江西省新余市2015届高三下学期第二次模拟数学(理)试卷
- 格式:doc
- 大小:643.50 KB
- 文档页数:27
新余市2015年高三“二模”统一考试理科综合试卷命题人:胡黎刚 曹 华 朱国宏 刘海锋 晏迟红 付宁福可能用到的相对原子质量:H :1 N :14 O:16 Al:27 Cl:35.5 Cu 64 Se:79Ag 108 Au 197一、选择题(本题包括13个小题,每小题6分,共78分。
每小题只有一个正确选项........。
) 二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.下列关于物理学史和物理研究方法的叙述中正确的是 ( )A .用点电荷来代替带电体的研究方法叫微元法B .利用v -t 图像推导匀变速直线运动位移公式的方法是理想模型法C .伽利略借助实验研究和逻辑推理得出了自由落体运动规律D .法拉第发现电流的磁效应与他坚信电和磁之间一定存在联系的哲学思想是分不开的15. 一质点做匀加速直线运动时,速度变化Δv 时发生位移x 1,紧接着速度变化同样的Δv 时发生位移x 2,则该质点的加速度为 ( )A .)11(212x x v +∆)( B .122)(2x x v -∆ C .)11(212x x v -∆)( D .122v)(x x -∆ 16.如图所示,N 个小球(可看做质点)均匀分布在半径为R 的圆周上,圆周上P 点的一个小球所带电荷量为﹣2q ,其余小球带电量为+q ,圆心处的电场强度大小为E .若仅撤去P 点的带电小球,圆心处的电场强度大小为( )A .EB .E/2C .E/3D .E/417.在粗糙绝缘的斜面上A 处固定一点电荷甲,在其左下方B 点无初速度释放带电小物块乙,小物块乙沿斜面运动到C 点静止,从B 到C 的过程中,乙带电量始终保持不变,下列说法正确的是 ( )A .甲、乙一定带异种电荷B .小物块的电势能一定减少C .小物块机械能的损失一定大于克服摩擦力做的功D .B 点的电势一定高于C 点的电势18.热敏电阻是一种广泛应用于自动控制电路中的重要电子元件,它的重要特性之一是,其电阻值随着环境温度的升高而减小。
江西省重点中学协作体2015届高考数学二模试卷(理科)一、选择题:本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣4x>0},N={x|m<x<8},若M∩N={x|6<x<n},则m+n=()A.10 B.12 C.14 D.162.(5分)设i是虚数单位,则|(1+i)﹣|=()A.B.2C.3D.3.(5分)已知等比数列{a n}的各项都是正数,且3a1,a3,2a2成等差数列,则=()A.1B.3C.6D.94.(5分)给出下列结论:①命题“∀x∈R,sinx≠1”的否定是“∃x∈R,sinx=1”;②命题“α=”是“sinα=”的充分不必要条件;③数列{a n}满足“a n+1=3a n”是“数列{a n}为等比数列”的充分必要条件.其中正确的是()A..①②B..①③C..②③D..①②③5.(5分)已知函数f(x)=x2﹣2x+4,数列{a n}是公差为d的等差数列,若a1=f(d﹣1),a3=f (d+1),则{a n}的通项公式为()A.2n﹣2 B.2n+1 C.2n+3 D.n+26.(5分)若实数x,y满足,则z=的最小值为()A.﹣2 B.﹣3 C.﹣4 D.﹣57.(5分)已知直角△ABC中,斜边AB=6,D为线段AB的中点,P为线段CD上任意一点,则(+)•的最小值为()A.﹣B.C.﹣2 D.28.(5分)甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,则甲、乙、丙三人训练成绩的方差S甲2、S乙2、S丙2的大小关系是()A.S丙2>S乙2>S甲2B.S甲2>S丙2>S乙2C.S丙2>S甲2>S乙2D.S乙2>S丙2>S甲29.(5分)如图所示程序框图,则满足|x|+|y|≤2的输出的有序实数对(x,y)的概率为()A.B.C.D.10.(5分)已知圆x2+y2=4,点A(,0),动点M在圆上运动,O为坐标原点,则∠OMA 的最大值为()A.B.C.D.11.(5分)已知点A(0,1),曲线C:y=alnx恒过定点B,P为曲线C上的动点且•的最小值为2,则a=()A.﹣2 B.﹣1 C.2D.112.(5分)已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C.D.二、填空题:本题共4个小题,每小题5分,共20分.13.(5分)二项式(2﹣)6展开式中常数项是.14.(5分)已知数列{a n}满足a n+1=(n∈N+),若a1=,则a2015=.15.(5分)已知某几何体的三视图如图所示,则它的外接球的表面积为.16.(5分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本题共5小题,共70分,解答题应写出文字说明、证明过程和演算步骤.17.(12分)已知函数f(x)=2sinxcosx﹣cos2x+1.(1)求f(x)的单调递增区间;(2)角A,B,C为△ABC的三个内角,且f(+)=,f(+)=,求sinC的值.18.(12分)如图,在三棱锥P﹣ABC中,平面APC⊥平面ABC,且PA=PB=PC=4,AB=BC=2.(1)求三棱锥P﹣ABC的体积V P﹣ABC;(2)求直线AB与平面PBC所成角的正弦值.19.(12分)4月15日,亚投行意向创始成员国已经截止,意向创始成员国敲定57个,其中,亚洲国家34个,欧洲国家18个,非洲和大洋洲各2个;南美洲1个.18个欧洲国家中G8国家有5个(英法德意俄).亚投行将设立理事会、董事会和管理层三层管理架构.假设理事会由9人组成,其中3人由欧洲国家等可能产生.(1)这3人中恰有2人来自于G8国家的概率;(2)设X表示这3人来自于G8国家的人数,求X的分布列和期望.20.(12分)已知点F(,0),圆E:(x+)2+y2=16,点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(1)求动点Q的轨迹方程;(2)若直线l与圆O:x2+y2=1相切,并与(1)中轨迹交于不同的两点A、B.当•=λ,且满足≤λ≤时,求△AOB面积S的取值范围.21.(12分)已知函数f(x)=x﹣ae x(a为实常数).(1)若函数f(x)在x=0的切线与x轴平行,求a的值;(2)若f(x)有两个零点x1、x2,求证:x1+x2>2.一、选修4-1:几何证明选讲:请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.在答题卡选答区域指定位置答题,并写上所做题的题号.注意所做题目的题号必须和所写的题号一致.22.(10分)如图,已知PA与圆O相切于点A,半径OB⊥OP,AB交PO于点C.(1)求证:PA=PC;(2)若圆O的半径为3,PO=5,求线段AC的长度.一、选修4-4:坐标系与参数方程23.在直角坐标系xoy中,直l线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=10cosθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点P的坐标为(2,6),求|PA|+|PB|.一、选修4-5:不等式选讲24.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|a﹣1|的解集非空,求实数a的取值范围.江西省重点中学协作体2015届高考数学二模试卷(理科)参考答案与试题解析一、选择题:本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣4x>0},N={x|m<x<8},若M∩N={x|6<x<n},则m+n=()A.10 B.12 C.14 D.16考点:交集及其运算.专题:集合.分析:求出M中不等式的解集确定出M,根据N及两集合的交集,确定出m与n的值,即可求出m+n的值.解答:解:由M中不等式解得:x<0或x>4,∴M={x|x<0或x>4},∵N={x|m<x<8},且M∩N={x|6<x<n},∴m=6,n=8,则m+n=6+8=14,故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设i是虚数单位,则|(1+i)﹣|=()A.B.2C.3D.考点:复数求模.专题:数系的扩充和复数.分析:利用复数的运算法则、模的计算公式即可得出.解答:解:∵=1+i+=1+3i,∴|(1+i)﹣|==.故选:D.点评:本题考查了复数的运算法则、模的计算公式,属于基础题.3.(5分)已知等比数列{a n}的各项都是正数,且3a1,a3,2a2成等差数列,则=()A.1B.3C.6D.9考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:设各项都是正数的等比数列{a n}的公比为q,(q>0),由题意可得关于q的式子,解之可得q,而所求的式子等于q2,计算可得.解答:解:设各项都是正数的等比数列{a n}的公比为q,(q>0)由题意可得2×a3=3a1+2a2,即q2﹣2q﹣3=0,解得q=﹣1(舍去),或q=3,故==q2=9.故选:D.点评:本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.4.(5分)给出下列结论:①命题“∀x∈R,sinx≠1”的否定是“∃x∈R,sinx=1”;②命题“α=”是“sinα=”的充分不必要条件;③数列{a n}满足“a n+1=3a n”是“数列{a n}为等比数列”的充分必要条件.其中正确的是()A..①②B..①③C..②③D..①②③考点:命题的真假判断与应用.专题:简易逻辑.分析:利用命题的否定判断①的正误;充要条件判断②的正误;等比数列的定义判断③的正误.解答:解:对于①,命题“∀x∈R,sinx≠1”的否定是“∃x∈R,sinx=1”;满足命题的否定形式,所以①正确.对于②,命题“α=”是“sinα=”的充分不必要条件;前者能够说明后者成立,sinα=成立则α=不一定成立,所以②正确;对于③,数列{a n}满足“a n+1=3a n”是“数列{a n}为等比数列”的充分必要条件错误.例如:数列是常数列{0},则满足“a n+1=3a n”,数列不是等比数列,所以③不正确;故选:A.点评:本题考查命题的真假的判断,充要条件以及命题的否定,等比数列的基本知识的应用,考查基本知识的掌握情况.5.(5分)已知函数f(x)=x2﹣2x+4,数列{a n}是公差为d的等差数列,若a1=f(d﹣1),a3=f (d+1),则{a n}的通项公式为()A.2n﹣2 B.2n+1 C.2n+3 D.n+2考点:数列与函数的综合.专题:函数的性质及应用;等差数列与等比数列.分析:根据f(x)求出a1、a3,再利用等差数列的定义求出d与a1的值,即得通项公式a n.解答:解:∵f(x)=x2﹣2x+4,∴a1=f(d﹣1)=(d﹣1)2﹣2(d﹣1)+4=d2﹣4d+7,a3=f(d+1)=(d+1)2﹣2(d+1)+4=d2+3;∴a3﹣a1=4d﹣4,即2d=4d﹣4,解得d=2;∴a1=3,∴a n=3+2(n﹣1)=2n+1.故选:B.点评:本题考查了根据函数的解析式求函数值的应用问题,也考查了等差数列的通项公式的应用问题,是基础题目.6.(5分)若实数x,y满足,则z=的最小值为()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域.,利用分式函数的意义以及直线的斜率进行求解即可解答:解:作出不等式组对应的平面区域如图:z===1+,设k=,则k的几何意义为区域内的点到定点D(2,﹣2)的斜率,由图象知AD的斜率最小,由得,即A(1,2),此时AD的斜率k=,则z=1+k=1﹣4=﹣3,即z=的最小值为﹣3,故选:B点评:本题主要考查线性规划的应用,利用直线斜率以及数形结合是解决本题的关键.7.(5分)已知直角△ABC中,斜边AB=6,D为线段AB的中点,P为线段CD上任意一点,则(+)•的最小值为()A.﹣B.C.﹣2 D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据图形判断设|PC|=3﹣x,e则|PD|=x,与的夹角为π,0≤x≤3,运用数量积的运算得出函数式子(+)•=﹣2x•(3﹣x),再利用基本不等式求解即可.解答:解:∵直角△ABC中,斜边AB=6,D为线段AB的中点,∴|CD|=3,+=2,∵P为线段CD上任意一点,∴设|PC|=3﹣x,则|PD|=x,与的夹角为π,0≤x≤3,∴(+)•=﹣2x•(3﹣x),∵x•(3﹣x)≤,∴﹣2x•(3﹣x)≥﹣2×=﹣.故选:A.点评:本题考查了平面向量的数量积,转化为函数求解,关键是根据图形得出向量的关系,属于容易题.8.(5分)甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,则甲、乙、丙三人训练成绩的方差S甲2、S乙2、S丙2的大小关系是()A.S丙2>S乙2>S甲2B.S甲2>S丙2>S乙2C.S丙2>S甲2>S乙2D.S乙2>S丙2>S甲2考点:极差、方差与标准差.专题:概率与统计.分析:由于方差为表示数据离散程度的量,且数据越小越集中,观察数据即可得到结论.解答:解:由于方差为表示数据离散程度的量,且数据越小越集中,由条形图知,乙图最集中,丙图最分散,故s乙2<s乙2<s丙2,故选:C点评:本题主要考查了频率分布条形图,以及平均数、方差和标准差,属于基础题9.(5分)如图所示程序框图,则满足|x|+|y|≤2的输出的有序实数对(x,y)的概率为()A.B.C.D.考点:程序框图.专题:函数的性质及应用;算法和程序框图.分析:模拟执行程序框图,由y=x3是奇函数可求阴影部分的面积与正方形的面积之比,从而得解.解答:解:程序框图的含义是,阴影部分的面积与正方形的面积之比,因为y=x3是奇函数,所以面积之比为:.故选:D.点评:本题主要考查了程序框图和函数的性质及应用,属于基本知识的考查.10.(5分)已知圆x2+y2=4,点A(,0),动点M在圆上运动,O为坐标原点,则∠OMA 的最大值为()A.B.C.D.考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:设|MA|=x,则可求得|OM|,|AO|的值,进而利用余弦定理得到cos∠OMA的表达式,利用均值不等式求得cos∠OMA的最小值,进而求得∠OMA的最大值.解答:解:设|MA|=x,则|OM|=2,|AO|=由余弦定理可知cos∠OMA==(x+)≥×2=(当且仅当x=1时等号成立)∴∠OMA≤.故选:C.点评:本题主要考查了点与圆的位置关系,余弦定理的应用,均值不等式求最值.考查了学生综合分析问题和解决问题的能力.11.(5分)已知点A(0,1),曲线C:y=alnx恒过定点B,P为曲线C上的动点且•的最小值为2,则a=()A.﹣2 B.﹣1 C.2D.1考点:平面向量数量积的运算.专题:平面向量及应用.分析:运用对数函数的图象特点可得B(1,0),设P(x,alnx),运用向量的数量积的坐标表示,可得f(x)=•=x﹣alnx(0,+∞)+1,再由导数,求得极值点即为最值点,对a讨论通过单调性即可判断.解答:解:曲线C:y=alnx恒过点B,则令x=1,可得y=0,即B(1,0),又点A(0,1),设P(x,alnx),则•=f(x)=x﹣alnx+1,由于f(x)=x﹣alnx+1在(0,+∞)上有最小值2,且f(1)=2,故x=1是f(x)的极值点,即最小值点.f′(x)=1﹣=,a<0,f'(x)>0恒成立,f(x)在(0,+∞)上是增函数,所以没有最小值;故不符合题意;当a>0,x∈(0,a)时,f'(x)<0,函数f(x)在(0,a)是减函数,在(a,+∞)是增函数,有最小值为f(a)=2,即a﹣alna+1=2,解得a=1;故选D.点评:本题考查了利用导数求函数的最值;关键是将数量积表示为关于x的函数,通过求导,判断单调性,得到最值求参数a.12.(5分)已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C.D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:分别求出e1、e2(e1>e2),利用基本不等式求出e1+2e2的最小值.解答:解:①当动圆M与圆O1、O2都相内切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.②当动圆M与圆O1相内切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.点评:本题考查了两圆相切的性质、双曲线的离心率,属于难题.二、填空题:本题共4个小题,每小题5分,共20分.13.(5分)二项式(2﹣)6展开式中常数项是﹣160.考点:二项式定理.专题:计算题.分析:利用二项式定理展开式,直接求出常数项的值即可.解答:解:因为=20×8×(﹣1)=﹣160.所以展开式中常数项是﹣160.故答案为:﹣160.点评:本题考查二项式定理展开式的应用,特定项的求法,考查计算能力.14.(5分)已知数列{a n}满足a n+1=(n∈N+),若a1=,则a2015=﹣2.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:通过求出数列的前几项,找出其周期即可.解答:解:∵a n+1=(n∈N+)、a1=,∴a2==3,a3==﹣2,a4==﹣,a5==,a6==3,∴数列{a n}满足:a n=a n+4,∵2015=503×4+3,∴a2015=a3=﹣2,故答案为:﹣2.点评:本题考查求数列的通项,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.15.(5分)已知某几何体的三视图如图所示,则它的外接球的表面积为8π.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:根据三视图判断几何体的形状,根据他的几何性质得出AD⊥面BDC,DC=1,AD=1,BE⊥CD与E,DE=,BE=,利用三角形判断得出三角形BDC外接圆的半径r=1,根据球的几何性质得出:R2=r2+d2,求解R即得出面积.解答:解:根据三视图得出几何体为三棱锥,AD⊥面BDC,DC=1,AD=1,BE⊥CD与E,DE=,BE=,∴∠BED=60°,BD=1,∵在三角形BDC中,BD=DC=1,∠BDC=120°,∴根据余弦定理得出:BC=,∵利用正弦定理得出:=2r∴三角形BDC外接圆的半径r=1,∵三棱锥的外接球的半径R,d=AD=1,利用球的几何性质得出:R2=r2+d2,∴R=,∴它的外接球的表面积为4×π×()2=8π,故答案为:8π.点评:本题考查了空间几何体的外接球的问题,充分利用几何性质,把立体问题转化为平面问题求解,考查了三角的定理的运用综合性较强,属于中档题.16.(5分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是6.考点:集合的相等.专题:计算题;集合.分析:利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.解答:解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.点评:本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本题共5小题,共70分,解答题应写出文字说明、证明过程和演算步骤.17.(12分)已知函数f(x)=2sinxcosx﹣cos2x+1.(1)求f(x)的单调递增区间;(2)角A,B,C为△ABC的三个内角,且f(+)=,f(+)=,求sinC的值.考点:两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的图像与性质.分析:首先利用倍角公式化简解析式为一个角的一个三角函数的形式,然后求单调区间和sinC.解答:解:由题意可得f(x)=2sinxcosx﹣cos2x+1=2sin(2x﹣)(1)令2kπ≤2x﹣≤2kπ+所以增区间为:[kπ﹣,kπ+],k∈Z.…(6分)(2)由f(+)=得sinA=;…(7分)f()=得cosB=,sinB=;…(8分)由于sinA=<sinB=,则a<b⇒cosA=…(10分)所以sinC=sin(A+B)=.…(12分)点评:本题考查了倍角公式的运用化简三角函数,然后求单调区间以及解三角形;关键是正确化简三角函数解析式为一个角的一个三角函数的形式.18.(12分)如图,在三棱锥P﹣ABC中,平面APC⊥平面ABC,且PA=PB=PC=4,AB=BC=2.(1)求三棱锥P﹣ABC的体积V P﹣ABC;(2)求直线AB与平面PBC所成角的正弦值.考点:直线与平面所成的角;棱柱、棱锥、棱台的体积.专题:综合题;空间位置关系与距离;空间角.分析:(1)取AC中点O,连结PO,BO,证明OP⊥平面ABC,利用三棱锥的体积公式,即可求三棱锥P﹣ABC的体积V P﹣ABC;(2)建立如图所示的空间直角坐标系.求出平面PBC的法向量,利用向量的夹角公式,即可求直线AB与平面PBC所成角的正弦值.解答:解:(1)取AC中点O,连结PO,BO,∵PA=PC,AB=BC,∴OP⊥AC,OB⊥AC,又∵平面APC⊥平面ABC,∴OP⊥平面ABC…(2分),∴OP⊥OB,∴OP2+OB2=PB2,即16﹣OC2+4﹣OC2=16,得OC=,则OA=,OB=,OP=,AC=2,…(4分)∴S△ABC==2.∴V P﹣ABC==.…(6分)(2)建立如图所示的空间直角坐标系.得O(0,0,0),A(0,﹣,0),B(,0,0),C(0,,0),P(0,0,),…(8分)∴=(﹣),=(﹣,0,),设平面PBC的法向量=(x,y,z).则,取z=1,得=(,,1).(10分)∵=(),∴直线AB与平面PBC所成角的正弦值为.…(12分)点评:本题考查线面垂直的判定,考查三棱锥体积的计算,考查线面角,正确运用向量方法是关键.19.(12分)4月15日,亚投行意向创始成员国已经截止,意向创始成员国敲定57个,其中,亚洲国家34个,欧洲国家18个,非洲和大洋洲各2个;南美洲1个.18个欧洲国家中G8国家有5个(英法德意俄).亚投行将设立理事会、董事会和管理层三层管理架构.假设理事会由9人组成,其中3人由欧洲国家等可能产生.(1)这3人中恰有2人来自于G8国家的概率;(2)设X表示这3人来自于G8国家的人数,求X的分布列和期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(1)直接利用古典概型的概率求解这3人中恰有2人来自于G8国家的概率;(2)设X表示这3人来自于G8国家的人数,求出概率得到分布列,然后求解X的期望.解答:解:(1)这3人中恰有2人来自于G8国家的概率:P==…(5分)(2)X可能的取值为0、1、2、3P(X=0)==,P(X=1)==P(X=2)==P(X=3)==X 0 1 2 3P…(10分)EX=0×+1×+2×+3×=…(12分)点评:本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.20.(12分)已知点F(,0),圆E:(x+)2+y2=16,点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(1)求动点Q的轨迹方程;(2)若直线l与圆O:x2+y2=1相切,并与(1)中轨迹交于不同的两点A、B.当•=λ,且满足≤λ≤时,求△AOB面积S的取值范围.考点:直线与圆锥曲线的关系;轨迹方程.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)连接QF,结合圆的定义和垂直平分线的性质,以及椭圆的定义,可得Q的轨迹方程;(2)设直线l的方程为x=my+n(m∈R),由直线和圆相切的条件:d=r,可得m,n的关系,联立直线方程和椭圆方程,运用韦达定理和弦长公式,求得△AOB的面积,结合向量的数量积的坐标表示和基本不等式,即可得到所求范围.解答:解:(1)连接QF,∵|QE|+|QF|=|QE|+|QP|=|PE|=4>|EF|=2,∴动点Q的轨迹是以E(﹣,0)、F(,0)为焦点,长轴长2a=4的椭圆,即动点Q的轨迹方程为:+y2=1;(2)依题结合图形知直线l的斜率不为零,所以设直线l的方程为x=my+n(m∈R).∵直线L即x﹣my﹣n=0与圆O:x2+y2=1相切,∴=1得n2=m2+1.又∵点A,B的坐标满足:,消去x整理得(m2+4)y2+2mny+n2﹣4=0,由韦达定理得y1+y2=﹣,y1y2=,又|AB|=•|y1﹣y2|,点O到直线l的距离d==1,∴S△AOB=d•|AB|=•|y1﹣y2|=|n|•|y1﹣y2|=2•=2•,∵λ==x1x2+y1y2=(my1+n)(my2+n)+y1y2=(m2+1)y1y2+mn(y1+y2)+n2==∵,令t=1+m2,则λ=∈[,],即有t∈[3,6]∴S△AOB=2•=2•=2•=∵t+∈[6,],t++6∈[12,],∈[,],∴S△AOB∈[,1],∴S△AOB的取值范围为[,1].点评:本题考查椭圆的定义、方程和性质,主要考查椭圆的定义和方程的运用,联立直线方程,运用韦达定理,弦长公式和基本不等式,属于中档题.21.(12分)已知函数f(x)=x﹣ae x(a为实常数).(1)若函数f(x)在x=0的切线与x轴平行,求a的值;(2)若f(x)有两个零点x1、x2,求证:x1+x2>2.考点:利用导数研究曲线上某点切线方程;函数的零点.专题:导数的综合应用.分析:(1)求出函数的导数,利用导数的几何意义,即可得到结论.(2)由题意可求出0<a<;则a=的两个不同根为x1,x2,作出y=的图象,利用数形结合证明.