常见其他电焊裂纹形成与控制
- 格式:pdf
- 大小:176.98 KB
- 文档页数:3
铜电阻焊焊缝裂纹
铜电阻焊焊缝裂纹的原因如下:
1.结晶裂纹:焊接熔池凝固结晶时,在液相与固相并存的温度区间,由于结晶偏析和收缩应力应变的作用,焊接金属沿一次结晶晶界形成的裂纹。
2.液化裂纹:焊接过程中,在焊接热循环峰值温度作用下,在多层焊缝的层间金属与母材近缝区金属中,由于晶间金属受热重新熔化,在一定的收缩应力作用下,沿奥氏体晶界开裂的现象。
3.高温低塑性裂纹:在液相结晶完成以后,焊接金属从材料的塑性恢复温度开始冷却,对于某些材料,当冷却到一定的温度范围内,由于应变速率和一些冶金因素的相互作用,引起塑性下降,导致焊接金属沿晶界开裂。
4.焊接温度过高或过低:焊接温度过高时,会导致焊点热裂;焊接温度过低时,会导致焊缝太窄,无法达到合适的强度。
5.热处理不当:热处理的过程和温度也会影响焊点的质量和强度。
6.材料质量问题:铜线本身的质量也是影响焊点质量的重要因素。
7.焊接过程中振动或应力过大:焊接过程中,若受到振动或者应力过大的作用,也会导致焊点开裂。
常见焊接缺陷的成因与控制措施摘要:在实际的焊接工作过程中,控制焊接是实际的安装工程当中一项非常重要的工序,但是由于焊接在实际的工作过程中有可能会发生各种不确定的问题,这样一来就很容易导致实际的焊接过程中出现各种类型的风险,这就需要相关的工作人员不断总结缺陷形成的原因。
本文研究常见焊接缺陷的成因与控制措施。
关键词:常见;焊接缺陷;成因;控制措施焊接这项技术在较为大型的安装工程以及相关工程的实际建造过程中起到非常关键的作用,并且焊接的实际质量也会直接影响到整个工程的实际质量,以及该工程在后续的使用过程中的安全性也会直接受到焊接质量的实际影响。
在实际的焊接工作过程,相关的工作人员一定要切实分析焊接缺陷的实际原因,并且要能够采取相应的控制措施。
1.焊接缺陷的成因分析1.1气孔气孔是焊接技术在实际操作过程中常见的焊接缺陷之一,气孔出现的主要原因是在实际的焊接过程中,熔池内部的许多气泡都在等待凝固的过程中被完整地保留下来,这样一来就会在焊接的结构当中形成空穴。
在一般的情况下,焊接过程中造成气孔形成的气体主要有两种。
第一种是在高温的情况下融入到液体当中的金属成分,在等待液体进行冷却凝固的过程中会因为液体实际溶解度的下降而形成一定的气体,而气体的主要类型有氢气以及氦气等。
另一种则是在熔池中通过相关的化学冶金反应而形成了不能够溶解在金属液体当中气体,在这种情况下的气体类型主要有一氧化碳、水蒸气等。
但是上述所提到的两种气体自身的化学性质以及形成条件都有着较大的差异,因此这两种情况所实际形成的气孔在焊接结构当中的实际分布范围以及分布特征都存在着较大的差异。
在实际的焊接过程中,气孔实际的生成条件主要有两种。
第一种,在实际的焊接过程中,实际应用的焊条或者是相关的焊剂并没有按照相关的焊接标准或者是焊接规则进行相应的烘焙工作,或者是实际使用的焊芯出现了较为严重的锈蚀情况,如果在实际焊接过程中出现了上述的情况,那么气孔就大概率会出现在实际的焊接结构当中。
1、焊接夹渣焊接夹渣缺陷是指焊后熔渣残留在焊缝中的情况。
夹渣主要有金属夹渣即夹铝或夹铜和非金属夹渣即焊条药皮、焊剂、硫化物、氧化物或氮化物留存在焊缝中。
夹渣产生的主要原因是破口清理不彻底、坡口尺寸不符合设计要求、焊条质量不合格等。
2、焊接凹坑焊接凹坑是指在收弧和断弧时操作不当而在焊道末端形成的凹陷部分。
主要产生的原因是焊接材料在焊接过程中停留时间不够,填充金属不够导致的。
其危害是导致焊缝的横截面减少,凹坑处容易产生偏析或杂质汇集,从而易形成气孔、灰渣或裂纹。
3、焊接裂纹焊接裂纹主要是指焊缝中金属原子结合遭到破坏,从而形成新的界面而形成的裂缝。
焊接裂纹按温度可分为热裂纹、再热裂纹、冷裂纹、层状撕裂。
裂纹再焊接工艺里是最严重的一种缺陷,也是导致焊接结构失效而引发事故的主要原因。
4、焊接气孔焊接气孔主要是在熔池中的气泡在金属凝固时未能及时逸出而形成的空穴。
其主要产生原因是电弧保护不到位,弧太长或者焊接材料有锈,气体保护介质不纯以及坡口处理不到位。
5、焊接咬边焊接咬边是指沿着焊趾,在焊件部分形成凹陷或者沟槽。
主要形成原因是焊接参数选择不正确、焊速太慢、电弧拉得太长、电流过大、焊枪位置不准确导致。
其危害导致焊件工作截面减小,咬边处应力集中。
6、焊接焊瘤焊瘤是指金属溢流到加热不足的焊件或焊缝上,未能与焊件和金属熔合在一起而堆积的金属缺陷。
