碳纤维增强水泥基复合材料的研究
- 格式:pdf
- 大小:277.49 KB
- 文档页数:5
碳纤维水泥基复合材料的应用发展现状
碳纤维水泥基复合材料是一种利用碳纤维增强水泥基复合材料制备而成的新型材料,它具有较高的强度、刚度和耐久性,制造出的制品能够满足各种应用需求。
随着经济的高速发展,碳纤维水泥基复合材料的应用已经从极少数的工业领域扩大至国防、航空、交通、建筑、电力、石油化工等众多领域,并在这些领域取得了非常优异的应用效果。
随着碳纤维水泥基复合材料的不断发展,它的应用领域也不断扩大,涉及到各行各业。
如,电力行业对复合材料的应用有力促进,它在高压电缆套管、高压电缆夹张索、变压器油箱和油箱内壁涂层等方面都取得了重要应用。
交通运输行业中,复合材料已成为航空航天领域的主要材料,如航空机身结构、发动机散热系统、航天器结构等都被大量采用替代传统金属材料。
同时,复合材料也在船舶、轨道交通、汽车等行业中大量应用,用于制作船体外壳、汽车车身结构、轨道交通车辆等结构件,以达到节约金属材料和降低重量的目的。
此外,碳纤维水泥基复合材料还可以应用于水利建筑、岩土工程、高压管道等行业,由于其较低的容重,导致了更低的顶部表面荷载,从而提高了工程的使用寿命和可靠性。
在石油化工行业中,碳纤维水泥基复合材料可用于管道流体管路的保护层、塔内壁的防腐层等。
综上所述,碳纤维水泥基复合材料的应用发展现状十分发达,已经被广泛应用于国防、航空、交通、建筑、电力、石油化工等多个领域,不断受到行业内外的广泛关注。
未来,碳纤维水
泥基复合材料将能够更好地满足人们对安全、节能、高利用率等要求,并有望在更多领域扩大应用,发挥更大作用。
第36卷第10期 娃 酸盐 通 报Vol.36 No.10 2017 年 10 月________________BULLETIN OF THE CHINESE CERAMIC SOCIETY_________________October,2017纤维增强水泥基复合材料的研究进展关国英\赵文杰2(1.吉林建筑大学材料科学与工程学院,长春13〇118;2.长春工业大学化学工程学院,长春130012)摘要:综述了纤维增强水泥基复合材料(f i b e r r e i n f o r c e d cem e n t i t i o u s composites,FRCC)目前在国内外的研究进展。
简要介绍了F R C C的概念及其基本性能,详细介绍了超高性能F R C C的国内外研究进展,重点介绍了 F R C C的纤维 间距、复合材料以及多重裂缝等理论的研究情况以及F R C C工程应用情况,在此基础上,提出了当前F R C C研究中 存在的问题和今后需要进一步研究的方向。
关键词:纤维;增强;水泥基;复合材料;机理中图分类号:TU529.41 文献标识码:A 文章编号:1001-1625 (2017)10-3342-05 Research Development of Fiber Reinforced Cementitious MaterialsGUAN Guo-ying1,ZHA0 Wen-jie2(1. School of Materials Science and Engineering, Jilin Jianzhu University,Changchun 130118 ,China;2. Institute of Chemical Engineering,Changchun University of Technology,Changchun 130012,China)Abstract:The current research progress of the fiber reinforced cementitious composites(FRCC)at home and abroad is summarized.The concept and the related properties of FRCC are introduced briefly.The research progress of ultra-high performance of FRCC are especially introduced domestic and overseas.The engineering application of FRCC and the current theoretical research of the theory of composite,fiber spacing theory and multiple fracture theory are recommended emphatically.On the basis of,the existing problems of researching FRCC are putted forward in the current and to come up with the direction for further study of FRCC in the future.Key words :fiber;reinforced;cementitious;composite material;mechanism1引言在现代的建筑行业中,水泥基材料是一种应用范围广、用量大的建筑材料,它具有来源广泛、价格便宜、强度可控、及外形可塑等优点,但也存在抗裂性差、脆性大、抗拉强度低、极限延伸率小等不足之处。
碳纤维增强复合材料的力学性能研究随着科技的发展和人们对材料性能要求的不断提高,碳纤维增强复合材料作为一种新型材料,逐渐受到了人们的关注和研究。
碳纤维增强复合材料的优点在于具有轻质、高强和高刚性等特点,因此在航空航天、汽车和体育器材等领域得到了广泛应用。
本文将围绕碳纤维增强复合材料的力学性能展开讨论,并分析其优点与不足。
一、碳纤维增强复合材料的力学性能研究碳纤维增强复合材料是由无定形材料和纤维增强材料组成的一种粘合材料。
