2002年北京市人大附中新初一分班考试数学试卷和答案含解析答案
- 格式:doc
- 大小:139.57 KB
- 文档页数:10
沈进老师专用资料名校七年级数学分班考试真题一、计算题1. 计算:10 2 19 1211 7 1 2213225 135 63 2.计算: 1994 19931994 1993 199419941211111150%4533. 计算:1111 131 150%135150%213 34 54. 计算:1 1 1 3 1 132 3 94 5 111 2 1 2 3 1 2 3 4 1 2 20015. 计算:2 23 2 34 2 3 20016. 计算: 8.01 ×1.25+8.02 1×.24+8.03 1×1×.22+8.05 1×.21 的整数部分.二、填空题7. 小李计算从 1 开始的若干个连续自然数的和,结果不当心把 1 当作 10 来计算,获得错误的结果恰巧是 100。
那么小李计算的这些数中,最大的一个是多少?8.从 1 开始,按 1, 2, 3,4,5 ,,的次序在黑板上写到某数为止,把此中一个数擦掉后,剩下的数的均匀数是590,擦掉的数是多少?179. 一个各位数字互不同样的四位数,它的百位数字最大,比十位数字大 2 ,比个位数字大 1。
还知道这个四位数的 4 个数字和为27,那么这个四位数十多少?10.有一个等差数列,此中3项a, b, c能构成一个等比数列;还有3项d, e, f也能构成一个等比数列,假如这 6 个数互不同样,那么这个等差数列起码有几项?11.在乘法算式 ABCBD× ABCBD=CCCBCCBBCB 中,同样的字母代表同样的数字,不一样的字母代表不一样的数字,假如 D=9 ,那么 A+B+C 的值是多少?12.以下列图,在方框里填数,使得算式建立,那么所有方框内数的和是多少?19 8 8×口口——————————口7口口口口5口口口口———————————口口口口口口13. 假如 66能整除 22 2 ,那么自然数 n 的最小值是多少?100个6n 个 214. 已知: 999999999 能整除 2221,那么自然数 n 的最小值是多少?n 个 215. 12 22 3292 除以 3 的余数是多少?16. 50 个互不同样的非零自然数的和为101101,那么它们的最大条约数的最大值是多少?17.自然数 n 是 48 的倍数,但不是 28 的倍数,而且 n 恰巧有 48 个约数(包含 1 和它自己),那么n 的最小值是多少?18.某正整数被 63 除商为 31,余数为 42,那么这个正整数所有质因数的和是多少?19.我们能够找到n 个自然数,用它们的和乘以它们的积,结果恰巧等于2001,那么 n 的最小值是多少?20. 算式 1× 4× 7× 10× ×的计100算结果,末端有多少个连续的0?21.一群林场工人与学生一同在昨年冬季挖好的坑中植树,均匀1名林场工人 1 小时可植树15 棵, 1 名学生 1 小时可植树11 颗。
历年人大附中新初一分班考试数学部分真题人大附中新初一分班考试真题之2001一:计算1.计算:1019211122 217 1322513563-⨯÷+⨯÷2.计算:199419931994199319941994⨯-⨯3.计算:111211150% 145311111 31150%51150%21 33345⎛⎫-+⎪5+⨯⎪⎛⎫⎪++++-⎪⎝⎭⎝⎭4.计算:1313 1112435911⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⨯-⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭5.计算:121231234122001 223234232001 ++++++++⋯+⨯⨯⨯⋯⨯+++++⋯+6.计算:8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分。
二:应用题7.小李计算从1开始的若干个连续自然数的和,结果不小心把1当成10来计算,得到错误的结果恰好是100。
那么小李计算的这些数中,最大的一个是多少?8.从1开始,按1,2,3,4,5 ,… ,的顺序在黑板上写到某数为止,把其中一个数擦掉后,剩下的数的平均数是59017,擦掉的数是多少?9.一个各位数字互不相同的四位数,它的百位数字最大,比十位数字大2 ,比个位数字大1。
