上海交通大学遗传学下午5组果蝇杂交实验方案
- 格式:pptx
- 大小:911.34 KB
- 文档页数:15
果蝇杂交实验报告(眼色分析)一、实验原理及方法生物某些性状的遗传常与性别联系在一起,这种现象称为伴性遗传(sex-linked inheritance),这是由于支配某些性状的基因位于性染色体上。
果蝇属XY型生物,共有四对染色体,第一对为性染色体,其余三对为常染色体。
雌果蝇的性染色体构型为XX,、雄果蝇为XY。
控制果蝇眼色的基因位于X染色体上,在Y染色体则没有与之相应的等位基因。
将红眼(+)果蝇和白眼(w)果蝇杂交,其后代眼色的表现与性别有关。
而且,正反交的结果不同。
(仅供参考)二、实验材料(品系及性状)亲本正交6#(雌、白眼)X18#(雄、红眼)亲本反交18#(雌、红眼)X 6#(雄、白眼)(可写成基因型)三、实验用品(实验指导书上有)四、杂交实验流程1、培养基的配制,并在培养瓶上写清杂交组合、杂交日期、实验者班级。
室温下培养,至于阴暗温热环境中。
2、两个亲本杂交1、2号培养瓶中分别挑选亲本正交、反交的处女蝇。
3、在接入杂交亲本1、亲本2第七或八天(从开始杂交算第一天)清除所有亲本成蝇。
4、观察正反交组合中不同性别子代1成蝇的眼色,至少观察20只,记录观察结果,并注意是否有例外的情形。
5、从正交组合的子代1中挑选出5对果蝇,放入F 1自交1号培养瓶中,贴上标签,室温下培养(反交组合也一样处理)。
6、在接入子代1培养的第七或八天(从子代1接入新培养瓶算第一天)清除所有子代1成蝇。
7、当子代2数量足够时,观察不同性别的果蝇的眼色,分别统计并做好记录。
五、实验结果及分析图谱分析正交 反交P : X w X w (雌白眼)× X +Y (雄红眼) X +X +(雌红眼)× X w Y (雄白眼)F1: X +X w(雌红眼)× X w Y (雄白眼)X +X w (雌红眼)× X +Y (雄红眼)理论: 1 : 1 1 : 1实际: 25 : 16 20 : 19F2: X +X w X w X w X +Y X w Y X +X + X +X w X +Y X w Y雌红眼 雌白眼 雄红眼 雄白眼 雌红眼 雄红眼 雄白眼理论 1 : 1 : 1 : 1 2 : 1 : 1 实际 13 : 9 : 12 : 10 21 : 11 : 52显隐性判断:正交的结果不论雌雄均为红色,反交的结果是雌性为红眼,雄性为白眼。
引言:果蝇杂交实验是遗传学中一项重要的实验方法,通过对果蝇的交配与基因传递进行观察和研究,可以进一步了解和探索基因的遗传规律以及基因变异的机制。
本实验报告旨在阐述果蝇杂交实验的相关概念、实验设计、实验结果及其分析,并提出一些对进一步研究的思考。
概述:果蝇(Drosophilamelanogaster)是一种广泛应用于生物学研究的模式生物。
其繁殖力强、短寿命和基因多样性使其成为遗传学研究的理想模型。
果蝇杂交实验通过对不同基因型的果蝇进行交配,观察后代的表型和基因组成,以了解遗传传递的规律和基因的分离与联合。
