自动往返电动小汽车(毕业设计)
- 格式:doc
- 大小:350.00 KB
- 文档页数:36
plc小车自动往返毕业设计
PLC小车自动往返毕业设计可以按照以下步骤进行:
1. 确定设计要求:确定PLC小车自动往返的具体功能和要求,包括小车的移动方式、起止点、速度控制、停顿时间等。
2. 系统设计:设计整个系统的硬件部分,包括PLC控制器、
电机驱动、传感器以及其他必要的电路和接口。
3. 程序设计:编写PLC控制程序,实现小车自动往返的逻辑
控制,包括起动、停止、方向控制以及速度控制等。
4. 系统调试:将硬件部分和程序部分进行整合,测试系统的正常运行,调试可能出现的问题,确保系统稳定可靠。
5. 性能优化:通过调整程序和参数,对系统进行优化,提高小车的移动速度、精度和稳定性。
6. 结果评估:对设计的系统进行评估和测试,检查是否符合设计要求和预期效果,并进行必要的改进和调整。
7. 文档撰写:撰写毕业设计报告,详细记录设计的整个过程,包括设计原理、实施步骤、测试结果和分析等。
8. 学术交流:参加学术交流活动,向其他同行和专业人士展示设计成果,并从他们的反馈中得到进一步改进的建议。
以上步骤只是一个大致的指导,在具体实施过程中可能还会根据具体情况进行一些调整和改变。
同时,也需要注意安全问题,确保设计和实施过程中不会造成任何人身伤害或设备损坏。
实训二电动小车自动往返控制
一、实训目的及要求:
1、实训目的:
通过对电动小车自动往返的控制,了解
和熟悉S7-200 PLC的结构和外部接线方法,掌握PLC控制系统的设计方法和步骤,熟悉定时器的使用、程序的调试等。
2、具体控制要求:
1)小车能够实现两地点的自动延时往返运动(利用行程开关)
2)小车在运行过程中按下按钮停止、松开小车继续运行,压下限位开关停止
3) 控制电路中要有接触器连锁
二、控制系统需要器材:
学生自行选择
三、控制系统硬件设计:
1)PLC的I/O分配
2)PLC的接线图
3)主电路的连接
四、梯形图的设计:
学生自己编制梯形图,上机调试通过即可
五、实训步骤:
1)分析实训要求,确定控制系统所需设备
2)分析实训要求,合理设置按钮、接触器等设备数量,合理分配PLC的I/O
3)分析实训要求,编制PLC的梯形图并上机编译
4)完成主电路的连接,运行整个系统,检验是否满足要求六、实训报告内容:
1)实训目的
2)内容,控制要求
3)PLC的I/O分配
4)PLC的接线图
5)PLC的梯形图
6)现象或故障分析
7)实训总结。
课程设计题目:小车自动往返系统设计学生姓名:学号:所在学院:专业班级:级别:指导教师:目录1 概述 (2)1.1 继电器-接触器控制系统的概况 (2)1.2 继电器与接触器的定义与概念 (2)1.3 继电器-接触器控制系统的优缺点 (2)1.4 继电器-接触器控制系统的发展形势 (3)2 方案设计 (3)2.1 控制系统描述 (3)2.3 继电器-接触器控制系统设计分析 (4)3 元器件的选型 (4)3.1 三相异步电动机的选择 (4)3.2 开关的选择 (5)3.3 熔断器的选择 (6)3.4 时间继电器的选择 (6)3.5 热继电器的选择 (7)3.6 接触器的选择 (8)4 电路图设计 (9)4.1主电路图 (9)4.2工作原理 (10)设计小结 (11)感谢 (12)参考文献 (13)附录一接线图 (13)附录二实物连接图 (14)1概述1.1继电器-接触器控制系统的概况电气控制课程是材料成型与控制工程专业的专业基础课,是由继电接触器控制系统来实现的。
它包含控制线路、主电路、照明电路及辅助线路组成。
该系统是由接触器、继电器、主令电器和保护电器等元件组成,按照一定的控制逻辑接线组成的控制系统。
其工作原理就是采用硬接线逻辑,利用继电器触点的串联或并联,及延时继电器的滞后动作等组成控制逻辑,从而实现对电动机或其他机械设备的起动、停止、反向、调速及对多台设备的顺序控制和自动保护功能。
1.2 继电器与接触器的定义与概念接触器:由于接触器具有可控叫大容量,自身活动性质稳定,功能可靠,工作效率高及给够经久耐用等特性不仅被广泛应用在远距离操控高频度接断电路,一级容量较大甚至兼具负荷的各种系统物质中,比如各种电热机械装置、电焊机、电动机等,而且由于接触器可以进行自动控制一级齐纳电压情况下的释放作业保护型调节,所以,在各种进行远距离自动操控中也被作为一种电磁式自动调控开关进行使用。
如果我们将接触器一句自身结构的主触头所通电流进行划分可以得到:甲流接触器和直流接触器两种类别,其中前者种类较为多,而且就我国而言现有常用的租住设计并以进行投产的交流接触器组要有CJ10以及CJ20等系列型号。
一. 毕业实践任务书无锡职业技术学院毕业实践任务书课题名称:自动往返电动小汽车指导教师:XXXXXXX 职称:讲师指导教师:职称:专业名称:XXXXXXXX 班组:XXXXXX学生姓名:XXXXXXX 学号:05一. 课题需要完成的任务:设计并制作一个能自动往返于起跑线与终点线间的小汽车。
允许用玩具汽车改装,但不能用人工遥控(包括有线和无线遥控)。
图1跑道顶视图跑道宽度0.5m,表面贴有白纸,两侧有挡板,挡板与地面垂直,其高度不低于20cm。
在跑道的B、C、D、E、F、G各点处画有2cm宽的黑线,各段的长度如图1所示。
设计要求1、车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后自动返回起跑线(允许倒车返回)。
往返一次的时间应力求最短(从合上汽车电源开关开始计时)。
2. 达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线中心线之间距离作为偏差的测量值)。
D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。
二. 课题计划:2006.3.3~2006.3.6 熟悉课题,可行性方案分析及方案论述。
2006.3.7~2006.3.19 查阅资料,设计各部分硬件。
2006.3.19~2006.4.10 画原理图,印刷线路板。
2006.4.10~2006.4.20 编写程序验证部分硬件。
2006.4.21~2006.4.25 写出毕业论文。
计划答辩时间:4.21-4.28XXXXX 系(部、分院)2006年02年18日二.外文翻译VIDEOCASSETTEBefore the videocassette recorder there was the movie projector and screen. Perhaps you remember your fifth-grade teacher pulling down a screen—or Dad hanging a sheet on the wall, ready to show visiting friends the enthralling account of your summer vacation at the shore. Just as the film got started, the projector bulb often blew out.Those days did have one advantage, though: the screen was light, paper-thin and could be rolled into a portable tube. Compare that with bulky television and computer screens, and the projector screen invokes more than just nostalgia. Could yesterday's convenience be married to today's technology?The answer is yes, thanks to organic light-emitting materials that promise to make electronic viewing more convenient and ubiquitous. Used in displays, the organic materials are brighter, consume less energy and are easier to manufacture (thus potentially cheaper) than current options based on liquid crystals. Because organic light-emitting diodes (OLEDs) emit light, they consume