解答:解:(1)函数的导数f′(x)=1﹣ae x,∵f(x)在x=0的切线与x轴平行,∴f′(0)=0,即f′(0)=1﹣a=0,解得a=1.(2)由f(x)=x﹣ae x=0得a=,设g(x)=,则g′(x)==,由g′(x)<0得x>1,由g′(x)>0得x<1,即函数g(x)在x=1时,取得极大值g(1)=,则要使f(x)有两个零点x1、x2,则满足0<a<,则x1=ae x1,x2=ae x2;∵g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减;又∵当x∈(﹣∞,0]时,g(x)≤0,故不妨设x1∈(0,1),x2∈(1,+∞);对于任意a1,a2∈(0,),设a1>a2,若g(m1)=g(m2)=a1,g(n1)=g(n2)=a2,其中0<m1<1<m2,0<n1<1<n2,∵g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减;又∵g(m1)>g(n1),g(m2)>g(n2);∴m1>n1,m2<n2;∴;故随着a的减小而增大,令=t,x1=ae x1,x2=ae x2,可化为x2﹣x1=lnt;t>1;则x1=,x2=;则x2+x1=,令h(t)=,则可证明h(t)在(1,+∞)上单调递增;故x2+x1随着t的增大而增大,即x2+x1随着的增大而增大,故x2+x1随着a的减小而增大,而当a=时,x2+x1=2;故x1+x2>2.点评:本题考查了导数的综合应用及恒成立问题,同时考查了数形结合的思想应用,属于难题一、选修4-1:几何证明选讲:请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.在答题卡选答区域指定位置答题,并写上所做题的题号.注意所做题目的题号必须和所写的题号一致.22.(10分)如图,已知PA与圆O相切于点A,半径OB⊥OP,AB交PO于点C.(1)求证:PA=PC;(2)若圆O的半径为3,PO=5,求线段AC的长度.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:(1)根据弦切角定理,可得∠PAB=∠ACB,根据圆周角定理可得∠BAC=90°,结合BC⊥OP,根据同角的余角相等及对顶角相等可得∠PDA=∠PAB,即△PAD为等腰三角形;(2)利用切割线定理求出PA,再求出cos∠AOP,利用余弦定理,即可得出结论.解答:(1)证明:∵PA与圆O相切于点A,∴∠PAB=∠ADB∵BD为圆O的直径,∴∠BAD=90°∴∠ADB=90°﹣∠B∵BD⊥OP,∴∠BCO=90°﹣∠B∴∠BCO=∠PCA=∠PAB即△PAC为等腰三角形∴PA=PC;…(5分)(2)解:假设PO与圆O相交于点M,延长PO交圆O于点N.∵PA与圆O相切于点A,PMN是圆O的割线,∴PA2=PM•PN=(PO﹣OM)(PO+ON).∵PO=5,OM=ON=3,∴PA=4.由(1)知PC=PA=4,∴OC=1.在Rt△OAP中,cos∠AOP==.∴AC2=9+1﹣2×3×1×=.∴AC=.…(10分)点评:本题考查的知识点是弦切角定理,圆周角定理,等腰三角形的判定,相似三角形的判定与性质,属于中档题.一、选修4-4:坐标系与参数方程23.在直角坐标系xoy中,直l线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=10cosθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点P的坐标为(2,6),求|PA|+|PB|.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)由ρ=10cosθ得ρ2=10ρcosθ,把代入即可得出.(2)将l的参数方程代入圆C的直角坐标方程,化为=0,可设t1,t2是上述方程的两个实根.利用|PA|+|PB|=|t1|+|t2|=﹣(t1+t2)即可得出.解答:解:(1)由ρ=10cosθ得ρ2=10ρcosθ,∴直角坐标方程为:x2+y2=10x,配方为:(x﹣5)2+y2=25.(2)将l的参数方程代入圆C的直角坐标方程,化为=0,由于△=﹣4×20=82>0,可设t1,t2是上述方程的两个实根.∴t1+t2=﹣,t1t2=20,又直线l过点P(2,6),可得:|PA|+|PB|=|t1|+|t2|=﹣(t1+t2)=9.点评:本题考查了参数方程的应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.一、选修4-5:不等式选讲24.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|a﹣1|的解集非空,求实数a的取值范围.考点:带绝对值的函数;其他不等式的解法.专题:计算题;压轴题.分析:(Ⅰ)不等式等价于①,或②,或③.分别求出这3个不等式组的解集,再取并集,即得所求.(Ⅱ)由绝对值不等式的性质求出f(x)的最小值等于4,故有|a﹣1|>4,解此不等式求得实数a的取值范围.解答:解:(Ⅰ)不等式f(x)≤6 即|2x+1|+|2x﹣3|≤6,∴①,或②,或③.解①得﹣1≤x<﹣,解②得﹣≤x≤,解③得<x≤2.故由不等式可得,即不等式的解集为{x|﹣1≤x≤2}.(Ⅱ)∵f(x)=|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,即f(x)的最小值等于4,∴|a﹣1|>4,解此不等式得a<﹣3或a>5.故实数a的取值范围为(﹣∞,﹣3)∪(5,+∞).点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解.体现了分类讨论的数学思想,属于中档题.。
高三第二次模拟考试数学文试题一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{1,1},{|124}xA B x =-=≤<,则A B 等于( ) A .{-1,0,1} B .{1} C .{-1,1} D .{0,1}2.下列函数中周期为π且图象关于直线6x π=对称的函数是 ( )(A) A .2sin(2)6y x π=- B .2sin()23x y π=+ C .2sin(2)6y x π=+ D .2sin()23x y π=- 3.若直线2x y -=被圆22(1)()4x y a -++=所截得的弦长为22,则实数a 的值为( ) A .2-或6 B .0或4 C .1-或3 D . 1-或34.已知变量x ,y 满足约束条件102200x y x y x y +-≥⎧⎪-+≥⎨⎪-≤⎩,则2z x y =-的最大值为 ( )A .2B .52 C .1- D .125.下列命题说法正确的是 ( )A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B .“03x <<”是“11x -<”的必要不充分条件C .命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +->” D .命题“若x y =,则sin sin x y =”的逆命题为真命题6.按如下程序框图,若输出结果为42S =,则判断框内应补充的条件( )A .3i >B .5i >C .7i >D .9i >7.椭圆22216x y a +=与双曲线2214x y a -=有相同的焦点,则实数a 的值是( )A .12B .1或2-C .1或 12D .18. 一几何体的三视图如图所示,则该几何体的表面积为 ( ) A. 22015π+ B. 20815π+ C. 2009π+ D. 20018π+ 9.已知函数()f x 是定义在R 上的奇函数,且满足(2)()f x f x +=.若当[)0,1x ∈时,()22xf x =-,则12(log 42)f 的值为 ( )A .0B .1C .2D . 2- 10. 如图,已知点()2,0P,正方形ABCD 内接于圆O :221xy +=,M 、N 分别为边AB 、BC 的中点. 当正方形ABCD 绕圆心O 旋转时,PM ON ⋅的取值范围为 ( )A .[]2,2-B .2,2⎡⎤-⎣⎦C .[]1,1-D .22,22⎡⎤-⎢⎥⎣⎦二、填空题:(本大题共5小题,每小题5分,共25分.请把答案填在答题卡上.)11.已知复数21(1)()z a a i a R =-++∈为纯虚数,则z 为 .( )A .0B .2iC .2i -D .12i -- 12. 设n S 为等差数列{}n a 的前n 项和,若231012a a a ++=,则9S = .13.函数()sin cos f x x x x =+在,6ππ⎡⎤⎢⎥⎣⎦上的最大值为 .14.已知(,)A A A x y 是单位圆上(圆心在坐标原点O )任一点,将射线OA 绕点O 逆时针旋转3π到OB 交单位圆于点(,)B B B x y ,则2A By y -的最大值为 .第10题图第8题15.设函数()f x 的定义域为D ,若,x D y D ∀∈∃∈,使得()()f y f x =-成立,则称函数()f x 为“美丽函数”.下列所给出的五个函数: ①2y x =;②11y x =-;③()ln(23)f x x =+;④22x xy -=-;⑤2sin 1y x =-.其中是 “美丽函数”的序号有 .三、解答题:(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程及演算步骤.) 16.(本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且a b c <<,sin A =.(Ⅰ)求角B 的大小; (Ⅱ)若2a =,b =,求c 及ABC ∆的面积.17. (本小题满分12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x (°C)与该小卖部的这种饮料销量y (杯),得到如下数据:(Ⅱ)请根据所给五组数据,求出y 关于x 的线性回归方程ˆˆˆy bx a =+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式:121()()ˆˆˆ()niii nii x x y y bay bx x x ==--==--∑∑,.)19.(本小题满分13分)在如图所示的多面体ABCDEF中,DE⊥平面ABCD,AD BC,平面BCEF平面ADEF EF=,60BAD∠=,2AB=,1DE EF==.(Ⅰ)求证:BC EF;(Ⅱ)求三棱锥B DEF-的体积.20、(本小题满分12分)椭圆2222:1(0)x yC a ba b+=>>过点31,2A⎛⎫⎪⎝⎭,离心率为12,左、右焦点分别为12,F F,过1F的直线交椭圆于,A B两点.(Ⅰ)求椭圆C的方程;(Ⅱ)当ABF2∆的面积为7212时,求直线的方程.21、(本小题满分12分)已知函数2()(1)ln1f x a x x=-++.第19题图FACDEB(Ⅰ)当14a =-时,求函数()f x 的极值;(Ⅱ)若函数()f x 在区间[2,4]上是减函数,求实数a 的取值范围;(Ⅲ)当[1,)x ∈+∞时,函数()y f x =图象上的点都在1,0x y x ≥⎧⎨-≤⎩所表示的平面区域内,求数a 的取值范围1.B 2.C 3.D 4.A 5.B 6. B7. D 8.B 9.A 10. C 二、填空题:(本大题共5小题,每小题5分,共25分.请把答案填在答题卡上.)11. 2i - 12.36 13.2π1415.②③④16.Ⅰ)sin A =2sin b A =,2sin sin A B A =, ………………………………………………2分又0A π<<,sin 0A ∴>,sin B ∴=, …………………………………………4分a b c <<,B C ∴<, 所以02B π<<,故3B π=. …………………………………6分(Ⅱ)2a =,b =,由余弦定理可得:22212222c c =+-⨯⨯⨯,即2230c c --=解得3c =或1c =-(舍去),故3c =. ………………………………………………10分所以11sin 2322ABC S ac B ∆==⨯⨯=. ………………………………………12分17.(Ⅰ)设“选取的2组数据恰好是相邻2天数据”为事件A ,所有基本事件(m ,n )(其中m ,n 为1月份的日期数)有:(11,12),(11,13),(11,14), (11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),共有10种. 事件A 包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种.所以42()105P A ==为所求. ………………………………………………………6分(Ⅱ)由数据,求得91012118105x ++++==,2325302621255y ++++==.由公式,求得ˆ 2.1b =,ˆˆ4a y bx =-=,所以y 关于x 的线性回归方程为ˆ2.14y x =+. ……………………………………10分 (Ⅲ)当x=7时,ˆ2.17418.7y =⨯+=.所以该奶茶店这种饮料的销量大约为19杯. ………………………………………12分另解:由题意得324224S S S =-+,1q ≠,()()()3241111112111a q a q a q qqq---∴=-+---,化简得2210q q --=,12q ∴=-, ………………………………………………4分()13122n n a n N -*⎛⎫∴=-∈ ⎪⎝⎭. ………………………………………………………5分(Ⅱ)1313222n n n n nb n a n -⎛⎫==⋅⋅=⎪⎝⎭,所以12312336932222n n n nT b b b b =++++=++++, ①()23131136322222n n n n nT +-=++++, ② ………………………………………8分①-②得,1231133333222222n nn nT +=++++-111132231212n n n +⎛⎫⨯- ⎪⎝⎭=--13632n n ++=-, 所以3662n n n T +=-, ……………………………………………………………11分 从而6662n n n T b +=-<. .………….………………………………………………12分19. (Ⅰ)因为AD BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF ,所以BC 平面ADEF , ………………………………………………………………………3分 又BC ⊂平面BCEF ,平面BCEF平面ADEF EF =,所以BC EF . ……………………………………………………………………………6分 (Ⅱ)在平面ABCD 内作BH AD ⊥于点H ,因为DE ⊥平面ABCD ,BH ⊂平面ABCD ,所以DE BH ⊥, 又AD 、DE ⊂平面ADEF ,ADDE D =,所以BH ⊥平面ADEF ,所以BH 是三棱锥B DEF -的高. ………………………………………………………10分在直角三角形ABH 中,o60BAD ∠=,2AB =,所以3BH =,因为DE ⊥平面ABCD ,AD ⊂平面ABCD ,所以DE AD ⊥,又由(Ⅰ)知,BC EF ,且AD BC ,所以AD EF ,所以DE EF ⊥,所以三棱锥B DEF -的体积11131133326DEF V S BH ∆=⨯⨯=⨯⨯⨯⨯=.……………12分 20、解:(1)因为椭圆2222:1(0)x y C a b a b +=>>过点31,2A ⎛⎫ ⎪⎝⎭,所以221914a b +=①,又因为离心率为12,所以12c a =,所以2234b a =②,解①②得224, 3.a b == 所以椭圆的方程为:22143x y +=……… (4分)②当直线的倾斜角不为2π时,设直线方程:(1)l y k x =+,代入22143x y +=得:2222(43)84120k x k x k +++-=……… 7分 设1122(,)(,)A x y B x y ,则221212228412,,4343k k x x x x k k --+==++221212121212222222211()4221218412122()4()4343437ABF S AB F F y y F F k x x x x k k k k kk k k ∆∴=⨯=⨯=+-+--=-=+++4221718011k k k k ∴+-=∴=∴=±,所以直线方程为:10x y -+=或10x y ++=……… (13分) 21.(Ⅱ)1()2(1)f x a x x '=-+,∵函数()f x 在区间[2,4]上单调递减, ∴1()2(1)0f x a x x '=-+≤在区间[2,4]上恒成立,即212a x x ≤-+在[2,4]上恒成立, 只需2a 不大于21x x -+在[2,4]上的最小值即可. 8分而221111()24x x x =-+--+(24)x ≤≤,则当24x ≤≤时,2111[,]212x x ∈---+, ∴122a ≤-,即14a ≤-,故实数a 的取值范围是1(,]4-∞-. 10分(Ⅲ)因()f x 图象上的点在1,0x y x ≥⎧⎨-≤⎩所表示的平面区域内,即当[1,)x ∈+∞时,不等式()f x x ≤恒成立,即2(1)ln 10a x x x -+-+≤恒成立,设2()(1)ln 1g x a x x x =-+-+(1x ≥),只需max ()0g x ≤即可.由1()2(1)1g x a x x '=-+-22(21)1ax a x x -++=, (ⅰ)当0a =时,1()xg x x -'=,当1x >时,()0g x '<,函数()g x 在(1,)+∞上单调递减,故()(1)0g x g ≤=成立.(ⅱ)当0a >时,由212(1)()2(21)12()a x x ax a x ag x xx ---++'==,令()0g x '=,得11x =或212x a =,①若112a <,即12a >时,在区间(1,)+∞上,()0g x '>,函数()g x 在(1,)+∞上单调递增,函数()g x 在[1,)+∞上无最大值,不满足条件;②若112a ≥,即102a <≤时,函数()g x 在1(1,)2a 上单调递减,在区间1(,)2a +∞上单调递增,同样()g x 在[1,)+∞上无最大值,不满足条件.(ⅲ)当0a <时,由12(1)()2()a x x ag x x--'=,因(1,)x ∈+∞,故()0g x '<,则函数()g x 在(1,)+∞上单调递减,故()(1)0g x g ≤=成立. 14分。
新余市高三“二模”考试 数学试题卷(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2|560A x x x =-+≥,{}|210B x x =->,则A B ⋂=( )A .(][),23,-∞⋃+∞B .1,32⎛⎫ ⎪⎝⎭C .1,32⎛⎤ ⎥⎝⎦D .[)1,23,2⎛⎤⋃+∞ ⎥⎝⎦2.已知复数z 满足:()3112z i i i i+=--则复数z 的虚部为( ) A .i B .i - C .1 D .1- 3.已知下列命题:①在某项测量中,测量结果X 服从正态分布()()1,0N σσ>,若X 在()0,1内取值范围概率为0.4,则X 在()0,2内取值的概率为0.8; ②若a ,b 为实数,则“01ab <<”是“1b a<”的充分而不必要条件; ③已知命题12:,p x x R ∀∈,()()()()21210f x f x xx --≥,则p ⌝是:12,x x R ∃∉,()()()()21210f x f x x x --<;④ABC ∆中,“角A ,B ,C 成等差数列”是“)sin 3sin cos C A A B =+”的充分不必要条件;其中,所有真命题的个数是( )A .0个B .1个C .2个D .3个4.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A =“第一次取到的是奇数”B =“第二次取到的是奇数”,则()P B A =( ) A .12 B .25 C.310 D .155.为迎接中国共产的到来,某校举办了“祖国,你好”诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的6名学生中选派4名学生参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么不同的朗诵顺序的种数为( )A .320B .324 C.410 D .4166.在()12201820170a x a x ⎛⎫+-> ⎪⎝⎭的展开式中,5x项的系数等于264,则()02axex dx +⎰等于( )A .23e +B .24e + C.1e + D .2e +7.在如图所示的程序框图中,若输入的98m =,63n =,则输出的结果为( )A .9B .8 C.7 D .6 8.已知关于x 的方程()sin sin 2x x m ππ⎛⎫-++=⎪⎝⎭在区间[)0,2π上有两个根1x ,2x ,且12x x π-≥,则实数m 的取值范围是( )A .()5,1- B .(5,1⎤⎦ C.5⎡⎣D .[)0,19.斜率为k 的直线l 过抛物线()220y px p =>焦点F ,交抛物线于A ,B 两点,点()00,P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( ) A .0ky 为定值 B .OA OB ⋅为定值 C.点P 的轨迹为圆的一部分 D .点Q 的轨迹是圆的一部分 10.某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .136πB .144π C.36π D .34π11.已知椭圆()2222:10x y C a b a b+=>>,1F ,2F 为其左、右焦点,P 为椭圆C 上除长轴端点外的任一点,G 为12F PF ∆内一点,满足123PG PF PF =+,12F PF ∆的内心为I ,且有12IG F F λ=(其中λ为实数),则椭圆C 的离心率e 等于( ) A .13 B .12 C.23D 312.定义:如果函数()y f x =在区间[],a b 上存在()1212,x x a x x b <<<,满足()()()'1f b f a f x b a -=-,()()()'2f b f a f x b a-=-,则称函数()y f x =是在区间[],a b 上的一个双中值函数,已知函数()3265f x x x =-是区间[]0,t 上的双中值函数,则实数t 的取值范围是( ) A .36,55⎛⎫ ⎪⎝⎭ B .26,55⎛⎫ ⎪⎝⎭ C. 23,55⎛⎫ ⎪⎝⎭ D .61,5⎛⎫⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(),1a x =,()1,2b =,()1,5c =-,若()2//a b c +,则a = .14.若实数x ,y 满足不等式组023010y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则2z y x =-的最小值是 .15.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,2220b c a -+=,tan 3tan CB=,则a = .16.对于函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,下列5个结论正确的是 (把你认为正确的答案全部写上).(1)任取[)12,0,x x ∈+∞,都有()()122f x f x -≤; (2)函数()y f x =在[]4,5上单调递增;(3)()()()22f x kf x k K N +=+∈,对一切[)0,x ∈+∞恒成立; (4)函数()()ln 1y f x x =--有3个零点;(5)若关于x 的方程()()0f x m m =<有且只有两个不同的实根1x ,2x ,则123x x +=. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知{}n a 是各项都为正数的数列,其前n 项和为n S ,且n S 为n a 与1na 的等差中项. (1)求证:数列{}2n S 为等差数列; (2)求数列{}n a 的通项公式; (3)设()1nnnb a -=,求{}n b 的前n 项和n T .18. “微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下: 步量性别 0~20002001~50005001~8000 8001~10000>10000男 1 2 3 6 8 女21062(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的22⨯列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?积极型 懈怠型 总计 男 女 总计附:()()()()()22n ad bc k a b c d a c b d -=++++,()20P K k ≥0.10 0.05 0.025 0.010 0k2.7063.8415.0246.635(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X 人,超过10000步的有Y 人,设X Y ξ=-,求ξ的分布列及数学期望.19.已知四棱锥P ABCD -,底面ABCD 为菱形,PD PB =,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且//BD 平面AMHN . (1)证明:MN PC ⊥;(2)当H 为PC 的中点,3PA PC AB ==,PA 与平面ABCD 所成的角为60,求二面角P AM N --的余弦值.20. 