还知道这个四位数的4个数字和为27,那么这个四位数是多少?10.有一个等差数列,其中3项a, b, c 能构成一个等比数列;还有3项d, e, f 也能构成一个等比数列,如果这6个数互不相同,那么这个等差数列至少有几项?11.在乘法算式ABCB D ×ABCB D=CCCBCCBBCB 中,相同的字母代表相同的数字,不同的字母代表不同的数字,如果D=9,那么A+B+C 的值是多少?12.如下图,在方框里填数,使得算式成立,那么所有方框内数的和是多少?1 9 8 8× 口 口——————————口 7 口 口 口口 5 口 口 口 口———————————口 口 口 口 口 口13.如果1006266222n ⋯6⋯个个能整除,那么自然数n 的最小值是多少?14.已知:999999999能整除22221n ⋯2个,那么自然数n 的最小值是多少?15.22221239+++⋯+除以3的余数是多少?16.50个互不相同的非零自然数的和为101101,那么它们的最大公约数的最大值是多少?17.自然数n 是48的倍数,但不是28的倍数,并且n 恰好有48个约数(包括1和它本身),那么n 的最小值是多少?18.某正整数被63除商为31,余数为42,那么这个正整数所有质因数的和是多少?19.我们可以找到n 个自然数,用它们的和乘以它们的积,结果恰好等于2001,那么n 的最小值是多少?20.算式1×4×7×10×…×100的计算结果,末尾有多少个连续的0?21.一群林场工人与学生一起在去年冬天挖好的坑中植树,平均1名林场工人1小时可植树15棵,1名学生1小时可植树11颗。
北京市人大附中数学新初一分班试卷含答案一、选择题1.在一幅地图上,用20厘米表示实际距离80千米.这幅地图的比例尺为()A.1:4 B.1:400000 C.1:4000 D.无答案2.丁丁参加团体操表演,他所在方阵队伍(正方形或长方形)的位置用数对表示是(8,9),参加团体操表演的同学至少有()人。
A.64 B.68 C.72 D.813.学校有排球32个,比篮球多,篮球有多少个?正确的算式是()A.32×(1+) B.32×(1﹣) C.32÷(1+) D.32÷(1﹣)4.一个三角形中,三个内角的度数比是2:3:5,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定5.一个正方形的棱长和一个圆柱体的底面直径、高均相等,比较它们的体积,结果是()A.圆柱体大B.正方体大C.一样大D.无法判断6.()滚得快,而且它的两个相对的面是平平的.A.球体B.长方体C.圆柱体D.正方体7.松树有78棵,杨树是松树的13,梧桐树是杨树的12,梧桐树有多少棵?下面列式错误的是()。
A.117832⨯⨯B.117832⎛⎫⨯⨯⎪⎝⎭C.117832⎛⎫⨯+⎪⎝⎭8.下列说法不正确的是()。
A.圆锥的体积一定等于圆柱体积的13。
B.圆柱的体积一定,底面积和高成反比例。
C.车轮周长一定,车轮行驶的路程和转数成正比例。
9.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元。
小明在该快递公司寄一件10千克的物品,需要付费()。
A.19元B.21元C.23元D.25元10.将正方形纸片对折三次(如图所示),再沿AB剪去一个等腰直角三角形,展开铺平得到的图形是()。
A.B.C.二、填空题11.8.4立方分米=(________)升=(________)毫升25分=(________)时35平方分米=(________)平方米十12.67的分数单位是(______);再添(______)个这样的分数单位就是2。
【最新整理,下载后即可编辑】人大附中新初一分班考试真题之2001一:计算1.计算:10192111222171322513563-⨯÷+⨯÷2.计算:199419931994199319941994⨯-⨯3.计算:111211150%14531111131150%51150%2133345⎛⎫-+ ⎪5+⨯ ⎪⎛⎫ ⎪++++- ⎪⎝⎭⎝⎭4.计算:13131112435911⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭5.计算:121231234122001223234232001++++++++⋯+⨯⨯⨯⋯⨯+++++⋯+6.计算:8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分。
二:应用题7.小李计算从1开始的若干个连续自然数的和,结果不小心把1当成10来计算,得到错误的结果恰好是100。