significantly less power, especially in small sizes, than common liquid-crystal displays (LCDs), which require backlighting. OLEDs also offer several exciting advantages over common LEDs: the materials do not need to be crystalline (that is, composed of a precisely repeating pattern of planes of atoms), so they are easier to make; they are applied in thin layers for a slimmer profile; and different materials (for different colors) can be patterned on a given substrate to make high-resolution images. The substrates may be inexpensive glass or flexible plastic or even metal foil.In the coming years, large-screen televisions and computer monitors could roll up for storage. A soldier might unfurl a sheet of plastic showing a real-time situation map. Smaller displays could be wrapped around a person's forearm or incorporated into clothing. Used in lighting fixtures, the panels could curl around an architectural column or lie almost wallpaperlike against a wall or ceiling.LEDs currently have longer lifetimes than organic emitters, and itwill be tough to beat the widespread LED for use in indicator lamps. But OLEDs are already demonstrating their potential for displays. Their screens put out more than 100 candelas per square meter (about the luminance of a notebook screen) and last tens of thousands of hours (several years of regular use) before they dim to half their original radiance.Close to 100 companies are developing applications for the technology, focusing on small, low-power displays [see box on page 80]. Initial products include a nonflexible 2.2-inch (diagonal) display for digital cameras and cellular phones made jointly by Kodak and Sanyo, introduced in 2002, and a 15-inch prototype computer monitor produced by the same collaborative venture. The global market for organic display devices was about $219 million in 2003 and is projected to jump to $3.1 billion by 2009, according to Kimberly Allen of iSuppli/Stanford Resources, a market-research firm specializing in displays.一、What LED to OLEDCRYSTALLINE semiconductors—the forerunners of OLEDs—trace their roots back to the development of the transistor in 1947, and visible-light LEDs were invented in 1962 by Nick Holonyak, Jr. They were first used commercially as tiny sources of red light in calculators and watches and soon after also appeared as durable indicator lights of red, green or yellow. (When suitably constructed, LEDs form lasers, which have spawned the optical-fiber revolution, as well as optical data storage on compact discs and digital video discs.) Since the advent of the blue LED in the 1990s [see “Blue Chip,” by Glenn Zorpette; Scientific American, August 2000], full-color, large-screen television displays made from hundreds of thousands of LED chips have appeared in spectacular fashion on skyscrapers and in arenas [see “In Pursuit of the Ultimate Lamp,” by M. George Crawford, Nick Holonyak, Jr., and Frederick A. Kish, Jr.; Scientific American, February 2001]. Yet the smaller sizes used in devices such as PDAs (personal digital assistants) and laptops are not as practical.LEDs and OLEDs are made from layers of semiconductors—materials whose electrical performance is midway between an excellent conductorsuch as copper and an insulator such as rubber. Semiconducting materials, such as silicon, have a small energy gap between electrons that are bound and those that are free to move around and conduct electricity. Given sufficient energy in the form of an applied voltage, electrons can “jump” the gap a nd begin moving, constituting an electrical charge. A semiconductor can be made conductive by doping it; if the atoms added to a layer have a smaller number of electrons than the atoms they