已知动圆过定点()0,2,且在X 轴上截得的弦长为4,记动圆圆心的轨迹为曲线C . (1)求直线420x y -+=与曲线C 围成的区域面积;(2)点P 在直线:20l x y --=上,点()0,1Q ,过点P 作曲线C 的切线PA 、PB ,切点分别为A 、B ,证明:存在常数λ,使得2PQ QA QB λ=⋅,并求λ的值. 21. 已知函数()()221x f x ax bx e -=++(e 为自然对数的底数).(1)若12a =,求函数()f x 的单调区间; (2)若()11f =,且方程()1f x =在()0,1内有解,求实数a 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin ρθ=,直线l 的参数方程为3222x t y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 和圆C 交于A ,B 两点. (1)求圆心的极坐标;(2)直线l 与x 轴的交点为P ,求PA PB +. 23.选修4-5:不等式选讲设不等式2120x x -<--+<的解集为M ,,a b M ∈.(1)证明:111364a b +<; (2)比较14ab -与2a b -的大小.试卷答案一、选择题1-5:DCCAB 6-10:ACDCD 11、12:BA 二、填空题13.10 14.3215.4 16.(1)(4)(5)三、解答题17.解答:(1)由题意知,即,①当n=1时,由①式可得S1=1;又n≥2时,有a n=S n﹣S n﹣1,代入①式得整理得.∴是首项为1,公差为1的等差数列.(2)由(Ⅰ)可得,∵{a n}是各项都为正数,∴,∴(n≥2),又,∴.(3),当n为奇数时,当n为偶数时,∴{b n}的前n项和.18.解:(1)积极型 懈怠型 总计 男 14 6 20 女 8 12 20 总计221840()2240141268403.8412020221811K ⨯⨯-⨯==<⨯⨯⨯,故没有95%以上的把握认为二者有关; (2)由题知,小王的微信好友中任选一人,其每日走路步数不超过5000步的概率为18,超过10000步的概率为14,且当0X Y ==或1X Y ==时,0ξ=,12551129888464P C =⨯+⋅=;当1X =,0Y =或0X =,1Y =时,1ξ=,1122151530884864P C C =⋅+⋅=;当2X =,0Y =或0X =,2Y =时,2ξ=,221154864P ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭即的分布列为:58E ξ=. 19.【解析】【试题分析】(1)连结AC 交BD 于点O ,连结PO .根据菱形有BD AC ⊥,根据等腰三角形有BD PO ⊥,所以以BD ⊥平面PAC , BD PC ⊥.利用线面平行的性质定理有//MN BD ,故//BD MN ,所以MN PC ⊥.(2)以O 为坐标原点建立空间直角. 【试题解析】(1)证明:连结AC 交BD 于点O ,连结PO .因为ABCD 为菱形,所以BD AC ⊥,且O 为AC 、BD 的中点,因为PD PB =,所以PO BD ⊥,因为AC PO O ⋂=且AC PO ⊂、平面PAC ,所以BD ⊥平面PAC , 因为PC ⊂平面PAC ,所以BD PC ⊥.因为//BD 平面AMHN , BD ⊂平面PBD ,且平面AMHN ⋂平面PBD MN =, 所以//BD MN ,所以MN PC ⊥.(2)由(1)知BD AC ⊥且PO BD ⊥,因为PA PC =,且O 为AC 的中点,所以PO AC ⊥,所以PO ⊥平面ABCD ,所以PA 与平面ABCD 所成的角为PAO ∠, 所以,所以13,22AO PA PO PA ==,因为3PA AB =,所以36BO PA =. 分别以OA , OB , OP 为,,x y z 轴,建立如图所示空间直角坐标系,设2PA =,则()()()()33130,0,0,1,0,0,0,,0,1,0,0,0,,0,0,0,3,,0,3322O A B C D P H ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()233330,,0,,0,,1,,0,1,0,33223DB AH AB AP ⎛⎫⎛⎫⎛⎫==-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 记平面AMHN 的法向量为()1111,,n x y z =,则111112303{3322n DB y n AH x z ⋅==⋅=-+=, 令10x =,则110,3y z ==,所以()11,0,3n =,记平面PAB 的法向量为()2222,,n x y z =,则2222223{ 30n AB x y n AP x z ⋅=-=⋅=-=, 令21x =,则2233,y z ==231,3,n ⎛= ⎝⎭, 记二面角P AM N --的大小为θ,则12121239cos cos ,13n n n n n n θ⋅===⋅. 所以二面角P AM N --的余弦值为3913. 20.曲线方程联立求交点坐标,根据定积分求曲边形面积可得结果;(Ⅱ)设()11,A x y 、()22,B x y ,()00,P x y ,根据导数求切线斜率,设切线方程,由韦达定理2PQ 、QA QB⋅用0x ,表示可得1λ=.试题解析:(Ⅰ) 设动圆圆心的坐标为(),x y ,由题意可得,()222222y x y +=+-,化简得24x y =,联立方程组24420x y x y ⎧=⎨-+=⎩,解得114x y =-⎧⎪⎨=⎪⎩或21x y =⎧⎨=⎩,所以直线420x y -+=与曲线C 围成的区域面积为22111194248x x dx -⎛⎫+-=⎪⎝⎭⎰;(Ⅱ)设()11,A x y 、()22,B x y ,则由题意可得,切线PA 的方程为()1112x y y x x -=-,切线PB 的方程为()2222x y y x x -=-,再设点()00,P x y ,从而有()()1010*******{2x y y x x x y y x x -=--=-,所以可得出直线AB 的方程为()20000011422222x x x y y x x y y x x x y -=-⇒-=⨯-=-⨯,即002x y x y =-. 联立方程组002{24x y x y x y=-=,得200240x x x y -+=,又002y x =-,所以有()2002420x x x x -+-=,可得1201202{48x x x x x x +==-,()()222222000000||13269PQ x y x x x x =+-=+-=-+,()()2222121212121211114444x x x x QA QB y y y y y y ⋅=++=+++=⋅+++=()()2212121221164x x x x x x +-++=()()()220002004822481269164x x x x x ---++=-+,所以常数2||=1PQ QA QBλ=⋅. 21. 解: (I )当21=a ,x e bx x x f -++=)1()(2,x e b x b x x f --+-+-=']1)2([)(2 令0)(='x f ,得11=x ,b x -=12.当0=b 时,0)(≤'x f .当0>b ,11<<-x b 时,0)(>'x f ,b x -<1或1>x 时,0)(<'x f . 当0<b ,b x -<<11时,0)(>'x f ,b x ->1或1<x 时,0)(<'x f .∴0=b 时,)(x f 的单调递减区间为),(+∞-∞;0>b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(b --∞,),1(+∞;0<b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(-∞,),1(+∞-b(II )由1)1(=f 得e b a =++12,a e b 21--=,由1)(=x f 得122++=bx ax e x ,设12)(2---=bx ax e x g x ,则)(x g 在)1,0(内有零点.设0x 为)(x g 在)1,0(内的一个零点,则由0)1(,0)0(==g g 知)(x g 在区间),0(0x 和)1,(0x 上不可能单调.设)()(x g x h '=,则)(x h 在区间),0(0x 和)1,(0x 上均存在零点,即)(x h 在)1,0(上至少有两个零点 b ax e x g x --='4)(,a e x h x 4)(-='.当41≤a 时,0)(>'x h ,)(x h 在区间)1,0(上递增,)(x h 不可能有两个及以上零点; 当4e a ≥时,0)(<'x h ,)(x h 在区间)1,0(上递减,)(x h 不可能有两个及以上零点; 当441e a <<时,令0)(='x h 得)1,0()4ln(∈=a x ,所以)(x h 在区间))4ln(,0(a 上递减,在)1),4(ln(a 上递增,)(x h 在区间)1,0(上存在最小值))4(ln(a h .若)(x h 有两个零点,则有:0))4(ln(<a h ,0)0(>h ,0)1(>h .)441(1)4ln(46)4ln(44))4(ln(e a e a a a b a a a a h <<-+-=--=设)1(,1ln 23)(e x e x x x x <<-+-=ϕ,则x x ln 21)(-='ϕ,令0)(='x ϕ,得e x =. 当e x <<1时,0)(>'x ϕ,)(x ϕ递增,当e x e <<时,0)(<'x ϕ,)(x ϕ递减,01)()(max <-+==e e e x ϕϕ,所以0))4(ln(<a h 恒成立.由0221)0(>+-=-=e a b h ,04)1(>--=b a e h ,得2122<<-a e . 当2122<<-a e 时,设)(x h 的两个零点为21,x x ,则)(x g 在),0(1x 递增,在),(21x x 递减,在)1,(2x 递增,所以0)0()(1=>g x g ,0)1()(2=<g x g ,则)(x g 在),(21x x 内有零点. 综上,实数a 的取值范围是)21,22(-e . 22. 解:(1)由4sin ρθ=,得24sin ρρθ=,得224x y y +=,故圆C 的普通方程为2240x y y +-=,所以圆心坐标为()0,2,圆心的极坐标为2,2π⎛⎫ ⎪⎝⎭. (2)把322x ty ⎧=⎪⎪⎨⎪=+⎪⎩代入2240x y y +-=得24t =,所以点A 、B 对应的参数分别为122,2t t ==-令202t +=得点P 对应的参数为04t =- 所以10202424628PA PB t t t t +=-+-=++-+=+=.法二:把322x ty ⎧=⎪⎪⎨⎪=+⎪⎩化为普通方程得323y x =-+, 令0y =得点P坐标为(23,0)P ,又因为直线l 恰好经过圆C 的圆心,故2222(230)(02)8PA PB PC +==-+-=.23. 解:当2x <-时,原不等式可化为230-<<,显然不成立;当21x -≤≤时,原不等式可化为121x -<-<,解得1122x -<<;当1x >时,原不等式可化为230-<-<显然不成立。
2015 年 高 三 测 试 卷数学(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分.13.214.13π 15.1316.2212x y -= 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由点,C B 的坐标可以得到34AOC π∠=,23AOB π∠=,…………………2分 所以cos cos()COB AOC AOB ∠=∠+∠1()2222=-⨯--4=-;……6分 (Ⅱ)因为c =23AOB π∠=,所以3C π=,所以2sin sin a b A B ===,………8分所以22sin 2sin()3a b A A π+=+-2sin()6A π=+,2(0)3A π<<,……………………11分 所以当3A π=时,a b +最大,最大值是12分18.解:(Ⅰ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,所以运动会期间至少两天空气质量优良的概率是2713P =.…………………………………6分(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3;………………………………………………7分(0)P ξ==113,(1)P ξ==613,(2)P ξ==613,(3)P ξ==113,……………………9分所以随机变量ξ的分布列是:随机变量ξ的数学期望是1661012313131313E ξ=⨯+⨯+⨯+⨯=2113.……………………12分 19.(Ⅰ)证明:在梯形ABCD 中,因为2AD DC CB ===,4AB =,4212cos 22CBA -∠==,所以60,ABC ∠=︒由余弦定理求得AC=90ACB ∠=︒即BC⊥又因为平面AEFC ⊥平面ABCD ,所以BC ⊥平面所以BC AG ⊥,………………………………………3分 在矩形AEFC 中,tan 1AE AGE EG ∠==,4AGE π∴∠=tan 1CF CGF GF ∠==,4CGF π∠=,所以2CGF AGE π∠+∠=,即AG CG ⊥,所以AG ⊥平面BCG ;……………………………………………………………………………6分(Ⅱ)FC AC ⊥,平面AEFC ⊥平面ABCD ,所以FC ⊥平面ABCD , 以点C 为原点,,,CA CB CF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则)(0,0,0),(0,2,0),1,0)C A B D-,G ,…………………………8分平面BCG 的法向量(3,0,GA =,设平面GCD 的法向量(,,)n x y z =,则0n CG n CD ⎧⋅=⎪⎨⋅=⎪⎩,从而00x z y +=⎧⎪-=,令1x =则(1,3,1)n =-,…………………………………………………………………………10分 所以cos ,n GA <>==,…………………………………………………11分 而二面角D —GCB 为钝角, 故所求二面角的余弦值为.………………………………………………………………12分 20.解:(Ⅰ)当l 垂直于OD 时||AB 最小,因为||OD =2r ==,…………………………………2分因为圆1C 222:(0)x y r r +=>的一条直径是椭圆2C 的长轴,所以2a =,又点D 在椭圆22222:1(0)x y C a b a b +=>>上,所以291414b b+=⇒=, 所以圆1C 的方程为224x y +=,椭圆2C 的方程为22143x y +=;………………………5分 (Ⅱ)椭圆2C 的右焦点F 的坐标是(1,0),当直线m 垂直于x 轴时,||PQ = ||4MN =,四边形PMQN 的面积S =当直线m 垂直于y 轴时,||4PQ =,||3MN =,四边形PMQN 的面积6S =,…………6分……………………10分当直线m 不垂直于坐标轴时,设n 的方程为(1)y k x =-(0)k ≠,此时直线m 的方程为1(1)y x k=--, 圆心O 到直线m的距离为:d =,所以||PQ ==,…………8分 将直线n 的方程代入椭圆2C 的方程得到:()22224384120k x k x k +-+-=,||MN =所以:四边形PMQN 的面积1||||2S PQ MN =⋅===∈,综上:四边形PMQN的面积的取值范围是.…………………………………………12分21.解:(Ⅰ)21221'()22x ax f x x a x x-+=+-=(0)x >,记2()221g x x ax =-+………1分 (一)当0a ≤时,因为0x >,所以()10g x >>,函数()f x 在(0,)+∞上单调递增;……2分(二)当0a <≤时,因为24(2)0a =-≤△,所以()0g x ≥,函数()f x 在(0,)+∞上单调递增;…………………………………………………………………………………………………3分(三)当a >0()0x g x >⎧⎨>,解得x∈,所以函数()f x 在区间上单调递减,在区间(0,),()2a a +∞上单调递增.…………………………5分(Ⅱ)由(1)知道当(1a ∈时,函数()f x 在区间(0,1]上单调递增, 所以(0,1]x ∈时,函数()f x的最大值是(1)22f a =-,对任意的a ∈,都存在0(0,1]x ∈使得不等式20()ln()f x a m a a +>-成立,等价于对任意的(1a ∈,不等式222ln ()a a m a a -+>-都成立,……………………………………6分即对任意的(1a ∈,不等式2ln (2)20a ma m a +-++>都成立, 记2()ln (2)2h a ama m a =+-++,则(1)0h =,1(21)(1)'()2(2)a ma h a ma m a a --=+-+=,因为(1a ∈,所以210a a->, 当1m ≥时,对任意(1a ∈,10ma ->,所以'()0h a >,即()h a 在区间上单调递增,()(1)0h a h >=成立;…………………………………………………………………………9分 当1m <时,存在0(1a ∈使得当0(1,)a a ∈时,10ma -<,'()0h a <,()h a 单调递减,从而()(1)0h a h <=,所以(1a ∈时,()0h a >不能恒成立.综上:实数m 的取值范围是[1,)+∞.……………………………………………………………12分 22.解:AF 是圆的切线,且18,15AF BC ==,∴由切割线定理得到2218(15)12AF FB FC FB FB FB =⋅⇒=⋅+⇒=,…………………3分 ,AB AD ABD ADB =∴∠=∠,则,//FAB ABD AF BD ∠=∠∴,…………………………………………………………………6分 又//AD FC ,∴四边形ADBF 为平行四边形.12,,18AD FB ACF ADB F ACAF ==∠=∠=∠∴==,//,18AE ADAD FC AE BC∴=-,解得8AE =。
江西省重点中学十校联考2015届高考数学二模试卷(理科)一、选择题(每小题5分,共60分,每小题只有一项符合题目要求)1.(5分)设集合A={x|y=ln(1﹣x)},集合B={y|y=x2},则A∩B=()A.[0,1] B.[0,1)C.(﹣∞,1] D.(﹣∞,1)2.(5分)“≤﹣2”是“a<0且b>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)已知等差数列{a n}前n项和为S n,a4=2,S10=10,则a7的值为()A.0 B.1 C.2 D.34.(5分)已知平面向量,满足||=||=1,(+2)•(﹣)=﹣,则与的夹角为()A.B.C.D.5.(5分)a的值由如图程序框图算出,则二项式(﹣)9展开式的常数项为()A.T4=53×B.T6=﹣55×C.T5=74×D.T4=﹣73×6.(5分)在小语种自主招生考试中,某学校获得4个推荐名额,其中韩语2名,日语1名,俄语1名,并且韩语要求必须有女生参加,学校通过选拔定下2女2男共4个推荐对象,则不同的推荐方法共有()A.8种B.10种C.12种D.14种7.(5分)一个几何体的三视图如图所示,则这个几何体的体积为()A.B.C.D.8.(5分)函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A、B分别为该部分图象的最高点与最低点,且这两点间的距离为4,则函数f(x)图象的一条对称轴的方程为()A.x=B.x=C.x=4 D.x=29.(5分)线段AB是圆C1:x2+y2+2x﹣6y=0的一条直径,离心率为的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的一个公共点,则|PA|+|PB|=()A.B.4C.4D.610.(5分)由不等式组确定的平面区域为M,由不等式组确定的平面区域为N,在N内随机的取一点P,则点P落在区域M内的概率为()A.B.C.D.11.(5分)已知数列{a n}共有9项,其中,a1=a9=1,且对每个i∈{1,2,…,8},均有∈{2,1,﹣},记S=++…+,则S的最小值为()A.5 B.5C.6 D.612.(5分)若存在x0∈N+,n∈N+,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.已知函数f(x)=2x+1,x∈N的“生成点”坐标满足二次函数g(x)=ax2+bx+c,则使函数y=g(x)与x轴无交点的a的取值范围是()A.0<α<B.<α<C.α<D.0<α<或α>二、填空题(每小题5分,共20分)13.(5分)设i为虚数单位,复数z=(1+i)(cosθ﹣i•sinθ)∈R(0<θ<π),则tanθ=.14.(5分)记直线x﹣3y﹣1=0的倾斜角为α,曲线y=lnx在(2,ln2)处切线的倾斜角为β.则α﹣β=.15.(5分)正方体ABCD﹣A1B1C1D1的棱长为1,底面ABCD的对角线BD在平面α内,则正方体在平面α内的影射构成的图形面积的取值范围是.16.(5分)关于函数f(x)=x2(lnx﹣a)+a,给出以下4个结论:①∃a>0,∀x>0,f(x)≥0;②∃a>0,∃x>0,f(x)≤0;③∀a>0,∀x>0,f(x)≥0;④∀a>0,∃x>0,f(x)≤0.其中正确结论的个数是.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)已知=(cosx,sin2x),=(cosx,),f(x)=•.(Ⅰ)求f(x)的取值范围;(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,若函数g(x)=bf(x)+c在x=A处取最大值6,求△ABC面积的最大值.18.(12分)某校从参加2014-2015学年高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(I)估计这次测试数学成绩的平均分;(II)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为ξ,求ξ的分布列及数学期望Eξ.19.(12分)如图,在三棱锥P﹣ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E、F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(Ⅰ)求证:直线l⊥平面PAC;(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.20.(12分)已知椭圆F:+=1(a>b>0)的离心率为,左焦点为F1,点F1到直线ax+by=0的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线角椭圆于P,Q两点,求证:|PF1|+|QF1|﹣|PQ|为定值.21.(12分)已知函数f(x)=x+﹣alnx(a∈R).(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)若在[1,e](e=2.71828…为自然对数的底数)上存在一点x0,使得f(x0)≤0成立,求a的取值范围;(Ⅲ)当a>0时,设函数g(x)=f(ax)﹣,若g(x)有两个不同的零点x1,x2,且0<x1<x2,求证:<lna.【选修4—1】几何证明选讲22.(10分)如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.【选修4—4】坐标系与参数方程23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.【选修4—5】不等式选讲24.已知a+b=1,a>0,b>0.(Ⅰ)求+的最小值;(Ⅱ)若不等式+≥|2x﹣1|﹣|x+1|对任意a,b恒成立,求x的取值范围.江西省重点中学十校联考2015届高考数学二模试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分,每小题只有一项符合题目要求)1.(5分)设集合A={x|y=ln(1﹣x)},集合B={y|y=x2},则A∩B=()A.[0,1] B.[0,1)C.(﹣∞,1] D.(﹣∞,1)考点:交集及其运算;对数函数的定义域.专题:计算题.分析:由集合A={x|y=ln(1﹣x)},表示函数y=ln(1﹣x)的定义域,集合B={y|y=x2},表示y=x2的值域,我们不难求出集合A,B,再根据集合交集的定义,不难得到答案.解答:解:∵A={x|y=ln(1﹣x)}={x|x<1},B={y|y=x2}={y|y≥0},∴A∩B=[0,1).故选B点评:遇到两个连续数集的运算,其步骤一般是:①求出M和N;②借助数轴分析集合运算结果,方法是:并集求覆盖的最大范围,交集求覆盖的公共范围.2.(5分)“≤﹣2”是“a<0且b>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:可以通过移项求出不等式的解集,再根据充分必要条件进行判断.解答:解:≤﹣2可得+2=≤0,即ab<0,即a>0,b<0,或a <0,b>0,∴“≤﹣2”是“a<0且b>0”的必要不充分条件.故选:B.点评:此题主要考查充分必要条件的定义,以及不等式的求解,是一道基础题.3.(5分)已知等差数列{a n}前n项和为S n,a4=2,S10=10,则a7的值为()A.0 B.1 C.2 D.3考点:等差数列的通项公式.