那么小李计算的这些数中,最大的一个是多少?8.从1开始,按1,2,3,4,5 ,…,的顺序在黑板上写到某,擦掉数为止,把其中一个数擦掉后,剩下的数的平均数是59017的数是多少?9.一个各位数字互不相同的四位数,它的百位数字最大,比十位数字大2 ,比个位数字大1。
还知道这个四位数的4个数字和为27,那么这个四位数是多少?10.有一个等差数列,其中3项a, b, c能构成一个等比数列;还有3项d, e, f 也能构成一个等比数列,如果这6个数互不相同,那么这个等差数列至少有几项?11.在乘法算式ABCBD ×ABCBD=CCCBCCBBCB 中,相同的字母代表相同的数字,不同的字母代表不同的数字,如果D=9,那么A+B+C 的值是多少?12.如下图,在方框里填数,使得算式成立,那么所有方框内数的和是多少?1 9 8 8× 口 口——————————口 7 口 口 口口 5 口 口 口 口———————————口 口 口 口 口 口13.如果1006266222n ⋯6⋯个个能整除,那么自然数n 的最小值是多少?14.已知:999999999能整除22221n ⋯2个,那么自然数n 的最小值是多少?15.22221239+++⋯+除以3的余数是多少?16.50个互不相同的非零自然数的和为101101,那么它们的最大公约数的最大值是多少?17.自然数n是48的倍数,但不是28的倍数,并且n恰好有48个约数(包括1和它本身),那么n的最小值是多少?18.某正整数被63除商为31,余数为42,那么这个正整数所有质因数的和是多少?19.我们可以找到n个自然数,用它们的和乘以它们的积,结果恰好等于2001,那么n的最小值是多少?20.算式1×4×7×10×…×100的计算结果,末尾有多少个连续的0?21.一群林场工人与学生一起在去年冬天挖好的坑中植树,平均1名林场工人1小时可植树15棵,1名学生1小时可植树11颗。
名校七年级数学分班考试真题一、计算题1.计算:1019211122 217 1322513563-⨯÷+⨯÷2.计算:199419931994199319941994⨯-⨯3.计算:111211150% 145311111 31150%51150%21 33345⎛⎫-+⎪5+⨯⎪⎛⎫⎪++++-⎪⎝⎭⎝⎭4.计算:1313 1112435911⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⨯-⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭5.计算:121231234122001 223234232001 ++++++++⋯+⨯⨯⨯⋯⨯+++++⋯+6.计算:8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分.二、填空题7.小李计算从1开始的若干个连续自然数的和,结果不小心把1当成10来计算,得到错误的结果恰好是100。
那么小李计算的这些数中,最大的一个是多少?8.从1开始,按1,2,3,4,5 ,…,的顺序在黑板上写到某数,擦掉的数为止,把其中一个数擦掉后,剩下的数的平均数是59017是多少?9.一个各位数字互不相同的四位数,它的百位数字最大,比十位数字大2 ,比个位数字大1。
还知道这个四位数的4个数字和为27,那么这个四位数十多少?10.有一个等差数列,其中3项a, b, c能构成一个等比数列;还有3项d, e, f 也能构成一个等比数列,如果这6个数互不相同,那么这个等差数列至少有几项?11. 在乘法算式ABCBD ×ABCBD=CCCBCCBBCB 中,相同的字母代表相同的数字,不同的字母代表不同的数字,如果D=9,那么A+B+C 的值是多少?12. 如下图,在方框里填数,使得算式成立,那么所有方框内数的和是多少?1 9 8 8× 口 口——————————口 7 口 口 口口 5 口 口 口 口———————————口 口 口 口 口 口13. 如果1006266222n ⋯6⋯个个能整除,那么自然数n 的最小值是多少?14. 已知:999999999能整除22221n ⋯2 个,那么自然数n 的最小值是多少?15. 22221239+++⋯+除以3的余数是多少?16. 50个互不相同的非零自然数的和为101101,那么它们的最大公约数的最大值是多少?17. 自然数n 是48的倍数,但不是28的倍数,并且n 恰好有48个约数(包括1和它本身),那么n 的最小值是多少?18. 某正整数被63除商为31,余数为42,那么这个正整数所有质因数的和是多少?19. 我们可以找到n 个自然数,用它们的和乘以它们的积,结果恰好等于2001,那么n 的最小值是多少?20.算式1×4×7×10×…×100的计算结果,末尾有多少个连续的0?21.一群林场工人与学生一起在去年冬天挖好的坑中植树,平均1名林场工人1小时可植树15棵,1名学生1小时可植树11颗。
