编译在arm板上运行的内核模块
- 格式:docx
- 大小:10.95 KB
- 文档页数:2
gcc 编译 armgcc是一种广泛使用的编译器,它可以将C/C++等高级语言编写的代码转化为可执行文件。
在嵌入式领域,gcc也被用于编译ARM架构的代码。
本文将介绍如何使用gcc编译ARM架构的代码,并探讨一些相关的内容。
一、ARM架构简介ARM架构是一种广泛应用于嵌入式系统和移动设备的处理器架构。
ARM处理器具有低功耗、高性能和可扩展性等特点,因此在智能手机、平板电脑、物联网设备等领域得到了广泛的应用。
二、gcc编译器简介gcc是GNU Compiler Collection的缩写,是一款开源的编译器集合。
它支持多种编程语言,包括C、C++、Objective-C、Ada等,并且可以在多个平台上运行。
gcc具有较好的可移植性和优化能力,因此在ARM架构上的编译也得到了广泛的应用。
三、ARM架构下的交叉编译由于ARM架构和x86架构有所不同,因此在x86架构的计算机上无法直接编译ARM架构的代码。
这时候就需要使用交叉编译器来完成编译工作。
交叉编译器可以在一种架构的计算机上生成另一种架构的可执行文件。
gcc提供了ARM架构的交叉编译工具,可以在x86架构的计算机上编译ARM架构的代码。
使用交叉编译器可以方便地进行ARM开发,提高开发效率。
四、使用gcc编译ARM架构的代码下面以一个简单的C语言程序为例,介绍如何使用gcc编译ARM架构的代码。
```c#include <stdio.h>int main() {printf("Hello, ARM!\n");return 0;}```保存上述代码为hello.c,然后使用以下命令进行编译:```arm-linux-gcc -o hello hello.c```其中,arm-linux-gcc是ARM架构下的gcc编译器,-o选项用于指定输出文件的名称,hello是输出文件的名称,hello.c是输入文件的名称。
编译成功后,会生成一个名为hello的可执行文件。
linux arm内核编译流程一、编译环境准备在开始编译Linux ARM内核之前,我们需准备以下环境:1.1硬件环境:一台支持ARM架构的计算机;1.2操作系统:安装Ubuntu等Linux发行版,并确保系统已经更新至最新版本;1.3开发工具链:安装ARM交叉编译工具链,可以通过apt-get 命令进行安装;1.4内核源码:下载最新的Linux ARM内核源码,并解压至本地。
二、配置内核选项2.1进入内核源码目录:使用cd命令进入解压后的内核源码目录;2.2配置内核选项:使用make menuconfig命令来配置内核选项,可以根据需要选择不同的功能和驱动;2.3保存配置:保存配置后,将生成.config文件,保存了当前配置选项。
三、开始编译3.1清理编译环境:使用make clean命令清理之前的编译环境,确保开始编译之前处于一个干净的状态;3.2编译内核:使用make命令开始编译内核,该过程可能持续一段时间,耐心等待;3.3生成内核镜像:编译完成后,将生成zImage或uImage等内核镜像文件,可以作为启动的内核使用。
四、安装内核4.1备份原有内核:在安装新内核之前,建议备份原有系统的内核,以防出现问题时可以回滚;4.2安装内核:将编译生成的内核镜像文件拷贝至目标设备,例如通过TFTP传输或使用SD卡等方式;4.3更新引导配置:根据不同的引导方式,更新引导配置文件以使用新内核。
五、验证内核5.1重启设备:在安装完新内核后,重启设备以加载新内核;5.2查看内核版本:使用uname-a命令查看当前内核版本,确认是否为编译安装的新内核;5.3测试功能和驱动:针对所需的功能和驱动,进行相应的测试,确保内核编译和安装没有问题。
六、常见问题解决在编译内核的过程中,可能会遇到一些常见的问题,例如编译错误、功能不正常等,可以通过以下方式解决:6.1查看编译日志:在编译过程中,可以查看编译日志以了解错误的原因;6.2网上搜索:使用搜索引擎搜索相关问题,可能会有其他开发者遇到类似问题并给出解决方案;6.3参考官方文档:阅读官方文档以获取更多关于编译和安装内核的详细信息。
ARM简介及编程1.ARM简介(摘录) ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。