正文内容:一、实验设计1.选择适合的果蝇品系2.选择合适的交配模式3.标记果蝇的基因型4.记录并统计实验数据5.设计对照组进行比较分析二、果蝇杂交基础1.果蝇基因的遗传定律2.显性性状和隐性性状3.基因型和表型的关系4.分离比和连锁比的计算方法5.遗传图谱的构建和分析三、果蝇杂交实验的常见模式1.单因素杂交2.双因素杂交3.多因素杂交4.杂交断裂分析5.回交和自交的应用四、果蝇杂交实验的结果与分析1.收集交配后果蝇的数据2.观察和分析后代的表型3.使用分离比和连锁比计算基因频率和遗传距离4.判断基因型的遗传方式(隐性、显性、共显性等)5.通过遗传分析进行基因组定位和识别五、果蝇杂交实验的意义和展望1.果蝇杂交实验在遗传学研究中的重要性2.果蝇杂交实验在基因突变和功能研究中的应用3.果蝇杂交实验在医学和农业领域的潜在应用4.结合其他研究方法和技术的进一步探索5.果蝇杂交实验在深入理解遗传学规律方面的未来挑战总结:通过对果蝇杂交实验的设计、实施和分析,我们可以深入了解基因的遗传规律和遗传变异的机制。
果蝇杂交实验是遗传学研究中不可或缺的工具,对于揭示生物多样性和遗传变异的原因具有重要意义。
通过进一步研究和探索,我们可以更好地利用果蝇模型生物在遗传学、医学和农业领域的潜在应用,为人类的健康和生物多样性的保护做出更大贡献。
果蝇杂交实验——验证遗传学三大定律1 实验目的:1.1 通过对果蝇的一对相对性状的杂交试验,观察性状的显、隐性关系及其在后代中的分离现象,验证孟德尔的第一定律——分离定律。
1.2 通过对果蝇两对相对性状的杂交试验,验证孟德尔第二定律:自由组合定律。
1.3 通过位于果蝇性染色体的基因控制的性状的杂交试验,验证遗传学第三个规律:连锁遗传。
并了解伴性遗传与非伴性遗传的区别以及掌握伴性基因在正、反交中的差异。
2 实验原理2.1 果蝇的生活史:果蝇的生活周期长短与温度有密切关系。
一般来说,30℃以上温度能使果蝇不育或死亡,低温能使生活周期延长,生活力下降,饲养果蝇的最适温度为20~25℃。
生活周期长短与饲养温度的关系果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。
果蝇的生活史如下:雌蝇→减数分裂→卵受精雄蝇→减数分裂→精子羽化(第八天)(可活26~33天)产第一批卵蛹(第四天)第二次蜕皮第一批卵孵化(第二天)(第零天)第一次蜕皮幼虫(第一天)果蝇的生活周期和各发育阶段的经过时间2.2 果蝇的性别及突变性状的鉴别:果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是一样的,称常染色体。
另外一对称性染色体,在雌果蝇中是XX,在雄蝇中是XY。
果蝇的雌雄在幼虫期较难区别,但到了成虫期区别相当容易。
雄性个体一般较雌性个体小,腹部环纹5条,腹尖色深,第一对脚的跗节前端表面有黑色鬃毛流苏,称性梳(Sex combs)。
雌性环纹7条,腹尖色浅,无性梳。
实验中选用的果蝇突变性状一般都可用肉眼鉴定,例如红眼与白眼,正常翅与残翅等。
而另一些性状可在解剖镜下鉴定,如焦刚毛与直刚毛等。
现列表如下:实验中使用的果蝇突变品系2.3 黑体果蝇的体色为黑色(b),与之相对应的野生型果蝇的体色为灰色(+),灰色对黑色为完全显性,控制这对相对性状的基因位于第二号染色体上。
用具有这对相对性状的两纯合亲本杂交,性状的遗传行为应符合分离定律。
果蝇的杂交实验报告果蝇的杂交实验报告引言:杂交实验是遗传学研究中常用的实验方法之一,通过对不同基因型的个体进行交配,观察后代的表现,可以更好地理解遗传规律和基因的传递方式。
本次实验以果蝇为研究对象,旨在探索果蝇的杂交规律和基因表现方式。
实验材料与方法:实验所用的果蝇为常见的果蝇(Drosophila melanogaster),实验室提供了具有不同基因型的果蝇个体。
实验中使用的果蝇培养基为标准培养基,提供了充足的食物和适宜的温度。
实验一:同种杂交首先,我们选取了具有红眼色的果蝇和具有白眼色的果蝇进行同种杂交实验。
将红眼色果蝇与白眼色果蝇放置在同一培养皿中,观察交配情况并记录。