其力学性能是影响使用效果的重要因素。
在实际应用中,碳纤维增强复合材料的力学性能主要表现在强度、刚度、韧度和疲劳寿命等方面。
下面将对这些方面进行详细讨论。
1. 强度碳纤维增强复合材料的强度是指在外力作用下,材料发生断裂前所能承受的最大应力。
由于其结构特殊,具有纤维对外界应力的抗拉能力,因而其强度很高。
实验表明,碳纤维增强复合材料的抗拉强度约为1500 MPa。
而同样条件下的钢材和铝材抗拉强度只有400 MPa左右,而且在高温、腐蚀等恶劣环境下,铝材和钢材的强度更低,而碳纤维增强材料的强度不变,还会增加。
2. 刚度碳纤维增强复合材料的刚度是指在外界力作用下,材料抵抗形变的能力。
由于其纤维本身刚度很高,因此材料的刚度也很高。
实验结果表明,碳纤维增强复合材料的弹性模量约为210 GPa,而同样条件下的钢材和铝材弹性模量分别为200 GPa 和70 GPa左右。
因此,在需要使用刚度较高的场合下,碳纤维增强复合材料具有较好的应用前景。
3. 韧度碳纤维增强复合材料的韧度是指在受力时,材料离开弹性阶段到断裂之前所需要的功。
与强度和刚度不同,碳纤维增强复合材料的韧度较低。
这是由于该材料虽然具有纤维与增强材料的双重优势,但其内部结构复杂度很高,存在许多微小裂缝,因此材料整体的韧性有所下降。
实验结果表明,碳纤维增强复合材料的韧度约为25-50 kJ/m2,而同样条件下的钢材和铝材韧度分别为200 kJ/m2和10-20 kJ/m2左右。
碳纤维增强水泥基复合材料的制备碳纤维增强水泥基复合材料(CFRP)是一种高强度、高刚度、耐久性好的新型材料,被广泛地应用于建筑、道路、桥梁等工程领域。
本文将对CFRP的制备过程进行介绍。
I. 碳纤维的制备碳纤维是CFRP的主要材料之一。
根据需要,碳纤维可以采用不同的制备方法,如化学气相沉积法、炭化毛毡法等。
其中,化学气相沉积法是目前应用最广泛的制备碳纤维的方法之一。
该方法以石油焦为原料,在高温下进行气相反应,使得碳化物沉积在钨丝或其他适合的表面上,形成了碳纤维。
II. 水泥基材料的制备水泥基材料是CFRP的另一个主要组成部分。
在制备水泥基材料时,需要确定其成分及配比,以保证其性能符合要求。
常用的水泥基材料有Portland水泥、硬化剂、矿物掺合料、增韧剂等。
其中,Portland水泥是一种常用的水泥基材料,具有硬化迅速、强度高、抗渗透等优点。
III. CFRP的制备CFRP制备的基本流程如下:先将碳纤维与水泥基材料进行混合,并加入适量的钢材、木材或其他增强材料,将其混合均匀后,将其加压至所需形状和尺寸,然后进行加热和固化。
加热和固化是CFRP制备的关键步骤之一。
加热和固化的目的是使CFRP材料在一定的压力下得到充分的硬化,从而达到理想的强度和刚度。
IV. CFRP的性能CFRP具有很好的强度和刚度,是一种具有高性能的新型复合材料。
CFRP具有以下特点:1. 高强度和高刚度:CFRP的强度和刚度比钢材高出很多。
2. 耐久性好:由于碳纤维具有优异的耐腐蚀性和耐磨性,CFRP具有很好的耐久性。
3. 轻质:CFRP具有低密度,重量轻。
4. 断裂韧性好:CFRP具有良好的断裂韧性,具有抗震能力。
V. 应用前景CFRP具有广阔的应用前景,目前已应用于许多工程领域。
例如,CFRP可以制成桥梁、隧道、建筑物等大型工程建筑材料,也可以应用于汽车制造、铁路、电力、环保等领域。
随着技术的不断进步和发展,CFRP的应用前景将会更加广泛。
碳纤维增强水泥基复合材料的研究要:水泥混凝土材料以其抗压强度高,施工方便等优点在人类建筑史上发挥了重要作用,但由于其功能单一,脆性自重大,抗拉强度和抗弯强度低等缺点,在特殊领域中的用途受到了很大限制.碳纤维具有高弹性,高模量,比重耐腐蚀,对人宙无害等优异性能被视为许多材料的优良增强体.将其加入到水泥基体中,制成碳纤维增强水泥基材料(CFRC),不仅可改善水泥自身力学性能的缺陷,使其具有高强度,高模量,高韧性,更重要的是把普通的水筑材料变成了具有自感知内部温度,应力和损伤及一系列电磁屏蔽性能的功能材料..枣词:碳纤维;水泥基;复合材料~tract:Cementconcretematerialshaveplayedallimportantroleinhun]an’sconstructionhistoiT)ritshig hCOIllpres—strengthandeasyoperationduringconstruction.However,itsapplicationinsomespecialfieldisgreatlyr estrictedowlslgISsinglefunction,brittleneSS,heavyself-weight,poorstrengthagainsttensionandbending.Carbonfib ersareregardedasdreinforcementfbrnlanymaterialsduetotheirhighelastic ity,highmodulus,lessdensity,resistancetOco rrosion,and]llessnesstohunlallbeingsanddomesticalmnals.Carbon—fiber—reinforcedcement—basedcompos ites(CFRC)thatareievedbyaddingcarbon6bersintocelllentexhibithighflexuralstrength,hightensilestrength,highflexur altoughnesshightensileductility.Thusnot0I]lythenaechalficalpropertiesofcementareimproved.butfimctionalm aterialsCFRCobtainedthatareabletOsensetheinteriortemperature,stressanddanaageaswellastoshieldoffelectroma gneticwaves./words:Carbonfibers;Cementmatrix;Composites目分类号:TQ172.7文献标识码:A文章编号:1003—8965(2007)05—0005—05刖吾)世纪60年代以来,碳纤维作为新一代复合l补强纤维,以其高强度比,高模量比,低密)(光吸收率,抗腐蚀,耐烧蚀,抗疲劳,耐热冲皂导热性能好,传热系数小,膨胀系数小和自:优异性能而在航天,航空,航海,建筑,轻工.