人大附中新初一分班考试真题2.在下图的方格中填入合适的数,使每一行都为完全平方数,则最后结果为〔〕。
3.在下图所示的写有数字1的加法算式中,不同的汉字代表不同的数字,只有"仁"与"人" 代表的数字相同,那么"仁华学校"代表的四位数字最小可能是().4.请你从1~100中选出12个数填入下图的圆圈里,使得每个数均为与它相邻的两个数的最大公约数或最小公倍数。
5.找出5个互不相同的大于1的自然数,使得其中两个数的积等于其余三个数的积,两个数的和(不一定是刚才的两个数)等于其余三个数的和,请写出满足条件的式子。
7.小红、小明二人在讨论年龄,小红说:"我比你小,当你像我这么大时,我的年龄是个质数。
"小明说:"当你长到我这么大时,我的年龄也是个质数。
"小红说:"我发现现在咱俩的年龄和是个质数的平方。
"那么小明今年〔〕岁。
(小明今年年龄小于3 1岁,且年龄均为整数岁)8.用A、B、C、D、E、F六种燃料去染下图的两个调色盘,要求每个调色盘里的六种颜色不能相同,且相邻四种颜色在两个调色盘里不能重复,那么共有〔〕种不同的染色方案(旋转算不同方法〕。
9.在一个棱长为8的立方体上切去一个三棱柱(如图〕,那么表面积减少〔〕。
10.—次10分钟的知识竞赛,小明每分钟能做1 5道题,但做3道错一道,而且他做2 分钟要休息1分钟,那么小明这次竞赛做对了〔〕道题。
11.妈妈买来一箱桔子,若每天比计划多吃一个,则比计划少吃2天;若每天比计划少吃一个,则计划的时间过去后,还剩1 2个,那么这一箱桔子共〔〕个?12.学校组织老师进行智力竞赛,共2 0道题,答对一题得5分,不答不给分,答错扣2 分,已知所有老师的总分为6 0 0分,且男老师总分为女老师总分的2倍多1分,答对总题数为答错总题数的3倍少1题。
又知每人恰好有1道或2道题未答。
七年级数学上册分班真题试题(北京人大附中、北大附中、
清华附中含答案)
名校七年级数学分班考试真题
一、计算题
1计算
2计算
3计算
4计算
5计算
6计算801×125+802×124+803×123+804×122+805×121的整数部分.
二、填空题
7小李计算从1开始的若干个连续自然数的和,结果不小心把1当成10计算,得到错误的结果恰好是100。
那么小李计算的这些数中,最大的一个是多少?
8从1开始,按1,2,3,4,5 ,… ,的顺序在黑板上写到某数为止,把其中一个数擦掉后,剩下的数的平均数是,擦掉的数是多少?
9一个各位数字互不相同的四位数,它的百位数字最大,比十位。
新初一分班考试数学试题和答案(人大附中)一、计算和方程综合1、275+326×274275×326−512、分数3713可写成2+1xx+1的形式,则xx=,yy=,zz=yy+1zz3、148149+148×86149+48×74149=4、计算:51×3+53×5+55×7+⋯+595×97+597×99=()A.9899B.24599C.49099D. 49995、1990+19901990+1990199019901989+19891989+198919891989−11989=6、12+�13+23�+�14+24+34�+�15+25+35+45�+⋯+�110+210+⋯+910�=7、若xx=111980+11981+11982+⋯+11997,则xx的整数部分为8、已知A=1+12+13+14+15+16+17+18,则A的整数部分是9、1+2-3+4+5-6+7+8-9+10+11-12+……+997+998-999+1000=10、已知x、y满足x+[y]=2009,{x}+y=20.09;其中[x]表示不大于x的最大整数,{x}表示x的小数部分,即{x}=x-[x],那么x=11、12、真分数aa7化成循环小数之后,从小数点后第1位起若干位数字之和是9039,则aa是多少?13、观察下列等式是否成立:(1)3(xx+2)(xx+5)=1xx+2−1xx+5(2)7(xx+1)(xx+8)=1xx+1−1xx+8(3)3(xx+3)(xx+9)=1xx+3−1xx+9若成立,请表示它们的规律:mm−nn(xx+nn)(xx+mm)=据这个规律简化:(1)1xx(xx+1)+1(xx+1)(xx+2)+1(xx+2)(xx+3)+1(xx+3)(xx+4)+=(2)1xx(xx+4)+1(xx+4)(xx+8)+1(xx+8)(xx+12)+1(xx+12)(xx+16)+=二、几何与计数组合1、一个圆柱体和一个圆锥体,底面周长的比是2:3,它们体积是5:6,圆柱和圆锥高的最简单的整数比是().A. 