replace, electrons have effectively been removed, leaving positively charged “holes” and making the material “p-type.” Alternatively, a layer that is doped so that it has an excess of negatively charged electrons becomes “n-type” [see box on opposite page]. When an electron is added to a p-type material, it may encounter a hole and drop into the lower band, giving up an amount of energy (equal to the energy gap) as a photon of light. The wavelength depends on the energy gap of the emitting material.For the production of visible light, organic materials should have an energy gap between their lower and higher conduction bands in a relatively small range, about two to three electron volts. (One electron volt is defined as the kinetic energy gained by an electron when it is accelerated by a potential difference of one volt. A photon with one electron volt of energy corresponds to the infrared wavelength of 1,240 nanometers, and a photon of two electron volts has a wavelength half as much—620 nanometers—a reddish color.)二、A Surprising GlowORGANIC semiconductors are formed as aggregates of molecules that are, in the technologies being pursued, amorphous—a solid material, but one that is noncrystalline and without a definite order. There are two general types of organic light emitters, distinguished by “small” and “large” molecule sizes. The first practical p-n-type organic LED, based on small molecules, was invented in 1987 by Ching W. Tang and Steven A. Van Slyke of Eastman Kodak, after Tang noticed a surprising green glow coming from an organic solar cell he was working on. The duo recognized that by using two organic materials, one a good conductor of holes and the other a good conductor of electrons, they could ensure that photon emission would take place near the contact area, or junction, of the two materials, as in acrystalline LED. They also needed a material that held its electrons tightly, meaning that it would be easy to inject holes. For the light to escape, one of the contacts must be transparent, and the scientists benefited from the fortunate fact that the most widely used transparent conducting material, indium tin oxide, bound its electrons suitably for p-type contact material.The structure they came up with has not changed much over the years and is often called “Kodak-type,” because Kodak had the basic patent [see box on opposite page]. Beginning with a glass substrate, different materials are deposited layer by layer. This process is accomplished by evaporating the constituent materials and letting them condense on the substrate. The total thickness of the organic layers is only 100 to 150 nanometers, much thinner than that of a conventional LED (which is at least microns in thickness) and less than 1 percent of the thickness of a human hair. Because the molecules of the materials used are relatively lightweight—even lighter than a small protein—the Kodak-type OLEDs are referred to as “small molecule” OLEDs.After their initial insight, Tang and Van Slyke tinkered with the design to increase efficiency. They added a small amount of the fluorescent dye coumarin to the emitter material tris (8-hydroxy-quinoline) aluminum. The energy released by the recombination of holes and electrons was transferred to the dye, which emitted light with greatly increased efficiency. Deposition of additional thin layers of indium tin oxide and other compounds next to the electrodes altered the interaction of the thicker layers and also improved the efficiency of the injection of holes and electrons, thereby further upping the overall power efficiency of the fluorescent OLED.Organic LEDs of this small-molecule type are used to make red, green and blue light, with green light having the highest efficiency. Such green-emitting OLEDs can exhibit luminous efficiencies of 10 to 15 candelas per ampere—about as efficient as commercial LEDs today—and seven to 10 lumens per watt, values that are comparable to those for common incandescent lamps.录像机在卡匣式录像机出来之前,我们用的是电影放映机与屏幕。