中获得了广泛的应用.将碳纤维加入到水泥p即制成碳纤维增强水泥基复合材料:),也称纤维增强混凝土【1.在水泥基体中强碳纤维是提高水泥复合材料抗裂,抗渗,度和弹性模量,控制裂纹发展,提高耐强碱性,增强变形能力的重要措施.此外,碳纤维还具有震动阻尼特性,可吸收震动波,使防地震能力和抗弯强度提高十几倍位一.更为可贵的是,碳纤维具有导电性,将其加入到水泥基体中可赋于其智能性,极大地扩大了它的应用范围.CFRC复合材料在承受载荷时表面不产生龟裂,其抗拉强度和抗弯强度,断裂韧性比不增强的高几倍到十几倍,其冲击韧性也相当可观.短切碳纤维增强水泥所用碳纤维的长度一般为3~6mm,直径为7-20m,抗拉强度范围在0.5~0.8GPa.普通水泥的强度通常为11.76MPa,若按重量掺入15%的碳纤维,其强度可达到245MPa:若掺入量为20%时,强度可高达548.8MPa.此外,与普通混凝土相比,CFRC具有5L水泥与混凝土质轻,强度高,流动性好,扩散性强,成型后表面质量高等优点,将其用作隔墙时,重量比普通混凝土制作的隔墙薄1/2—1/3,重量减轻1/2—1/3.因此, CFRCI”1能的研究近年来发展迅猛.2CFRC的性能特点及应用2.1CFRC的制备CFRC的制备一般由混料,成型,养护3步组成.利用分散剂将碳纤维预先分散开来,再与水泥,砂子,石子,外加剂等均匀混合,然后采用浇注法,挤出法,压制法,压制脱水法或振动法之一使混合料成型,成型后的试件放入到水或养护箱中养护,干后即成CFRC复合材料,通常有水泥砂浆和水泥混凝土两种类型,后者更具有实用I’*--.-.制备CFRC 过程中,如何使碳纤维均匀分散到水泥基体中,是决定CFRC复合材料性能好坏的关键.常用的拌合方法有两种:干拌法和湿拌法.前一种方法是先将碳纤维和水泥混合搅拌均匀后,再加入砂子,水和其他外加剂;后一种方法是将碳纤维预先分散在部分水中,再与水泥,砂子,硅灰和外加剂混合搅拌.搅拌工艺也十分讲究,一般采用间歇式自动控制搅拌仪.碳纤维水泥浆体的理想搅拌工艺为先拌制水泥和碳纤维,再加入拌合水或先将碳纤维在溶有分散剂的水中分散后加入水泥搅拌30秒钟,最后加入标准砂再继续搅拌.碳纤维在制备好的CFRC试件中呈三维乱向分布,由于受纤维排列方式和长度的影响,短切碳纤维的增强效果不如单轴连续纤维和两维乱向分散的短纤维增强效果.2.2力学性能水泥是脆性材料,但只要加入3vo1%的碳纤维就可以完全改变它的脆断特性,其模量可提高2倍,强度增加5倍.如果定向加入,则加入12.3vo1%的中强碳纤维便可使水泥的强度从5MPa提高到185MPa,抗弯强度也可达到130MPac2|4~5]o赵稼祥旧认为,用碳纤维增强水泥可以使抗拉强度和抗弯强度提高5~10倍,韧性与延伸率提高20~30倍,结构质量减轻1/2.郭全贵等人利用单丝拔出试验测定了CFRC复合材料的界6面结合力,认为高强度和高模量碳纤维的加入,有效阻止了裂纹的扩展,在复合材料受载时,基体通过界面将载荷传递给碳纤维,从而使碳纤维成为载荷的主要承载者,由于纤维的拔出或断裂吸收了大量的能量,所以复合材料的抗拉强度,抗弯性能,韧性等力学性能均得到了显着改善.2.3压敏性1989年美国的DDL.Chung研究小组首先发现,在水泥基体中掺入短切碳纤维,可使其具有自感知内部应力,应变和损伤程度的功能吲.随着压应力的变化,CFRC电阻率发生变化的现象称做压敏性,CFRC的主要特性就是压敏性和温敏性.当CFRC试件两端有温差时,会在此两端产生电压差,其冷端为负极,热端为正极,这便是所谓的热电效应.另一方面,当对CFRC施加电场时,会在混凝土中产生热效应,引起所谓的电热效应,这两种效应都是由碳纤维混凝土中空穴性电导运动所致.通过电阻率的变化可以测定CFRC中安全,损伤和失效3个工作阶段.由于CFRC既具有热电效应,又具有电热效应,因此把它”植入”混凝土结构时,可对混凝土结构进行温度分布自诊断,根据诊断结果实现混凝土结构的温度自适应.当CFRC与电源连通后,导电混凝土产生热量,使路面温度升高,当温度升到0.C以上后,路面上的冰雪就会自动融化成水蒸发流走,从而保障道路畅通和行车安全,国外已将温敏混凝土用于机场道路及桥梁路面的融雪和融冰中【&91o2.4屏蔽效应屏蔽是电磁干扰防护控制的最基本方法之一,其目的一是控制内部辐射区域的电磁场,不使其越出某一区域;二是防止外来的辐射进入某一区域.当外来电磁波遇到屏蔽材料时,就会被吸收,反射和多次反射,电磁波能量的继续传递受到削弱. CFRC复合材料中可形成导电网络,从而可产生屏蔽性能,碳纤维的添加量,长度以及成型方法对CFRC的屏蔽性能均有较大的影响.材料的屏蔽效能SE达到30~60dB的中等屏蔽值时才认为有效.性能良好的电磁屏蔽材料应具有较高的电导率和磁导率.碳纤维对电磁波有较强的反射性,利用水泥与混凝士此特性可将碳纤维复合材料用作薄壁结构吸波材料的背衬.这种材料是雷达波的反射体,特别是在低频下与金属一样反射电磁波..赵福辰等人通过实验发现”I,增加CFRC复合材料中导电碳纤维的长度和含量,可以明显提高屏蔽效果.3影响CFRC性能的主要因素3.1碳纤维掺入量和长度的影响张其颖等人”经过反复试验,确定了目前条件下制备轻质CFRC复合材料的适宜参数为:水泥: 轻骨料(重量)=2:1,水灰比0.65,复合外加剂含量0.5%,碳纤维长度6mm,掺入量3.3%.