主要形成原因是焊接参数选择不符合设计要求、焊接坡口清理不到位、焊接速度太慢等。
7、焊接局部烧穿焊接局部烧穿是指焊接过程中,焊接部位熔透至坡口背面,形成穿孔现象。
主要产生原因是焊接电流太大、焊件加热过高、坡口对接空隙太大、焊接速度太慢、电弧停留时间太长等8、焊接未焊透焊接未焊透是指焊缝的熔透深度小于板厚时形成的。
在单面时,焊缝熔透到达不了焊件底部;双面焊时两道焊缝熔深总厚度小于焊件厚度而形成的。
主要形成原因有焊条位置不准确,偏离中心位置;坡口角度太小,焊接空隙小钝边太大;电流太小等。
钢筋电弧焊质量通病及防治措施1、尺寸偏差1).现象(1)帮条或搭接长度不足。
(2)帮条沿接头中心线纵向偏移。
(3)接头处钢筋轴线弯折和偏移。
(4)焊缝尺寸不足或过大。
2).原因分析焊前准备工作没有做好,操作马虎;预制构件钢筋位置偏移过大;下料不准等。
3).防治措施预制构件制作时应严格控制钢筋的相对位置;钢筋下料和组对应由专人进行,合格后方准焊接;焊接过程中应精心操作。
2、焊缝成形不良1).现象焊缝表面凹凸不平,宽窄不匀。
这种缺陷虽然对静载强度影响不大,但容易产生应力集中,对承受动载不利。
2).原因分析焊工操作不当;焊接参数选择不合适。
3).预防措施选择合适的焊接参数;要求焊工精心操作。
4).治理方法仔细清渣后精心补焊一层。
3、焊瘤1).现象焊瘤是指正常焊缝之外多余的焊着金属。
焊瘤使焊缝的实际尺寸发生偏差,并在接头处形成应力集中区。
2).原因分析(1)熔池温度过高,凝固较慢,在铁水自重作用下下坠形成焊瘤。
(2)坡口立焊、帮条立焊或搭接立焊中,如焊接电流过大,焊条角度不对或操作手势不当也易产生这种缺陷。
3).防治措施(1)熔池下部出现“小鼓肚”时,可利用焊条左右摆动和挑弧动作加以控制。
(2)在搭接或帮条接头立焊时,焊接电流应比平焊适当减少,焊条左右摆动时在中间部位走快些,两边稍慢些。
(3)焊接坡口立焊接头加强焊缝时,应选用直径3.2mm的焊条,并应适当减小焊接电流。
4、咬边1).现象焊缝与钢筋交界处烧成缺口没有得到熔化金属的补充,特别是直径较小钢筋的焊接及坡口立焊中,上钢筋很容易发生这种缺陷。
2).原因分析焊接电流过大,电弧太长,或操作不熟练。
3).防治措施选用合适的电流(表17-7),避免电流过大。
操作时电弧不能拉得过长,并控制好焊条的角度和运弧的方法。
5、电弧烧伤钢筋表面1).现象钢筋表面局部有缺肉或凹坑。
电弧烧伤钢筋表面对钢筋有严重的脆化作用,尤其是Ⅱ、Ⅲ级钢筋在低温焊接时表面烧伤,往往是发生脆性破坏的起源点。
包墙鳍片拼缝焊接裂纹产生的原因分析及解决措施锅炉包墙鳍片拼缝在焊接过程中,极易出现裂纹,为保证锅炉密封质量,分析包墙拼缝焊接裂纹产生的原因,并采取切实有效的防止及解决措施,具有十分重要和必要的意义。
标签:包墙鳍片;焊接;裂纹【Abstract】It is very easy to appear welding cracks in welding process for Wrapped Wall fin. In order to ensure the boiler sealing quality,analyzing the causes and taking effective measures to prevent and resolve is very important and necessary.【Key Words】Wrapped Wall fin welding cracks1 前言1.1焊接裂纹的特点及其危害焊接裂纹,是焊接件中最常见的一种严重缺陷,在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。
裂纹影响焊接件的安全使用,是一种非常危险的工艺缺陷。
焊接裂纹不仅发生于焊接过程中,有的还有一定潜伏期,有的则产生于焊后的再次加热过程中。
在火力发电厂中,前、后炉膛的拼缝因焊接工艺、施焊顺序、上道工序、环境等因素,常常会出现较多焊缝裂纹,严重影响了锅炉的密封质量,如若处理不当,将给机组运行带来了不可估量的危害和经济损失。
1.2焊接项目简介某工程锅炉包墙鳍片材质为15CrMo,厚度为6mm,由于管屏同集箱组合焊口焊接的需要,对口时在鳍片中心采用火焰切割的方式切割有长约300mm的切缝。
按照常规做法,切缝一端开口,另一端分成两条45°交叉的小焊缝。