8:5B. 12:5C. 5:8D. 5:122、如图所示,空白面积为90,BD=2AD,AG=2GC,BE=EF=FC,则阴影面积为()3、将一个正方形纸片按图1中(1)(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平所得的图案应为图2中的()A. B. C. D.4、如图所示,在△ABC中,CP=12CB,CQ=13CA,BQ与AP相交于点X,若△ABC的面积为6,则△ABX的面积等于5、已知如图,求阴影部分的面积(π取3.14)6、右图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形7、5块六边形的地毯拼成了图中的形状,每块地毯上都有一个编号.现在墨莫站在1号地毯上,他想要走到5号地毯上,如果墨莫每次都只能走到和他相邻的地毯上(两个六边形如果有公共边就称为相邻),并且只能向右边走,例如1->2->3->5就是一种可能的走法.请问:墨莫一共有()种不同的走法。
人大附中新初一分班考试真题之2001一:计算1.计算:2.计算:3.计算:4.计算:5.计算:6.计算:8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分。
hUUZsaaVnE|二:应用题7.小李计算从1开始的若干个连续自然数的和,结果不小心把1当成10来计算,得到错误的结果恰好是100。
那么小李计算的这些数中,最大的一个是多少? hUUZsaaVnE8.从1开始,按1,2,3,4,5 ,… ,的顺序在黑板上写到某数为止,把其中一个数擦掉后,剩下的数的平均数是,擦掉的数是多少? hUUZsaaVnE9.一个各位数字互不相同的四位数,它的百位数字最大,比十位数字大2 ,比个位数字大1。
还知道这个四位数的4个数字和为27,那么这个四位数是多少?hUUZsaaVnE10.有一个等差数列,其中3项a, b, c能构成一个等比数列;还有3项d, e, f 也能构成一个等比数列,如果这6个数互不相同,那么这个等差数列至少有几项?hUUZsaaVnE11.在乘法算式ABCBD×ABCBD=CCCBCCBBCB 中,相同的字母代表相同的数字,不同的字母代表不同的数字,如果D=9,那么A+B+C的值是多少? hUUZsaaVnE12.如下图,在方框里填数,使得算式成立,那么所有方框内数的和是多少?1 9 8 8|× 口口——————————口 7 口口口口 5 口口口口———————————口口口口口口13.如果,那么自然数n的最小值是多少?14.已知:999999999能整除,那么自然数n的最小值是多少?;15.除以3的余数是多少?16.50个互不相同的非零自然数的和为101101,那么它们的最大公约数的最大值是多少?17.自然数n是48的倍数,但不是28的倍数,并且n恰好有48个约数<包括1和它本身),那么n的最小值是多少? hUUZsaaVnE 18.某正整数被63除商为31,余数为42,那么这个正整数所有质因数的和是多少?19.我们可以找到n个自然数,用它们的和乘以它们的积,结果恰好等于2001,那么n的最小值是多少?20.算式1×4×7×10×…×100的计算结果,末尾有多少个连续的0?21.一群林场工人与学生一起在去年冬天挖好的坑中植树,平均1名林场工人1小时可植树15棵,1名学生1小时可植树11颗。