他的研究表明,外加剂,硅粉及热水养护方法都能促进碳纤维与水泥基体的粘结,更充分地发挥碳纤维的增强作用,提高复合体的强度.CFRC之所以具有良好的力学性能,一方面是因为碳纤维本身具有良好的力学性能,有明显的补强增韧效果;另一方面是合适的操作工艺,使得碳纤维在基体中分散较为均匀,阻断了裂纹的扩展和延伸,最终提高试体的抗折,抗拉,抗压性能.杨元霞等人”.0研究了碳纤维长度和掺量对CFRC导电性的影响,发现当碳纤维掺量(以占水泥质量计)在0~0.8%的范围内增加时,对于碳纤维长度为5mm和10mm的复合材料,其电阻率的变化分为先陡然下降,后缓慢下降,又急剧下降,再趋于平缓4个阶段.当碳纤维掺量相同时,长度为10mm的CFRC试件的电阻率比长度为5mm试件的电阻率要小,且在碳纤维掺量较小时,碳纤维长度对复合材料的电阻率影响较大,碳纤维掺量较大(大干0.6%)时,复合材料电阻率受碳纤维长度的影响变/J,.在水灰比,碳纤维掺量及成型工艺条件一定的情况下,碳纤维长度增大,CFRC导电性增强,但若纤维过长,则易集束成团,难于分散均匀,从而使碳纤维的利用率降低.所以,一般所用碳纤维长度不宜超过10mm.纤维在水泥基体中分散的均匀程度与其长径比有很大关系,一般是长径比越大,即纤维直径不变而纤维长度越大时,在搅拌中越易成球.因此,单纯从有利分散的角度来讲,应是纤维越短越好.同时,碳纤维的掺量对其分散性也有较大的影响.试验发现,在碳纤维和水泥混合搅拌过程中,当碳纤维掺量达到水泥质量的1%时,混合料中便会有明显的纤维团出现,且即使延长搅拌时间,纤维团也不会消失.所以,在一般的拌制工艺中,碳纤维的长度在5mm左右或更大时,碳纤维的最大掺量不宜超过1%.碳纤维的掺量和长度对CFRC的压敏性也有影响,对于5mm长的纤维,掺量为水泥质量的0.4%时压敏性最好,掺量增加或减少都使压敏性变差:对于10mm长的纤维,掺量为0.2%时效果最好,随着纤维掺量增加,压敏性越来越小.3.2碳纤维均匀分散的影响碳纤维直径仅为几个微米,表面光滑且憎水,在水泥基材料中很难均匀分散,这是制备电学能稳定的CFRC机敏材料的一个关键性难题.对于相同配比的CFRC材料,如果纤维分散不均匀,其电导率将产生明显的差异,这极大地限制了CFRC作为机敏材料的应用.提高碳纤维均匀分散的主要方法有两种:一是加入表面活性剂如羟乙基纤维素(HEC)用作分散剂,使自身具有增水性的碳纤维在水溶液中均匀分散;二是加入超细粉如硅灰,粉煤灰等,填充骨料间隙和絮化结构,占据水空间,使砂浆变稀,提高砂浆的和易性.研究表明陧,Ⅷ,HEC是促进碳纤维在水泥浆体中分散的一种有效的表面活性剂,它溶于水后,形成胶状透明液体,可以使碳纤维稳定地悬浮在水溶液中而不集结成束.HEC在降低纤维表面张力的同时,也降低了水泥基体的表面能,因而会在水泥浆体的搅拌过程中引入一定量的气泡.为了降低气泡的含量,制备CFRC试件过程中,添加HEC的同时,还应加入一定剂量的减水剂和消泡剂,这样,才能得到分散性能好,力学性能稳定的CFRC复合材料.图1(a)为短碳纤维均匀分散在水泥基体中时的SEM照片,图1(b)为短碳纤维呈集束状态,即分散不良时的SEM照片.均匀分散有利于改善CFRC的力学性能,反之,团聚会造成基体中存在大量的空隙,降低CFRC的力学性能.图2(a)为碳7(a)碳纤维分散呈良好分散态时(b)碳纤维呈集束态时图1短碳纤维在水泥基体中分散情况的SEM照片纤维均匀分散时,CFRC复合材料的抗压强度与纤维质量分数的关系,显然,抗压强度的提高与纤维质量掺量并不是呈线形增加,当纤维质量分数超过一定值时(0.6%),抗压强度反而逐渐降低.当短碳纤维呈不良分散状态时,抗压强度随纤维质量分数的增加直线下降如图2(b)所示.3.3碳纤维表面处理的影响碳纤维的表面比较光滑,比表面积小,表面能较低,具有活性的表面一般不超过总表面积的10%,呈现憎液性,所以较难与基体有较好的结合. 8凸_岂,_,暖1±】(a碳纤维呈良好分散态时)最大值5rit’’i0.0020.4限60.器《0碳纤维质量掺量(%)国内外已有许多研究人员采用多种方法对碳纤维表面进行了处理.表面处理可归纳为4大类:清除表面杂质:在纤维表面形成微孔或刻蚀槽,从类石墨层面改性成碳状结构以增加表面能;引进具有极性或反应性的官能团;形成和树脂起作用的中间层.DDLChung”日运用臭氧处理法,硅烷处理法等取得了可喜成果.她认为对碳纤维进行表面处理,增加了表面氧浓度,并且将表面氧从C—O型结构变成C=O结构,使纤维和水的接触角降到零,纤维的分散性提高,碳纤维与水泥基体之间的界面结332‘30凸_琶2岛警2624鞲=2220l8-=(b)碳纤维成不良分散态时004图2CFRC的抗压强度与碳纤维质量掺量的关系曲线0嚣I2l620碳纤维质量掺量(%).∞m合增强,最终提高了CFRC的拉伸强度,模量和延展性.同时,臭氧处理不影响纤维本身的形貌,强度及体积电阻.DDL.Chung1161也用30%的双氧水对碳纤维进行了表面处理,以改善碳纤维表面的疏水性,提高碳纤维对水的浸润性.张其颖认为碳纤维表面对水泥浆的润湿性不仅影响纤维与基体的界面粘结强度,还影响纤维在水泥中的分散程度.满华元等人”采用阳极表面处理法对碳纤维进行了处理,处理后的沥青碳纤维可使水泥复合材料比对应基体的力学的重点多集中在CFRC复合材料的力学性能和普通电学性能上,对其智能性,吸波性,Seebeck效应,Peltier效应和Thomson效应及其应用的研究远落后于美国DDL.Chung研究小组;CFRC复合材料屏蔽性能用于防止核辐射和电磁污染的研究还处在萌芽阶段;影响CFRC力学性能,电学性能的各主要成分之间的定量关系还未能精确描述;CFRC复合材料中纤维与基体之间的界面特征对其宏观性能的影响还有待进一步探讨.此外,制备CFRC过程中,除采取控制加料顺序,变换搅拌工艺,加入硅粉,HEC等分散剂促使碳纤维均匀分散外,材料研究工作者仍在寻找最理想的碳纤维分散方法.参考文献…王茂章,贺福.碳纤维的制造,性质及其应用【M】.