组合焊口完成后即组织对割开的切缝进行拼缝焊接,接头形式为对接无坡口双面焊,施工工艺采用R307焊条手工电弧焊方法进行焊接,焊接顺序为先进行上部平焊位置焊接,然后进行下部仰焊位置焊接。
电阻焊常见缺陷及产生原因电阻焊是一种常见的金属连接焊接方法,适用于焊接各种金属材料,具有焊接速度快、质量稳定等优点。
然而,电阻焊在焊接过程中常常会出现一些缺陷,这些缺陷可能导致焊接接头质量下降,甚至导致焊接接头的失效。
下面将介绍电阻焊常见的缺陷及其产生原因。
1. 焊点开裂焊点开裂是电阻焊中常见的缺陷之一。
产生焊点开裂的主要原因有以下几点:(1)焊机参数设定不合理:电阻焊过程中,电流、压力和时间等参数的设定对焊点质量有重要影响。
如果设定的参数不合适,焊接接头在冷却的过程中可能会发生应力的集中,导致焊点开裂。
(2)材料选择不合理:焊点开裂也与焊接材料的选择有关。
不适合电阻焊接的材料、有裂纹或疲劳裂纹的材料进行焊接,容易导致焊点开裂。
(3)大尺寸焊点:焊点尺寸过大时,焊接接头表面的应力集中,从而容易导致焊点开裂。
(4)材料不均匀性:焊接材料的成分、组织和性能不均匀,容易导致焊点开裂。
2. 电晕电晕是指焊点周围发生的烧伤或者部分燃烧的现象。
电晕的主要原因有以下几点:(1)焊接表面不洁净:焊接表面有油脂、氧化皮、涂层等污染物时,往往会引发焊点周围的电晕。
(2)焊接电流过大:焊接电流过大,会产生较高的电弧能量,容易引起焊接区域局部温度过高,从而导致电晕的发生。
(3)焊接参数设定不合理:焊接过程中,电流、压力和时间等参数的设定不合理,也会导致电晕的发生。
3. 气孔气孔是指焊接接头中产生的孔洞状缺陷。
气孔的产生原因主要有以下几点:(1)焊接区域含有气体:焊接区域杂质、氧化物或者其他含气体的物质,会在焊接过程中释放出气体,进而产生气孔。
(2)焊接材料含水量高:焊接材料含有过多的水分,焊接过程中蒸发的水分会形成气泡,从而形成气孔。
(3)焊接区域氧气过量:焊接区域的氧气含量过高,氧气和金属之间的反应会产生气体,并形成气孔。
4. 金属飞溅金属飞溅是指焊接过程中,熔融金属在电极与焊件之间产生的喷溅现象。
金属飞溅的产生原因主要有以下几点:(1)电流过大:焊接电流过大,熔融金属的喷溅量会增加,从而导致金属飞溅的产生。
常见的焊接缺陷(1)常见的焊接缺陷(1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。
未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。
(2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。
(3)气孔:在熔化焊接过程中,焊缝金属内的气体或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。
尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。
某钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,未焊透某钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,密集气孔(4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。
视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。
另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。
W18Cr4V(高速工具钢)-45钢棒对接电阻焊缝中的夹渣断口照片钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,局部夹渣钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,两侧线状夹渣钢板对接焊缝X射线照相底片V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨(5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
电阻焊常见缺陷及产生原因电阻焊是一种常见的焊接方法,广泛应用于汽车、家电、电子设备等行业。
