变频器控制电路设计方法
- 格式:ppt
- 大小:1.41 MB
- 文档页数:16
《变频及伺服应用技术》优质教案一、教学内容本节课选自《电气自动化技术》教材第十二章《变频及伺服应用技术》,详细内容包括:变频调速原理、变频器的种类及选型、变频器控制电路设计、伺服系统的组成及原理、伺服驱动器的应用和调试。
二、教学目标1. 掌握变频调速的原理及其在实际工程中的应用。
2. 学会分析变频器的种类及选型,能根据实际需求进行合理选择。
3. 能够设计简单的变频器控制电路,并了解伺服系统的组成及原理。
三、教学难点与重点重点:变频调速原理、变频器及伺服驱动器的选型和应用。
难点:变频器控制电路设计、伺服系统的调试。
四、教具与学具准备1. 教具:PPT、板书、实物模型、示波器、万用表。
2. 学具:笔记本、教材、实验箱、变频器、伺服驱动器。
五、教学过程1. 导入:通过展示实际工程中应用的变频及伺服系统,引起学生兴趣,引出本节课的主题。
2. 理论讲解:(1)变频调速原理:讲解变频器的工作原理,以及变频调速的优点。
(2)变频器种类及选型:分析不同类型变频器的特点,指导学生如何进行选型。
(3)变频器控制电路设计:讲解设计方法,结合实例进行说明。
(4)伺服系统组成及原理:介绍伺服系统的基本构成,讲解其工作原理。
(5)伺服驱动器应用及调试:分析伺服驱动器的应用场景,讲解调试方法。
3. 实践操作:(1)学生分组进行变频器控制电路的设计与搭建。
(2)学生进行伺服系统的调试,观察并记录实验数据。
4. 例题讲解:结合教材中的例题,进行详细讲解,巩固所学知识。
5. 随堂练习:布置相关的练习题,让学生及时巩固所学知识。
六、板书设计1. 变频调速原理2. 变频器种类及选型3. 变频器控制电路设计4. 伺服系统组成及原理5. 伺服驱动器应用及调试七、作业设计1. 作业题目:(1)简述变频调速原理及其优点。
(2)分析变频器选型的依据,举例说明。
(3)设计一个简单的变频器控制电路。
(4)简述伺服系统的组成及工作原理。
2. 答案:(1)见教材第十二章第一节。
变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。
其控制方式经历以下四代。
(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。
其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。
他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。
以内切多边形逼近圆的方式而进行控制的。
经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。
但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
(3)第三代以矢量控制(磁场定向法)又称VC控制。
其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。
通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。
(4)第四代以直接转矩控制,又称DTC控制。
其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。
具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。
1. 引言变频器(Variable Frequency Drive,VFD)是一种通过控制电源电压和频率来实现电机转速调节的设备。
它在工业控制领域中广泛应用,能够提供高效、精准的电机控制,实现节能和增强设备性能的目标。
本文将介绍一个典型的变频器设计方案,包括硬件和软件设计。
2. 变频器硬件设计2.1 电源电路设计变频器需要提供稳定的电源供电,同时还需要保护电机和电源不受电网的干扰和故障。
在电源电路设计中,需要考虑以下几个关键因素:•电源的稳定性和可靠性:选择高质量的电源组件,如电容、电感和变压器,以确保电源的输出电压和频率的稳定性。
•过电压和过电流保护:使用快速保险丝或保护电路来防止电机和电源过载。
•滤波电路:采用电源滤波器来消除电网中的高频噪声和干扰。
2.2 控制电路设计控制电路是变频器的核心部分,负责接收用户输入的指令,并通过 PWM(脉宽调制)技术来控制电源的输出电压和频率。
在控制电路设计中,需要考虑以下几个关键因素:•微控制器选择:选择适合的微控制器来执行电机控制算法。