北京:科学出版社,1984.第1版【2】李克智,王闯,李贺军,石振海.碳纤维增强水泥基复合材料的发展与研究.材料导报,2006,2O(5):85—88 【3】Zeng—QiangShi,D.D.L.Chung,Carbonfiber—re—inforcedconcretefortrafficmonitoringandweighingin motion,CemConcrRes,1999(29):435—439【4】张卫东,徐学燕.智能材料在土木工程健康监测中的应用【J】.石油工程建设,2004(2):9—13【5】邓宗才,钱在兹.碳纤维混凝土在反复荷载下的应力一应变全曲线研究【J】.建筑结构,2002(6):54—56 【6】赵稼祥.碳纤维的发展与应用【J】.纤维复合材料,1996(4):46—50【7】郭全贵,岳秀珍.单丝拔出实验表征碳纤维增强水泥复合材料的界面【J】.纤维复合材料,1995(3):42—46 【8】SihaiWen.DDL.Chung.Enhanc ingtheSeebeck effectincarbonfiber--reinforcedcementbyusingnter—calatedcarbonfibers.CemConcrRes,2000(3O):1295—1298-【9】Zeng—QiangShi,DD.L.Chung,Carbonfiber—re—inforcedconcretefortrafficmonitoringandweighingin motion,CemConcrRes,1999(29):435—439【1O】靳武刚.碳纤维在电磁屏蔽材料中的应用【J】.现代塑料加工应用,2003(1):24—27【11】赵福辰.电磁屏蔽材料的发展现状【J】.材料开发与应用,2001(5):29—33【12】张其颖.碳纤维增强水泥混凝土导电机理的研究【J】.硅酸盐通报,2003(3):22—28【13】杨元霞,刘宝举.碳纤维水泥基复合材料电性能的若干研究.建筑材料学报,2001(2):200—203【14】韩宝国.碳纤维水泥基复合材料压敏性能的研究【D】.哈尔滨:哈尔滨工业大学,2001【15】D.D.L.Chung.Carbonfiberreinforcedcement mortarimprovedbyusingacrylicdispersionasadmix—ture.CemConcrRes,2001(31):1633—1637【16】XuliFu,D.D.L.Chung.Ozonetreatmentofcar- bonfiberforreinforcingcement.Carbon,1998,36(9): 1337—1345【17】满华元,张岩.碳纤维阳极表面处理对CF/MDF水泥复合材料性能影响研究【J】.复合材料学报,1995(2):47—51【18】Jian—guoZhao,Ke-zhiLi,He-junLi,ChuangWang.Theinfluenceofthermafgradientonpyrocarbon depositionincarbon/carboncompositesduringtheCVI process,Carbon,2006(44):786—7919。
碳纤维增强复合材料的制备与性能研究引言:碳纤维增强复合材料是一种具有高性能和轻质化特点的新材料,广泛应用于航空航天、汽车、船舶和体育器材等领域。
本文将从碳纤维的制备方法、复合材料的制备工艺以及其性能研究等方面进行探讨。
一、碳纤维的制备方法碳纤维是一种由高度纯净的碳素原料制备而成的纤维。
目前常用的制备方法主要有聚丙烯腈纤维炭化法、沥青纤维炭化法和煤沥青纤维炭化法。
聚丙烯腈纤维炭化法是最常用的制备碳纤维的方法,其过程包括聚合、纺丝、预氧化、炭化和高模拉伸等步骤。
该方法制备的碳纤维具有较好的力学性能和电导率,广泛应用于航空航天领域。
沥青纤维炭化法利用含碳的原料,如煤沥青或石油沥青,制备碳纤维。
该方法具有制备工艺简单、成本低的优点,但碳纤维的力学性能相对较低。
煤沥青纤维炭化法是一种利用煤沥青作为碳纤维原料的方法。
通过将煤沥青纺丝成丝线,然后炭化处理得到碳纤维。
这种制备方法的碳纤维具有竖直排布的孔隙结构,结构独特,但强度较低。
二、复合材料的制备工艺碳纤维增强复合材料的制备工艺是将碳纤维与树脂复合而成的一种新型材料。
制备过程主要包括预处理、层叠和固化等步骤。
预处理是指对碳纤维进行表面处理,以增强其与树脂的粘结能力。
常用的方法有碱处理和氧等离子体处理。
碱处理可以使碳纤维表面形成羟基官能团,提高粘结性能。
而氧等离子体处理可以增加碳纤维表面的活性基团,提高其化学反应性。
层叠是将预处理过的碳纤维与树脂按照设计要求进行层叠,形成复合材料的初始结构。
层叠可以通过手工层叠和机械层叠两种方式进行,手工层叠适用于小批量生产,机械层叠适用于大规模生产。
固化是指将层叠好的碳纤维与树脂的复合材料放入固化设备中,在一定的温度和压力下进行固化反应。
固化过程中,树脂将热固化,与碳纤维形成牢固的化学键,使复合材料具有较好的力学性能和稳定性。
三、性能研究碳纤维增强复合材料的性能主要包括力学性能、热性能和导电性能等。
力学性能是衡量复合材料强度和刚度的重要指标,包括拉伸、弯曲和剪切等性能。
纤维增强型水泥基复合材料一、纤维增强型水泥基复合材料的概述纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。
加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。
二、纤维增强型水泥基复合材料的力学性能在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。
• 2.1 抗拉强度•在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。