2002年北京市人大附中新初一分班考试数学试卷一、解答题(共1小题)1.计算:.二、填空题(共3小题)2.一次速算比赛共有20道题,答对1道给5分,答错一道倒扣1分,未答的题不计分,考试结束后,小梁共得了71分,那么小梁答对了道题.3.对于每一个两位以上的整数,我们定义一个它的“伙伴数”,从下面的例子可以看出伙伴数的定义:23的伙伴数是2.3,465的伙伴数是46.5,那么从11开始到999为止所有奇数的伙伴数的和是.4.一个分数的分子与分母之和为25,将它化为小数后形如0.38…,则这个分数的分母是.三、解答题(共1小题)5.已知382=1444,像1444这样能表示为某个自然数的平方,并且末3位数字为不等于0的相同数字,我们就定义为“好数”.(1)请再找出一个“好数”.(2)讨论所有“好数”的个位数字可能是多少?(3)如果有一个好数的末4位数字都相等,我们就称之为“超好数”,请找出一个“超好数”,或者证明不存在“超好数”.四、填空题(共7小题)6.一个自然数,加上4后就可表示3个连续自然数的3的倍数的和,加上3后就可表示成4个连续自然数的4的倍数之和,那么它最少需要加后才能表示成6个连续的6的倍数之和.7.一个班有五十多名同学,上体育课时大家排成一行,先从左至右1234、1234报数,再从右至左123、123报数,后来统计了一下,两次报到同一个数的同学有15名,那么这个班一共有名同学.8.用3种颜色把一个3×3的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有种不同的染色法.9.如果一个时刻的时、分、秒3个数构成递增的等差数列,则称这个时刻为幸运时刻(采用24小时制),例如00点02分04秒和17点20分23秒都是幸运时刻,那在一天中与个幸运时刻.10.如图,在6个圆圈中填入2、3、5、7、11、13各一次,并在每个小三角形的中心处写下它3个顶点上3个数的和.那么这些三角形中心处所写数的和被3除的余数是.这个总合一共有种不同的可能.2002年北京市人大附中新初一分班考试数学试卷参考答案与试题解析一、解答题(共1小题)1.计算:.【解答】解:,=[(7+6+5)+(+)]÷[(1+1+1)+(+)],=[18+]÷[3+],=×,=,=4.二、填空题(共3小题)2.一次速算比赛共有20道题,答对1道给5分,答错一道倒扣1分,未答的题不计分,考试结束后,小梁共得了71分,那么小梁答对了15道题.【解答】解:(5×20﹣71)÷(5+1),=29÷6,=4…5.即答错了4道,未答的是1道,答对的题是:20﹣1﹣4=15(道).答:小梁答对了15道题.故答案为:15.3.对于每一个两位以上的整数,我们定义一个它的“伙伴数”,从下面的例子可以看出伙伴数的定义:23的伙伴数是2.3,465的伙伴数是46.5,那么从11开始到999为止所有奇数的伙伴数的和是24997.5.【解答】解:11+13+15+…+999=(11+999)×[(999﹣11)÷2+1]÷2=1010×495÷2,=249975;249975÷10=24997.5.故答案为:24997.54.一个分数的分子与分母之和为25,将它化为小数后形如0.38…,则这个分数的分母是18.【解答】解:0.38…小于,在分子分母之和是25的分数里小于的分数有:,,,,,,,经过计算可知:=0.38…,答:这个分数是.故填:18.三、解答题(共1小题)5.已知382=1444,像1444这样能表示为某个自然数的平方,并且末3位数字为不等于0的相同数字,我们就定义为“好数”.(1)请再找出一个“好数”.(2)讨论所有“好数”的个位数字可能是多少?(3)如果有一个好数的末4位数字都相等,我们就称之为“超好数”,请找出一个“超好数”,或者证明不存在“超好数”.【解答】解:(1)因为382=1444,所以10382=1077444;则100382,1000382…等都可以是“好数”.(2)方数的性质可知,完全平平方末尾数字只可能是1,4,9,6,5和0,0不考虑.末尾数是5的平方尾数一定是25,故不可能是5;对于1,设(10a+1)的平方满足X111;而(10a+1)的平方=20a×(5a+1)+1;倒数第二位一定是偶数,不符合题意;对于9,设(10a+3)的平方满足X999;而(10a+3)平方=20a×(5a+1)+9,倒数第二位一定是偶数,不符合题意;又设(10a+7)平方满足X999;而(10a+7)的平方=20a×(5a+7)+1;倒数第二位一定是偶数,不符合题意;对于6,设(10a+4)平方满足X666;而(10a+4)的平方=(100a平方+80a+10)+6,倒数第二位一定是奇数,不符合题意;设(10a+6)的平方满足X666;而(10a+6)的平方=10×(10a×a+12a+3)+6;倒数第二位一定是奇数,不符合题意;故好数的个位数字只能是4.(3)假设存在超好数,设为1000n+38;则有:(1000n+38)平方=1000000n平方+76000n+1444=1000×(1000n平方+76n+1)+444 (1000n平方+76n+1)不可能被4整除;也就是不可能得到倒数第四位为4;,故假设不成立.