技术具有性能高、成本低和能耗省的特点。
适用于多种领域,比如嵌入控制、消费/教育类多媒体、DSP和移动式应用等。
ARM将其技术授权给世界上许多著名的半导体、软件和OEM厂商,每个厂商得到的都是一套独一无二的ARM相关技术及服务。
利用这种合伙关系,ARM很快成为许多全球性RISC标准的缔造者。
目前,总共有30家半导体公司与ARM签订了硬件技术使用许可协议,其中包括Intel、IBM、LG半导体、NEC、SONY、菲利浦和国民半导体这样的大公司。
至于软件系统的合伙人,则包括微软、升阳和MRI等一系列知名公司。
ARM架构是面向低预算市场设计的第一款RISC微处理器。
2.产品介绍ARM提供一系列内核、体系扩展、微处理器和系统芯片方案。
由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行(理论上如此)。
典型的产品如下。
①CPU内核--ARM7:小型、快速、低能耗、集成式RISC内核,用于移动通信。
-- ARM7TDMI(Thumb):这是公司授权用户最多的一项产品,将ARM7指令集同Thumb 扩展组合在一起,以减少内存容量和系统成本。
同时,它还利用嵌入式ICE调试技术来简化系统设计,并用一个DSP增强扩展来改进性能。
该产品的典型用途是数字蜂窝电话和硬盘驱动器。
--ARM9TDMI:采用5阶段管道化ARM9内核,同时配备Thumb扩展、调试和Harvard 总线。
在生产工艺相同的情况下,性能可达ARM7TDMI的两倍之多。
常用于连网和顶置盒。
②体系扩展-- Thumb:以16位系统的成本,提供32位RISC性能,特别注意的是它所需的内存容量非常小。
③嵌入式ICE调试由于集成了类似于ICE的CPU内核调试技术,所以原型设计和系统芯片的调试得到了极大的简化。
makefile arm编译Makefile是一种用于自动化构建项目的工具,可以帮助开发人员更方便地编译和链接程序。
在ARM架构下,Makefile也是一种常用的编译方式。
本文将介绍如何使用Makefile在ARM架构下进行编译。
为了能够正确地编译ARM架构的程序,我们需要确保系统上已经安装了ARM交叉编译工具链。
这个工具链包含了一系列的工具,如编译器、链接器等,可以将源代码编译成可在ARM架构上运行的机器码。
安装好工具链后,我们可以开始编写Makefile。
Makefile是一个文本文件,其中包含了一系列规则和命令,用于告诉Make工具如何编译和链接程序。
我们可以通过编写Makefile来定义编译的规则,如源文件和目标文件的依赖关系,以及编译和链接的命令。
下面是一个简单的Makefile示例:```CC = arm-linux-gccCFLAGS = -Wall -O2TARGET = programOBJS = main.o func.o$(TARGET): $(OBJS)$(CC) $(CFLAGS) -o $(TARGET) $(OBJS)main.o: main.c$(CC) $(CFLAGS) -c main.cfunc.o: func.c$(CC) $(CFLAGS) -c func.cclean:rm -f $(TARGET) $(OBJS)```在这个Makefile中,我们首先定义了编译器和编译选项的变量。
CC 变量指定了使用的编译器,CFLAGS变量指定了编译选项,如-Wall 表示开启所有警告信息,-O2表示启用优化。
接下来,我们定义了目标文件和源文件的变量。
TARGET变量指定了目标文件的名称,OBJS变量指定了源文件编译后生成的目标文件。
然后,我们定义了一个规则来编译目标文件。
$(TARGET): $(OBJS)表示$(TARGET)依赖于$(OBJS),即目标文件依赖于源文件。
ARM 内核寄存器和基本汇编语言讲解•一、ARM内核寄存器▪ 1.1 M3/M4内核寄存器▪ 1.2 A7内核寄存器▪ 1.3 ARM中的PC指针的值•二、ARM汇编语言▪ 2.1 ARM汇编基础▪ 2.2 汇编伪指令▪ 2.3 ARM汇编指令集•三、代码反汇编简析▪ 3.1 不同编译器的反汇编▪ 3.2 C 和汇编比较分析开头直接来看几个简单的汇编指令:MOV R0,R1MOV PC,R14上面的指令中使用了汇编MOV指令,但是其中的R0,R1,R14,PC分别是什么?哪来的?怎么用?要讲ARM 汇编语言,必须得先了解ARM的内核寄存器,内核处理所有的指令计算,都需要用到内核寄存器,所以ARM汇编里面指令大都是基于寄存器的操作。