•• 2.2 抗裂性在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。
• 2.3 抗渗性纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。
另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。
2.4 抗冲击及抗变形性能在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。
水泥基复合材料的应用与研究一、前言水泥基复合材料是指以水泥、矿物掺合料和一定比例的纤维等材料为基础,加入适量的添加剂,通过混合、浇注、压制等工艺形成的一种综合性材料。
它具有高强度、耐磨、耐腐蚀、防火等优良性能,同时还具有良好的耐久性和可持续性,因此在工程建设领域得到了广泛的应用。
二、水泥基复合材料的种类1.纤维增强水泥基复合材料纤维增强水泥基复合材料是指在水泥基材料中加入纤维,使其具有更好的抗拉强度和韧性,常见的纤维有玻璃纤维、碳纤维、钢纤维等。
这种材料广泛应用于建筑、桥梁、路面等工程领域。
2.高性能混凝土高性能混凝土是指在水泥基材料中加入微粉、氧化硅等掺合料,以及控制水灰比等技术手段,使其具有更高的强度、耐久性和抗渗性。
这种材料广泛应用于高层建筑、大型桥梁、隧道等工程领域。
3.自密实混凝土自密实混凝土是指在水泥基材料中加入一定比例的特殊掺合料和添加剂,通过控制水泥胶凝体的形成,使其具有自密实的性能,从而提高了材料的耐久性和抗渗性。
这种材料广泛应用于水利水电、海洋工程等领域。
4.轻质水泥基复合材料轻质水泥基复合材料是指在水泥基材料中加入一定比例的轻质骨料,使其具有更轻的重量和更好的保温性能,常见的轻质骨料有珍珠岩、膨胀珍珠岩、膨胀粘土等。
这种材料广泛应用于建筑、隧道、地道等领域。
三、水泥基复合材料的应用1.建筑领域水泥基复合材料在建筑领域的应用非常广泛,主要包括建筑结构、外墙保温、地面修补等方面。
例如,在建筑结构中,水泥基复合材料可以用于加固和修补混凝土结构,提高其承载能力和抗震性能;在外墙保温中,水泥基复合材料可以用于制作外墙保温板,达到节能减排的效果;在地面修补中,水泥基复合材料可以用于修复地面裂缝和磨损部位,提高地面的使用寿命。
2.交通运输领域水泥基复合材料在交通运输领域的应用也非常广泛,主要包括桥梁、隧道、地铁等方面。
例如,在桥梁中,水泥基复合材料可以用于加固和修补桥梁结构,提高其承载能力和抗震性能;在隧道中,水泥基复合材料可以用于修补和加固隧道结构,提高其使用寿命和安全性;在地铁中,水泥基复合材料可以用于修补和加固地铁隧道结构,提高其使用寿命和安全性。
纤维增强型水泥基复合材料一、纤维增强型水泥基复合材料的概述纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。
加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。
二、纤维增强型水泥基复合材料的力学性能在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。
• 2.1 抗拉强度•在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。
• 2.2 抗裂性在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。
• 2.3 抗渗性纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。
另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。
2.4 抗冲击及抗变形性能在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。
0引言水泥是一种绝缘材料,可以通过与其它材料共混使其具有一定导电性能[1]。
碳纤维具有高强度、高模量、耐高温、耐腐蚀、抗疲劳、抗蠕变、质量轻和导电性好等特点,在水泥基体中添加短切碳纤维可以制备出碳纤维增强水泥基(CFRC )复合材料[2]。
适量碳纤维掺到水泥基体中,不仅可以提高CFRC 复合材料的拉伸塑性、粘结强度、弯曲强度和韧性,而且能够减小CFRC 的干燥收缩,从而实现在较大范围内调整CFRC 的电阻率。
其具有包括压敏性、热电效应、焦耳效应、比热容高、导热系数低、导电性好、耐蚀性好、热电性能和耐高温等优异性能[2-7]。
有研究表明[8-12],随着碳纤维掺量增加,材料的导电性能有所提高,但碳纤维掺量过高时,空隙率较大,会影响CFRC 复合材料的力学性能。
本实验采用两步法制备了碳纤维分散均匀的CFRC 复合材料。
利用扫描电镜、电阻测试仪和电子万能试验机研究了碳纤维掺量、长度和成型工艺对CFRC 复合材料力学性能和电学性能的影响。
1实验1.1原材料聚丙烯腈基短切碳纤维:上海和伍复合材料科技有限公司,长度分别为4、7、10mm ,主要性能指标见表1。
水泥:冀东水泥有限公司的P ·C32.5水泥,符合GB 175—2007要求。
分碳纤维增强水泥基复合材料的制备及其性能研究孙杰,魏树梅(内蒙古建筑职业技术学院,内蒙古呼和浩特010050)摘要:以碳纤维为增强相制备分散均匀的碳纤维增强水泥基(CFRC )复合材料,研究了碳纤维长度、掺量和成型工艺对CFRC 复合材料性能的影响。
结果表明:掺入碳纤维后,CFRC 复合材料的力学性能有所提高,电阻率明显降低;采用10mm 碳纤维、掺量为0.6%时,CFRC 复合材料的抗压强度最大提高了22.6%;碳纤维掺量相同时,碳纤维越长,电阻率越小;采用振动压实法成型试件,更有利于提高CFRC 复合材料的导电率。
