA CB ,∴2CA .∵90ACB ,1CB ,2CA ,∴225AB CA CB ,sin CAB ∵CF ⊥AB ,90ACB ,题型三:翻折与二次函数1.(21-22九年级下·湖南株洲·开学考试)如图,在平面直角坐标系中,抛物线22y ax ax c 经过 2,0A , 0,4C 两点.(1)求抛物线的解析式;(2)点P 是第一象限抛物线上一动点,连接CP ,CP 的延长线与x 轴交于点Q ,过点P 作PE y 轴于点E ,以PE 为轴,翻折直线CP ,与抛物线相交于另一点R .设P 点横坐标为t ,R 点横坐标为s ,求出s 与t 的函数关系式;(不要求写出自变量t 的取值范围);(3)在(2)的条件下,连接RC ,点G 在RP 上,且RG RC ,连接CG ,若45OCG ,求点Q 坐标.根据题意得:212EF CE t ∴2142OF OE EF t t ∵点R 的横坐标为s ,∴点R 的坐标为21,42s s s∵45OCG ,PE CE ,∴45EIC .∵45EIC GCP CPE ∴4545RCH GPE .∴RCH GPE .2.(2023·天津河西·三模)如图,在平面直角坐标系中,抛物线214y x bx c 与x 轴交于 30A ,, 4,0B 两点,在y 轴正半轴上有一点C ,OC OB .点D ,E 分别是线段AC ,AB 上的动点,且均不与端点重合.(1)求此抛物线的解析式;(2)如图①,连接BD ,将BCD △沿x 轴翻折得到BFG ,当点G 在抛物线上时,求点G 的坐标;(3)如图②,连接CE ,当CD AE 时,求BD CE 的最小值.∵BCD △与BFG 关于x 轴对称,∴DG AB ,DM GM ,∵3OA ,4OB OC ,∴4tan 3OC CAO OA ,设 0OM a a ,则3AM a ,DM GM AM 4连接EQ 、CQ ,∵AE CD ,∴AEQ CDB ≌,∴EQ BD ,当C ,E ,Q 三点共线时,过点C 作CH AQ ,垂足为H ∵OC OB ^,4OC OB ,∴45CBA ,42BC .∵180CAH CAB EAQ 2523.(2023·广西贵港·三模)抛物线222y x x c 与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,点 32D ,为抛物线上一点,且直线CD x ∥轴,点M 是抛物线上的一动点.(1)求抛物线的解析式与A、B两点的坐标.,,,为顶点的四边形是平行四边形,求此时点M的坐标.(2)若点E的纵坐标为0,且以A E D M沿CM翻折,点N的对应点为N ,则是否存在点M,使点N (3)过点M作直线CD的垂线,垂足为N,若将CMN则恰好落在x轴上?若存在,求出此时点M的坐标;若不存在,说明段理由.当AD 为边时,11AE M D Y ,此时1M 和点C 重合,23AM E D Y 时,点2M 的纵坐标和点D 的纵坐标互为相反数,即21322,22x x 341,2x 32341341,2,,2,22M M 由折叠知,CNM CN M ∵90NCN ,∴四边形CNMN 是矩形,∵CN CN 时,∴矩形CNMN 是正方形,∴CM 平分NCN ,。