自动往返电动小汽车的设计学生:指导老师:摘要: 本文采用了基于单片机的小车控制系统的硬件设计和软件设计。
自动控制系统是电子系统和机械系统必不可少的纽带,它的存在具有着非常重要的作用。
本文研究的重点是小车运行控制系统,而该系统硬件部分的重心在于单片机,黑线检测采用了光敏传感器和电压比较器来实现。
单片机采用STC89C51来实现,硬件部分是以单片机为核心,还包括电机驱动器模块,数码显示模块等部分。
该小车通过检测地面黑线来实现对应的流程控制,按照预先设定好的程序,实现全速前进,减速前进,倒退等功能。
并用数码显示器来显示当前运行到的位置的结果。
关键词:89C51单片机;光敏电阻;自动小车The Designing of Automatically Back and Forth Electric CarUndergraduate:Supervisor:Abstract: In this paper, the hardware design and software design of control system based on MCU. Automatic control system is the necessary connection of electronic system and mechanical system, it has an very important role. This paper is focused on the trolley control system, the hardware of the system focuses on MCU, line detection using a photosensitive sensor and a voltage comparator to achiev e.Single chip microcomputer u sing STC89C51 to achieve, the hardware part is a single-chip microcomputer as the core, also includes a motor driver module, digital display module etc. The car through the detection of ground line to achieve process control corresponding, according to the preset program, to achieve full speed ahead, slow forward, rewind. With digital display to display the current operation to the location of the results.Key words: 89C51 MCU; photosensitive resistance; automatic car目录第一章绪论 (1)1.1 研究背景及其目的意义 (1)1.2 该课题研究的设计思路 (1)第二章本课题方案论证 (2)2.1 主控制器部分 (2)2.2 小车运行状态显示部分 (2)2.3 小车驱动方案选择 (3)2.4 电机驱动方案选择 (3)2.5 电机调速方案选择 (3)2.6 电源模块的选择 (4)2.7 检测黑线设计方案比较与选择 (4)2.8 本章总结 (4)第三章硬件设计 (6)3.1电源部分 (6)3.2数据显示部分 (7)3.2.1 七段数码管(LED)显示电路选择 (7)3.2.2 七段数码管(LED)静态显示方式 (7)3.2.3 LED动态显示方式 (7)3.3黑线检测部分 (8)3.4 电机调速部分芯片简介 (9)第四章软件设计 (10)4.1 简介KeilUvision2 (10)4.2 程序设计 (14)第五章 PROTUES仿真设计 (16)结论 (19)致谢 (21)附录1 系统硬件图 (22)附录2 程序源代码 (23)第一章绪论1.1 研究背景及其目的意义随着历史的发展,那些采集系统原本由小规模的数字逻辑电路及硬件程序控制器组成,而现在微处理器控制的采集系统取代了原本的这些采集系统。
(此文档为word格式,下载后您可任意编辑修改!)第1章绪论1.1电动玩具车前景从电动车行业看来,儿童电动车市场技术、安全标准比较高,目前国内生产标准儿童电动车的专业厂家比较少,永康地区比较多,但是大都供应出口需求,主打国际市场。
调查显示儿童户外活动用的电动童车、电动自行车销量呈稳中有升的状态。
消费者对儿童电动车是有需求的。
很多生产厂家没有童车系列产品,导致想经营儿童电动车的经销商,也苦于没有稳定的货源,只能放弃。
儿童消费品市场的规模效应可以促进童车的发展。
中国是世界著名的玩具生产及出口地,1/3的世界玩具产量均来自国内。
仅1998年,玩具生产的产值便达到500亿元,出口达到54亿美元。
据统计,国内的玩具出口产品中,80% 以上属加工贸易。
目前,全国约有6,000家玩具制造商,雇用人数超过1300万名。
大部分玩具制造商均集中于沿海各省;单是广东已有大约4,000家玩具厂,其中绝大多数由港商投资开设。
现时,国外厂商每年生产玩具多达15万种,其中新产品为5,000至6,000种,而国内企业所生产的玩具制造商的竞争,主要是集中在中低档产品方面。
然而,国内部份玩具企业亦有创立自己的品牌。
如广东奥迪玩具生产的[四驱车迷]系列及广东东莞生产的智高(CHICCO)玩具以及上海、福州等地生产的遥控车、仿真车、仿真摩托车及仿真飞机,均深受消费者青睐。
其他国产玩具产品牌包括嘉菲牌毛绒玩具、威龙拼图、百利威玩具模型和可高建造玩具等等。
据调查,目前世界著名的玩具企业都在国内设有分厂或国内厂家合作生产玩具。
像生产[电子宠物]的日本万代公司,历史悠久的玩具芭比娃娃,都在国内设有多家分厂。
其他在国内流行的外国品牌则包括米奇老鼠和乐高等等。
因进口关税问题,国外生产的玩具在内地市场的售价普遍昂贵,加上传统文化不同,进口玩具在国内市场上的份额仍然较少。
不过,若外商采取合资经营的方式,把国外的设计和原料运到国内进行加工,对渗透内地市场应该大有帮助,因为这些企业大多有良好的分销网络。
89c52的单片机自动往返电动小汽车设计报告范文-图文1.设计任务:设计并制作了一个自动往返小汽车,其行驶路线满足所需的要求。
1.1要求:1.1.1基本要求:(1)分区控制:如(图1)所示:(图1)车辆从起跑线出发(出发前,车体不得超出起跑线)。
在第一个路程C~D区(3~6米)以低速行驶,通过时间不低于10;第二个路程D~E区(2米)以高速行驶,通过时间不得多于4秒;第三个路程E~F区(3~6米)以低速行驶,通过时间不低于8。
1.1.2.发挥部分(1)自动记录、显示一次往返时间(记录显示装置要求安装在车上)。
(2)自动记录、显示行驶距离(记录显示装置要求安装在车上)。
(3)其它特色与创新。
2.方案设计:根据设计任务要求,并且根据我们自己的需要而附加的功能,该电路的总体框图可分为几个基本的模块,框图如(图2)所示:555定时器控速模块路面检测测速模块AT89S51LCD显示模块(图2)2.1路面检测模块:路面黑线检测模块采用反射式红外发射--接收器,在车底的前部和中部安装了两个反射式红外传感器.2.2LCD显示模块:采用1602LCD,由单片机的总线模式连接。
为节约电源电量并且不影响LCD的功能,LCD的背光用单片机进行控制,使LCD的背光在小车行驶的过程中不亮,因为我们不必看其显示;在其它我们需要看显示的内容的时候LCD背光亮。
2.3测速模块:采用采用霍尔开关元器件A44E检测轮子上的小磁铁从而给单片机中断脉冲,达到测量速度的作用。
霍尔元件具有体积小,频率响应宽度大,动态特性好,对外围电路要求2简单,使用寿命长,价格低廉等特点,电源要求不高,安装也较为方便。
霍尔开关只对一定强度的磁场起作用,抗干扰能力强,因此可以在车轮上安装小磁铁,而将霍尔器件安装在固定轴上,通过对脉冲的计数进行车速测量。