常用的微控制器有 PIC、AVR 和 STM32 等。
•PWM生成:使用微控制器的定时器和输出比较器来生成 PWM 信号,并根据用户的输入来调节占空比和频率。
•保护功能:设计过流、过温和电机转速保护功能,以保护电机和变频器免受损坏。
2.3 输出级设计输出级负责将控制电路生成的 PWM 信号转换为高压交流信号驱动电机。
它由功率半导体器件(如 IGBT 或 MOSFET)、保护电路和电路保护元件组成。
在输出级设计中,需要考虑以下几个关键因素:•功率器件选择:根据电机的功率和工作特性选择合适的功率半导体器件,以提供足够的电流和电压。
•温度管理:设计散热器和风扇来控制功率器件的温度,在高负载情况下保持电路的稳定性。
•短路和过电流保护:使用保护电路来检测电机的过电流和短路,及时切断输出电路,以保护电机和变频器。
3. 变频器软件设计变频器的软件设计主要包括电机控制算法和用户界面设计。
变频器应用技术教案完整版一、教学内容本节课我们将学习《电气自动化技术》教材第十二章“变频器的应用技术”。
具体内容包括:变频器的基本工作原理、变频器的选型与安装、变频器在实际工程中的控制电路设计及运行调试。
二、教学目标1. 理解变频器的工作原理,掌握变频器的选型和使用方法。
2. 学会设计变频器控制电路,并能进行运行调试。
3. 培养学生动手实践能力和问题解决能力。
三、教学难点与重点重点:变频器的工作原理、选型与安装、控制电路设计。
难点:变频器控制电路的设计与运行调试。
四、教具与学具准备1. 教具:PPT、实验设备(变频器、电机、传感器等)。
2. 学具:笔记本、实验报告册。
五、教学过程1. 导入:通过展示一个实际工程中变频器应用的案例,引导学生思考变频器的作用及其重要性。
2. 理论讲解:(1)介绍变频器的工作原理。
(2)讲解变频器的选型与安装。
(3)分析变频器控制电路的设计方法。
3. 实践操作:(1)分组进行变频器控制电路的设计。
(2)学生动手安装变频器和电机,并进行接线。
(3)进行运行调试,观察电机运行状态。
4. 例题讲解:以一个实际工程为例,讲解变频器控制电路的设计过程,让学生更好地理解理论知识。
5. 随堂练习:设计一个简单的变频器控制电路,并让学生分析其工作原理。
六、板书设计1. 变频器的工作原理2. 变频器的选型与安装3. 变频器控制电路设计方法4. 实践操作步骤及注意事项七、作业设计1. 作业题目:(1)简述变频器的工作原理。
(2)设计一个变频器控制电路,并说明其工作过程。
2. 答案:(1)变频器工作原理:通过改变电机供电频率,实现电机转速的调节。
八、课后反思及拓展延伸1. 反思:本节课学生掌握情况良好,但对变频器控制电路的设计仍存在一定难度,需要在课后加强练习。
2. 拓展延伸:(1)研究变频器在其他领域的应用,如空调、电梯等。
(2)学习变频器的故障诊断与维修方法,提高实际工程应用能力。
重点和难点解析1. 变频器的工作原理2. 变频器的选型与安装3. 变频器控制电路设计方法4. 实践操作步骤及注意事项一、变频器的工作原理1. 电力电子器件:了解各类电力电子器件的工作原理、特性和选型方法。
利用单片机设计通用变频器通用变频器是一种利用单片机进行控制的电气装置,能够调节电机运行的频率,从而控制电机的转速。
它广泛应用于各种机械设备中,如电梯、空调、水泵、风扇等,可以提高电机的效率和可控性。
本文将从原理、设计过程、功能特点以及应用领域等方面介绍通用变频器的设计。
首先,通用变频器的原理是利用单片机实现对电机供电电压的调节,从而改变电机的频率和转速。
单片机通过接收外部传感器的反馈信号,对输出电压进行实时调整,使电机的转速保持在预设的范围内。
常见的单片机型号有AT89C51、STM32F103等,它们能够满足通用变频器的设计要求。
其次,通用变频器的设计过程包括硬件设计和软件设计。
硬件设计部分主要是选取合适的电机和驱动电路,确定输入和输出电压的范围,以及搭建必要的传感器和控制电路。
软件设计部分则是编写单片机的控制程序,对输入信号进行采样和处理,然后通过PWM信号控制电机转速的调节。
在功能特点方面,通用变频器具有以下几个主要特点:首先,它具有高效节能的特点,通过控制电机的转速,可以根据实际负载情况动态调整电机运行的频率和电压,以达到最优的效果。
其次,通用变频器具有稳定性好的特点,单片机控制的精度高,可以实时监测电机的运行状况并进行调整,使电机保持稳定运行。
再次,通用变频器具有多功能的特点,可以通过调整单片机的控制程序,实现电机的正反转、启停控制、加减速控制等多种功能。