结果显示,红眼色果蝇与白眼色果蝇交配后的后代中,所有个体的眼色均为红色。
这一结果符合孟德尔遗传规律中的显性遗传原则,即红色眼睛的基因为显性基因,白色眼睛的基因为隐性基因。
实验二:异种杂交接下来,我们进行了异种杂交实验,选取了具有长翅和具有短翅的果蝇进行交配。
将长翅果蝇与短翅果蝇放置在同一培养皿中,观察交配情况并记录。
结果显示,长翅果蝇与短翅果蝇交配后的后代中,所有个体的翅膀长度均为中等长度。
这一结果表明,翅膀长度的基因表现出了不完全显性,即长翅和短翅的基因都对翅膀长度产生了影响,但中等长度的基因更为显著。
实验三:杂交后代的基因分离为了进一步探索果蝇基因的分离和重新组合规律,我们进行了一系列的杂交实验。
首先,我们选取了具有红眼色和长翅的果蝇与具有白眼色和短翅的果蝇进行交配。
结果显示,杂交后代中出现了多种不同的表型,包括红眼长翅、红眼短翅、白眼长翅和白眼短翅。
这一结果表明,红眼色和长翅的基因以及白眼色和短翅的基因在杂交后发生了分离和重新组合。
进一步观察发现,红眼色和长翅的基因在杂交后并没有发生重新组合,而是保持了原有的连锁关系。
白眼色和短翅的基因也保持了连锁关系。
这一结果与遗传学家摩尔根的连锁假说相符,即位于同一染色体上的基因在杂交后很难发生重组。
果蝇杂交实验报告摘要经典遗传学的三大遗传定律分别是:分离定律,自由组合定律和连锁与交换规律。
果蝇具有生活史短、繁殖率高、饲养简便等特点,是研究遗传学的好材料,尤其在基因分离、连锁、交换等方面,对果蝇的研究更是广泛而充分。
本次通过实施已有实验方案,观察后代中果蝇的各种性状,结合各种统计处理方法,从而证明这三大定律。
1.原理分离定律一对等位基因在杂合状态中保持相对的独立性,在配子形成时,按原样分离到不同的配子中去,理论上配子分离比是1∶1,F2代基因型分离比是1∶2∶1,若显性完全,F2代表型分离比是3∶1 。
控制体色性状的突变基因位于2号常染色体,灰体对黑体完全显性,用灰体果蝇与黑体果蝇交配,得到F1代都是灰体,F1代雌雄个体之间相互交配,F2代产生性状分离,出现两种表现型。
(图1)图1 图2自由组合定律不同相对性状的等位基因在配子形成过程中,等位基因间的分离和组合是互不干扰,各自独立分配到配子中去,它们所决定的两对相对性状在F2代是自由组合的,在杂种第二代表型分离比就呈9∶3∶3∶1。
控制体色性状的突变基因位于2号常染色体,灰体对黑体完全显性,控制眼色性状的突变基因位于性染色体。
红眼对白眼完全显性,用黑体红眼果蝇(♀)与灰体白眼果蝇(♂)交配,得到F1代都是灰体,F1代雌雄个体之间相互交配,F2代产生性状分离,出现四种表现型。
(图2)伴性遗传位于性染色体上的基因,其传递方式与位于常染色体上的基因不同,它的传递方式与雌雄性别有关,因此称为伴性遗传。
果蝇的性染色体有X和Y两种,雌蝇为XX,雄蝇为XY。
红眼与白眼是一对相对性状,控制该对性状的基因(W)位于X染色体上,且红眼(W)对白眼(w)为完全显性。
当红眼雌蝇与白眼雄蝇杂交时,F1代雌性果蝇、雄性果蝇都为红眼,F2代雌性果蝇都是红眼,雄性果蝇红眼和白眼的比例为1∶1;当白眼雌蝇与红眼雄蝇杂交时,F1代雌性果蝇为红眼,而雄性果蝇为白眼,此现象又称为绞花式遗传,F2代雌性果蝇的红眼与白眼比例为1∶1,雄性果蝇的红眼与白眼比例也是1∶1 。
果蝇杂交实验-——验证分离与自由组合定律张琪同组者:吴超、李明洋 09级生物工程专业 200900140173一、实验原理果蝇是遗传实验的常用材料,本次试验利用果蝇验证孟德尔分离定律(law of segregation)与自由组合定律(the Law of Independent Assortment)。