其原理图接线如(图3)所示:(图3)2.4控速模块:采用由双极性管组成的H桥电路。
用单片机控制晶体管使之工作在占空比可调的开关状态,精确调整电机转速。
自动往返电动小汽车余密刘勇尹佳喜华中科技大学电工电子创新中心(武汉430074)摘要:本设计以凌阳16位单片机SPCE061A为核心,通过高灵敏度红外光电传感器检测路面上的黑线,并进行计数,从而控制不同路段的速度,以红外对管检测车轮转动周数,根据车轮周长计算出速度及小车行驶路程。
单片机对高灵敏度红外光电传感器检测得到的路面信息进行处理后产生PWM输出,从而控制小车前轮与后轮电机转速,也就控制了小车的速度。
到达终点后,电机端电压反向,则小车行驶方向反向,小车由原路倒退返回。
红外对管检测到的小车车速及行驶路程信息经单片机计算处理后由液晶显示。
关键字:PWM 光电传感器检测调速一方案论证与选择1 电机调速模块电机调速主要是控制小车的速度与行驶方向。
通过对前轮电机转速的控制可控制小车的行驶方向,对小车的行驶速度的控制通过对其后轮转速的控制实现。
此模块为本设计的核心部分。
(1)电机调速方案方案一:电枢回路串电阻调速。
如II-1-1所示,通过单片机控制继电器,这样可以控制接入电枢回路电阻的大小,从而实现串电阻调速。
此方案只能分级调速,而且,串入电阻造成能量损耗,而本设计采用电池供电,显然,需要节能的调速系统,故此方案不能达到要求。
图III-1-1 电机电枢回路串电阻调速电路图方案二:电枢回路串电感调速。
原理图与方案一相同,将电阻换为电感,这样可以减小能耗,但由于电感消耗无功功率,造成电源污染,故不能采用此方案。
方案三:采用弱磁调速,即改变电机气隙磁通。
此方案可以连续调速,而且,能耗小,可由额定转速向高速方向调节,也可由额定转速向低速方向调节。
但由于小车电机不为他励直流电机,故很难改变磁通大小,方案难以实现。
方案四:采用改变端电压调速。
根据直流电机机械特性方程n=U a/k eФ+(R a+R j)T/k e k TФ2=n0-βT Tn——电机转速;n0——电机空载转速;k e、k T——电机结构参数所确定的电机电势常数、转矩常数;Ф——气隙磁通;U a——电动机电枢电压;R a、R j——电机电枢电阻及串入电阻;T——负载转矩;βT——机械特性曲线斜率;由上述直流电动机机械特性知,改变电枢端电压,可以连续改变电动机转速。
第1篇一、实验目的1. 了解往返小车的基本原理和设计方法。
2. 掌握电路设计、机械结构和编程技巧。
3. 通过实验,提高动手能力和创新意识。
二、实验原理往返小车是一种简单的自动化小车,它能够在特定轨道上自动往返运动。
实验中,小车通过传感器检测轨道上的黑线,根据黑线的位置控制电机的转动,实现往返运动。
三、实验器材1. 小车底盘1个2. 电机2个3. 电池盒1个4. 电池1套5. 传感器2个6. 线路板1块7. 绝缘胶带1卷8. 黑色线条纸1卷9. 编程器1个10. 编程软件1套四、实验步骤1. 准备工作(1)将电池盒与电池连接,确保电池充满电。
(2)将电机与电池盒连接,确保电机转动正常。
(3)将传感器固定在小车底盘上,确保传感器能够准确检测黑线。
2. 电路设计(1)将线路板放置在小车底盘上,确保线路板与传感器、电机连接良好。
(2)将传感器输出端连接到线路板,将电机输出端连接到线路板。
(3)将线路板与电池盒连接,确保电路连接无误。
3. 编程(1)打开编程软件,创建一个新的项目。
(2)在项目中添加电机控制模块,设置电机转动速度和方向。
(3)添加传感器检测模块,设置传感器检测黑线的阈值。
(4)编写程序,使小车在检测到黑线时停止,等待一段时间后反向行驶。
4. 调试与优化(1)将编写好的程序下载到小车中。
(2)观察小车运行情况,调整传感器位置和编程参数,确保小车能够准确往返运动。
(3)优化程序,提高小车运行稳定性和速度。
五、实验结果与分析1. 实验结果通过实验,成功设计了一台往返小车,小车能够在黑线上准确往返运动。
2. 实验分析(1)传感器检测黑线的准确性对小车往返运动至关重要。
在实验过程中,通过调整传感器位置和编程参数,提高了小车检测黑线的准确性。
(2)电机转动速度和方向对小车往返运动也有较大影响。
通过调整电机参数,使小车在往返过程中保持稳定运行。
(3)编程技巧对小车往返运动有重要意义。
通过优化程序,提高了小车运行稳定性和速度。
自动往返小汽车摘要我们设计的自动往返电动小汽车,是在玩具电动车的基础上改装而成。
它以89C52单片机为控制核心,辅以传感器、控制电路、显示电路等外围器件,构成了一个车载控制系统。
电动小汽车能够根据题目要求在直线方向上完成调速、急刹车、停车、倒车返回等各种运动形式;这辆小车还可以自动记录、显示一次往返时间和行驶距离,并用扬声器播放显示内容。
另外,我们经过MATLAB仿真后,成功地实现了从最高速降至低速的平稳调速。
本系统主要采用模糊控制算法进行速度调节。
通过模糊控制和PWM脉宽调制技术的结合,提高了对车位置控制精度,并且实现了低速断车速的恒速控制。
关键字:自动往返单片机控制自适应模糊控制算法脉宽调制一、总体方案设计与论证1.设计要点(1)题目严格规定了跑道上起跑线、终点线和几条重要标记线的位置以及限速区的长度。
要求使总往返时间最短(即在题目允许的情况下尽可能提高车速),而通过低速区的时间不得少于8秒,但不允许在低速区内停车,这就要我们设计出使小车从高速平稳地降低到一个可以满足题目要求的速度的方案。
(2)小车停止的定位也是一个要点。
要想使小车停止时的中心线离终点线和起跑线偏差最小,就要考虑小车在不同负载情况下的惯性、路面情况等诸多因素,须理论计算或实验测量。
(3)规定的跑道只有0.5m宽,长约十几米,要使小车在这样宽度的一条跑道中往返三十余米,难免会碰上挡板。
而碰上挡板后对小车的速度会有很大影响。
因此如何解决碰撞挡板的问题十分关键。
(4)小车在行驶过程中,由于颠簸或以外,造成标志线检测出错的情况,必须考虑系统检测的就错能力。
(5)全部电路都安装在小车上采用电池供电,而电池电量及功率有限,这就意味着所采用的芯片要越少越好,电路功耗越低越好。
2. 系统方案本题要求小车具有一定的智能性,对此类控制系统,单片机作为核心控制器构成的信号采集、变换、控制、显示为一体的系统因为有单片机软件和算法的支持,可以使硬件电路简单,控制灵活、实现方便。
)中国海洋大学课程设计报告】题目:自动往返电动小汽车组员:莫锦河、李鹏飞指导教师:谷健:自动往返电动小汽车摘要本设计以一片单片机AT89C52作为核心来控制自动往返小车,加以控制芯片L298N和单片机联合控制小车的前进与后退。
路面的黑带检测使用光电传感器,通过AT89C52对输入的信号进行处理,通过PWM调制使电机转速能自动调节,从而实现电动小汽车的快慢速行驶,以及自动停车、往返的控制要求。
$关键字:电动小车、AT89C52单片机、光电传感器、PWM调速一、系统方案论证最小系统控制器的选择方案方案一:AVR ATMEGA16单片机。
AVR 系列单片机采用RISC结构,执行速度较快,并且内部资源丰富,可以方便的使用C语言编程,并且开发环境很方便,但是功耗较高,在超低功耗方面明显不能满足题目要求。
方案二: MSP430G2553 系列超低功率微控制器包含几个器件,这些器件特有针对多种应用的不同的外设集。
这种架构与 5 种低功耗模式相组合,专为在便携式测量应用中延长电池的使用寿命而优化。
MSP430G2x13 和MSP430G2x53 系列是超低功耗混合信号微控制器,具有内置的16 位定时器、多达24 个支持触摸感测的I/O 引脚、一个通用型模拟比较器以及采用通用串行通信接口的内置通信能力。
此外,MSP430G2x53系列成员还具有一个10 位模数(A/D) 转换器。
~方案三:典型的51系列单片机AT89C52。
51系列单片机操作较为简单,程序简单易学,开发非常方便。
综合比较,我们采用方案三,采用典型的51系列单片机AT89C52,方便实现。
电动机模块方案一:选用步进电动机,将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
基本原理:1.电机驱动调速模块方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。
但是电阻络只能实现有级调速,而数字电阻的元器件价格昂贵。
更主要的问题在于一般电动机的电阻较小,但电流很大;分压不仅会降低效率,而且很难实现。
方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。
方案的优点是电路较为简单,缺点是继电器的响应时间慢,机械结构易损坏,寿命较短,可靠性不高。
方案三:采用达林顿管TIP4组成的PWM电路。