专题:等差数列与等比数列.分析:设出等差数列的首项和公差,由已知列方程组求得首项和公差,代入等差数列的前n 项和得答案.解答:解:设等差数列{a n}的首项为a1,公差为d,由a4=2,S10=10,得,解得.∴.故选:A.点评:本题考查等差数列的通项公式,考查了等差数列的前n项和,是基础的计算题.4.(5分)已知平面向量,满足||=||=1,(+2)•(﹣)=﹣,则与的夹角为()A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:直接把等式左边展开多项式乘多项式,然后代入数量积公式求得与的夹角.解答:解:由||=||=1,(+2)•(﹣)=﹣,得,即1+1×1×cos<>﹣2=﹣,∴=,则与的夹角为.故选:B.点评:本题考查平面向量的数量积运算,关键是对数量积公式的记忆与运用,是基础题.5.(5分)a的值由如图程序框图算出,则二项式(﹣)9展开式的常数项为()A.T4=53×B.T6=﹣55×C.T5=74×D.T4=﹣73×考点:程序框图.专题:算法和程序框图.分析:由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解答:解:第一次执行循环体后,S=3,不满足输出条件,a=5,再次执行循环体后,S=15,不满足输出条件,a=7再次执行循环体后,S=105,满足输出条件,故a=7,故二项式(﹣)9展开式的常数项,即T4=﹣73×,故选:D.点评:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.(5分)在小语种自主招生考试中,某学校获得4个推荐名额,其中韩语2名,日语1名,俄语1名,并且韩语要求必须有女生参加,学校通过选拔定下2女2男共4个推荐对象,则不同的推荐方法共有()A.8种B.10种C.12种D.14种考点:计数原理的应用.专题:排列组合.分析:韩语要求必须有女生参加.先从2个女生中选一个考韩语,剩下的三个考生在三个位置排列,去掉重复部分,即当考韩语的有两个女生,即可得到答案.解答:解:∵由题意知韩语都要求必须有女生参加考试,∴先从2个女生中选一个考韩语有C21=2种结果,剩下的三个考生在三个位置排列A33种结果,其2015届中考韩语为两个女生的情况重复共有A22种结果,∴共有C21A33﹣A22=10种结果.故选:B点评:本题考查了分类和分步计数原理,分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整”﹣﹣完成了所有步骤,恰好完成任务7.(5分)一个几何体的三视图如图所示,则这个几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图,可又分析出该几何由一个底面半径为1,高为的半圆锥,和一个底面为边长为2的正方形,高为的四棱锥组合而成,分别代入圆锥的体积公式和棱锥的体积公式,可得该几何体的体积.解答:解:由已知中的三视图可得该几何体是一个组合体,由一个底面半径为1,高为的半圆锥和一个底面为边长为2的正方形,高为的四棱锥组合而成故这个几何体的体积V=+=故选A点评:本题考查的知识点是由三视图求体积,其中根据已知分析出几何体的形状及底面半径,底面棱长,高等几何量是解答的关键.8.(5分)函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A、B分别为该部分图象的最高点与最低点,且这两点间的距离为4,则函数f(x)图象的一条对称轴的方程为()A.x=B.x=C.x=4 D.x=2考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:根据题意可求得ω、φ的值,从而可得f(x)的解析式及其对称轴方程,继而可得答案.解答:解:∵f(x)=2cos(ωx+φ)为奇函数,∴f(0)=2cosφ=0,∴cosφ=0,又0<φ<π,∴φ=;∴f(x)=2cos(ωx+)=﹣2sinωx=2sin(ωx+π),又ω>0,∴其周期T=;设A(x1,2),B(x2,﹣2),则|AB|==4,∴|x1﹣x2|=x1﹣x2=4.即T=4,∴T==8,∴ω=.∴f(x)=2sin(x+π),∴其对称轴方程由x+π=kπ+(k∈Z)得:x=4k﹣2.当k=1时,x=2.故选D.点评:本题考查函数y=Asin(ωx+φ)的图象变换,求得ω是难点,考查分析与运算能力,属于中档题.9.(5分)线段AB是圆C1:x2+y2+2x﹣6y=0的一条直径,离心率为的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的一个公共点,则|PA|+|PB|=()A.B.4C.4D.6考点:直线与圆的位置关系;圆与圆锥曲线的综合.专题:综合题;直线与圆.分析:由题设知双曲线C2的焦距2c=|AB|=2,双曲线的实半轴a=,由P是圆C1与双曲线C2的公共点,知||PA|﹣|PB||=2,|PA|2+|PB|2=40,由此能求出|PA|+|PB|.解答:解:∵圆C1:x2+y2+2x﹣6y=0的半径r==,线段AB是圆C1:x2+y2+2x﹣6y=0的一条直径,离心率为的双曲线C2以A,B为焦点,∴双曲线C2的焦距2c=|AB|=2,∵P是圆C1与双曲线C2的一个公共点,∴||PA|﹣|PB||=2a,|PA|2+|PB|2=40,∴|PA|2+|PB|2﹣2|PA||PB|=4a2,∵c=,e==,∴a=,∴2|PA||PB|=32,∴∴|PA|2+|PB|2+2|PA||PB|=(|PA|+|PB|)2=72,∴|PA|+|PB|=6.故选D.点评:本题考查|PA|+|PB|的值的求法,具体涉及到圆的简单性质,双曲线的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.(5分)由不等式组确定的平面区域为M,由不等式组确定的平面区域为N,在N内随机的取一点P,则点P落在区域M内的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:画出区域,分别求出区域M,N的面积,利用几何概型的公式解答解答:解:不等式确定的平面区域为M如图中黑色阴影部分,其面积等于红色部分面积,所以===1,区域N的面积为2(e﹣1)=2e﹣2,由几何概型公式可得在N内随机的取一点P,则点P落在区域M内的概率为:;故选:A.点评:本题考查了几何概型的概率求法,关键是分别求出区域M,N的面积,利用几何概型公式解答.11.(5分)已知数列{a n}共有9项,其中,a1=a9=1,且对每个i∈{1,2,…,8},均有∈{2,1,﹣},记S=++…+,则S的最小值为()A.5 B.5C.6 D.6考点:数列的求和.专题:计算题;点列、递归数列与数学归纳法.分析:令b i=(1≤i≤8),根据数列比值的关系,结合S的表达式进行推导即可.解答:解:令b i=(1≤i≤8),则对每个符合条件的数列{a n}满足b i===1,且b i∈{2,1,﹣},1≤i≤8.反之,由符合上述条件的八项数列{b n}可唯一确定一个符合题设条件的九项数列{a n}.记符合条件的数列{b n}的个数为N,由题意知b i(1≤i≤8)中有2k个﹣,2k个2,8﹣4k个1,且k的所有可能取值为0,1,2.对于三种情况,当k=2时,S取到最小值6.故选:C.点评:本题考查数列的相邻两项比值之和的最小值的求法,考查满足条件的数列的个数的求法,解题时要认真审题,注意等价转化思想的合理运用.12.(5分)若存在x0∈N+,n∈N+,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.已知函数f(x)=2x+1,x∈N的“生成点”坐标满足二次函数g(x)=ax2+bx+c,则使函数y=g(x)与x轴无交点的a的取值范围是()A.0<α<B.<α<C.α<D.0<α<或α>考点:进行简单的合情推理.专题:函数的性质及应用.分析:根据“生成点“的定义,求出(9,2),(1,6)为函数f(x)的一个“生成点”.根据函数f(x)=2x+1,x∈N的“生成点”坐标满足二次函数g(x)=ax2+bx+c,可求出a,b,c的关系,进而根据函数y=g(x)与x轴无交点,△<0,求出a的取值范围.解答:解:∵f(x)=2x+1,x∈N,满足:f(9)+f(10)+f(11)=63,故(9,2)为函数f(x)的一个“生成点”.f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)=63,故(1,6)为函数f(x)的一个“生成点”.又∵函数f(x)=2x+1,x∈N的“生成点”坐标满足二次函数g(x)=ax2+bx+c,∴81a+9b+c=2,a+b+c=6,解得:b=﹣﹣10a,c=9a+,若函数y=g(x)与x轴无交点,则△=b2﹣4ac=()2﹣4a(9a+)<0,解得:,故选:B点评:本题考查的知识点是合情推理,二次函数的图象和性质,正确理解“生成点“的定义,是解答的关键.二、填空题(每小题5分,共20分)(cosθ﹣i•sinθ)∈R(0<θ<π),则tanθ=.(5分)设i为虚数单位,复数z=(1+i)13.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:首先化简复数为a+bi的形式,然后根据复数为实数,得到θ的值求之.解答:解:因为复数z=(1+i)(cosθ﹣i•sinθ)=(cosθ+sinθ)+(cosθ﹣sinθ)i∈R,所以cosθ﹣sinθ=0,即sin()=0,0<θ<π,所以,所以tanθ=;故答案为:.点评:本题考查了复数的性质;若复数a+bi∈R(a,b∈R)则b=0.14.(5分)记直线x﹣3y﹣1=0的倾斜角为α,曲线y=lnx在(2,ln2)处切线的倾斜角为β.则α﹣β=﹣arctan.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的综合应用.分析:求出曲线y=1nx在(2,1n2)处切线斜率,从而可得tanα=,tanβ=,利用差角的正切公式,即可求出α﹣β.解答:解:∵y=1nx,∴y′=,x=2时,y′=,∵直线x﹣3y﹣l=0的倾斜角为α,曲线y=1nx在(2,1n2)处切线的倾斜角为β,∴tanα=,tanβ=,∴tan(α﹣β)==﹣,∵0<α<β<,∴α﹣β=﹣arctan.故答案为:﹣arctan.点评:本题考查导数的几何意义,考查斜率与倾斜角之间的关系,考查和角的正切公式,确定tanα=,tanβ=,是解题的关键.15.(5分)正方体ABCD﹣A1B1C1D1的棱长为1,底面ABCD的对角线BD在平面α内,则正方体在平面α内的影射构成的图形面积的取值范围是.考点:二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:设矩形BDD1B1与α所成锐二面角为θ,面积记为S1,推出正方形A1B1C1D1与α所成锐二面角为.面积记为S2,求出阴影部分的面积的表达式,利用两角和与差的三角函数求解最值即可.解答:解:设矩形BDD1B1与α所成锐二面角为θ,面积记为S1,则正方形A1B1C1D1与α所成锐二面角为.面积记为S2,所求阴影部分的面积S==S1cosθ+S2sinθ=cosθ+sinθ=sin(θ+β)其中sinβ=,cosβ=.故S∈.故答案为:.点评:本题考查二面角的应用,空间想象能力以及转化思想的应用,难度比较大.16.(5分)关于函数f(x)=x2(lnx﹣a)+a,给出以下4个结论:①∃a>0,∀x>0,f(x)≥0;②∃a>0,∃x>0,f(x)≤0;③∀a>0,∀x>0,f(x)≥0;④∀a>0,∃x>0,f(x)≤0.其中正确结论的个数是3.考点:对数函数的图像与性质.专题:函数的性质及应用.分析:①令a=,进行验证即可;②令a=5,通过验证结论成立;③当a=5时,举反例x=5时,不满足条件;④求函数的导数,判断函数存在极值进行判断.解答:解:①当a=,则f(x)=x2(lnx﹣)+,函数的定义域为(0,+∞),此时函数的导数f′(x)=2x(lnx﹣)+x2•=2xlnx﹣x+x=2xlnx,由f′(x)=0得,x=1,则当x>1时,则f′(x)>0,此时函数递增,当0<x<1时,则f′(x)<0,此时函数递减,故当x=1时,函数f(x)取得极小值同时也是最小值f(1)=﹣+=0,则对∀x>0,f(x)≥f(1)=0;故①正确②当a=5,则f(x)=x2(lnx﹣5)+5,则f(e)=e2(lne﹣5)+5=﹣4e2+5<0,故②∃a>0,∃x>0,f(x)≤0,成立.③由②知当a=5时,∃x=e,满足e>0,但f(e)<0,故③∀a>0,∀x>0,f(x)≥0不成立,故③错误.④函数的导数f′(x)=2x(lnx﹣a)+x2•=2x(lnx﹣a)+x=x(2lnx﹣2a+1)=2x(lnx+﹣a).由f′(x)=0,则lnx+﹣a=0,即lnx=a﹣,即∀a>0,函数f(x)都存在极值点,即∃x>0,f(x)≤0成立,故④正确,综上正确是有①②④,共3个故答案为:3点评:本题主要考查命题的真假判断,利用特殊值法和排除法是解决本题的关键.难度较大.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)已知=(cosx,sin2x),=(cosx,),f(x)=•.(Ⅰ)求f(x)的取值范围;(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,若函数g(x)=bf(x)+c在x=A处取最大值6,求△ABC面积的最大值.考点:平面向量数量积的运算;三角函数中的恒等变换应用.专题:平面向量及应用.分析:(Ⅰ)利用向量数量积的运算性质及辅助角公式计算可得f(x)=sin(2x+)+,结合三角函数的有界性即得结论;(Ⅱ)通过函数g(x)在x=A处取最大值6,可知,进而可得A=,利用基本不等式计算即得结论.解答:解:(Ⅰ)由题可知:f(x)=•=(cosx,sin2x)•(cosx,)=cos2x+sin2x=cos2x+sin2x+=sin(2x+)+,∵sin(2x+)∈[﹣1,1],∴f(x)∈[﹣,];(Ⅱ)∵f(x)=sin(2x+)+,∴g(x)=bf(x)+c=bsin(2x+)+b+c,∵函数g(x)=bsin(2x+)+b+c在x=A处取最大值6,∴,又∵0<A<π,∴A=,∴6=b+c≥2,即bc≤9(当且仅当b=c时等号成立),∵S△ABC=bcsinA=•(bc),∴S△ABC≤•9=,即△ABC面积的最大值为.点评:本题考查平面向量数量积的运算,考查三角函数恒等变换及最值,注意解题方法的积累,属于中档题.18.(12分)某校从参加2014-2015学年高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(I)估计这次测试数学成绩的平均分;(II)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为ξ,求ξ的分布列及数学期望Eξ.考点:离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.专题:计算题.分析:(I)利用分组两端的数据中值估算抽样学生的平均分,类似于加权平均数的算法,让每一段的中值乘以这一段对应的频率,得到平均数,利用样本的平均数来估计总体的平均数.(II)根据等可能事件的概率公式得到两个数恰好是两个学生的数学成绩的概率,随机变量ξ的可能取值为0、1、2、3,且变量符合二项分布,根据符合二项分布写出分布列和期望,也可以用一般求期望的方法来解.解答:解:(I)利用中值估算抽样学生的平均分:45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72.∴估计这次考试的平均分是72分.(II)从95,96,97,98,99,100中抽2个数的全部可能的基本结果数是C62=15,有15种结果,学生的成绩在[90,100]段的人数是0.005×10×80=4(人),这两个数恰好是两个学生的数学成绩的基本结果数是C42=6,两个数恰好是两个学生的数学成绩的概率.随机变量ξ的可能取值为0、1、2、3,且变量符合二项分布,∴∴变量ξ的分布列为:ξ0 1 2 3p∴(或Eξ=)点评:本题考查读频率分步直方图,考查用样本估计总体,考查等可能事件的概率,考查离散型随机变量的分布列和期望,考查二项分布,是一个综合题.19.(12分)如图,在三棱锥P﹣ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E、F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(Ⅰ)求证:直线l⊥平面PAC;(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.考点:棱锥的结构特征;直线与平面垂直的判定.专题:空间位置关系与距离;空间向量及应用.分析:(I)利用中位线,直线平面的平行问题得出l∥BC,根据直线平面的垂直问题得出BC⊥平面PAC,即可得出直线l⊥平面PAC.(II)建立坐标系得出平面AEF的法向量,cos<,>,cos<,>,直线平面,直线的夹角的关系求解即可,sinα=||,cosβ=||,sinα=cosβ.解答:(I)证明:∵E,F分别为PB,PC中点,∴BC∥EF,又EF⊆平面EFA,BC⊊平面EFA,∴BC∥平面EFA又BC⊆平面ABC,平面EFA∩平面ABC=l,∴l∥BC.∵AC⊥BC,∴EF⊥BC,∵PA=PC=AC=2,∴AE⊥PC,∵AC⊥BC,平面PAC⊥平面ABC,∴BC⊥平面PAC,∵l∥BC∴直线l⊥平面PAC,(II)如图建立坐标系得出:C(0,0,0),A(2,0,0),E(,0,),F(0,2,),P(1,0,),Q(2,y,0)∴=(1,0,)为平面AEF的法向量,=(﹣,2,0),=(1,y,﹣)∴cos<,>==,cos<,>==,设直线PQ分别与平面AEF、直线EF所成的角分别为α,β,α+β=,∴sinα=||,cosβ=||,sinα=cosβ,即1=|﹣1+4y|,求解y=,y=0,A(2,0,0),存在Q(2,0,0)或Q(2,,0),|AQ|=或|AQ|=0.点评:本题综合考查了空间直线,平面的位置关系,判断方法,空间向量解决存在性问题,运用代数方法求解几何问题,考查了学生的计算能力.20.(12分)已知椭圆F:+=1(a>b>0)的离心率为,左焦点为F1,点F1到直线ax+by=0的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线角椭圆于P,Q两点,求证:|PF1|+|QF1|﹣|PQ|为定值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)左焦点设为(﹣c,0),则(﹣c,0)到直线ax+by=0的距离为d=,求得椭圆方程.(Ⅱ)在圆中,M是切点,,得(8+9k2)x2+18kmx+9m2﹣72=0,则x1+x2=,,求出:|PF1|,|QF1|,|PQ|的值,继而得到答案.解答:解:(Ⅰ)∵①,左焦点设为(﹣c,0),则(﹣c,0)到直线ax+by=0的距离为d=,∴②,b2+c2=a2③由①②③得:a2=9,b2=8,∴椭圆方程为:;(Ⅱ)证明:设P(x1,y1),Q(x2,y2),则∴,∵0<x1<3,|PF2|=3﹣,同理|QF2|=3﹣在圆中,M是切点,,得(8+9k2)x2+18kmx+9m2﹣72=0设P(x1,y1),Q(x2,y2),则x1+x2=,∴==∵PQ与圆相切,∴即m=,∴所以:|PF1|+|QF1|﹣|PQ|=6﹣.即:|PF1|+|QF1|﹣|PQ|为定值.点评:本题主要考查了椭圆方程得求法和直线与圆锥曲线的位置关系,属于难度较大的题型.21.(12分)已知函数f(x)=x+﹣alnx(a∈R).(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)若在[1,e](e=2.71828…为自然对数的底数)上存在一点x0,使得f(x0)≤0成立,求a的取值范围;(Ⅲ)当a>0时,设函数g(x)=f(ax)﹣,若g(x)有两个不同的零点x1,x2,且0<x1<x2,求证:<lna.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:函数的性质及应用;导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)当a=1时,求得函数的导数,求出切线的斜率和切点坐标,由点斜式方程即可得到切线的方程;(Ⅱ)转化已知条件为函数f(x)在[1,e]上的最小值[f(x)]min≤0,利用单调性,①a≥e ﹣1时,②a≤0时,③0<a<e﹣1时,分别求解函数的最小值,推出所求a的范围;(Ⅲ)化简g(x)=f(ax)﹣=ax﹣alnax,(a>0),求出导数,求得单调区间和极小值,令它小于0,求得a>e,再由x1=lnax1,x2=lnax2,相加,构造函数,求出最值,再由不等式的性质,即可得证.解答:解:(Ⅰ)当a=1时,f(x)=x+﹣lnx的导数为f′(x)=1﹣﹣,曲线f(x)在x=1处的切线斜率为f′(1)=﹣2,切点为(1,3),即有切线方程为y﹣3=﹣2(x﹣1),即为2x+y﹣5=0;(Ⅱ)由题意可知,在[1,e]上存在一点x0,使得f(x0)≤0,即函数f(x)=x+﹣alnx在[1,e]上的最小值[f(x)]min≤0.由f(x)的导数f′(x)=1﹣﹣=,①当a+1≥e,即a≥e﹣1时,f(x)在[1,e]上单调递减,∴[f(x)]min=f(e)=e+﹣a,∴a≥,∵>e﹣1,∴a≥;②当a+1≤1,即a≤0时,f(x)在[1,e]上单调递增,∴[f(x)]min=f(1)=1+1+a≤0,∴a≤﹣2;③当1<a+1<e,即0<a<e﹣1时,∴[f(x)]min=f(1+a)=2+a﹣aln(1+a)≤0,∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴h(1+a)>2此时不存在x0使h(x0)≤0成立.综上可得所求a的范围是:a≥,或a≤﹣2.(Ⅲ)函数g(x)=f(ax)﹣=ax﹣alnax,(a>0),g′(x)=a﹣a•,当x>1时,g′(x)>0,g(x)递增,当0<x<1时,g′(x)<0,g(x)递减.即有x=1处g(x)取得极小值,也为最小值,且为a﹣alna,g(x)有两个不同的零点,则有a﹣alna<0,解得a>e,g(x)有两个不同的零点x1,x2,且0<x1<x2,即x1=lnax1,x2=lnax2,相加可得x1+x2=lnax1+lnax2=ln(a2x1x2),x1x2=,即有=,令t=x1+x2,则h(t)=的导数为,当t>1时,h(t)递增,当0<t<1时,h(t)递减,即有t=1时,h(t)取得最小值,且为e,有<•e=<1,lna>1,则有<lna.点评:本题考查函数的导数的综合应用,曲线的切线方程、函数的单调性以及函数的最值的应用,考查分析问题解决问题得到能力.【选修4—1】几何证明选讲22.(10分)如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.【选修4—4】坐标系与参数方程23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,利用可得直角坐标方程.直线L的参数方程是(t为参数),把t=2y代入+m消去参数t即可得出.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA|•|PB|=t1t2,即可得出.解答:解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|PA|•|PB|=1=t1t2,∴m2﹣2m=1,解得.又满足△>0.∴实数m=1.点评:本题考查了极坐标方程化为直角坐标方程、参数方程的应用,考查了推理能力与计算能力,属于中档题.【选修4—5】不等式选讲24.已知a+b=1,a>0,b>0.(Ⅰ)求+的最小值;(Ⅱ)若不等式+≥|2x﹣1|﹣|x+1|对任意a,b恒成立,求x的取值范围.考点:基本不等式;绝对值三角不等式.专题:不等式的解法及应用.分析:(Ⅰ)由题意可得+=(+)(a+b)=5++,由基本不等式可得;(Ⅱ)问题转化为|2x﹣1|﹣|x+1|≤9,去绝对值化为不等式组,解不等式组可得.解答:解:(Ⅰ)∵a+b=1,a>0,b>0,∴+=(+)(a+b)=5++≥5+2=9,当且仅当=即a=且b=时取等号,∴+的最小值为9;(Ⅱ)若不等式+≥|2x﹣1|﹣|x+1|对任意a,b恒成立,则需|2x﹣1|﹣|x+1|≤9,可转化为,或或,分别解不等式组可得﹣7≤x≤﹣1,≤x≤11,﹣1<x<综合可得x的取值范围为[﹣7,11]点评:本题考查基本不等式求最值,涉及恒成立和绝对值不等式,属中档题.。