但是电阻焊过程中可能会出现一些常见的缺陷,主要有焊接剥离、焊接裂纹、焊接变形和焊接孔洞等。
下面将详细介绍这些缺陷及其产生原因。
1.焊接剥离:焊接剥离是指焊点与基材之间出现空隙或分离现象,导致焊接强度降低。
产生这种缺陷的原因可能有以下几点:焊接参数不合适,如焊接时间过长、压力不稳定等;焊接面脏污或氧化,影响到焊接接触质量;焊件太厚或不均匀,导致焊接过程中温度分布不均匀。
2.焊接裂纹:焊接裂纹是指焊接过程中产生的裂纹,严重影响焊接强度和密封性。
产生这种缺陷的原因可能有以下几点:焊接应力过大,超过材料的承受能力;材料的硬度差异过大,导致焊接过程中应力集中;焊件太厚或太薄,导致焊接过程中温度梯度过大。
3.焊接变形:焊接变形是指焊接过程中由于热应力引起的变形,使得焊接结构失去原有的形状和尺寸。
产生这种缺陷的原因可能有以下几点:焊接应变过大,超过了材料的可塑性极限;焊件的尺寸或形状设计不合理,导致焊接过程中应力集中;焊接参数不稳定,如焊接速度不均匀等。
4.焊接孔洞:焊接孔洞是指焊接过程中产生的孔洞缺陷,严重影响焊接强度和密封性。
产生这种缺陷的原因可能有以下几点:焊接面脏污或有水分,导致气泡进入焊缝;焊接气氛不稳定,如氧气含量过高等;焊接热量不足,导致焊缝形成不完整。
为避免以上缺陷的产生,可以采取一些措施来优化焊接过程。
首先,需要合理选择焊接参数,如焊接时间、压力、速度等,保证焊接的质量和强度。
其次,要保证焊接面的清洁和氧化处理,提高焊接接触质量。
此外,还需合理设计焊接结构和尺寸,避免应力集中和变形。
最后,要保证焊接热量的充分供应,避免焊缝产生缺陷。
总之,电阻焊过程中常见的缺陷包括焊接剥离、焊接裂纹、焊接变形和焊接孔洞等。
产生这些缺陷的原因多种多样,包括焊接参数不合适、焊件质量差、焊接应力过大等。
为减少这些缺陷的发生,需要优化焊接过程,包括合理选择焊接参数、保证焊接接触质量、设计合理的焊接结构和尺寸等。
浅谈SA-213 T23的焊接工艺与裂纹防止措施SA-213 T23是一种低合金钢管,具有耐高温、耐腐蚀等特性,因此被广泛用于石化、炼油、电力等领域的高温高压设备。
在生产过程中,T23的焊接工艺和裂纹防止措施非常关键,直接影响其使用寿命和使用效果。
一、T23的焊接工艺T23管的常规焊接方法有电弧焊、TIG焊、碳弧气体焊、埋弧焊等,不同的焊接方法适用于不同的场合。
1.电弧焊电弧焊是T23的常用焊接方法,其优点是焊接速度快,热效率高。
但是,在焊接过程中容易产生焊渣,如果不及时处理会影响管道的质量。
因此,在电弧焊接T23管道时应注意以下事项:(1)减小焊缝及热影响区域的尺寸,较小的尺寸可以减少焊接时产生的应力。
(2)选择合适的电流和电压,以保证焊缝均匀、稳定,并避免产生热应力导致裂纹。
(3)使用合适的填充材料以确保焊缝的质量。
2.TIG焊TIG焊是一种高精度的焊接方法,适用于焊接厚度小于3mm的管道。
TIG焊接T23管时应注意以下事项:(1)选择合适的电流、电压和焊接速度,以确保焊缝的稳定性和质量。
(2)使用适当的气体,如氩气,以保护焊缝不受氧化。
3.碳弧气体焊(1)管道应事先加热以减少焊接时产生的热应力。
二、T23的裂纹防止措施焊接过程中产生的裂纹是T23管道的一个常见问题,为了防止裂纹的产生,可以采取以下措施:1.控制预热温度在焊接T23管道前,应对其进行预热以减少热应力对管道的影响。
对于不同厚度的管道,需要控制不同的预热温度。
2.减小焊接速度焊接过程中,管道的速度应减小以便于均匀加热,防止热应力对管道产生不均匀的影响。
3.选择合适的填充材料填充材料的选择对T23管道的质量有很大的影响,应选择合适的填充材料以确保焊缝的质量。
4.采用冷却措施在焊接完成后,应采取适当的冷却措施以减轻管道的热应力,防止产生裂纹。
总之,T23管的焊接工艺和裂纹防止措施非常重要,对于提高管道的质量、延长其使用寿命具有重要意义。
焊接中的常见缺陷的成因和防止措施焊接是保证结构强度的关键,是保证质量的关键,是保证安全和作业的重要条件。
如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起事故。
据对脆断事故调查表明,40%脆断事故是从焊缝缺陷处开始的。
在进行检验的过程中,对焊缝的检验尤为重要。
因此,应及早发现缺陷,把焊接缺陷限制在一定范围内,以确保安全。
焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。
常见缺陷有气孔、夹渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等。
一、气孔气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。
产生气孔的主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。
此外,低氢型焊条焊接时,电弧过长,焊接速度过快;埋弧自动焊电压过高等,都易在焊接过程中产生气孔。
由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。
预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。
严格按规定保管、清理和焙烘焊接材料。
不使用变质焊条,当发现焊条药皮变质、剥落或焊芯锈蚀时,应严格控制使用范围。
埋弧焊时,应选用合适的焊接工艺参数,特别是薄板自动焊,焊接速度应尽可能小些。
二、夹渣夹渣就是残留在焊缝中的熔渣。
夹渣也会降低焊缝的强度和致密性。
产生夹渣的原因主要是焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。
在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。
进行埋弧焊封底时,焊丝偏离焊缝中心,也易形成夹渣。
防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。
多层焊时,应仔细观察坡口两侧熔化情况,每一焊层都要认真清理焊渣。
封底焊渣应彻底清除,埋弧焊要注意防止焊偏。
常见的焊接缺陷(1)常见的焊接缺陷(1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。
未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。
(2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。
(3)气孔:在熔化焊接过程中,焊缝金属内的气体或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。
尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。
某钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,未焊透某钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,密集气孔(4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。
视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。
另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。
W18Cr4V(高速工具钢)-45钢棒对接电阻焊缝中的夹渣断口照片钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,局部夹渣钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,两侧线状夹渣钢板对接焊缝X射线照相底片V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨(5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
电焊中常见的焊缝质量问题及解决方法电焊作为一种常见的焊接方法,在各个行业都得到了广泛的应用。
然而,在电焊过程中,常常会出现一些焊缝质量问题,这些问题对焊接件的质量和使用寿命产生了重要影响。
本文将针对电焊中常见的焊缝质量问题进行分析,并提供解决方法。
首先,我们来讨论焊缝内部的气孔问题。
气孔是焊缝中最常见的缺陷之一,它会导致焊缝的强度降低。
气孔的形成主要是由于焊接材料中含有的气体在焊接过程中没有完全排出。
解决气孔问题的方法有两个方面。