用单片机控制达林顿管使之工作在占空比可调的状态,精确调整电机转速。
方案四:采用L298N来控制电机的正转和反转来实现小车的前进和后退。
加上单片机的程序PWM,实现整车的加速与减速,精确小车的速度。
基于上述理论分析,拟选择方案四。
2.路面黑带检测模块黑带检测的原理是:红外光线照射到路面并反射,由于黑带和白纸的系数不同,可根据接的红外线的强弱判断是否到达黑带。
方案一:可见光发光二极管与光敏二极管组成的发射—接收电路。
这种方案的缺点在于其他环境光源会对光敏二极管的工作产生很大的干扰,一旦外界光亮条件改变,很可能造成误判和漏判;虽然产生超高亮发光二极管可以降低一定的干扰,但这又将增加额外的功率损耗。
方案二:反射式的红外发射—接收器。
由于采用红外管代替普通可见光管,可以降低环境干扰。
基于上述理论分析,拟选择方案二。
3. 电源选择方案一:所有器件采用电源供电,这样供电电路比较简单;但是由于电动机启动瞬时电流很大,会造成电压不稳,干扰严重,缺点十分明显。
方案二:双电源供电,将电动机驱动电源与单片机以及周边电路电源完全隔离,这样做虽然不如单电源方便灵活,但可以将电动机驱动所造成的干扰彻底消除,提高了系统的稳定性。
基于上述理论分析,拟选择方案二。
4. 控制单元模块方案一:采用纯数字电路该方案外部检测采用光电转换,系统控制部分采用数字电路译码对小车电动机两端电压调整,来控制小车的运行。
1、任务要求(1)车辆从起跑线出发(出发前车体不超出起跑线),到达终点后停留10s,然后自动返回起跑线(允许倒车返回)。
往返一次的时间应力求最短(从合上汽车电源开关开始记时)。
(2)到达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线之间的距离作为偏差的测量值)。
⑶能检测到相应黑色标志线,区分不同的区域,D〜E间为限速区,车辆均要求以低速通过,通过时间不得少于8s,但不允许在限速区内停车。
(4)能显示一次往返时间、行驶距离以及行驶速度2、方案比较与论证2.1 处理器的比较与选择方案一:以AVR 单片机为核心,产生PWM 控制电机AVR 单片机IO 口驱动能力强,反应速度快。
方案二:以51 系列单片机为该系统的控制核心。
51 系列单片机有51 和52 两种,经典51 单片机具有价格低廉,使用简单等特点,但其运算速度低,功能单一STC89C51单片机有128B的RAM,4KB的ROM,5个中断源,2个定时器; 52 单片机内部资源丰富,加密性好,超强抗干扰超低功耗,价格低廉,同时支持在线仿真技术,软硬件调试方便,为课程设计提供了极大的方便。
STC89C52 单片机有256B的RAM,8KB的ROM,6个中断源,3个定时器(比51多出的定时器具有捕获功能)。
考虑到我们此次的设计对实时性要求不是很高,51 系列单片机完全以满足处理速度的要求,并且AVR 单片机需要专门的开发工具且价较贵,所以我们选用51 系列的单片机。
又由于我们此次的设计中用到的中断比较多,且有很多地方要用到定时器进行定时,所以基于以上方案对比,及其资源的利用、运算速度等各个方面的综合考虑,我们采用STC89C52作为本系统的核心。
2.2 小车行驶避障模块方案的比较与选择小车在跑道中行驶时,由于跑道很长,而且小车不一定能严格沿着直线行驶,因此很可能会碰到两侧的挡板,如果没有相应的措施,容易使得行驶速度受到影响,才可能造成翻车。
自动往返电动小汽车的设计
ATmega16是一种高*能,低功耗的AVR微处理器,选用此芯片的原因是该芯片价格低廉,同时拥有强大的功能,此处我们用到了他的一些基本模块--PWM产生,计数器,计时器,外部中断和内部溢出中断.本次小车的自动控制系统以它为控制核心,通过L298驱动小车,可控制小车前进,后退;一组红外对管检测黑线并达到控速效果:另一组红外对管作用于车轮来测距和速度;用液晶显示器1602来显示小车行驶的时间和距离和速度.整个系统的电路结构简单,可靠*能高.。
一. 毕业实践任务书无锡职业技术学院毕业实践任务书课题名称:自动往返电动小汽车指导教师:XXXXXXX 职称:讲师指导教师:职称:专业名称:XXXXXXXX 班组:XXXXXX学生姓名:XXXXXXX 学号:05一. 课题需要完成的任务:设计并制作一个能自动往返于起跑线与终点线间的小汽车。
允许用玩具汽车改装,但不能用人工遥控(包括有线和无线遥控)。
图1跑道顶视图跑道宽度0.5m,表面贴有白纸,两侧有挡板,挡板与地面垂直,其高度不低于20cm。
在跑道的B、C、D、E、F、G各点处画有2cm宽的黑线,各段的长度如图1所示。
设计要求1、车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后自动返回起跑线(允许倒车返回)。
往返一次的时间应力求最短(从合上汽车电源开关开始计时)。
2. 达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线中心线之间距离作为偏差的测量值)。
D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。
二. 课题计划:2006.3.3~2006.3.6 熟悉课题,可行性方案分析及方案论述。
2006.3.7~2006.3.19 查阅资料,设计各部分硬件。
2006.3.19~2006.4.10 画原理图,印刷线路板。
2006.4.10~2006.4.20 编写程序验证部分硬件。
2006.4.21~2006.4.25 写出毕业论文。
计划答辩时间:4.21-4.28XXXXX 系(部、分院)2006年02年18日二.外文翻译VIDEOCASSETTEBefore the videocassette recorder there was the movie projector and screen. Perhaps you remember your fifth-grade teacher pulling down a screen—or Dad hanging a sheet on the wall, ready to show visiting friends the enthralling account of your summer vacation at the shore. Just as the film got started, the projector bulb often blew out.Those days did have one advantage, though: the screen was light, paper-thin and could be rolled into a portable tube. Compare that with bulky television and computer screens, and the projector screen invokes more than just nostalgia. Could yesterday's convenience be married to today's technology?The answer is yes, thanks to organic light-emitting materials that promise to make electronic viewing more convenient and ubiquitous. Used in displays, the organic materials are brighter, consume less energy and are easier to manufacture (thus potentially cheaper) than current options based on liquid crystals. Because organic light-emitting diodes (OLEDs) emit light, they consume significantly less power, especially in small sizes, than common liquid-crystal displays (LCDs), which require backlighting. OLEDs also offer several exciting advantages over common LEDs: the materials do not need to be crystalline (that is, composed of a precisely repeating pattern of planes