2014-2015学年新余一中毕业年级第二次模拟考试数学(文科)试卷一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【题文】1.已知集合{1,1},{|124}xA B x =-=≤<,则A B 等于( ) A .{-1,0,1} B .{1}C .{-1,1}D .{0,1}【知识点】集合及其运算. A1【答案解析】B 解析:B={x|02x ≤<},所以{}1AB =,故选B.【思路点拨】先化简集合B ,再根据交集意义求A B .【题文】2.下列函数中周期为π且图象关于直线6x π=对称的函数是 ( )(A) A .2sin(2)6y x π=- B .2sin()23x y π=+ C .2sin(2)6y x π=+ D .2sin()23x y π=- 【知识点】三角函数的性质. C3【答案解析】C 解析:由周期为π排除选项B 、D ,由于选项A 、C 中的函数是正弦函数,而图象关于直线6x π=对称,所以只需角的终边在y 轴上,因为2662πππ⨯+=的终边在y轴上,所以选C.【思路点拨】根据函数sin()y A x ωϕ=+的周期性、对称性确定结论.【题文】3.若直线2x y -=被圆22(1)()4x y a -++=所截得的弦长为22,则实数a 的值为( )A .2-或6B .0或4C .1-或3D . 1-或3 【知识点】直线与圆的位置关系. H4【答案解析】D 解析:圆心的直线的距离d=12a -,由垂径定理得()221242a ⎛⎫-+= ⎪⎝⎭解得a=-1或a=3,故选 D.【思路点拨】根据点到直线的距离及垂径定理求解.【题文】4.已知变量x ,y 满足约束条件102200x y x y x y +-≥⎧⎪-+≥⎨⎪-≤⎩,则2z x y =-的最大值为 ( )A .2B .52 C .1- D .12【知识点】线性规划问题. E5【答案解析】A 解析:已知不等式组表示的区域,如图ABC ∆及其内部,包括边界. 平移直线y=2x-z 得点B (2,2)为2z x y =-取得最大值的最优解,所以所求最大值为2. 故选A.【思路点拨】画出可行域,平移目标函数对应的直线,得目标函数取得最大值的最优解. 【题文】5.下列命题说法正确的是 ( )A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B .“03x <<”是“11x -<”的必要不充分条件C .命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +->” D .命题“若x y =,则sin sin x y =”的逆命题为真命题【知识点】命题及其关系;充分、必要条件;含量词的命题的否定. A2 A3【答案解析】B 解析:命题“若21x =,则1x =”的否命题为:“若21x ≠,则1x ≠”,故A 不正确;因为11x -<02x ⇔<<,所以B 正确;命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-≥”,所以C 不正确;显然D 不正确.故选 B. 【思路点拨】根据命题及其关系,充分、必要条件,含量词的命题的否定,逐个判断各说法的正误.【题文】6.按如下程序框图,若输出结果为42S =,则判断框内应补充的条件( )A .3i >B .5i >C .7i >D .9i >【知识点】算法与程序框图. L1【答案解析】B 解析:第一次循环 的结果s=2,i=3;第二次循环的结果s=10,i=5;第三次循环的结果s=42,i=5.也输出的结果为S=42,所以判断框内应补充的条件是5i >,故选B. 【思路点拨】依据程序框图得流程,依次写出前几次循环的结果,根据输出的结果得判断框内应补充的条件.【题文】7.椭圆22216x y a +=与双曲线2214x y a -=有相同的焦点,则实数a 的值是( )A .12B .1或2-C .1或 12D .1【知识点】椭圆与双曲线的性质. H5 H6【答案解析】D 解析:由已知得:2164a a a a >⎧⇒=⎨-=+⎩,故选D.【思路点拨】根据椭圆和双曲线的性质,得关于a 的方程与不等式构成的混合组,解得a 值.【题文】8. 一几何体的三视图如图所示,则该几何体的表面积为 ( ) A. 22015π+ B. 20815π+ C. 2009π+ D. 20018π+【知识点】由几何体的三视图求该几何体的表面积. G2【答案解析】B 解析:由三视图可知该几何体是一个长方体与 一个半圆柱够成的组合体.所以其表面积为:()22104105456233220815πππ⨯+⨯+⨯-⨯+⨯+⨯⨯=+故选 .【思路点拨】由三视图得该几何体的结构,以及组成该几何体的各部分的棱长,底面边长等,从而求得该几何体的表面积.【题文】9.已知函数()f x 是定义在R 上的奇函数,且满足(2)()f x f x +=.若当[)0,1x ∈时,()22xf x =-,则12(log 42)f 的值为 ( )A .0B .1C .2D . 2-第8题【知识点】函数的奇偶性、周期性;函数值. B1 B4【答案解析】A 解析:因为函数()f x 是定义在R 上的奇函数,所以12(log 42)f=52255log 222f f f⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又(2)()f x f x +=,所以125122022f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,所以所求=0.故选A.【思路点拨】根据对数的运算性质化简所求,再由函数的奇偶性、周期性把所求转化为求12f ⎛⎫⎪⎝⎭,又知当[)0,1x ∈时,()22xf x =-,由此得结论.【题文】10. 如图,已知点()2,0P,正方形ABCD 内接于圆O :221xy +=,M 、N分别为边AB 、BC 的中点. 当正方形ABCD 绕圆心O 旋转时,PM ON ⋅的取值范围为 ( )A .[]2,2-B .2,2⎡⎤-⎣⎦C .[]1,1-D .22,22⎡⎤-⎢⎥⎣⎦ 【知识点】向量数量积的坐标运算. F2 F3【答案解析】C 解析:因为2,2OM ON OM ON ⊥==,所以设 22cos ,sin ,22M θθ⎛⎫ ⎪ ⎪⎝⎭则22cos ,sin ,2222N ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即 22sin ,cos ,22N θθ⎛⎫- ⎪ ⎪⎝⎭所以22cos 2,sin 22PM θθ⎛⎫=- ⎪ ⎪⎝⎭,所以PM ON ⋅=2222cos 2,sin sin ,cos 2222θθθθ⎛⎫⎛⎫-⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=sin θ[]1,1∈-. 故选C.【思路点拨】根据已知条件知,OM 与ON 互相垂直,且M 、N 都在以原点为圆心22为半径的圆上,故可设22cos ,sin ,22M θθ⎛⎫ ⎪ ⎪⎝⎭则22cos ,sin ,2222N ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即第10题图22sin ,cos ,22N θθ⎛⎫- ⎪ ⎪⎝⎭所以22cos 2,sin 22PM θθ⎛⎫=- ⎪ ⎪⎝⎭,所以PM ON ⋅=2222cos 2,sin sin ,cos 2222θθθθ⎛⎫⎛⎫-⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=sin θ[]1,1∈-. 二、填空题:(本大题共5小题,每小题5分,共25分.请把答案填在答题卡上.)【题文】11.已知复数21(1)()z a a i a R =-++∈为纯虚数,则z 为 . A .0 B .2i C .2i - D .12i -- 【知识点】复数的基本概念与运算. L4【答案解析】2i - 解析:因为复数21(1)()z a a i a R =-++∈为纯虚数,所以210110a a a ⎧-=⇒=⎨+≠⎩,所以22z i z i =⇒=-,故答案为2i -.【思路点拨】根据复数是纯虚数的条件的结论. 【题文】12. 设n S 为等差数列{}n a 的前n 项和,若231012a a a ++=,则9S = .【知识点】等差数列的性质及等差数列的前n 项和. D2 【答案解析】36 解析:由231012a a a ++=,得()()()1112912a d a d a a +++++=,即1519544428a d a a a a +=⇒=⇒+==,所以()1999362a a S +⨯==.【思路点拨】根据等差数列的通项公式,等差数列的性质以及等差数列的前n 项和公式, 求得结论.【题文】13.函数()sin cos f x x x x =+在,6ππ⎡⎤⎢⎥⎣⎦上的最大值为 . 【知识点】导数的应用 . B12【答案解析】2π解析:因为()sin cos sin cos f x x x x x x x '=+-=,所以()0f x '=在,6x ππ⎡⎤∈⎢⎥⎣⎦上的解为2x π=,又()3,,1612222f f f πππππ⎛⎫⎛⎫=+==- ⎪⎪⎝⎭⎝⎭,所以函数()sin cos f x x x x =+在,6ππ⎡⎤⎢⎥⎣⎦上的最大值为2π.【思路点拨】利用导数求闭区间上连续函数的最值. 【题文】14.已知(,)A A A x y 是单位圆上(圆心在坐标原点O )任一点,将射线OA 绕点O逆时针旋转3π到OB 交单位圆于点(,)B B B x y ,则2A B y y -的最大值为 .【知识点】三角函数的定义;两角和与差的三角函数. C1 C5【答案解析】3 解析:设()cos ,sin A θθ则cos(),sin()33B ππθθ⎛⎫++ ⎪⎝⎭,所以 133322sin sin 2sin sin cos sin cos 32222A B y y πθθθθθθθ⎛⎫+=-+=--=- ⎪⎝⎭=313sin cos 3sin 226πθθθ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以2AB y y -的最大值为3. 【思路点拨】利用以原点为圆心的圆上点的坐标,与过此点的半径所在射线的和x 轴的正半轴所成的角θ的关系,得2A B y y -关于θ的函数,求此函数的最大值即可.【题文】15.设函数()f x 的定义域为D ,若,x D y D ∀∈∃∈,使得()()f y f x =-成立,则称函数()f x 为“美丽函数”.下列所给出的五个函数:2y x =;②11y x =-;③()ln(23)f x x =+;④22x xy -=-;⑤2sin 1y x =-.其中是“美丽函数”的序号有 . 【知识点】函数中的新概念问题. B9【答案解析】②③④ 解析:对于①由()()f y f x =-得22y x =-,只有x=0时成立,所以①不是“美丽函数”;对于②由()()f y f x =-得11211y x y x =-⇒=-+--,对于1x ≠的任意实数都有不等于1的y 使它成立,所以②是“美丽函数”;同理可知③④是“美丽函数”,⑤不是“美丽函数”.【思路点拨】根据“美丽函数”的定义,逐一判断各函数是否是“美丽函数”.三、解答题:(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程及演算步骤.)【题文】16.(本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且a b c <<,3sin 2aA b =.(Ⅰ)求角B 的大小; (Ⅱ)若2a =,7b =,求c 及ABC ∆的面积.【知识点】解三角形. C8【答案解析】(Ⅰ)3B π=;(Ⅱ)3c =,332ABC S ∆=.解析:(Ⅰ)3sin 2aA b =,32sin a b A ∴=,由正弦定理可得3sin 2sin sin A B A =, …………2分又0A π<<,sin 0A ∴>,3sin 2B ∴=, ………4分a b c <<,B C ∴<, 所以02B π<<,故3B π=. ------6分(Ⅱ)2a =,7b =,由余弦定理可得:2221(7)2222c c =+-⨯⨯⨯,即2230c c --=解得3c =或1c =-(舍去),故3c =. ………………10分所以11333sin 232222ABC S ac B ∆==⨯⨯⨯=. ………12分【思路点拨】(Ⅰ)把正弦定理代入已知等式得角B 正弦值,再由a<b<c 得 角B 是锐角,从而求得角B 的值;(Ⅱ)利用余弦定理求边c 的长,再由三角形面积公式求ABC ∆的面积. 【题文】17. (本小题满分12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x (°C)与该小卖部的这种饮料销量y (杯),得到如下数据: 日 期1月11日1月12日 1月13日 1月14日 1月15日 平均气温x (°C) 9 10 12 11 8 销量y (杯)2325302621(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率; (Ⅱ)请根据所给五组数据,求出y 关于x 的线性回归方程ˆˆˆy bx a =+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式:121()()ˆˆˆ()niii nii x x y y bay bx x x ==--==--∑∑,.)【知识点】古典概型;变量的相关性与统计案例. K2 I4【答案解析】(Ⅰ)25;(Ⅱ)ˆ 2.14y x =+;(Ⅲ)19.解析:(Ⅰ)设“选取的2组数据恰好是相邻2天数据”为事件A ,所有基本事件(m ,n )(其中m ,n 为1月份的日期数)有:(11,12),(11,13),(11,14), (11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),共有10种. 事件A 包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种.所以42()105P A ==为所求. ………………………6分(Ⅱ)由数据,求得91012118105x ++++==,2325302621255y ++++==.由公式,求得ˆ 2.1b =,ˆˆ4a y bx =-=,所以y 关于x 的线性回归方程为ˆ2.14y x =+. ………………10分 (Ⅲ)当x=7时,ˆ2.17418.7y =⨯+=.所以该奶茶店这种饮料的销量大约为19杯. ……………12分【思路点拨】(Ⅰ)从这五组数据中抽出2组的基本事件总数用列举法得由10种,其中选取的2组数据恰好是相邻2天数据的有4种,所以所求概率为25;(Ⅱ)求得,x y ,代入公式121()()ˆˆˆ()niii nii x x y y bay bx x x ==--==--∑∑, 求出ˆˆ,b a ,从而得y 关于x 的线性回归方程;(Ⅲ)把x=7代入(Ⅱ)中所得的线性回归方程,得1月16日该奶茶店这种饮料的销量大约为19杯. 【题文】18.(本小题满分12分)已知首项为32,公比不等于1的等比数列{}n a 的前n 项和为n S (n N *∈),且22S -,3S ,44S 成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令n nb n a =,数列{}n b 的前n 项和为n T ,求n T 并比较n n T b +与6大小.【知识点】等差数列;等比数列;数列求和. D2 D3 D4【答案解析】(Ⅰ)()13122n n a n N -*⎛⎫=-∈ ⎪⎝⎭;(Ⅱ)3662n n n T +=-,n n T b +<6.解析:(Ⅰ)由题意得324224S S S =-+,即()()42430S S S S -+-=,亦即()4340a a a ++=,4312a a ∴=-,所以公比12q =-, ………4分于是数列{}n a 通项公式为()13122n n a n N -*⎛⎫=-∈ ⎪⎝⎭. ……5分另解:由题意得324224S S S =-+,1q ≠,()()()3241111112111a q a q a q qqq---∴=-+---,化简得2210q q --=,12q ∴=-, ……………4分()13122n n a n N -*⎛⎫∴=-∈ ⎪⎝⎭. ………………………5分(Ⅱ)1313222n n n n nb n a n -⎛⎫==⋅⋅=⎪⎝⎭,所以12312336932222n n n nT b b b b =++++=++++,----- ①()23131136322222n n n n nT +-=++++, ② …………8分①-②得,1231133333222222n n n n T +=++++-111132231212n n n +⎛⎫⨯- ⎪⎝⎭=--13632n n ++=-,所以3662n n n T +=-, ………………11分从而6662n n n T b +=-<. .…………12分【思路点拨】(Ⅰ)根据等比数列的前n 项和公式及等差数列的定义,求得等比数列的公比, 从而写出等比数列的通项公式;(Ⅱ)由错位相减法,求数列{}n b 的前n 项和为n T ,代入n n T b +,再与6比较大小.【题文】19.(本小题满分13分)在如图所示的多面体ABCDEF 中,DE ⊥平面ABCD ,AD BC ,平面BCEF平面ADEF EF =,60BAD ∠=,2AB =,1DE EF ==.(Ⅰ)求证:BC EF ;(Ⅱ)求三棱锥B DEF -的体积.【知识点】线面平行的判定与性质;三棱锥的体积. G4 G1【答案解析】(Ⅰ)证明:略;(Ⅱ)36.解析:(Ⅰ)因为AD BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF , 所以BC 平面ADEF , ……………………………3分 又BC ⊂平面BCEF ,平面BCEF平面ADEF EF =,所以BC EF . ……………………………6分 (Ⅱ)在平面ABCD 内作BH AD ⊥于点H ,因为DE ⊥平面ABCD ,BH ⊂平面ABCD ,所以DE BH ⊥, 又AD 、DE ⊂平面ADEF ,ADDE D =,所以BH ⊥平面ADEF ,所以BH 是三棱锥B DEF -的高. ……………10分在直角三角形ABH 中,o60BAD ∠=,2AB =,所以3BH =,因为DE ⊥平面ABCD ,AD ⊂平面ABCD ,所以DE AD ⊥,又由(Ⅰ)知,BC EF ,且AD BC ,所以AD EF ,所以DE EF ⊥,第19题图FACDEB所以三棱锥B DEF -的体积11131133326DEF V S BH ∆=⨯⨯=⨯⨯⨯⨯=.……12分 【思路点拨】(Ⅰ)根据线面平行的判定与性质得结论;(Ⅱ)由(Ⅰ)结论及DE ⊥平面ABCD , 得DEF ∆是腰长为1的等腰直角三角形,所以其面积为12,又点B 到平面DEF 的距离为B 到直线AD 的距离,由AB=2,60BAD ∠=可得此距离,在根据三棱锥的体积公式求结论.【题文】20、(本小题满分12分) 椭圆2222:1(0)x y C a b a b +=>>过点31,2A ⎛⎫ ⎪⎝⎭,离心率为12,左、右焦点分别为12,F F ,过1F 的直线交椭圆于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)当AB F 2∆的面积为7212时,求直线的方程.【知识点】椭圆的方程;直线与椭圆的位置关系. H5 H8【答案解析】(Ⅰ)22143x y +=;(Ⅱ)10x y -+=或10x y ++=.解析:(Ⅰ)因为椭圆2222:1(0)x y C a b a b +=>>过点31,2A ⎛⎫ ⎪⎝⎭,所以221914a b +=①,又因为离心率为12,所以12c a =,所以2234b a =②,解①②得224, 3.a b == 所以椭圆的方程为:22143x y +=………(4分)(Ⅱ)①当直线的倾斜角为2π时,33(1,),(1,),22A B --- 21211122323227ABF S AB F F ∆=⨯=⨯⨯=≠,不适合题意。
2015年江西省新余市高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分,每小题只有一个选项符合题意)1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A. {x|x≥﹣2} B. {x|x>﹣1} C. {x|x<﹣1} D. {x|x≤﹣2}2.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 2++ B. 3++ C. 2++ D. 3++4.图中的程序框图所描述的算法称为欧几里得展转相除法,若输入m=209,n=121,则输出m的值等于()A. 10 B. 11 C. 12 D. 135.设变量x,y满足,若直线kx﹣y+2=0经过该可行域,则k的最大值为()A. 1 B. 3 C. 4 D. 56.已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若,则f(x)的一个单调递增区间可以是()A. B. C. D.7.已知半圆的直径AB=10,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC 上的动点,则(+)•的最小值是()A. B.﹣25 C. 25 D.﹣8.已知正项数列{a n}的前n项和为S n,奇数项成公差为1的等差数,当n为偶数时点(a n,a n+2)在直线y=3x+2上,又知a1=1,a2=2,则数列{a n}的前2n项和S2n等于()A. n2﹣n﹣6+3n+1 B.C. D.9.已知直三棱柱ABC﹣A1B1C1的各顶点都在球O的球面上,且AB=AC=1,BC=,若球O的体积为,则这个直三棱柱的体积等于()A. B. C. 2 D.10.已知函数f(x)=sin(x﹣φ)﹣1(0<φ<),且(f(x)+1)dx=0,则函数f(x)的一个零点是()A. B. C. D.11.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()A. B.C. D.或12.定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意实数x,存在实常数t使得f(t+x)=﹣tf(x)恒成立,则称f(x)是一个“关于t函数”.有下列“关于t函数”的结论:①f(x)=0是常数函数中唯一一个“关于t函数”;②“关于函数”至少有一个零点;③f(x)=x2是一个“关于t函数”.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 0二、填空题(共4小题,每小题5分,满分20分)13.(x2+2)(﹣mx)5的展开式中x2项的系数490,则实数m的值为.14.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为.15.若在区间[1,2]上存在实数x使2x(2x+a)<1成立,则a的取值范围是.16.给出下列四个命题:①△ABC中,A>B是sinA>sinB成立的充要条件;②当x>0且x≠1时,有lnx+≥2;③已知S n是等差数列{a n}的前n项和,若S7>S5,则S9>S3;④若函数为R上的奇函数,则函数y=f(x)的图象一定关于点成中心对称.其中所有正确命题的序号为.三、解答题:解答应写出文字说明,证明过程或验算步骤。