首先,我们可以在焊接前对焊接材料进行预处理,例如将焊接材料在高温下加热,使其中的气体得以释放。
其次,在焊接过程中,我们可以采用适当的焊接参数,如焊接电流、电压和焊接速度等,来控制焊接过程中的气体排出。
其次,我们来讨论焊缝的裂纹问题。
焊缝裂纹是指焊接过程中焊缝出现的断裂现象。
焊缝裂纹的形成主要是由于焊接过程中的应力集中和冷却收缩引起的。
解决焊缝裂纹问题的方法有多种。
首先,我们可以通过优化焊接参数来减少焊接过程中的应力集中,例如采用适当的焊接顺序和焊接方法。
其次,我们可以采用预热和后热处理等方法来减少焊接过程中的冷却收缩。
此外,选择合适的焊接材料和焊接工艺也可以有效地防止焊缝裂纹的发生。
接下来,我们来讨论焊缝的夹渣问题。
夹渣是指焊接过程中焊缝中夹杂的氧化物和其他杂质。
夹渣会降低焊缝的强度和密封性。
解决夹渣问题的方法有两个方面。
首先,我们可以通过选择合适的焊接材料和焊接工艺来减少焊接过程中的氧化物生成。
其次,在焊接过程中,我们可以采取适当的焊接参数和焊接技术,如使用适当的焊接电流和电弧长度,来减少夹渣的产生。
最后,我们来讨论焊缝的尺寸偏差问题。
焊缝的尺寸偏差是指焊接过程中焊缝的实际尺寸与设计尺寸之间的差异。
尺寸偏差会影响焊接件的装配和使用。
解决尺寸偏差问题的方法有多种。
首先,我们可以通过优化焊接参数和焊接工艺来控制焊缝的尺寸,例如控制焊接电流和焊接速度。
其次,我们可以采用适当的焊接设备和夹具,来保证焊接件的尺寸精度。
管道焊接的常见缺陷与质量控制1、在焊接过程中比较常见的缺陷及如何预防1.1 咬边缺陷在沿着焊道的母材部位烧熔所形成的低于母材表面的凹陷或沟槽称为咬边,咬边可出现于焊缝一侧或两侧,可以是连续的或间断的。
这主要是由于焊接参数选择不当,或者在焊接过程中的操作方法不规范、不正确所致。
是由于焊接过程中,焊件边缘的母材金属被熔化后,未及时得到熔化金属的填充所致。
咬边缺陷的存在,在一定程度上不仅弱焊接的接头强度,而且还会因为应力集中引发裂纹。
预防措施:选取正确的焊接速度级焊接电流,电弧不可被拉过长,确保运条均匀。
(1)危害:咬边将削弱焊接接头的强度,产生应力集中。
在疲劳载荷作用下,使焊接接头的承载能力大大下降。
它往往还是引起裂纹的发源地和断裂失效的原因。
焊接技术条件中一般规定了咬边的容限尺寸。
(2)形成原因:焊接工艺参数不当,操作技术不正确造成。
如焊接电流大,电弧电压高(电弧过长),焊接速度太快。
(3)防止措施:选择适当的焊接电流和焊接速度,采用短弧操作,掌握正确的运条手法和焊条角度,坡口焊缝焊接时,保持合适的焊条离侧壁距离。
1.2 气孔缺陷这种缺陷的形成是由于焊接过程中熔池中气体当凝固时未能逸出而引起空穴的产生。
预防措施:在解决此问题时,应加强焊前的处理工作。
及时做好相关的清理工作,如果天气湿度过大或者是雨天,应采取有效的措施,以防止气孔的产生。
1.3 未熔合缺陷这是因为在焊接过程中,母材同焊道间或焊道彼此间未能进行完全熔合。
预防措施:选择正确合适的焊接工艺参数,精心操作、加强层间清理,达到提高焊工操作技术水平的目的。
1.4 裂纹缺陷在焊接时,焊缝热影响区在冷却过程中所形成的裂纹。
预防措施:尽可能控制焊缝中低熔点共晶物的存在,同时尽量降低冷却时的拉应力。
此外还有夹渣缺陷。
针对这种缺陷,应在对天然气管道焊接之后,应及时清理残留在焊缝中的熔渣,防止不必要问题的滋生。
2、形成焊接变形的原因及如何改变变形提高焊接质量焊接变形是由于焊接过程中,被焊接物体结构发生了变化,焊接变形原因很多,不均匀受热和冷却是最主要的原因,焊接过程中,焊件的局部受热致使温差的产生,热胀冷缩是焊件固有的性质,因此,物体产生了形状上的差异。
焊缝疲劳裂纹的原因一、疲劳裂纹的概念和特征疲劳裂纹是指材料在受到交变或重复载荷作用下,在无外界力的情况下产生的由于疲劳所致的裂纹。
疲劳裂纹通常以一定的周期性或规律性扩展,直至超过材料的疲劳强度而导致破坏。
疲劳裂纹的存在可能严重影响结构的可靠性和使用寿命。
二、焊缝疲劳裂纹的原因2.1 形成焊缝疲劳裂纹的基本原因焊缝疲劳裂纹的形成主要受到以下几个因素的影响:1.组织不均匀性:焊缝内的组织不均匀性是疲劳裂纹形成和扩展的一个重要原因。
焊接过程中,焊缝区域受到高温和热应力的影响,会导致晶粒的过度长大和组织的变化,使得焊缝区域在受到交变载荷的情况下更容易发生裂纹。
2.应力集中:焊接过程中,焊缝周围的材料经历了复杂的热循环和相变过程,会产生应力集中现象。