文章前推荐韦东山老师的单片机核心视频,视频可以在韦东山老师官网里面找到:百问网ARM版本简单介绍:对于M3/M4而言:R13,栈指针(Stack Pointer)•R13寄存器中存放的是栈顶指针,M3/M4 的栈是向下生长的,入栈的时候地址是往下减少的。
•裸机程序不会用到PSP,只用到MSP,需要运行RTOS的时候才会用到PSP。
•堆栈主要是通过POP,PUSH指令来进行操作。
在执行PUSH 和 POP 操作时, SP 的地址寄存器,会自动调整。
R14 ,连接寄存器(Link Register)•LR 用于在调用子程序时存储返回地址。
例如,在使用BL(分支并连接,Branch and Link)指令时,就自动填充 LR 的值(执行函数调用的下一指令),进而在函数退出时,正确返回并执行下一指令。
如果函数中又调用了其他函数,那么LR将会被覆盖,所以需要先将LR寄存器入栈。
•保存子程序返回地址。
使用BL或BLX时,跳转指令自动把返回地址放入r14中;子程序通过把r14复制到PC来实现返回•当异常发生时,异常模式的r14用来保存异常返回地址,将r14如栈可以处理嵌套中断R15,程序计数器(Program Count)•在Cortex-M3中指令是3级流水线,出于对Thumb代码的兼容的考虑,读取pc时,会返回当前指令地址+4的值。
张凌001关于ARM的内核架构很多时候我们都会对M0,M0+,M3,M4,M7,arm7,arm9,CORTEX-A系列,或者说AVR,51,PIC等,一头雾水,只知道是架构,不知道具体是什么,有哪些不同?今天查了些资料,来解解惑,不是很详细,但对此有个大体了解。
咱先来当下最火的ARM吧1.ARMARM即以英国ARM(Advanced RISC Machines)公司的内核芯片作为CPU,同时附加其他外围功能的嵌入式开发板,用以评估内核芯片的功能和研发各科技类企业的产品.ARM 微处理器目前包括下面几个系列,以及其它厂商基于 ARM 体系结构的处理器,除了具有ARM 体系结构的共同特点以外,每一个系列的 ARM 微处理器都有各自的特点和应用领域。
- ARM7 系列- ARM9 系列- ARM9E 系列- ARM10E 系列- ARM11系列- Cortex 系列- SecurCore 系列- OptimoDE Data Engines- Intel的Xscale- Intel的StrongARM ARM11系列2. Cortex 系列32位RISCCPU开发领域中不断取得突破,其设计的微处理器结构已经从v3发展到现在的v7。
Cortex 系列处理器是基于ARMv7架构的,分为Cortex-M、Cortex-R和Cortex-A三类。
由于应用领域的不同,基于v7架构的Cortex处理器系列所采用的技术也不相同。
基于v7A的称为“Cortex-A系列。
高性能的Cortex-A15、可伸缩的Cortex-A9、经过市场验证的Cortex-A8处理器以及高效的Cortex-A7和Cortex-A5处理器均共享同一体系结构,因此具有完整的应用兼容性,支持传统的ARM、Thumb指令集和新增的高性能紧凑型Thumb-2指令集。
1Cortex-M系列Cortex-M系列又可分为Cortex-M0、Cortex-M0+、Cortex-M3、Cortex-M4;2Cortex-R系列Cortex-R系列分为Cortex-R4、Cortex-R5、Cortex-R7;3Cortex-A 系列Cortex-A系列分为Cortex-A5、Cortex-A7、Cortex-A8、Cortex-A9、Cortex-A15、Cortex-A50等 ,同样也就有了对应内核的Cortex-M0开发板、Cortex-A5开发板、Cortex-A8开发板、Cortex-A9开发板、Cortex-R4开发板等等。
arm32程序编译命令1.引言1.1 概述在计算机科学领域中,arm32程序编译命令是一种用于将arm32汇编语言或C/C++代码编译成可执行文件的工具集合。