最后,通用变频器具有智能化的特点,单片机可以通过与其他设备的通讯接口,实现远程监控和控制。
通用变频器广泛应用于各个行业,如工业自动化、交通运输、农业和家庭电器等。
在工业生产中,通用变频器可以提高生产效率,减少电能消耗,同时也可以降低机械设备的损耗和维护成本。
在交通运输领域,通用变频器可以用于电梯、卷闸门、自动扶梯等设备的控制,提供安全和便利。
在农业领域,通用变频器可以用于水泵、灌溉设备等的控制,提高灌溉效率和水资源利用率。
在家庭电器中,通用变频器可以应用于空调、洗衣机等设备的控制,提供舒适和节能。
三电平变频器主电路的设计摘要:本文介绍了三电平变频器主电路的设计与实现。
首先,对不同拓扑结构的三电平变频器进行了比较与分析,选择了基于NPC结构的变频器。
其次,详细探讨了主电路的设计与参数计算,包括电容器选型、IGBT模块的配置、电感线圈的设计等。
最后,进行了仿真验证,结果表明所设计的三电平变频器主电路具有高性能的特点。
关键词:三电平变频器,NPC结构,主电路设计,电容器选型,电感线圈设计正文:一、引言随着交流调速技术的应用越来越广泛,三电平变频器作为一种重要的交流调速装置,得到了越来越广泛的应用。
三电平变频器主要解决了传统变频器因过大过小等问题导致效率不高和输出电磁干扰等问题。
因此,本文将着重介绍三电平变频器主电路的设计与实现,旨在提供一个完整的可操作参考。
二、三电平变频器拓扑结构的选择常见的三电平变频器拓扑结构有:基于H桥结构的全桥式、基于三相桥结构的三相桥式、基于NPC结构的NPC式等。
这些结构各有优劣,但基于NPC结构的三电平变频器因其电路简单、转换效率高等优点而广泛应用。
基于NPC结构的三电平变频器由三个相同的电平器串联组成,其主要优势在于:1)有较低的电路电压应力,利于IGBT模块的配置;2)以及能够为每个桥臂提供三种不同的信号电平输出,利于进一步减小输出谐波和电磁干扰。
三、主电路的设计1. 电容器选型在三电平变频器中,电容器是非常重要的部件。
适当的电容器容量可以减小电路谐波、降低电路电压应力和减少损耗。
本设计中选用了900μF的磁性耦合电容器。
2. IGBT模块的配置IGBT模块是主电路中的核心部件,因此其配置需要详细考虑。
本文使用了1200V/450A的模块,可满足工业级大功率需求。
3. 电感线圈设计电感线圈是三电平变频器中的另一关键部件,可以减小输出谐波和降低过流风险。
本文设计了两个电感线圈,分别为50mH和100mH的线圈。
四、仿真验证与实验结果本文使用PSIM软件对所设计的三电平变频器主电路进行了仿真分析。
辽宁工业大学交流调速控制系统课程设计(论文)题目:电流型变频器的主电路参数计算及设计院(系):电气工程学院专业班级:自动化102学号: 100302043学生姓名:齐绍军指导教师:(签字)起止时间: 2013.06.24-2013.07.07课程设计(论文)任务及评语院(系):电气工程学院教研室:自动化教研室Array注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要带变频器起动时,电动机能获得优良的性能。
本文详细介绍了用于电动机起动的电流型变频器主电路元件参数计算及选择方法。
设计电流型变频器的主电路和控制电路。
根据所学知识,利用如:电流连续原则,晶闸管耐压指标公式,经验公式等交流调速公式对所设计的电流型变频器的主电路进行参数计算:包括功率计算、电流计算、电压计算,在参数计算的基础上对已有的元器件型号进行选取:包括变压器、晶闸管、电抗器、电容、IGBT、二极管。
关键词:变频器;参数;计算;电流型;设计目录第1章绪论 (1)第2章课程设计的方案 (3)2.1概述 (3)2.2变频器组成总体结构 (3)第三章变频器主电路及控制电路 (5)3.1主电路 (5)3.2控制电路 (6)第四章主电路参数计算及器件选取 (9)4.1参数计算 (9)4.2器件选取 (10)第五章课程设计总结 (14)参考文献 (15)第1章绪论随着电气传动技术,尤其是变频调速技术的发展,作为大容量传动的高压变频调速技术也得到了广泛的应用。
高压电机利用高压变频器可以实现无级调速,满足生产工艺过程对电机调速控制的要求,以提高产品的产量和质量,又可大幅度节约能源,降低生产成本。
近年来,各种高压变频器不断出现,高压变频器到目前为止还没有像低压变频器那样近乎统一的拓扑结构。
根据高压组成方式可分为直接高压型和高-低-高型,根据有无中间直流环节来分,可以分为交-交变频器和交-直-交变频器,在交-直-交变频器中,按中间直流滤波环节的不同,可分为电压源型和电流源型。