of atoms), so they are easier to make; they are applied in thin layers for a slimmer profile; and different materials (for different colors) can be patterned on a given substrate to make high-resolution images. The substrates may be inexpensive glass or flexible plastic or even metal foil.In the coming years, large-screen televisions and computer monitors could roll up for storage. A soldier might unfurl a sheet of plastic showing a real-time situation map. Smaller displays could be wrapped around a person's forearm or incorporated into clothing. Used in lighting fixtures, the panels could curl around an architectural column or lie almost wallpaperlike against a wall or ceiling.LEDs currently have longer lifetimes than organic emitters, and itwill be tough to beat the widespread LED for use in indicator lamps. But OLEDs are already demonstrating their potential for displays. Their screens put out more than 100 candelas per square meter (about the luminance of a notebook screen) and last tens of thousands of hours (several years of regular use) before they dim to half their original radiance.Close to 100 companies are developing applications for the technology, focusing on small, low-power displays [see box on page 80]. Initial products include a nonflexible 2.2-inch (diagonal) display for digital cameras and cellular phones made jointly by Kodak and Sanyo, introduced in 2002, and a 15-inch prototype computer monitor produced by the same collaborative venture. The global market for organic display devices was about $219 million in 2003 and is projected to jump to $3.1 billion by 2009, according to Kimberly Allen of iSuppli/Stanford Resources, a market-research firm specializing in displays.一、What LED to OLEDCRYSTALLINE semiconductors—the forerunners of OLEDs—trace their roots back to the development of the transistor in 1947, and visible-light LEDs were invented in 1962 by Nick Holonyak, Jr. They were first used commercially as tiny sources of red light in calculators and watches and soon after also appeared as durable indicator lights of red, green or yellow. (When suitably constructed, LEDs form lasers, which have spawned the optical-fiber revolution, as well as optical data storage on compact discs and digital video discs.) Since the advent of the blue LED in the 1990s [see “Blue Chip,” by Glenn Zorpette; Scientific American, August 2000], full-color, large-screen television displays made from hundreds of thousands of LED chips have appeared in spectacular fashion on skyscrapers and in arenas [see “In Pursuit of the Ultimate Lamp,” by M. George Crawford, Nick Holonyak, Jr., and Frederick A. Kish, Jr.; Scientific American, February 2001]. Yet the smaller sizes used in devices such as PDAs (personal digital assistants) and laptops are not as practical.LEDs and OLEDs are made from layers of semiconductors—materials whose electrical performance is midway between an excellent conductorsuch as copper and an insulator such as rubber. Semiconducting materials, such as silicon, have a small energy gap between electrons that are bound and those that are free to move around and conduct electricity. Given sufficient energy in the form of an applied voltage, electrons can “jump” the gap a nd begin moving, constituting an electrical charge. A semiconductor can be made conductive by doping it; if the atoms added to a layer have a smaller number of electrons than the atoms they replace, electrons have effectively been removed, leaving positively charged “holes” and making the material “p-type.” Alternatively, a layer that is doped so that it has an excess of negatively charged electrons becomes “n-type” [see box on opposite page]. When an electron is added to a p-type