关键词:碳纤维;水泥;分散;CFRC ;导电率中图分类号:TU528.58+2文献标识码:A文章编号:1001-702X (2018)10-0061-04Study on the preparation and properties of carbon fiber reinforced cement matrix compositesSUN Jie ,WEI Shumei(Inner Mongolia Technical College of Construction ,Hohhot 010050,China )Abstract :Carbon fiber reinforced cement (CFRC )composites were prepared with carbon fiber as reinforcing phase.The effectsof carbon fiber length ,content and molding process on the properties of CFRC composites were studied.The results show that compared with ordinary cement ,the mechanical properties of carbon fiber reinforced cementitious composites are improved and the resistivity decreases obviously.In CFRC composites ,when 10mm carbon fiber is used by 0.6%,the compressive strength of CFRC composites is increased by 22.6%.When the carbon fiber content is the same ,the longer the carbon fiber ,the smaller the resistivi -ty is.And the test specimen molded by vibration compaction method can improve the conductivity of CFRC composites.Key words :carbon fibre ,cement ,dispersed ,CFRC ,conductivity 收稿日期:2018-04-18;修订日期:2018-06-07作者简介:孙杰,男,1981年生,河北武安人,讲师,研究方向为土木工程、建筑工程、建筑工程管理。
纤维增强水泥基复合材料性能研究综述作者:王菲来源:《科学与技术》2018年第05期摘要:水泥混凝土在工程建设中应用广泛;纤维材料的掺入提高了水泥基材料的抗拉、抗裂、韧性和变形性能。
本文主要介绍了纤维增强水泥基复合材料;尤其是PVA纤维、混杂纤维物理力学性能研究。
关键字:纤维增强水泥基;PVA纤维;混杂纤维引言水泥是当代建设中应用较为广泛、用量较多的建筑材料。
但在实际的工程应用中,传统的水泥基材料表现出来的抗拉强度低、脆性大、易开裂、变形能力差等特点,限制水泥应用与发展。
伴随着新材料技术发展,纤维增强水泥基复合材料的概念被提出,在近50年来得到较快的发展。
通过加入纤维材料提高水泥的抗拉、抗裂、韧性以及变形性能。
目前,较为常用的纤维材料是:碳纤维、玻璃纤维、PVA纤维等。
1 纤维增强水泥基复合材料性能研究水泥为脆性材料,将纤维材料加入水泥中,不仅改善了水泥的抗拉等力学性能,并且改变其发生的破坏形态,提高延性,纤维的不同特性使纤维增强水泥基复合材料的性能表现出差异。
董岩[2]对于碳纤维增强水泥基材料的研究中,在水灰比一定的条件下,纤维掺量为0.6%时,水泥抗压强度提高了27%,在劈拉试验中,纤维掺量为0.8%时,抗拉强度增强30%,碳纤维的较强的韧性一方面抑制了水泥基裂缝的发展。
在王炜文[3]对于不用纤维增强水泥基复合材料力学性能的试验研究中,对于PVA纤维、碳纤维、玄武岩纤维、PP纤维增强水泥基复合材料进行四点弯曲试验,得到的各项力学指标中,掺入碳纤维、玄武岩纤维的水泥材料极限荷载为PVA纤维材料的1.5倍,但其挠度、裂缝特点等延性特点较差,PVA、PP纤维增强水泥基复合材料的极限荷载较低,但在破坏中呈现出了多点开裂的现象,裂缝数量较少,其中,PVA纤维的最大裂缝宽度相对较小。
高延性纤维增强水泥基复合材料(Engineered Cementitious Composite,ECC)最早是在20世纪90年代,由密歇根大学的Li[4]教授提出的。
碳纤维增强复合材料
首先,碳纤维增强复合材料的制备工艺包括预浸料法、手工层叠法、自动纺织
成型法等。
预浸料法是将碳纤维预先浸渍于树脂中,然后再进行成型和固化,这种工艺能够保证复合材料的质量和性能稳定。
手工层叠法是将预浸的碳纤维逐层手工叠放在模具中,然后浸渍树脂并进行固化,这种工艺成本低廉但生产效率低。
自动纺织成型法是利用自动化设备将预浸的碳纤维布料进行成型,然后进行固化,这种工艺能够快速高效地生产复合材料。
其次,碳纤维增强复合材料具有优异的力学性能,其比强度和比模量分别是金
属材料的2-5倍和5-10倍,因此能够在相同强度下减轻结构重量,提高结构的载
荷能力。
同时,碳纤维增强复合材料具有优异的疲劳性能和耐腐蚀性能,在复杂的工程环境中能够保持稳定的性能。
再者,碳纤维增强复合材料在航空航天领域得到广泛应用,例如飞机机身、机翼、舵面等结构件均采用碳纤维增强复合材料,能够显著减轻飞机重量,提高燃油效率,同时具有优异的抗疲劳和耐腐蚀性能,能够提高飞机的使用寿命和安全性。
最后,随着碳纤维增强复合材料制备工艺的不断改进和成本的降低,其在汽车、船舶、体育器材等领域的应用也在不断扩大。
碳纤维增强复合材料能够有效减轻汽车和船舶的重量,提高燃油效率和行驶性能,同时具有优异的外观和表面质量,能够满足高端体育器材对轻量化和高性能的要求。