即:不存在超好数.四、填空题(共7小题)6.一个自然数,加上4后就可表示3个连续自然数的3的倍数的和,加上3后就可表示成4个连续自然数的4的倍数之和,那么它最少需要加13后才能表示成6个连续的6的倍数之和.【解答】解:根据题干分析可设:72n+5+x是18的奇数倍.由于72n是18的偶数倍,则5+x必须是18的奇数倍,5+x最小等于18,即5+x=18,所以x=13,答:至少要加上13后才能表示成6个连续的6的倍数之和.故答案为:13.7.一个班有五十多名同学,上体育课时大家排成一行,先从左至右1234、1234报数,再从右至左123、123报数,后来统计了一下,两次报到同一个数的同学有15名,那么这个班一共有57或59名同学.【解答】解:根据题干分析可得:这个班的人数可能是:(1)如果总人数为:14×4+1=57(人),那么从右向左两次报数的特点为:12组数字为1个周期,每一个周期有3名学生报数相同,分别是第1名,第3名,第8名,57÷12=4…9,所以57人是经历了4个周期零9名同学,所以共有3×4+3=15(名)学生报数相同,正好符合题意;(2)如果总人数为:14×4+2=58(人),那么从右向左两次报数的特点为:16组数据为1个周期,每一个周期有3名同学报数相同,58÷16=3…10,按经历了4个周期计算,所以报数相同的人数为:3×4+2=14(人)与题意不相符,(3)如果总人数为:14×4+3=59(人),那么从右向左两次报数的特点为:12组数字为1个周期,每一个周期有3名学生报数相同,分别是第2名,第7名,第9名,59÷12=4…11,所以57人是经历了4个周期零11名同学,所以共有3×4+3=15(名)学生报数相同,正好符合题意;综上所述,这个班一共有57或59名学生.故答案为:57或59.8.用3种颜色把一个3×3的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有12种不同的染色法.【解答】解:3×2×1×(1+1)=12(种),答:一共有12种不同的染法.故答案为:12.9.如果一个时刻的时、分、秒3个数构成递增的等差数列,则称这个时刻为幸运时刻(采用24小时制),例如00点02分04秒和17点20分23秒都是幸运时刻,那在一天中与564个幸运时刻.【解答】解:根据题干分析可得:(29+28+27+…+18)×2,=282×2,=564(个),故答案为:564.10.如图,在6个圆圈中填入2、3、5、7、11、13各一次,并在每个小三角形的中心处写下它3个顶点上3个数的和.那么这些三角形中心处所写数的和被3除的余数是1.这个总合一共有6种不同的可能.【解答】解:(2+3+5+7+11+13)×2,=41×2,=82;(1)若中心数为2,则(82+2×3)÷3=29…1;(2)若中心数为3,则(82+3×3)÷3=30…1;(3)若中心数为5,则(82+5×3)÷3=32…1;(4)若中心数为7,则(82+7×3)÷3=34…1;(5)若中心数为11,则(82+11×3)÷3=38…1;(1)若中心数为13,则(82+13×3)÷3=40…1;所以这6种情况的余数都是1.故答案为:1、6.附加:小升初数学总复习资料归纳典型应用题(1)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数大数-差=小数(和-差)÷2=小数和-小数= 大数例某加工厂甲班和乙班共有工人94 人,因工作需要临时从乙班调46 人到甲班工作,这时乙班比甲班人数少12 人,求原来甲班和乙班各有多少人?分析:从乙班调46 人到甲班,对于总数没有变化,现在把乙数转化成2 个乙班,即9 4 -12 ,由此得到现在的乙班是(9 4 -12 )÷2=41 (人),乙班在调出46 人之前应该为41+46=87 (人),甲班为9 4 -87=7 (人)(2)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。
求出倍数和之后,再求出标准的数量是多少。
根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车115 辆,大货车比小货车的 5 倍多7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的5 倍还多7 辆,这7 辆也在总数115 辆内,为了使总数与(5+1 )倍对应,总车辆数应(115-7 )辆。