material, it may encounter a hole and drop into the lower band, giving up an amount of energy (equal to the energy gap) as a photon of light. The wavelength depends on the energy gap of the emitting material.For the production of visible light, organic materials should have an energy gap between their lower and higher conduction bands in a relatively small range, about two to three electron volts. (One electron volt is defined as the kinetic energy gained by an electron when it is accelerated by a potential difference of one volt. A photon with one electron volt of energy corresponds to the infrared wavelength of 1,240 nanometers, and a photon of two electron volts has a wavelength half as much—620 nanometers—a reddish color.)二、A Surprising GlowORGANIC semiconductors are formed as aggregates of molecules that are, in the technologies being pursued, amorphous—a solid material, but one that is noncrystalline and without a definite order. There are two general types of organic light emitters, distinguished by “small” and “large” molecule sizes. The first practical p-n-type organic LED, based on small molecules, was invented in 1987 by Ching W. Tang and Steven A. Van Slyke of Eastman Kodak, after Tang noticed a surprising green glow coming from an organic solar cell he was working on. The duo recognized that by using two organic materials, one a good conductor of holes and the other a good conductor of electrons, they could ensure that photon emission would take place near the contact area, or junction, of the two materials, as in acrystalline LED. They also needed a material that held its electrons tightly, meaning that it would be easy to inject holes. For the light to escape, one of the contacts must be transparent, and the scientists benefited from the fortunate fact that the most widely used transparent conducting material, indium tin oxide, bound its electrons suitably for p-type contact material.The structure they came up with has not changed much over the years and is often called “Kodak-type,” because Kodak had the basic patent [see box on opposite page]. Beginning with a glass substrate, different materials are deposited layer by layer. This process is accomplished by evaporating the constituent materials and letting them condense on the substrate. The total thickness of the organic layers is only 100 to 150 nanometers, much thinner than that of a conventional LED (which is at least microns in thickness) and less than 1 percent of the thickness of a human hair. Because the molecules of the materials used are relatively lightweight—even lighter than a small protein—the Kodak-type OLEDs are referred to as “small molecule” OLEDs.After their initial insight, Tang and Van Slyke tinkered with the design to increase efficiency. They added a small amount of the fluorescent dye coumarin to the emitter material tris (8-hydroxy-quinoline) aluminum. The energy released by the recombination of holes and electrons was transferred to the dye, which emitted light with greatly increased efficiency. Deposition of additional thin layers of indium tin oxide and other compounds next to the electrodes altered the interaction of the thicker layers and also improved the efficiency of the injection of holes and electrons, thereby further upping the overall power efficiency of the fluorescent OLED.Organic LEDs of this small-molecule type are used to make red, green and blue light, with green light having the highest efficiency. Such green-emitting OLEDs can exhibit luminous efficiencies of 10 to 15 candelas per ampere—about as efficient as commercial LEDs today—and seven to 10 lumens per watt, values that are comparable to those for common incandescent lamps.录像机在卡匣式录像机出来之前,我们用的是电影放映机与屏幕。