焊缝本身就是一个应力集中的区域,如果设计不合理或施工不当,就会导致焊缝的应力集中进一步加剧,从而促使疲劳裂纹的形成和扩展。
3.缺陷和不良现象:焊接过程中,可能会出现不均匀的焊缝几何形状、焊接缺陷(如气孔、夹渣等)、内部应力、残余变形等不良现象。
这些缺陷和不良现象会导致焊缝的强度降低,从而促使焊缝疲劳裂纹的形成。
2.2 不同焊接方法对焊缝疲劳裂纹的影响不同的焊接方法对焊缝疲劳裂纹的形成和扩展有着不同的影响。
下面以常见的几种焊接方法为例进行讨论:1.电弧焊:电弧焊是一种常用的焊接方法,其焊接过程中产生的较高温度可能导致焊缝周围材料的相变和组织变化,从而增加了焊缝疲劳裂纹形成的风险。
2.气保焊:气保焊是一种在保护气体的环境下进行的焊接方法,其焊接过程中产生的保护气体可以有效地减少焊缝周围材料的氧化和污染,从而减少了焊缝疲劳裂纹形成的概率。
3.点焊:点焊是一种通过电阻热来实现焊接的方法,其焊接过程中产生的高温和热应力可能导致焊缝周围材料的晶粒长大和组织变化,从而增加了焊缝疲劳裂纹形成的风险。
4.激光焊:激光焊是一种高能量密度的焊接方法,其焊接过程中产生的高温和应力可能导致焊缝周围材料的熔化和凝固,从而对焊缝疲劳裂纹的形成和扩展产生影响。
钴基堆焊层裂纹
钴基堆焊层出现裂纹的原因主要有以下几点:
1.工艺评定的验证性不足,未充分考虑闸板焊接结构不对称、
堆焊厚度等因素的影响。
2.钴基焊丝与基材的收缩比不一样,导致产生裂纹。
3.焊后热处理不当,导致产生裂纹。
为了防止钴基堆焊层出现裂纹,可以采取以下措施:
1.在原搭接区域留10mm的环带不加工,降低两种工艺搭接处
的应力集中。
2.优化堆焊层数至两层。
3.在保证堆焊质量的前提下,尽量选用小的焊接电流和焊接速
度。
4.提高预热温度,进行后热处理。
5.避免铸造缺陷,减少母材和焊接材料中的P、S、Si等杂质含
量。
6.使堆焊层含有φ(δ-Fe)3%~10%。
7.适当提高焊缝含碳量,以形成稳定的碳化物相,有助于防止
热裂和提高堆焊层高温性能。
8.连续焊:大型焊件应数人同时对称施焊,有助于焊件受热均
匀。
9.等离子弧堆焊时,应在防护罩内加远红外加热装置,以维持
焊道周围焊件温度不低于300℃。
这些措施可以有效防止钴基堆焊层出现裂纹,提高焊接质量和安全性。
常见其他电焊裂纹形成与控制
孟凡明
黑龙江省火电第一工程公司150001
图中为焊接裂纹的宏观形态以及其分布,1为焊缝中的纵向裂纹,2为焊缝中的横向裂纹,3为熔合区裂纹,4为焊缝根部裂纹,5为HAZ根部裂纹,6为焊趾纵向裂纹(延迟裂纹),7为焊趾纵向裂纹(液化裂纹、再热裂纹),8为焊道下裂纹(延迟裂纹、液化裂纹、多边化裂纹),9为层状撕裂,10为弧坑裂纹(火口裂纹)a为纵向裂纹,b为横向裂纹,c为星型裂纹。
关键词:裂纹、结晶裂纹、延迟裂纹、再热裂纹
中图分类号:TG433文献标识码:A文章编号:
一、.结晶裂纹的形成机理
熔池结晶三阶段:
液固阶段;固液阶段;完全凝固阶段。
固液阶段(脆性温度区)有可能产生裂纹。
Прохоров认为:
较小时,曲线1e0<pmin,es>0,
不会产生裂纹;
较大时,曲线3e0>pmin,es<0,
产生结晶裂纹;
按曲线2变化时,e0=pmin,es=0,
处于临界状态。
结晶焊接:产生于焊缝金属结晶过程末期的“脆性温度”区间,此时晶粒间存在着薄的液相层,因而金属塑性极低,由冷却的不均匀收缩而产生的拉伸变形超过了允许值时,即沿晶界液层开裂。
消除结晶裂纹的主要冶金措施为通过调整成分,细化晶粒,严格控制形成低熔点共晶的杂质元素等,以达到提高材料在脆性温度区间的塑性;此外,从设计和工艺上尽量减少在该温度区间的内部拉伸变形。
2.结晶裂纹的影响因素
(1)冶金因素
1)结晶温度区间
结晶温度区间越大,脆性温度区也大,裂纹倾向也大。
(2)低熔共晶的形态
当液态第二相β在固态基体相α的晶粒交界处存在时,其分布受表面张力σαα
(σGB)和界面张力σαβ(σLS)的平衡关系所支配。
若2σαβ=σαα,θ=0o,易形成液态薄膜;
2σαβ≠σαα,θ≠0o,不易形成液态薄膜;
增大低熔共晶物的表面张力,有利于
避免结晶裂纹。
(3)一次结晶的组织
晶粒粗大,柱状晶的方向越明显,越易
形成液态薄膜,导致结晶裂纹。
(4)合金元素的种类
促进结晶裂纹的有:硫、磷、碳和镍等;
抑制结晶裂纹的有:锰、硅、钛、锆和稀土等。
(2)应力因素.