高三第二次模拟考试 数学理试题第I 卷一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|}M x x x =>,4{|,}2xN y y x M ==∈,则MN = ( B )A 、{x |0<x <12}B 、{x |12<x <1} C 、{x |0<x <1} D 、{x |1<x <2}2. 下列有关命题的说法正确的是 ( C ).A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B .“1x =-” 是“2560x x --=”的必要不充分条件. C .命题“若x y =,则sin sin x y =”的逆否命题为真命题.D .命题“x R ∃∈使得210x x ++<”的否定是:“x R ∀∈均有210x x ++<”.3.函数3()24x f x x =+-的零点所在区间为( C ) A 、(1,0)- B 、(0,1) C 、(1,2) D 、(2,3)4. 已知各项均为正数的等比数列}{n a 中,13213a ,a ,2a 2成等差数列,则=++1081311a a a a ( A ) A. 27B.3C.1-或3D.1或275.函数)(x f 的定义域为]1,0(,则函数)2(lg 2xx f +的定义域为( D )A .]4,5[-B .)2,5[--C . ]4,1[]2,5[ --D .]4,1()2,5[ --6.设2log 3a =,4log 6b =,8log 9c =,则下列关系中正确的是( A )A .a b c >>B .a c b >>C .c b a >>D .c a b >>7. 已知33)6cos(-=-πx ,则=-+)3cos(cos πx x ( C )A .332-B .332±C .1-D .1±8. 已知函数()y f x =对任意的(,)22x ππ∈-满足'()cos ()sin 0f x x f x x +>(其中'()f x 是函数()f x 的导函数),则下列不等式成立的是( D )A()()34f ππ-<- B()()34f ππ< C.(0)()4f π> D .(0)2()3f f π< 9. 若函数)(log )(3ax x x f a -=)1,0(≠>a a 在区间21(-,0)内单调递增,则a 取值范围是( B )A.[41,1)B.[43,1)C.49(,)+∞ D.(1,49)10. 如图,长方形ABCD 的长2AD x =,宽(1)AB x x =≥,线段MN 的长度为1,端点N M ,在长方形ABCD 的四边上滑动,当N M ,沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数()y f x =的图象大致为( C )第Ⅱ卷二、填空题:本大题共5小题,每小题5分. 11. 已知数列{}n a 是等差数列,且1472a a a π++=,则35tan()a a +的值为 .12. 若函数()f x 在R 上可导,()()321f x x x f '=+,则()2f x dx =⎰ .13. 已知52)tan(=+βα, 41)4tan(=-πβ,那么)4tan(πα+的值是 _ .14.已知映射:f A B →,其中[0,1]A =,B R =,对应法则是121:log (2)()3xf x x →--,对于实数k B∈,在集合A中不存在原象,则k的取值范围是 .15. 已知函数⎪⎩⎪⎨⎧≥+-<<=3,83103130|,log|)(23xxxxxxf,若存在实数dcba,,,,满足)()()()(dfcfbfaf===,其中0>>>>abcd,则abcd的取值范围是 .三、解答题:本大题共六个大题,满分75分;解答应写出文字说明,证明过程或演算步骤.16.(本小题12分)已知集合)0}(221|{},510|{≠≤<-∈=≤+<∈=axRxBaxRxA.(1)B A ,能否相等?若能,求出实数a 的值;若不能,试说明理由;(2)若命题A x p ∈:,命题B x q ∈:,且p 是q 充分不必要条件,求实数a 的取值范围. 解析:(1)由题意可得,当且仅当0>a 时,B A ,相等,所以2=a ; (2)8-≤a 或2>a .17. (本小题12分)(1)已知1411)cos(,71cos -=+=βαα,且)2,0(,πβα∈,求βcos 的值;(2)已知α为第二象限角,且42sin =α,求1)2sin(2cos )4cos(+---παααπ的值.18.(本小题12分)设数列}{n a 是等差数列,数列}{n b 的前n 项和n S 满足)1(23-=n n b S 且2512,ba b a == (Ⅰ)求数列}{n a 和}{n b 的通项公式:(Ⅱ)设n T 为数列}{n S 的前n 项和,求n T .(Ⅱ)nnb3=,所以数列}{nb其前n项和)13(23)1(23-=-=nnnbS,∴)963(41)333(23221--=-+⋅⋅⋅++=+nnT nnn. (12分)19.(本小题12分)已知函数()sinf x a x x b=-+(,a b均为正常数),设函数()f x在3xπ=处有极值.(1)若对任意的[0,]2xπ∈,不等式()sin cosf x x x>+总成立,求实数b的取值范围;(2)若函数()f x在区间121(,)33m mππ--上单调递增,求实数m的取值范围.解析:∵bxxaxf+-=sin)(,∴1cos)('-=xaxf,由题意,得)3('=πf,解得2=a. 2分(1)不等式xxxf cossin)(+>等价于sixxxb-+>cos对于一切]2,0[π∈x恒成立. 4分记xxxxg sincos)(-+=,则)4sin(21cossin1)('π+-=--=xxxxg5分∵]2,0[π∈x,∴]43,4[4πππ∈+x,∴2)4sin(21≤+≤πx,∴0)('≤x g ,从而)(x g 在]2,0[π上是减函数. ∴1)0()(max ==g x g ,于是1>b . 6分(2)1cos 2)('-=x x f ,由21)('≥x f ,得,即Zk k x k ∈+≤≤+-,2323ππππ. 7分∵函数()f x 在区间)312,31(ππ--m m 上单调递增,∴]23,23[)312,31(ππππππk k m m ++-⊆--, 则有⎪⎪⎪⎩⎪⎪⎪⎨⎧∈-<-+≤-+-≥-Z k m m k m k m ,31231233122331ππππππππ9分,即⎩⎨⎧>∈+≤≤0,136m Z k k m k ,∴0=k 时,10≤<m 12分20. (本小题13分)如图,分别过椭圆E :)0(12222>>=+b a b y ax 左右焦点1F 、2F 的动直线21,l l 相交于P 点,与椭圆E分别交于D C B A 、与、不同四点,直线OD OC OB OA 、、、的斜率1k 、2k 、3k 、4k 满足4321k k k k +=+. 已知当x l 与1轴重合时,32||=AB ,334||=CD . (1)求椭圆E 的方程;(2)是否存在定点N M 、,使得||||PN PM +为定值.若存在,求出N M 、点坐标并求出此定值,若不存在,说明理由.解:(1)当1l 与x 轴重合时,04321=+=+k k k k ,即43k k -=, ………2分 ∴ 2l 垂直于x 轴,得322||==a AB ,3342||2==a b CD ,(4分)(第20题)得3=a ,2=b , ∴ 椭圆E 的方程为12322=+y x .………5分(2)焦点1F 、2F 坐标分别为(—1,0)、(1,0).当直线1l 或2l 斜率不存在时,P 点坐标为(—1,0)或(1,0).………6分 当直线1l 、2l 斜率存在时,设斜率分别为1m ,2m ,设),(11y x A ,),(22y x B , 由⎪⎩⎪⎨⎧+==+)1(123122x m y y x 得:0636)32(2121221=-+++m x m x m , ∴ 212121326m m x x +-=+,21223623m x x m -=+.(7分))2()11(2121122111221121x x x x m x x x x m x y x y k k ++=+++=+=+24)222(21121211--=--=m m m m m ,同理43k k +24222--=m m .………9分∵4321k k k k +=+, ∴2424222211--=--m m m m ,即0))(2(1221=-+m m m m .由题意知21m m ≠, ∴0221=+m m .设),(y x P ,则0211=+-⋅+x yx y ,即)1(1222±≠=+x x y ,………11分由当直线1l 或2l 斜率不存在时,P 点坐标为(—1,0)或(1,0)也满足此方程, ∴),(y x P 点椭圆1222=+x y 上,………12分21. (本小题14分)已知函数()ln f x x a x =+在1x =处的切线l 与直线20x y +=垂直,函数21()()2g x f x x bx =+-.(Ⅰ)求实数a 的值;(Ⅱ)若函数()g x 存在单调递减区间,求实数b 的取值范围;(Ⅲ)设1212,()x x x x >是函数()g x 的两个极值点,若72b ≥,求12()()g x g x -的最小值.解:(Ⅰ)∵()ln f x x a x =+,∴()1af x x '=+.-----------------------1分∵l 与直线20x y +=垂直,∴112x k y a ='==+=,∴1a =.-----------------3分22222212()422444t t h t t t t t '=-+=---≥0--------------------------12分()h t 在5(,)2+∞上为增函数.当52t =时,15()2ln 2.8h t =- 故所求最小值为152ln 28-------------14分。
六校联考数学卷(理)参考答案与评分标准一、 选择题1~6 BADBDB 7~12 BCCCBA二、 填空题13、1 14、-8 15、C 16、64π三、 解答题17、解:(1)当n=1时11122a S a ==-,12a =,当2n ≥时,111(22)(22)22n n n n n n n a S S a a a a ---=-=---=-, 得12n n a a -=∴数列{n a }是以2为首项,公比为2的等比数列,∴数列{n a }的通项公式为2nn a =. ……3分112b a ==,设公差为d ,则由1311,,b b b 成等比数列,得2(22)2(210)d d +=⨯+, 解得0d =(舍去)或3d =∴数列}{n b 的通项公式为31n b n =-. ……6分 (2……8分……10分 ……12分18、解:(1)由题意,得()0.020.0320.018101a +++⨯=, 解得0.03a =; ……2分 又由最高矩形中点的的横坐标为20,可估计盒子中小球重量的众数约为20克, ……4分 而50个样本小球重量的平均值为:故由样本估计总体,可估计盒子中小球重量的平均值约为24.6克; ……6分 (2)利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则1(3,)5X B ~.X 的取值为0、1、2、3,……10分 X ∴的分布列为:……12分 19、解:(1)证明:⊥PC Θ平面ABCD ,⊂AC 平面ABCD ,PC AC ⊥∴,2=AB ,1==CD AD ,222AB BC AC =+∴,BC AC ⊥∴又C PC BC =I ,⊥∴AC 平面PBC ,∵⊂AC 平面EAC ,∴平面⊥EAC 平面PBC ……6分(2)以C 为原点,建立空间直角坐标系如图所示,则C (0,0,0),A (1,1, 设P (0,0,a )(0>a ), )0,1,1(=CA ,),0,0(a CP =,取m =(1,-1,0) ……8分B则0=⋅=⋅CA m CP m ,∴m u r为面PAC 的法向量设),,(z y x n =为面EAC 的法向量,则0=⋅=⋅CE n CA n ,即⎩⎨⎧=+-=+0,0az y x y x ,取a x =,a y -=,2-=z ,则)2,,(--=a a n ,,则2=a 于是)2,2,2(--=n 设直线PA 与平面EAC 所成角为θ,则 即直线PA 与平面EAC 所成角的正弦值为……12分(或设CA 为x 轴,CB 为y 轴,CP 为z 轴,请酌情给分)20、解:(1)由题意得121221PF F S c b b ∆=⋅⋅⎧⎪⎨⎪⎩,解得=2a ,1b =.所以椭圆C 的方程是 ……4分 (2)以线段PQ 为直径的圆过x 轴上的定点. 当直线l 斜率不存在时以线段PQ 为直径的圆的方程为:223xy +=……5分当直线l 斜率存在时 设(1)(0)y k x k =-≠得2222(14)8440k x k x k +-+-=. 设1122(,),(,)A x y B x y ,则有……7分又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为直线BM 的方程为……8分 若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=u u u r u u u r恒成立. ……9分故以线段PQ 为直径的圆过x 轴上的定点 ……12分 (或设1x my =+请酌情给分)21、解:(Ⅰ)由得切线的斜率(2)31,2,k f a a '==-=-∴=,故2()2ln 2f x x x x =-+, …… 2分 由()2f x x m ≥+得22ln m x x ≤-∵不等式()2f x x m ≥+2max (2ln )m x x ≤- ……4分令2()2ln g x x x =-,故()0g x '=时,1x =.当时,()0g x '>;当1e x <<时,()0g x '<.(1)1g =-,所以1m ≤- ……6分(Ⅱ)因为()f x 的图象与x 轴交于两个不同的点()()12,0,,0A x B x所以方程22ln 0x x ax -+=的两个根为12,x x ,则211122222ln 02ln 0x x ax x x ax ⎧-+=⎪⎨-+=⎪⎩,两式相减得……8分*)120,01,x x t <<∴<<Q 即证明在01t <<上恒成立 …10分 又01t <<,所以()0u t '> 所以,()u t 在()0,1上是增函数,则()()10u t u <=,从而知………12分22、解: (1)∵PA 是圆O 的切线 ∴ACB PAB ∠=∠ 又P ∠是公共角∴ABP ∆∽CAP ∆ ………2分∴2==PBAPAB AC ∴AB AC 2= ………4分 (2)由切割线定理得:PC PB PA ⋅=2∴20=PC又PB=5 ∴15=BC ………6分又∵AD 是BAC ∠的平分线 ∴2==DBCDAB AC ∴DB CD 2= ∴5,10==DB CD ………8分又由相交弦定理得:50=⋅=⋅DB CD DE AD ………10分 23、解:(Ⅰ)曲线C 的普通方程为2:2,C y ax = 直线的普通方程为20x y --= ---------4分 (Ⅱ)将直线的参数表达式代入抛物线得()2116402t t a -++=, 1212,328t t t t a ∴+=+=+, ------------6分又|||||,||||,|||2121t t MN t PN t PM -===, 由题意知,21221212215)(||||t t t t t t t t =+⇒=-, 代入得1=a ---------10分 24、解:(Ⅰ)当x 4≥时f(x)=2x+1-(x-4)=x+5>0 得x >-5,所以x 4≥成立 当421<≤-x 时,f (x )=2x +1+x -4=3x -3>0 得x >1,所以1<x <4成立 当21-<x 时f (x )=-x -5>0得x <-5所以x <-5成立, 综上,原不等式的解集为{x |x >1或x <-5} ------------5分 (Ⅱ)f (x )+43-x =|2x +1|+2|x -4|9|)82(12|=--+≥x x 当时等号成立421≤≤-x所以m≤9 ------------10分。
江西省新余市数学高三理数二调模拟考试试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) (2016 高一下·韶关期末) 设集合 A={1,2,3,4},B={x∈R|1<x≤4},则 A∩B=( )A . {1,2,3,4}B . {2,4}C . {2,3,4}D . {x|1<x≤4}2. (2 分) (2017·湘西模拟) 已知复数(1+i)z=1﹣i(i 是虚数单位),则 z 的共轭复数的虚部是( )A.iB.1C . ﹣iD . -13. (2 分) (2020·贵州模拟) 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中 点表示十月的平均最高气温约为, 点表示四月的平均最低气温约为.下面叙述不正确的是( )A . 各月的平均最高气温都在以上B . 六月的平均温差比九月的平均温差大第 1 页 共 15 页C . 七月和八月的平均最低气温基本相同D . 平均最低气温高于的月份有 5 个4. (2 分) (2020·河南模拟) 已知函数A.的最小正周期为B.的最大值为 2C.的图像关于 轴对称,则下列说法正确的是( )D.在区间上单调递减5. (2 分) 已知命题, 命题, 则( )A . 命题是假命题B . 命题是真命题C . 命题 是假命题D . 命题 是真命题6. (2 分) 下列命题①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台.其中真命题的个数是( )A.0B.1C.2D.3第 2 页 共 15 页7. (2 分) (2017 高二下·运城期末) (1+ )(1+x)6 展开式中 x2 的系数为( ) A . 15 B . 20 C . 30 D . 35 8. (2 分) (2017·漳州模拟) 函数 f(x)=(1+cosx)sinx 在[﹣π,π]的图象的大致形状是( )A.B.C.D.9. (2 分) 设 A. B. C. D.,则()第 3 页 共 15 页10. (2 分) 已知椭圆若的最大值为 8,则 的值是(, 左右焦点分别为 ), 过 的直线交椭圆于 两点,A.B.C.D.11. (2 分) (2017 高三上·山东开学考) 在下列区间中,使函数存在零点的是( )A . (0,1)B . (1,2)C . (2,e)D . (3,4)12. (2 分) (2019 高二下·蕉岭月考) 已知四棱锥,它的底面是边长为 2 的正方形,其俯视图如图所示,侧 视图为直角三角形,则该四棱锥的外接球的表面积为( )A. B. C. D.第 4 页 共 15 页二、 填空题 (共 4 题;共 4 分)13. (1 分) (2018 高二上·江苏期中) 双曲线的焦点坐标是________.14. (1 分) (2018·呼和浩特模拟) 在 实数 的取值范围是________.中,,满足15. (1 分) (2019 高二上·集宁月考) 已知为锐角三角形的两个内角,则与是________.的 的大小关系16. (1 分) (2019 高二上·南宁月考) 已知 x,y 满足方程(x﹣2)2+y2=1,则 的最大值为________三、 解答题 (共 7 题;共 35 分)17. (5 分) (2017 高二下·定州开学考) 设 M=10a2+81a+207,P=a+2,Q=26﹣2a,若将 lgM,lgQ,lgP 适当 排序后可构成公差为 1 的等差数列{an}的前三项.(Ⅰ)求 a 的值及{an}的通项公式;(Ⅱ)记函数的 图 像 在 x 轴 上 截 得 的 线 段 长 为 bn , 设,求 Tn .18. (5 分) (2017 高一下·南京期末) 如图,直三棱柱 ABC﹣A1B1C1 中,CA=CB,M,N,P 分别为 AB,A1C1 , BC 的中点.求证: (1) C1P∥平面 MNC; (2) 平面 MNC⊥平面 ABB1A1.第 5 页 共 15 页19. (5 分) (2016 高一上·历城期中) 某公司制定了一个激励销售人员的奖励方案:当销售利润不超过 15 万元时,按销售利润的 10%进行奖励;当销售利润超过 15 万元时,若超过部分为 A 万元,则超出部分按 2log5(A+1) 进行奖励,没超出部分仍按销售利润的 10%进行奖励.记奖金总额为 y(单位:万元),销售利润为 x(单位:万元).(1) 写出该公司激励销售人员的奖励方案的函数表达式;(2) 如果业务员老张获得 5.5 万元的奖金,那么他的销售利润是多少万元?20. (5 分) (2019 高三上·西湖期中) 已知函数,.(1) 当时,试讨论的单调性;(2) 若对任意的,方程恒有 个不等的实根,求 的取值范围.21. (5 分) (2019 高三上·珠海月考) 已知函数(1) 讨论的单调性;(2) 若不等式恒成立,求实数 取值范围;,其中且.(3) 若方程存在两个异号实根 , ,求证:22. (5 分) (2018 高二下·河北期末) 在平面直角坐标系 中,以 为极点, 轴非负半轴为极轴建立坐标系,已知曲线 的极坐标方程为,直线 的参数方程为:( 为参数),两曲线相交于两点.(1) 写出曲线 的直角坐标方程和直线 的普通方程;(2) 若,线段的中点为 ,求 点到 点距离.23. (5 分) (2020 高三上·贵阳期末) 已知.(1) 求不等式解集;第 6 页 共 15 页(2) 若时,不等式恒成立,求 a 的取值范围.第 7 页 共 15 页一、 单选题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 8 页 共 15 页16-1、三、 解答题 (共 7 题;共 35 分)第 9 页 共 15 页第 10 页 共 15 页18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。
2015年江西省新余市高考数学二模试卷(文科)一、选择题(本题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项符合要求的)1.设集合A={x|y=lg(3﹣2x)},集合B={x|y=},则A∩B=()A. B.(﹣∞,1] C. D.2.若复数Z的实部为1,且|Z|=2,则复数Z的虚部是()A.﹣ B.± C.±i D.i3.已知向量=(1,2),=(1,0),=(4,﹣3).若λ为实数,(+λ)⊥,则λ=()A. B. C. 1 D. 24.下列说法正确的是()A.样本10,6,8,5,6的标准差是5.3B.“p∨q为真”是“p∧q为真”的充分不必要条件C. K2是用来判断两个分类变量是否相关的随机变量,当K2的值很小时可以推定两类变量不相关D.设有一个回归直线方程为=2﹣1.5x,则变量x毎增加一个单位,y平均减少1.5个单位5.等差数列{a n}中的a1、a4025是函数f(x)=x3﹣4x2+6x﹣1的极值点,则log2a2013() A. 2 B. 3 C. 4 D. 56.如图,给出的是计算的值的程序框图,其中判断框内应填入的是()A. i≤2021 B. i≤2019 C. i≤2017 D. i≤20157.已知三棱锥的三视图,则该三棱锥的体积是()A. B. C. D.8.函数f(x)的部分图象如图所示,则f(x)的解析式可以是()A. f(x)=x+sinx B.C. f(x)=xcosx D.9.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则(n∈N+)的最小值为()A. 4 B. 3 C. 2﹣2 D.10.若,则z=x+2y的取值范围是()A.(0,] B. [0,] C. [0,﹣] D. [0,+]11.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.12.已知双曲线C:﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线C的离心率为2,△AOB的面积为,则△AOB的内切圆半径为()A.﹣1 B.+1 C. 2﹣3 D. 2+3二、填空题(本题共4小题,每小题5分,共20分)13.已知tan(3π﹣x)=2,则= .14.在区间[﹣3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是.15.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为.16.已知过抛物线x2=4y的焦点F的直线交抛物线于A,B两个不同的点,过A,B分别作抛物线的切线,且二者相交于点C,则△ABC的面积的最小值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知直线两直线l1:xcosα+y﹣1=0;l2:y=xsin(a+),△ABC中,内角A,B,C对边分别为a,b,c,a=2,c=4,且当a=A时,两直线恰好相互垂直;(Ⅰ)求A值;(Ⅱ)求b和△ABC的面积.18.随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图.其中甲班有一个数据被污损.(Ⅰ)若已知甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.19.如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是线段AE上的动点.(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE﹣BCF分成的两部分的体积之比.20.已知两点F1(﹣1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.(1)求椭圆C的方程;(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.21.设函数f(x)=x2﹣mlnx,h(x)=x2﹣x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,求实数a 的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.四、选修4-1,几何证明选讲22.已知△ABC中,AB=AC,D是△ABC外接圆上上的点(不与点A、C重合),延长BD至F.(1)求证:AD延长线DF平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积.五、选修4-4:坐标系与参数方程23.直角坐标系下,曲线C的参数方程为(φ为参数).(1)在横坐标系下,曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB的面积;(2)在直角坐标系下,直线l的参数方程为(t为参数),求曲线C与直线l 的交点坐标.六、选修4-5:不等式选讲24.(C)已知函数f(x)=|2x+3|+|2x﹣1|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.2015年江西省新余市高考数学二模试卷(文科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项符合要求的)1.设集合A={x|y=lg(3﹣2x)},集合B={x|y=},则A∩B=()A. B.(﹣∞,1] C. D.考点:交集及其运算.专题:集合.分析:求出A中x的范围确定出A,求出B中x的范围确定出B,找出A与B的交集即可.解答:解:由A中y=lg(3﹣2x),得到3﹣2x>0,解得:x<,即A=(﹣∞,),由B中y=,得到1﹣x≥0,即x≤1,∴B=(﹣∞,1],则A∩B=(﹣∞,1].故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若复数Z的实部为1,且|Z|=2,则复数Z的虚部是()A.﹣ B.± C.±i D.i考点:复数求模.专题:数系的扩充和复数.分析:设出复数,然后利用复数的模求解即可.解答:解:复数Z的实部为1,设Z=1+bi.|Z|=2,可得=2,解得b=.复数Z的虚部是.故选:B.点评:本题考查复数的模的应用,复数的基本概念,基本知识的考查.3.已知向量=(1,2),=(1,0),=(4,﹣3).若λ为实数,(+λ)⊥,则λ=()A. B. C. 1 D. 2考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由题意可得+λ=(1+λ,0),由垂直可得数量积为0,可得λ的方程,解方程可得.解答:解:∵=(1,2),=(1,0),=(4,﹣3).∴+λ=(1+λ,2)∵(+λ)⊥,∴4(1+λ)﹣3×2=0,解得λ=故选:B点评:本题考查数量积与向量的垂直关系,属基础题.4.下列说法正确的是()A.样本10,6,8,5,6的标准差是5.3B.“p∨q为真”是“p∧q为真”的充分不必要条件C. K2是用来判断两个分类变量是否相关的随机变量,当K2的值很小时可以推定两类变量不相关D.设有一个回归直线方程为=2﹣1.5x,则变量x毎增加一个单位,y平均减少1.5个单位考点:独立性检验;必要条件、充分条件与充要条件的判断;极差、方差与标准差;线性回归方程.