变频调速基本原理及控制原理1.基本原理:目前使用较多的是“交—直—交”变频,原理如图1所示,将50Hz交流整流为直流电Ud,再由三相逆变器将直流逆变为频率可调的三相交流供给鼠笼电机实现变频调速。
2.控制原理:变频调速装置主电路(见图2)由空气开关QF1,交流接触器KM1和变频器VF组成,由安装在配电柜面板上的转换开关SA,复位开关SB;或安装在现场防爆操作柱上启动按钮SB 和停止按钮SB2控制VF的运行:(1)启动VF时必须先合上QF1和QF2,使SA置于启动位置,KM1便带动电触点闭合,来电显示灯HL2亮;此时按下SB,也可以按下现场SB1使KA1带电触点闭合,VF投入运行同时运行指示灯HL3亮。
(2)需要停止VF时,按下SB2使KA1失电,VF停止运行,此时HL3灭;置SA于停止位置,KM1断开同时HL1亮表示停机。
(3)如果在运行过程中VF有故障FLA、FLC端口将短接,KA2带电,KM带电其触点断开,同时故障指示灯HL3亮并报警。
由于工艺条件复杂,实际运行过程中有多方面不确定因素,为安全其见,每台变频器均加有一旁路接触器KM2;如果KM1或VF发生故障时保证电机仍能变频运行。
变频调速实行闭环负反馈自动控制即由仪表装置供给变频器1V和CC端口4~20MA电信号,靠信号大小改变来控制VF频率高低变化达到调节电动机转速和输出功率的目的,使泵流量和实际工艺需求最佳匹配,实现仪表电气联合自动控制体系。
二、实际运用分析1.变频调速实行工艺过程控制,由于生产流程和工艺条件的复杂性;不通过实践有些问题不被人们认识,只有通过实践才能找出解决这此问题方法和途径。
在闭环控制回路中,变频器作用类似风开式调节阀,对于实用风关式调节阀控制回路需在变频器上设定最低下降频率,当仪表装置故障时变频器输出最低频率,保证电机运转,维持工艺流程最低安全量,不至于生产中断。
变频器下限频率设定必须通过实际测试,不能随意变动。
就拿P6101A 脱丙烷塔进料泵来说,当时调试时当仪表信号4AM时,变频器输出频率10Hz,此时根本达不到工艺需要流量,通过仪表、电气专业人员多测试设定4MA信号输出23Hz能达到最低安全量,故23Hz 便没定为法定下限参数,这样既可保证工艺安全运行又有27Hz的频率调节范围。
变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。
逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。
最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。
一.设计思路通用型变频器的硬件电路主要由3部分组成:整流电路、开关电源电路以及逆变电路。
整流电路将工频交流电整流为直流,并经大电容滤波供给逆变单元; 开关电源电路为IPM和计算机控制电路供电;逆变电路是由PM50RSA120组成。
二.控制回路 1.整流电路整流电路中,输人为380V工频交流电。
YRl〜YR3为压敏电阻,用于吸收交流侧的浪涌电压,以免造成变频器损坏。
输人电源经二极管整流桥6R130G-160整流为直流,并经电的作用。
发光二极管用于指示变频器的工作状态。
Rl是启动过程中的限流电阻,由El〜E4大电容滤波后成为稳定的直流电压,再经电感和电容滤波后作为逆变单元和开关电源单元的电源。
R2和R3是为了消除电容的离散性而设置的均压电阻,同时还起到放于E1〜E4容量较大,上电瞬间相当于短路,电流很大,尺l可以限制该电流大小,电路正常状态后由继电器RLYl将该电阻短路以免增加损耗。
继电器的控制信号SHORT来自于计算机,上电后延时一定时间计算机发出该信号将电阻切除。
R1应选择大功率电阻,本电路中选择的是20W的水泥电阻,而且为了散热该电阻安装时应悬空。
电路中的+5V、+12V和±15V电压是由开关电源提供的电压。
LVl是电压传感器,用于采集整流电压值,供检测和确定控制算法用。
UDCM是电压传感器的输出信号。
通过外接插排连接至外接计算机控制电路。
2.开关电路输出电压进行变换,为IPM 模块和外接的计算机控制电路提供电源,提供的电压为土该电路主要由PWM控制器TL3842P、MOSFETK1317和开关变压器组成, 其功能是对整流电路的流15V、+1直2V、+5v。
3.IPM 的控制电路在电路中,HCPL4504是高速光耦,隔离计算机信号与变频器控制板,LM 、UM 是算机输入,控制对应的IGBT 导通的控制信号,VNI 、WN 、F0、VNC 为对应IGBT 的信号引脚。
P521是光电隔离器件,其输出信号FOUT 是错误信号,表明IPM 内部 出现错误,通过计算机响应进行错误处理。