液态薄膜和应力是引起结晶裂纹的根本条件!
3、结晶裂纹的防止措施
(1)冶金措施
1)严格控制焊材中的硫、磷和碳的含量;
2)改善焊缝的一次结晶组织,细化晶粒加入Mo、V、Ti、Nb、Zr和稀土等元素;焊接奥氏体不锈钢时加入Cr、Mo、V等铁素体形成
元素);
3)限制熔合比(尤其是一些易向焊缝转移某些有害杂质的母材);
4)利用“愈合作用”(如铝合金焊接)。
(2)应力控制
1)选择合理的接头形式(使熔深减小);
2)确定合理的焊接顺序(尽量使焊缝处于较小的刚度下焊接);
3)确定合理的焊接参数(适当增加焊接电流,使冷速下降;预热等)。
二、延迟裂纹的形成机理
1、延迟裂纹主要决定三大因素:
(1)氢的行为及作用
扩散氢在延迟裂纹的产生过程中起到
至关重要的作用。
1)氢致延迟开裂机理
2)氢的扩散行为对致裂部位的影响
氢在奥氏体中的溶解度大,扩散速度小;
氢在铁素体中的溶解度小,扩散速度大
(2)材料淬硬倾向的影响
1)淬火形成淬硬的马氏体组织
2)淬硬形成更多的晶格缺陷
(3)接头应力状态的影响
1)应力的种类
热应力;组织应力;结构应力。
将上述三种应力的综合作用统称为拘束应力。
2)拘束度与拘束应力
从上式可以看出:改变拘束距离L和板厚h,可以调节拘束度R的大小。
L↓,h↑时,则R↑。
R增大到一定程度就产生裂纹。
此值称为临界拘束度
Rcr。
Rcr越大,接头的抗裂性越强。
Rcr可作为冷裂纹敏感性的判据,即产生了裂纹的条件是:R>Rcr
R反映了不同焊接条件下焊接接头所承受的拘束应力σ。
开始出现裂纹时的应力称为临界拘束应力σcr。
σcr可作为冷裂纹敏感性的判据,即产生了裂纹的条件是σ>σcr.。
1.再热裂纹
(1)再热裂纹的形成机理
再热裂纹的产生是由晶界优先滑动导致微裂(形核)而发生和扩展的。
在焊后热处理时,残余应力松弛过程中,粗晶区应力集中部位的晶界滑动变形量超过了该部位的塑性变形能力,就会产生再热裂纹。
其产生于某些低合金高强度钢、珠光体耐热钢、奥氏体不锈钢以及镍基合金焊后的再次高温加热过程中。
其主要原因一般认为当焊后再次加热到500~700℃时,在热影响区的过热区内,由于特殊碳化物析出引起的晶内二次强化,一些弱化晶界的微量元素的析出,以及使焊接应力松弛时的附加变形集中于晶界,而导致沿晶开裂。
因此,这种裂纹具有晶间开裂的特征,并且都发生在有严重应力集中的热影响区的粗晶区内。
为了防止这种裂纹的产生,首先在设计时要选择再热裂纹敏感性低的材料,其次从工艺上要尽量减少近缝区的内应力和应力集中问题。
即
e>ecr
晶内沉淀强化理论再热使晶内析出碳、氮化物,使晶内强化。
晶界杂质析集弱化理论再热使P、S、Sb、Sn、As等杂质向晶界析集。
蠕变断裂理论(楔形开裂模型)点阵空位在应力和温度作用下,能发生运动,聚集到一定数量,在应力作用下,晶界的接合面会遭到破坏,直至扩大而形成裂纹。
(2)再热裂纹的防止措施
优先选用含沉淀强化元素少的钢种;严格限制母材和焊缝中的杂质含量;避免过大的热输入使晶粒粗化;预热和后热;增大焊缝的塑性和韧性;尽量降低残余应力。
2.层状撕裂
(1)层状撕裂的形成机理
平行于轧制方向夹杂物的存在;
母材的性能(塑性、韧性);
Z向拘束应力。
(2)层状撕裂的防止措施
选用抗层状撕裂的钢材;
减小Z向应力和应力集中。