专题:综合题;推理和证明.分析:对四个命题分别进行判断,A,求出平均数、方差、标准差可得结论;B,p∧q为真,则p、q均为真,p∨q为真,p、q至少一个为真;C,K2的值很小时,只能说两个变量的相关程度低,不能推定两个变量不相关;D,设有一个回归直线方程为=2﹣1.5x,通过回归直线方程的性质,即可得出结论.解答:解:A,样本10,6,8,5,6的平均数为7,方差为,标准差是,故不正确;B,p∧q为真,则p、q均为真,p∨q为真,p、q至少一个为真,故“p∨q为真”是“p∧q 为真”的必要不充分条件,故不正确;C,K2的值很小时,只能说两个变量的相关程度低,不能推定两个变量不相关.所以C错;D,设有一个回归直线方程为=2﹣1.5x,则变量x毎增加一个单位,y平均减少1.5个单位,正确.故选:D.点评:本题考查命题的真假判断,考查学生分析解决问题的能力,比较基础.5.等差数列{a n}中的a1、a4025是函数f(x)=x3﹣4x2+6x﹣1的极值点,则log2a2013() A. 2 B. 3 C. 4 D. 5考点:函数在某点取得极值的条件.专题:导数的综合应用.分析:利用导数即可得出函数的极值点,再利用等差数列的性质及其对数的运算法则即可得出.解答:解:f′(x)=x2﹣8x+6,∵a1、a4025是函数f(x)=x3﹣4x2+6x﹣1的极值点,∴a1、a4025是方程x2﹣8x+6=0的两实数根,则a1+a4025=8.而{a n}为等差数列,∴a1+a4025=2a2013,即a2013=4,从而==2.故选A.点评:熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.6.如图,给出的是计算的值的程序框图,其中判断框内应填入的是()A. i≤2021 B. i≤2019 C. i≤2017 D. i≤2015考点:程序框图.专题:图表型;算法和程序框图.分析:根据流程图写出每次循环i,S的值,和比较即可确定退出循环的条件,得到答案.解答:解:根据流程图,可知第1次循环:i=2,S=;第2次循环:i=4,S=;第3次循环:i=6,S=……第1008次循环:i=2016,S=;此时,i=2018,设置条件退出循环,输出S的值.故判断框内可填入i≤2016.对比选项,故选:C.点评:本题主要考察程序框图和算法,属于基础题.7.已知三棱锥的三视图,则该三棱锥的体积是()A. B. C. D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.利用三棱锥的体积计算公式即可得出.解答:解:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.∴该三棱锥的体积V===.故选:B.点评:本题考查了三棱锥的三视图及其体积计算公式,属于基础题.8.函数f(x)的部分图象如图所示,则f(x)的解析式可以是()A. f(x)=x+sinx B.C. f(x)=xcosx D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过函数的图象的奇偶性、定义域、验证函数的表达式,排除部分选项,利用图象过(,0),排除选项,得到结果.解答:解:依题意函数是奇函数,排除D,函数图象过原点,排除B,图象过(,0)显然A不正确,C正确;故选C点评:本题是基础题,考查函数的图象特征,函数的性质,考查学生的视图能力,常考题型.9.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则(n∈N+)的最小值为()A. 4 B. 3 C. 2﹣2 D.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由题意得(1+2d)2=1+12d,求出公差d的值,得到数列{a n}的通项公式,前n项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.解答:解:∵a1=1,a1、a3、a13 成等比数列,∴(1+2d)2=1+12d.得d=2或d=0(舍去),∴a n =2n﹣1,∴S n==n2,∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A.点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.10.若,则z=x+2y的取值范围是()A.(0,] B. [0,] C. [0,﹣] D. [0,+]考点:简单线性规划的应用.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义结合导数求出切线斜率,即可得到结论.解答:解:作出不等式组对应的平面区域,由z=x+2y,得y=,平移直线y=,由图象可知当直线经过点O时,直线y=的截距最小,此时z最小,z=0,当直线y=与y=cosx相切时,直线的截距最大,此时z最大,函数y=cosx的导数f′(x)=﹣sinx,目标函数的斜率k=,由﹣sinx=得sinx=,解得x=,此时y=cos=,即切点坐标为(,),此时z=+2×=+,故z的取值范围是[0,+],故选:D.点评:本题主要考查线性规划的应用,利用数形结合以及导数的几何意义求出切点坐标是解决本题的关键.综合性较强.11.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.考点:球的体积和表面积.分析:蛋槽的边长是原来硬纸板的对角线长度的一半,为1cm,蛋槽立起来的小三角形部分高度是,鸡蛋的半径根据已知的表面积4π=4πr2得到r=1cm,直径D=2cm,大于折好的蛋巢边长1cm,由此能求出鸡蛋中心(球心)与蛋巢底面的距离.解答:解:蛋槽的边长是原来硬纸板的对角线长度的一半,为1cm,蛋槽立起来的小三角形部分高度是,鸡蛋的半径根据已知的表面积4π=4πr2得到r=1cm,直径D=2cm,大于折好的蛋巢边长1cm,四个三角形的顶点所在的平面在鸡蛋表面所截取的小圆直径就是蛋槽的边长1cm,根据图示,AB段由三角形AB求出得:AB=,AE=AB+BE=,∴鸡蛋中心(球心)与蛋巢底面的距离为.故选:D.点评:本题考查点、线、面间距离的计算,解题时要认真审题,注意挖掘题设中的隐含条件,合理地化空间问题为平面问题,注意数形结合法的合理运用.12.已知双曲线C:﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线C的离心率为2,△AOB的面积为,则△AOB的内切圆半径为()A.﹣1 B.+1 C. 2﹣3 D. 2+3考点:双曲线的简单性质.专题:解三角形;圆锥曲线的定义、性质与方程.分析:由双曲线的离心率公式及a,b,c的关系可得b=a,由双曲线的渐近线方程和抛物线的准线方程解得A,B,求出三角形AOB的面积,进而解得p=2,即有A,B的坐标,进而得到三角形AOB的三边,再由内切圆的半径与三角形的面积之间的关系,计算即可得到r.解答:解:由e====2,可得=.由,求得A(﹣,),B(﹣,﹣),所以S△AOB=••=.将=代入,得p2=4,解得p=2.所以A(﹣1,),B(﹣1,﹣),则△AOB的三边分别为2,2,2,设△AOB的内切圆半径为r,由(2+2+2)r=,解得r=2﹣3,故选C.点评:本题考查双曲线和抛物线的综合应用.求解这类问题关键是结合两个曲线的位置关系,找到它们对应的几何量,然后利用图形中的平面几何性质解答问题.二、填空题(本题共4小题,每小题5分,共20分)13.已知tan(3π﹣x)=2,则= ﹣3 .考点:二倍角的余弦;三角函数的化简求值.专题:三角函数的求值.分析:已知等式左边利用诱导公式化简,求出tanx的值,原式分子利用二倍角的余弦函数公式化简,再利用同角三角函数间的基本关系变形,把tanx的值代入计算即可求出值.解答:解:∵tan(3π﹣x)=﹣tanx=2,即tanx=﹣2,∴原式====﹣3.故答案为:﹣3点评:此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.14.在区间[﹣3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是.考点:几何概型.专题:概率与统计.分析:本题属于几何概型,只要求出区间长度以及满足条件的区间长度,由几何概型公式解答.解答:解:由已知区间[﹣3,5]长度为8,使函数f(x)=x2+2ax+4无零点即判别式△=4a2﹣16<0,解得﹣2<a<2,即(﹣2,2),区间长度为4,由几何概型的公式得使函数f(x)=x2+2ax+4无零点的概率是;故答案为:.点评:本题考查了几何概型的运用;关键是明确几何测度,利用公式解答.15.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为6n+2 .考点:归纳推理.专题:规律型.分析:观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6.解答:解:由题意知:图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6,∴第n条小鱼需要(2+6n)根,故答案为:6n+2.点评:本题考查了规律型中的图形变化问题,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.16.已知过抛物线x2=4y的焦点F的直线交抛物线于A,B两个不同的点,过A,B分别作抛物线的切线,且二者相交于点C,则△ABC的面积的最小值为 4 .考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:求出抛物线x2=4y的焦点坐标,设直线l方程为y=kx+1,与抛物线方程联立,设A (x1,y1),B(x2,y2),利用韦达定理,以及函数的求出切线方程,解出C的坐标,利用弦长公式求出|AB|点C到直线AB的距离,表示出S△AOCB,利用二次函数的性质即可得出三角形的面积的最小值.解答:解:∵抛物线x2=4y的焦点F(0,1),∴设直线l方程为y=kx+1,由,消去y得x2﹣4kx﹣4=0,设A(x1,y1),B(x2,y2),x1+x2=4k,x1x2=﹣4.抛物线x2=4y,即二次函数y=x2,对函数求导数,得y′=x,所以抛物线在点A处的切线斜率为k1=x1,可得切线方程为y﹣y1=x1(x﹣x1),化简得y=x1x﹣x12,同理,得到抛物线在点B处切线方程为y=x2x﹣x22,两方程消去x,得两切线交点C纵坐标满足y c==1,横坐标为:x=(x1+x2)=2k.点C(2k,﹣1)到直线AB的距离为d=,线段AB的长度为|x1﹣x2|=,S△ACB=|AB|•d==≥4.当k=0的等号成立,∴S△ACB面积的最小值为:4,故答案为:4.点评:本题考查了直线与抛物线相交相切问题、弦长公式、三角形的面积计算公式、函数的导数求解切线方程、二次函数的单调性,考查了推理能力与计算能力.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知直线两直线l1:xcosα+y﹣1=0;l2:y=xsin(a+),△ABC中,内角A,B,C对边分别为a,b,c,a=2,c=4,且当a=A时,两直线恰好相互垂直;(Ⅰ)求A值;(Ⅱ)求b和△ABC的面积.考点:三角函数中的恒等变换应用;余弦定理;直线的一般式方程与直线的垂直关系.专题:三角函数的求值;三角函数的图像与性质;解三角形.分析:(Ⅰ)首先利用直线垂直的充要条件求出三角函数的关系式,进一步利用三角函数关系式的恒等变换,把函数关系式变形成郑先兴函数,进一步求出角A的值.(Ⅱ)利用上步的结论,利用余弦定理求出b的大小,进一步利用三角形的面积公式求出三角形的面积.解答:解:(Ⅰ)当:α=A时,直线 l1:xcosα+﹣1=0,l2:y=xsin()的斜率分别为:k1=﹣2cosA,,两直线相互垂直所以:即:可得:=所以:,所以:即:即:因为:0<A<π,0<2A<2π,所以:所以只有:所以:(Ⅱ)△ABC中,内角A,B,C对边分别为a,b,c,a=2,c=4,A=,所以:即:解得:b=2所以△ABC的面积为点评:本题考查的知识要点:直线垂直的充要条件,三角函数关系式的恒等变换,正弦型函数的性质的应用,余弦定理的应用,三角形面积的应用.属于基础题型.18.随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图.其中甲班有一个数据被污损.(Ⅰ)若已知甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.考点:列举法计算基本事件数及事件发生的概率;茎叶图.专题:概率与统计.分析:(Ⅰ)设污损处的数据为a,根据甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)设“身高为176 cm的同学被抽中”的事件为A,列举出从乙班这10名同学中随机抽取两名身高不低于173cm的同学的基本事件个数,及事件A包含的基本事件个数,进而可得身高为176cm的同学被抽中的概率.解答:解:(Ⅰ)设污损处的数据,∵甲班同学身高平均数为170cm,∴=(158+162+163+168+168+170+171+179+a+182)=170 …(4分)解得a=179 所以污损处是9.…(6分)(Ⅱ)设“身高为176 cm的同学被抽中”的事件为A,从乙班10名同学中抽取两名身高不低于173 cm的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173}共10个基本事件,…(8分)而事件A含有4个基本事件,…(10分)∴P(A)==…(12分)点评:本题考查的知识点是茎叶图,列举出计算基本事件及事件发生的概率,难度不大,属于基础题.19.如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是线段AE上的动点.(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE﹣BCF分成的两部分的体积之比.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)首先,根据所给图形,得到当M是线段AE的中点时,AC∥平面MDF.然后,根据线面平行的判定定理进行证明即可;(Ⅱ)利用补图法,将几何体ADE﹣BCF补成三棱柱ADE﹣B′CF,然后,借助于柱体和椎体的体积公式进行求解即可.解答:解析:(Ⅰ)当M是线段AE的中点时,AC∥平面MDF.证明如下:连结CE,交DF于N,连结MN,由于M、N分别是AE、CE的中点,所以MN∥AC,由于MN⊂平面MDF,又AC⊈平面MDF,所以AC∥平面MDF.(Ⅱ)如图,将几何体ADE﹣BCF补成三棱柱ADE﹣B′CF,三棱柱ADE﹣B′CF的体积为,则几何体ADE﹣BCF的体积V ADE﹣BCF=V三棱柱ADE﹣BCF﹣V F﹣BB'C=.三棱锥F﹣DEM的体积V三棱锥M﹣DEF=,故两部分的体积之比为(答1:4,4,4:1均可).点评:本题综合考查了线面平行的判定定理、柱体和椎体的体积公式等知识,属于中档题,在解题中,如果求解不规则几何体的体积时,一般用割补法进行运算和求解,这就是转化思想在解题中的应用.20.已知两点F1(﹣1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.(1)求椭圆C的方程;(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.考点:直线与圆锥曲线的综合问题;数列与解析几何的综合;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(1)依题意,设椭圆C的方程为,c=1.再利用|PF1|、|F1F2|、|PF2|构成等差数列,即可得到a,利用b2=a2﹣c2得到a即可得到椭圆的方程;(2)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得到关于x的一元二次方程,由直线l与椭圆C仅有一个公共点知,△=0,即可得到m,k的关系式,利用点到直线的距离公式即可得到d1=|F1M|,d2=|F2N|.法一:当k≠0时,设直线l的倾斜角为θ,则|d1﹣d2|=|MN|×|tanθ|,即可得到四边形F1MNF2面积S的表达式,利用基本不等式的性质即可得出S的最大值;法二:利用d1及d2表示出及d1d2,进而得到,再利用二次函数的单调性即可得出其最大值.解答:解:(1)依题意,设椭圆C的方程为.∵|PF1|、|F1F2|、|PF2|构成等差数列,∴2a=|PF1|+|PF2|=2|F1F2|=4,a=2.又∵c=1,∴b2=3.∴椭圆C的方程为.(2)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2﹣12=0.由直线l与椭圆C仅有一个公共点知,△=64k2m2﹣4(4k2+3)(4m2﹣12)=0,化简得:m2=4k2+3.设,,法一:当k≠0时,设直线l的倾斜角为θ,则|d1﹣d2|=|MN|×|tanθ|,∴,=,∵m2=4k2+3,∴当k≠0时,,,.当k=0时,四边形F1MNF2是矩形,.所以四边形F1MNF2面积S的最大值为.法二:∵,.∴=.四边形F1MNF2的面积=,=.当且仅当k=0时,,故.所以四边形F1MNF2的面积S的最大值为.点评:本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、等差数列、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.21.设函数f(x)=x2﹣mlnx,h(x)=x2﹣x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,求实数a 的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.考点:函数恒成立问题;函数单调性的性质;函数的零点与方程根的关系.专题:计算题;压轴题.分析:(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2﹣mlnx≥x2﹣x,转化为即:m≤在(1,+∞)上恒成立,从而得出实数m的取值范围.(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,即:k(x)=x﹣2lnx﹣a,设y1=x﹣2lnx,y2=a,分别画出它们的图象,由图得实数a的取值范围.(3)先假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2﹣mlnx在x=处取得极小值即可.解答:解:(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2﹣mlnx≥x2﹣x,mlnx≤x,即:m≤在(1,+∞)上恒成立,因为在(1,+∞)上的最小值为:e,∴m≤e.实数m的取值范围:m≤e(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,即:k(x)=x﹣2lnx﹣a,设y1=x﹣2lnx,y2=a,分别画出它们的图象,由图得:实数a的取值范围(2﹣2ln2,3﹣2ln3];(3)假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2﹣mlnx在x=处取得极小值即可.∵f(x)=x2﹣mlnx∴f′(x)=2x﹣m×,将x=代入得:1﹣2m=0,∴m=故存在实数m=,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性.点评:数形结合思想是解析函数图象交点个数、函数零点个数中最常用的方法,即画出满足条件的图象,然后根据图象直观的分析出答案,但数形结合的前提是熟练掌握各种基本初等函数的图象和性质.四、选修4-1,几何证明选讲22.已知△ABC中,AB=AC,D是△ABC外接圆上上的点(不与点A、C重合),延长BD至F.(1)求证:AD延长线DF平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:(1)根据A,B,C,D四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.(2)设O为外接圆圆心,连接AO并延长交BC于H,则AH⊥BC.连接OC,设圆半径为r,则r+r=2+,求出r,即可求△ABC外接圆的面积.解答:(1)证明:如图,∵A,B,C,D四点共圆,∴∠CDF=∠ABC.又AB=AC,∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF,又由对顶角相等得∠EDF=∠ADB,故∠EDF=∠CDF,即AD的延长线DF平分∠CDE.…(5分)(2)解:设O为外接圆圆心,连接AO并延长交BC于H,则AH⊥BC.连接OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°,设圆半径为r,则r+r=2+,得r=2,外接圆的面积为4π.…(10分)点评:本题以圆为载体,考查圆的内接四边形的性质,考查等腰三角形的性质,考查外接圆的面积,属于中档题.五、选修4-4:坐标系与参数方程23.直角坐标系下,曲线C的参数方程为(φ为参数).(1)在横坐标系下,曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB的面积;(2)在直角坐标系下,直线l的参数方程为(t为参数),求曲线C与直线l 的交点坐标.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先把直角坐标方程转化为极坐标方程,进一步利用直线的方程求出|OA|和|OB|的长,最后求出三角形的面积.(2)利用直线和曲线的关系建立方程组,直接利用参数求出交点的坐标.解答:解:(1)曲线C在直角坐标系下的普通方程为:,转化为极坐标方程为:,分别代入和,得:,因为,故△AOB的面积:.(2)将l的参数方程代入曲线C的普通方程,得:,即t=2,代入l的参数方程,得:,y=2,所以曲线C与直线l的交点坐标为.点评:本题考查的知识要点:直角坐标方程与极坐标方程的互化,三角形面积的应用,利用代入法求直线与曲线的关系,求交点的坐标.主要考查学生的应用能力.六、选修4-5:不等式选讲24.(C)已知函数f(x)=|2x+3|+|2x﹣1|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.考点:带绝对值的函数.专题:不等式的解法及应用.分析:(Ⅰ)利用绝对值的几何意义直接求不等式f(x)≤6的解集;(Ⅱ)求出函数的最小值,然后求解关于x的不等式f(x)<|m﹣1|的解集非空,得到实数m的取值范围.解答:解:(Ⅰ)不等式f(x)≤6,即|2x+3|+|2x﹣1|≤6.不等式的几何意义,是数轴是的点2x,到﹣3与1的距离之和不大于6,∴﹣4≤2x≤2,解得﹣2≤x≤1,不等式的解集为{x|﹣2≤x≤1};(Ⅱ)函数f(x)=|2x+3|+|2x﹣1|.由绝对值的几何意义可知:f(x)min≥4,关于x的不等式f(x)<|m﹣1|的解集非空,只须:4<|m﹣1|,解得m<﹣3或m>5.。
江西省新余市2014届高三第二次模拟考试数学理试题本试卷分为试题卷和答题卷两部分,解答写在答题卷相应的位置. 全卷共150分,考试时间为120分钟一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合要求的.1.复数z 满足(1i)1z -=(其中i 为虚数单位),则z =A .11i 22-B .11i 22-+C .11i 22+D .11i 22--2. 已知集合1|24x P x ⎧⎫=≥⎨⎬⎩⎭,{}22|4,,Q y x y x R y R=+=∈∈,则P Q = A. Q B. ∅ C. {}1,2- D. ()(){}3,1,0,2- 3.已知某产品连续4个月的广告费用(1,2,3,4)i x i =千元与销售额(1,2,3,4)i y i =万元,经过对这些数据的处理,得到如下数据信息:①1234123418,14x x x x y y y y +++=+++=;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程ˆybx a =+中的0.8b =(用最小二乘法求得),那么,当广告费用为6千元时,可预测销售额约为A. 3.5万元B. 4.7万元C. 4.9万元D. 6.5万元 4.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为A .34πB .π3C .πD .π235.设实数,x y 满足约束条件202502x y x y y --≤⎧⎪+-≥⎨⎪≤⎩,则22x yu x y +=+的取值范围是 A .39,1010⎡⎤⎢⎥⎣⎦ B .14,55⎡⎤⎢⎥⎣⎦ C .47,55⎡⎤⎢⎥⎣⎦ D .17,55⎡⎤⎢⎥⎣⎦6.设函数()(n f x =,其中⎰+=πππ2)sin(3dxx n ,a 为如图所示的程序框图中输出的结果,则)(x f 的展开式中常数项是A .52-B .160-C .160D .207.数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则2014S =A .1006-B .1007C .1008-D .10098.若直线l 同时平分一个三角形的周长和面积,则称直线l 为该三角形的“平分线”,已知△ABC 三边之长分别为3,4,5,则△ABC 的“平分线”的条数为 A .1 B .0 C .3 D . 2 9.给出以下三个命题:①已知(,4)P m 是椭圆22221x y ab +=(0)a b >>上的一点,1F 、2F 是左、右两个焦点,若12PF F ∆的内切圆的半径为32,则此椭圆的离心率45e =;②过双曲线2222:1x y C a b -=(0,0)a b >>的右焦点FC 于,A B 两 点,若4AF FB =,则该双曲线的离心率e =65;③已知1(2,0)F -、2(2,0)F ,P 是直线1x =-上一动点,若以1F 、2F 为焦点且过点P的双曲线的离心率为e ,则e 的取值范围是[2,)+∞.其中真命题的个数为 A .3个 B .2个 C .1个 D .0个10.如图,不规则图形ABCD 中:AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE=x ,左侧部分面积为y ,则y 关于x 的大致图象为二、填空题:本大题共4小题,每小题5分,共20分.11.若110tan ,(,)tan 342ππααα+=∈,则sin(2)4πα+的值为 ▲▲▲ .12. 已知向量与AC 的夹角为0120,且32==,若+=λ,且BC AP ⊥,则实数λ的值为▲▲▲.13.给定集合{}1,2,3,,n A n =…,映射:n n f A A →满足以下条件:①当,n i j A ∈且i j ≠时,()()f i f j ≠;②任取n x A ∈,若()8x f x +=有k 组解,则称映射:n n f A A →含k 组幸运数。