分离与自由组合定律是遗传学的基本定律,分离定律是指在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
自由组合定律(the Law of Independent Assortment)是指非同源染色体上的决定不同对性状的基因在形成配子时等位基因分离,不同对基因(非等位基因)之间互不干扰,其实质是F1产生配子时,等位基因分离,非同源染色体上的非等位基因自由组合。
分离定律及自由组合定律可以通过子一代、子二代的表现型和数量而加以验证。
分离定律表现在两个具有相对性状的纯种个体进行杂交,F1代全部表现显性个体的性状,F1代自交,F2代出现隐性个体的性状。
并且,在理论上,F2代中,显性个体与隐性个体的比例为3:1;自由组合定律表现在亲本杂交得到F1代杂合体,再由F1代个体自交得到F2代,预计应有四种表型,其比例应接近9:3:3:1。
果蝇的突变性状较多且多为形态变异,并且果蝇的染色体较少研究也较为透彻,在验证自由组合定律时可以选取14号果蝇(残翅vg,檀黑体e;vg基因和e基因分别位于第2、3号染色体上)与18号野生型果蝇杂交,以便于防止连锁产生干扰。
另外果蝇的生长周期较为适宜,在其最适生长温度25℃条件下,一个生活周期大约12-14天。
成虫羽化12小时后处女蝇开始交配,7-8小时内取样。
时间上较为充裕而又不会太长。
杂交实验中,子代预期的遗传比率可以根据棋盘法或分枝法正确的推算,子代中基因型和表型的各种组合的概率也可根据二项式分布简单地求得。
实验六、果蝇的杂交试验一、实验目的1、了解伴性遗传和常染色体遗传的区别2、理解和验证伴性遗传和分离、连锁交换定律:3、学习和掌握基因定位的方法4、加深理解孟三个遗传定律二、实验原理红眼与白眼是一对相对性状,控制该对性状的基因(W)位于X染色体上,且红眼(W)对白眼(w)为完全显性。
当红眼雌蝇与白眼雄蝇杂交时,无论雌雄均为红眼,F2中红眼:白眼=3:1,但雌蝇全为红眼,雄蝇中红眼:白眼=1:1;反交时F1中雌蝇为红眼,雄蝇为白眼,F2中红眼:白眼=1:1,雌蝇和雄蝇中的红眼与白眼的比例均为1:1。
正常翅(Sn3)对小翅(sn3)为显性,正常刚毛(M)对焦刚毛(m)为显性,与红眼(W)和白眼(w)一样,均位于(X)染色体上。
利用三点测交的方法只需通过一次杂交和一次测交就能同时确定三个基因在染色体上的位置顺序和基因的相对距离,绘出连锁图。
让白眼小翅焦刚毛♀蝇与野生型♂蝇杂交,F1雌蝇是三杂合体:表型为野生型。
F1♂蝇是白眼焦刚毛小翅。
F1代的雌雄蝇互交实际上相当于三杂合体雌蝇与三隐性雄蝇的测交。
通过对互交后代中各种表型比例的分析,就可进行w、sn3和m等基因的定位。
三、实验材料、器具和试剂1、实验材料野生型雄蝇、雌蝇、白眼焦刚毛小翅雌雄蝇。
野生型品系:长翅,直刚毛,红眼突变型品系:小型翅,卷刚毛,白眼2、实验器具放大镜、显微镜、麻醉瓶、白瓷板、毛笔、记录本。
3实验试剂乙醚、酒精棉球、培养基。
四、实验步骤1.选处女蝇选白眼焦刚毛小翅处女蝇8只,同时选野生型处女蝇8只。
方法:将野生型和白眼焦刚毛小翅果蝇培养瓶内的成蝇全部赶去,12小时内将重新孵化出的雌雄果蝇分开,即可得所需处女蝇和雄蝇。
2.杂交将白眼焦刚毛小翅处女蝇麻醉,并挑取野生型♂蝇8只麻醉后放入培养瓶,此杂交组合可用作伴性遗传和基因定位的观察统计。
将野生型处女蝇8只麻醉,同时将同样数量的白眼焦刚毛小翅雄蝇麻醉,放入培养瓶,此组合用于分离定律和伴性遗传实验的反交。