arm32指的是32位的ARM架构,ARM是一种广泛使用的嵌入式处理器架构,被广泛应用于移动设备、嵌入式系统和单片机等领域。
编译是将高级语言代码转换为机器语言的过程,arm32程序编译命令的主要目标是将arm32程序代码转换为可在arm32架构的处理器上执行的二进制文件。
这些命令集合通常包含了编译器、链接器、汇编器以及其他相关工具,可以对arm32程序进行编译、链接和优化等操作。
arm32程序编译命令的重要性不言而喻,它们是开发arm32架构应用程序和系统的关键工具。
通过使用这些命令,开发人员可以将高级语言代码转换为可在arm32架构上运行的机器代码,从而实现特定功能或解决特定问题。
在本文中,我们将探讨一些arm32程序编译命令的要点。
这些要点将涉及编译器的使用、编译选项的设置、库文件的链接以及代码优化等方面。
通过了解和掌握这些关键要点,读者将能够更加高效地编译和优化arm32程序,提升软件性能和可靠性。
下一章节将介绍arm32程序编译命令的具体要点,包括如何正确设置编译器选项以及如何进行代码优化等内容。
1.2 文章结构本文将按照以下结构进行阐述和讨论arm32程序的编译命令。
第一部分,引言,旨在为读者提供对本文的整体概述和理解。
在引言中,将介绍arm32程序编译命令的背景和意义,并对本文的结构和目的进行简要说明。
第二部分,正文,主要讨论arm32程序编译命令的要点。
具体而言,本节将重点介绍两个要点:arm32程序编译命令要点1和arm32程序编译命令要点2。
在每个要点中,将详细阐述相关的基本概念、编译命令的使用方法和常见情况下的注意事项。
第三部分,结论,对整个文章进行总结和展望。
在总结中,将简要回顾本文的主要内容和要点,并强调其在arm32程序编译中的重要性和实际应用价值。
编译在arm板上运行的内核模块
前两天被这个事情搞晕了,看视频的时候感觉编译一个内核模块很简单的,
就是修改makefile 的两个地方,但是自己一做就出现问题了,因为我是自己自
学的,身边没有可以指导的人,所以很多都要靠自己摸索了,我自己编译的时
候出现很多警告信息和错误,提示找不到头文件,还有一些看不懂的信息,到
处找资料,但是都没有说清楚,看了很久也没看出什么对自己有用的东西,看
的头晕,准备放弃了,今天在学习的时候又去看结果看到一篇博文,才焕然大
悟,makefile 里面要改的源代码路径是移植到arm 板上的linux 源代码,才突然
想起来,我自己改错了,就是要把路径指上你开发板上运行的linux 内核源代
码的顶层路径,我是用的通过nfs 启动系统的,是按照国嵌的视频一步步做的,
所以我的路径在我的nfs 所在的路径。
这些问题对于一些学了很久的人来说可
能很低级,但是对于初学者来说可能碰到后半天搞不好,所以写下来供参考。
下面是我自己找的一个小实验:
#include #include MODULE_LICENSE(“GPL”);MODULE_AUTHOR(“David Xie”);MODULE_DESCRIPTION(“Hello World Module”);MODULE_ALIAS(“a simplest module”);static int __init hello_init(){ printk(KERN_EMERG”Hello World!\n”);return 0;}static void __exit hello_exit(){ printk(KERN_EMERG “Goodbye Cruel World!\n”);}module_init(hello_init);module_exit(hello_exit);第一步是编译,首先要做的是设置交叉编译器,修改makefile,打开makefile 文件,
如下:ifneq ($(KERNELRELEASE),)obj-m := hello.oelseKDIR := /forlinux/kernel/linux-2.6.28all:make -C $(KDIR) M=$(PWD) modules ARCH=arm CROSS_COMPILE=arm-linux-clean:rm -f *.ko *.o *.mod.o *.mod.c *.symversendif 首先需要指定kernel 的源代码路径:我的是KDIR。