总之,碳纤维增强复合材料以其优异的性能和广泛的应用前景,成为当今材料
科学领域的研究热点,随着技术的不断进步,相信碳纤维增强复合材料在未来将有更广阔的发展空间。
浅谈纤维增强水泥基复合材料(卢静娴)一、什么是纤维增强水泥基复合材料?纤维增强水泥基复合材料是由水泥净浆、砂浆或水泥混凝土作基材,以非连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
纤维在其中起着阻止水泥基体中微裂缝的扩展和跨越裂缝承受拉应力的作用,因而使复合材料的抗抗折强度以及断裂能较未增强的水泥基体有明显的提高。
二、纤维增强水泥基复合材料有哪些特质?(主要指力学性能)纤维增强水泥基复合材料具有抗裂、大延性、高韧性、抗冲击、抗渗、抗剪、耐高温、耐腐蚀、良好的化学稳定性和优越的能量吸收能力,在减小混凝土裂缝、提高混凝土耐久性、改善混凝土脆性破坏、电学性能等方面都起了重要作用。
在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。
1.抗拉强度内部缺陷是水泥基复合材料破坏的主要因素,任意分布的短切纤维在复合材料硬化过程中改变了其内部结构,减少了内部缺陷,提高了材料的连续性。
在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。
在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。
宏观上看,当基体材料受到应力作用产生微裂缝后,纤维能够承担因基体开裂转移给它的应力,基体收缩产生的能量被高强度、低弹性模量的纤维所吸收,有效增加了材料的韧性,提高了其初裂强度、延迟了裂缝的产生,同时,纤维的乱向分布还有助于减弱水泥基复合材料的塑性收缩及冷冻时的张力。
碳纤维增强复合材料的结构设计和性能研究碳纤维增强复合材料是一种轻量化、高强度、高刚度的新型材料,已经广泛应用于航空、航天、汽车、体育用品等领域。
本文将着重讨论碳纤维增强复合材料的结构设计和性能研究。
一、碳纤维增强复合材料的结构设计结构设计是碳纤维增强复合材料应用领域中至关重要的一环。
在碳纤维增强复合材料的设计中,一般需要考虑以下几个因素:1.纤维方向在复合材料中,碳纤维是承载力的主要成分,因此纤维方向对材料的性能影响极大。
一般情况下,纤维方向应与所受力的方向一致,从而最大化材料的强度和刚度。
2.纤维体积分数纤维体积分数指纤维在复合材料中所占的体积比例。
一般来说,纤维体积分数越高,复合材料的强度和刚度越高。
但是,在实际应用中,纤维体积分数过高会导致复合材料的成本增加、加工难度增大等问题。
3.纤维长度纤维长度是指碳纤维的长度。
在碳纤维增强复合材料的设计中,纤维长度不仅影响材料的强度和刚度,还会影响材料的加工难度和成本。
4.界面处理碳纤维和基体之间的界面是影响复合材料性能的重要因素之一。
在界面处理中,常用的方法包括化学表面处理、物理表面处理和界面增强。
二、碳纤维增强复合材料的性能研究碳纤维增强复合材料具有优异的性能,但是在实际应用中,其性能受到多种因素的影响,需要进行深入研究和分析。
1.力学性能力学性能是碳纤维增强复合材料的重要性能之一,包括弹性模量、屈服强度、拉伸强度等指标。
在碳纤维增强复合材料的力学性能研究中,常用的测试方法包括拉伸试验、弯曲试验、压缩试验等。
2.热性能热性能是碳纤维增强复合材料的重要性能之一,包括耐高温性、导热性等指标。
在碳纤维增强复合材料的热性能研究中,常用的测试方法包括热膨胀试验、热导率试验等。
3.耐腐蚀性能碳纤维增强复合材料的耐腐蚀性能是其在某些特殊环境下应用的重要性能之一。
在碳纤维增强复合材料的耐腐蚀性能研究中,常用的测试方法包括环境试验、电化学测试等。
4.疲劳性能碳纤维增强复合材料在使用过程中会受到多次往复负载作用,因此疲劳性能是其应用领域中的重要性能之一。
碳纤维增强高分子复合材料设计制备研究一、概述随着科技的进步,高分子复合材料已经被广泛应用于各种领域,如航天、汽车、船舶、建筑等。
而碳纤维增强高分子复合材料则是其中应用最广泛的一种。
本文将重点探讨碳纤维增强高分子复合材料的设计制备研究,包括材料选择、制备方法、成型工艺等方面。
二、材料选择碳纤维是一种高性能纤维,特点是具有高强度、高刚度和低密度。
因此,碳纤维增强高分子复合材料可以兼顾轻量化和高性能的要求。
在材料选择中,需要考虑以下几个方面:1.碳纤维的类型:碳纤维的类型有很多种,包括短碳纤维、长碳纤维和连续碳纤维等。
连续碳纤维具有最好的强度和刚度性能,但也具有最高的成本。
一般情况下,根据具体应用领域及负荷要求,选择短碳纤维或长碳纤维为增强材料。
2.基体的选择:基体可以是热塑性树脂或热固性树脂。
热塑性树脂具有优良的成型性能,但强度和刚度较差;热固性树脂强度和刚度好,但成型性能差。
根据具体应用领域和要求,选择合适的基体。
3.添加剂的选择:添加剂可以改善材料的耐热性、耐腐蚀性和磨损性等。
根据具体应用领域和要求,选择合适的添加剂。
三、制备方法碳纤维增强高分子复合材料的制备方法主要有以下几种:1.手层叠(hand lay-up):将预先涂上粘合剂的碳纤维层一层层地放在模具中,再涂上基体树脂,最后压实并加热固化。
手层叠工艺简单、成本低,但生产效率低。
2.砂型真空吸塑(vacuum bagging):将碳纤维层和基体树脂放在放置在砂型中,用塑料袋包裹起来并抽真空,利用大气压差将树脂浸渍碳纤维,最后加热固化。
砂型真空吸塑工艺比手层叠工艺效率更高,但工艺时间比较长。
3.自动化制备(automated lay-up):使用自动化机器人将碳纤维布和基体树脂按照设计要求定向排列并粘合,最后加热固化。
自动化制备工艺效率高,生产效率高,但设备成本较高。
四、成型工艺碳纤维增强高分子复合材料的成型工艺主要有以下几种:1.压缩成型(compression molding):将预制好的碳纤维和基体树脂坯料放置在加热的模具中,利用模具的固定形状和温度压缩成形。