新余市2016年高三毕业年级第二次模拟考试数学试题卷(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、集合{|lg(1)0}M x x =-<,集合{|11}N x x =-≤≤,则M N I 等于( ) A .[)1,1- B .[)0,1 C .[]1,1- D .()0,12、复数Z 满足(2)3i Z i +⋅=-,则Z 等于 A .1 BC .2D .4 3、下列关于命题的说法错误的是A .命题“若2310x x -+=,则2x =”的逆否命题是“若2x ≠,则2310x x -+≠” B .“3a =”是“log a y x =在其定义域上为增函数”的充分不必要条件 C .若命题:,3100np n N *∃∈>,则:,3100np n N *⌝∀∈≤ D .命题“:(,0),35xxp x ∃∈-∞<”是真命题.4、已知平面向量(0,1),(2,2),2a b a b λ=-=+=r r r r,则λ的值为A.11 C .2 D .15、设变量,x y 没做10020015x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩,则23x y +的最大值为A .20B .35C .45D .55 6、等差数列{}n a 中的14025,a a 是函数()314613f x x x x =-+-的极值点,则22015log a 等于 A .2 B .3 C .4 D .57、已知直线60(0,0)ax by a b +-=>>被圆22240x y x y +--=截得的弦长为ab 的最大值是 A .52 B .4 C .92D .9 8、已知ABC ∆中,,,a b c 分别是角,,A B C 所对的边,若(2)cos cos 0a c B b C ++=,则角B 的大小为A .6π B .3π C .23π D .56π9、已知函数()sin()(0,)2f x wx w πϕϕ=+><的最小正周期为π,若将其图象向右平移3π个单位后得到图象关于原点对称,则函数()f x 的图象 A .关于直线12x π=对称 B .关于直线512x π=对称 C .关于直线(,0)12π对称 D .关于直线5(,0)12π对称10、过培训按22(0)y px p =>的焦点F ,且倾斜角为4π的直线与抛物线交于A 、B 两点,若先AB 的垂直平分线经过点(0,2),则p 等于 A .25 B .23 C .45 D .4311、 如图,网格纸上小正方形的变换成为2,粗线画出的是某几何体的三视图,则该几何体的体积是 A .7π B .7π C .12π D .14π12、已知0a >,若函数()2324ln ,034,0a x x x f x x a x x ⎧->⎪=⎨--≤⎪⎩ 且()()2g x f x a =+至少有三个零点,则a 的取值范围是 A .(,1)-∞ B .(,1]-∞ C .(1,+)∞ D .[1,+)∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13、曲线:ln C y x x =在点(,)M e e 处的切线方程为 14、从某班5为老师中随机选两位老师值班,有女老师被选中的概率为710,则在这5位老师中,女老师有 人.15、共圆263年左右,我过数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积饿无限逼近圆的面积,并创立了“割圆术”,用“割圆术”刘徽得 到了圆周率姐却道小数点后两位的近似值3.14,这就是著名 的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个 程序框图,则输出的n 的值为 (参考数据:sin150.2588,sin 750.1305==o o)16、在等腰直角ABC ∆中,90,2,,ABC AB BC M N ∠===o为AC边上的两个动点,且满足2MN =,则BM BN ⋅u u u u r u u u r的取值范围为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分)已知数列{}n a 中,122,6a a ==,且数列{}1()n n a a n N *+-∈是公差为2的等差数列. (1)求{}n a 的通项公式; (2)记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求满足不等式20152016nS >的n 的最小值. 18、(本小题满分12分)在一次文、理科学习倾向的调查中,对高一年级的1000名学生进行文综、理综各一次测试(满分均为300分),测试后,随机抽取了若干名学生成绩,记理综成绩X ,文综成绩Y ,|X-Y|为Z ,将Z 值分组统计制成下表:并将其中女生的Z 值分布情况制成频率分布直方图(如图所示) (1)若已知直方图总[)60,80频数为25,试分别估计全体学生 中,[)0,20Z ∈的男、女生人数;(2)记Z 的平均数Z ,如果60Z >称为整体具有学科学习倾向, 试估计高一年级女生的Z 值(同一组中的数据用该区间中点值 作代表),并帕努单高一年级女生是否整体具有显著学科学习倾向. 19、(本小题满分12分)如图,一个侧棱长为l 的直三棱柱111ABC A B C -容器中盛有液体(不计容器厚度),若液面恰好分别过棱1111,,,AC BC B C AC 的中点,,,D E F G . (1)求证:平面//DEFG 平面11ABB A ; (2)当地面ABC 水平放置时,求液面的高. 20、(本小题满分12分)如图,已知椭圆2221x y a+=的四个顶点分别为1212,,,A A B B ,左右焦点分别为12,F F ,若圆222:(3)(3)(03)C x y r r -+-=<<上有且只有一个点P 满足125PF PF =(1)求圆C 的半径r ;(2)若点Q 为圆C 上一个动点,直线1QB 交椭圆与点D , 角直线22A B 于点E ,求11DB EB 的最大值. 21、(本小题满分12分) 已知函数()ln f x x =(1)如曲线()()1ag x f x x =+-在点()(2,)g x 处的切线与直线210x y +-=平行,求实数a 的值;(2)若()()(1)1b x h x f x x -=-+在定义域上是增函数,求实数b 的取值范围;(3)若0m n >>,求证:ln ln 2m n m nm n --<+. 请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22、(本小题满分10分) 选修4-1 几何证明选讲如图,E 是圆内两条弦AB 和CD 的焦点,F 为AD 延长线上一点,FG 切圆于点G ,且FE=FG. (1)证明:FE//BC ;(2)若,30AB CD DEF ⊥∠=o,求AFFG. 23、(本小题满分10分)选修4-4 坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为sin cos (1sin 2x y x ααα=+⎧⎨=+⎩为参数),以坐标原点为极点,x 为正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()24πρθ+=,曲线2C 的极坐标方程为322sin()(0)4a a πρθ=->. (1)求直线l 与曲线1C 交点的极坐标(,)(0,02)ρθρθπ≥≤<; (2)若直线l 与曲线2C 相切,求a 的值. 24、(本小题满分10分)选修4-5 不等式选讲 设函数(),f x x a a R =-∈.(1)若1a =,解不等式()1(1)2f x x ≥+; (2)记函数()()2g x f x x =--的值域为A ,若[]1,3A ⊆-,求a 的取值范围.。
数学试题卷(理科)本试卷分为试题卷和答题卷两部分.全卷共150分,考试时间为120分钟.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在答题卷相应的位置........) 1.已知i 是虚数单位,且()(1)x i i y --=,则实数,x y 分别为 A .x=-1,y=1 B .x=-1,y=2 C .x=1,y=1 D .x=-1,y=-22.若数列{}n a 满足1,211-==+n n n a a a a ,则2013a 的值为A.1-B.21C.2D.3 3.如图,设D 是图中边长为2的正方形区域,E 是函数3y x =的 图象与x 轴及1x =±围成的阴影区域.向D 中随机投一点,则 该点落入E 中的概率为A .116B .18C .14D .124.一个几何体的三视图如图所示,已知这个几何体的体积为3h 的值为A .32B 3C .33D .35.若下边的程序框图输出的S 是126,则条件①可为 A .n ≤5 B .n ≤6 C .n ≤7 D .n ≤86.若21)23sin(sin 3=-+απα,则sin(2)6πα+的值为 A.87 B.81 C.41 D.437.有以下命题:①命题“2,20x R x x ∃∈--≥”的否定是:“2,20x R x x ∀∈--<”;②已知随机变量ξ服从正态分布2(1,)N σ,(4)0.79,P ξ≤=则(2)0.21P ξ≤-=;③函数131()()2xf x x =-的零点在区间11(,)32内. 其中正确的命题的个数为第3题图Oy xy =x 3-1-111A.3个B.2个C.1个D.0个8.如图,12,F F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与C 的左、右两支分别交 于,A B 两点.若2ABF ∆为等边三角形,则双曲线的 离心率为 A.6 B.3 C.51+ D.7 9.已知不同的三点A 、B 、C 满足BC AB λ=(λR ∈,0≠λ),使得关于x 的方程02=++OC OB x OA x 有解(点O 不在直线AB 上),则此方程在实数范围内的解集为A .φB .{一1,0}C .{-1}D . 1515,⎧⎫-+--⎪⎪⎨⎬⎪⎪⎩⎭10.若集合A 具有以下性质:①0A ∈,1A ∈;②若,x y A ∈,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“好集”.以下有5个命题: (1)集合{}1,0,1B =-是好集; (2)有理数集Q 是“好集”;(3)设集合A 是“好集”,若,x y A ∈,则x y A +∈; (4)设集合A 是“好集”,若,x y A ∈,则必有xy A ∈;(5)对任意的一个“好集A ,若,x y A ∈,且0x ≠,则必有yA x∈. 则上述命题正确的个数为二、填空题(本大题共5小题,每小题5分,共25分. 把答案...填.在.答题卷中的横线上........) 11.已知()tan sin 4f x a x b x =-+(其中以a b 、为常数且0ab ≠),如果(3)5f =,则(20123)f π-的值为 .12.已知椭圆22221(0),(,),(,)x y a b P x y Q x y a b''+=>>是椭圆上两点,有下列三个不等式①222();a b x y +≥+②2221111();x y a b +≥+③221xx yy a b ''+≤. 其中不等式恒成立的序号是 .(填所有正确命题的序号)13.用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如下图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有 种.NA CD MB E 14.设P 是不等式组,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩表示的平面区域内的任意一点,向量(1,1)m =,(2,1)n =,若OP m n λμ=+(,λμ为实数),则2λμ+的最大值为 .选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分,本题共5分. 15(1)设曲线C 的参数方程为()23cos 13sin x y θθθ=+⎧⎨=-+⎩为参数,直线l 的极坐标方程为 03sin 4cos 3=++θρθρ,则曲线C 上到直线l 的距离为2的点有 个. (2)若不等式()0,053>∈>-++-a R x ax x x 恒成立,则实数a 的取值范围为 .三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分12分) 在ABC ∆中,设角A 、B 、C 的对边分别为c b a 、、,已知222cos sin cos sin sin A B C A B =++. (1)求角C 的大小; (2)若3=c ,求ABC ∆周长的取值范围. 17.(本小题满分12分) 已知{}n a 是一个公差大于0的等差数列,且满足362755,16a a a a =+=. (1)求数列{}n a 的通项公式; (2)令*214()1n n b n N a +=∈-,记数列{}n b 的前n 项和为n T ,对于任意的*n N ∈,不等式100n m T < 恒成立,求实数m 的最小值.18.(本小题满分12分)在如图所示的几何体中,四边形ABCD 是菱形,ADNM 是矩形,平面ADNM ⊥平面ABCD ,60DAB ∠=,2AD =,1AM =,E 是AB 的中点. (1)求证:AN //平面MEC ;(2)在线段AM 上是否存在点P ,使二面角P EC D --的大小为6π?若存在,求出 AP 的长h ;若不存在,请说明理由.19.(本小题满分12分)在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中有放回地先后摸出两球,所得分数分别记为x 、y ,设O 为坐标原点,点P 的坐标为(2,)x x y --,记2OP ξ=. (1)求随机变量ξ=5的概率;(2)求随机变量ξ的分布列和数学期望.20.(本小题满分13分)已知椭圆C :)10(13222>=+a y a x 的右焦点F 在圆1)2(:22=+-y x D 上,直线:3(0)l x my m =+≠交椭圆于M 、N 两点. (1)求椭圆C 的方程;(2)若⊥(O 为坐标原点),求m 的值;(3)设点N 关于x 轴的对称点为1N (1N 与M 不重合),且直线1N M 与x 轴交于点P ,试问PMN ∆的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.a a 为常数,(>0).(1)若)(21x f x 是函数=的一个极值点,求a 的值;(2)求证:当0<12(),2a f x ⎡⎫≤+∞⎪⎢⎣⎭时,在上是增函数;(3)若对任意的(),2,1∈a 总存在[]001,2,()x f x ∈使不等式>()21a m -成立,求实数m的取值范围.新余市2012—2013学年度第二次模拟考试 高三年级数学(理科)参考答案 一、选择题二、填空题11.3 ;12. ①②③ ; 13.108 ;14.5; 15.(1)3 ;(2)20≤<a 三、解答题16.解(1)由题意知B A C B A sin sin sin 1sin sin 1222+-+=-, 即B A C B A sin sin sin sin sin 222-=-+,ab c b a -=-+∴222,即212cos 222-=-+=ab c b a C ……………3分又π<<C 0,32π=∴C .………………5分(2)CcB b A a sin sin sin == ,B b A a sin 2,sin 2==∴, 则ABC ∆的周长为3)sin (sin 2++=++=B A c b a L ,………………7分即3)3sin(23)]3sin([sin 2++=+-+=ππA A A L ,………………9分AF BCD ENM QP H3233,30ππππ<+<∴<<A A ,1)3sin(23≤+<∴πA ,…………11分 即323)3sin(232+≤++<∴πA ,ABC ∆∴周长的取值范围为]32,32(+.………………12分 17 (1)解:设等差数列{}n a 的公差为d ,则依题设d >0 由a 2+a 7=16.得12716a d += ① 由3655,a a ⋅=得11(2)(5)55a d a d ++= ②由①得12167a d =-将其代入②得(163)(163)220d d -+=.即22569220d -=214,0,2,11(1)221n d d d a a n n ∴=>∴==∴=+-⋅=-又代入得①……………6分(2)由(1)得1-2n a n = 1421n -=+n a b =()1111111n 242+-=+=-+n n n n )( 11111(1)()()2231n T n n =-+-+⋅⋅⋅+-+=1-1n 1+<1 100n m T <恒成立.1001100m ≥⇔≥⇔m ∴m 的最小值为100 ……………12分18.解(1)连接BN ,设CM 与BN 交于F ,连接EF .由已知,////MN AD BC ,MN AD BC ==, 故四边形BCNM 是平行四边形,F 是BN 的中点.又因为E 是AB 的中点,所以//AN EF .………3分因为EF ⊂平面MEC ,AN ⊄平面MEC ,所以//AN 平面MEC .……………4分 (2)假设在线段AM 上存在点P , 使二面角P EC D --的大小为6π.法一:延长DA 、CE 交于点Q ,过A 做AH ⊥EQ 于H ,连接PH .因为ADNM 是矩形,平面ADNM ⊥平面ABCD , 所以MA ⊥平面ABCD ,又EQ ⊂平面ABCD ,所以MA ⊥EQ ,EQ ⊥平面PAH 所以EQ PH ⊥,PHA ∠为二面角P EC D --的平面角.由题意6PHA π∠=.……………7分在QAE ∆中,1AE =,2AQ =,120QAE ︒∠=,则2212212cos1207EQ ︒=+-⨯⨯=所以sin120AE AQ AH EQ ︒==.……………10分 又在Rt PAH ∆中,6PHA π∠=,所以tan30137AP AH ︒====<.所以在线段AM 上存在点P ,使二面角P EC D --的大小为6π,此时AP 的长为7.………………12分法二:由于四边形ABCD 是菱形,E 是AB 的中点,60DAB ∠= ,所以ABC ∆为等边三角形,可得DE AB ⊥.又ADNM 是矩形,平面ADNM ⊥平面ABCD , 所以DN ⊥平面ABCD .如图建立空间直角坐标系D xyz - (5)分 则(0,0,0)D ,E ,(0,2,0)C ,1,)P h -.(3, 2.0)CE =-,(0,1,)EP h =-.……7分 设平面PEC 的法向量为1(,,)x y z =n .则110,0.CEEP ⎧⋅=⎪⎨⋅=⎪⎩n n ,所以20,0.y y hz -=-+=⎪⎩令y =.所以1(2h =n .………………9分又平面ADE 的法向量2(0,0,1)=n ,………………10分所以121212cos ,⋅<>==⋅n nn n n n………………11分即=,解得1h =<.所以在线段AM 上存在点P ,使二面角P EC D --的大小为6π,此时AP .………………12分. 19.解(1)x 、y 可能的取值为1、2、3,5)(222=-+-=y x x )(ξ,且当3,1==y x 或1,3==y x 时,5ξ= 又有放回摸两球的所有情况有933=⨯种,2(5)9P ξ∴==.………………6分 (2)ξ的所有取值为0,1,2,5.0=ξ 时,只有2,2==y x 这一种情况.1ξ=时,有1,1==y x 或1,2==y x 或3,2==y x 或3,3==y x 四种情况, 2ξ=时,有2,1==y x 或2,3==y x 两种情况.91)0(==∴ξP ,4(1)9P ξ==,2(2)9P ξ==,…………………8分则随机变量ξ的分布列为: AP y………10分因此,数学1422012529999E ξ=⨯+⨯+⨯+⨯=.………………12分 20解(1)由题设知,圆1)2(:22=+-y x D 的圆心坐标是)0,2(,半径为1, 故圆D 与x 轴交与两点)0,3(,)0,1(.……………1分 所以,在椭圆中3=c 或1=c ,又32=b ,所以,122=a 或42=a (舍去,∵10>a ), ……………3分于是,椭圆C 的方程为131222=+y x .………………4分(2)设),(11y x M ,),(22y x N ;直线l 与椭圆C 方程联立⎪⎩⎪⎨⎧=++=1312322y x my x ,化简并整理得036)4(22=-++my y m .………………5分∴46221+-=+m m y y ,43221+-=⋅m y y ,∴4246)(22121+=++=+m y y m x x ,412369418439)(32222222121221+-=++-++-=+++=⋅m m m m m m y y m y y m x x .……7分 ∵ON OM ⊥,∴0=⋅ON OM ,即02121=+y y x x 得043123622=+--m m∴4112=m ,211±=m ,即m 为定值.………………9分(3)∵),(11y x M ,),(221y x N -,∴直线1N M 的方程为121121x x x x y y y y --=---.…………10分令0=y ,则211221121121)(y y x y x y x y y x x y x ++=++-= 4641846)(32222212121+-+-+-=+++=m m m mm m y y y y y my 4624=--=m m ,∴)0,4(P .………………11分解法一:21221214)(1121y y y y y y FPS PMN -+⋅⋅=-⋅=∆12==1≤= 当且仅当2m 13+=即m =. 故PMN ∆的面积存在最大值1.……………13分(或:PMN S ∆=,令⎥⎦⎤⎝⎛∈+=41,0412m t ,则1PMN S ∆==≤.………12分 当且仅当⎥⎦⎤⎝⎛∈=41,061t 时等号成立,此时22=m . 故PMN ∆的面积存在最大值1.……………13分解法二:[]2122122212214)()1()()(y y y y m y y x x MN -++=-+-=4134412)4(36)1(2222222++=⎥⎦⎤⎢⎣⎡++++=m m m m m m .………………10分 点P 到直线l 的距离是1113422+=+-m m . 所以,222222)4(1324111234++=++⋅+=∆m m m m m S PMN41)41(332222+++-=m m .………………11分 令⎥⎦⎤⎝⎛∈+=41,0412m t , 11232121)61(33233222=≤+--=+-=∆t t t S PMN ,……12分当且仅当⎥⎦⎤ ⎝⎛∈=41,061t 时,此时22=m , 故PMN ∆的面积存在最大值,其最大值为1.……………13分21.解:2212()22()211122a ax x aa f x x a ax ax --'=+-=++. (1)由已知得:1()02f '=,且2202a a-≠,220a a ∴--=,0a >,2a ∴=.………………3分(2)当02a <≤时,22212(2)(1)02222a a a a a a a a----+-==≤,21222a a -∴≥,故当12x ≥时,2202a x a--≥.又201ax ax >+,()0f x '∴≥,故()f x 在1[, )2+∞上是增函数. ……………7分 (3)当(1, 2)a ∈时,由(2)知,()f x 在[1,2]上的最小值为11(1)ln()122f a a =++-,故问题等价于:对任意的(1, 2)a ∈,不等式211ln()1(1)022a a m a ++-+->恒成立.……8分 记211()ln()1(1)22g a a a m a =++-+-,(12a <<), 则1()12[2(12)]11a g a ma ma m a a'=-+=--++, 当0≤m 时,2120ma m -+<,()0g a '∴<,()g a ∴在区间(1, 2)上递减,此时,()(1)0g a g <=,0m ∴≤时不可能使()0g a >恒成立,故必有0m >,…………10分21()[(1)]12ma g a a a m '∴=--+.若1112m ->,可知()g a 在区间1(1, min{2, 1})2m-上递减,在此区间上,有()(1)0g a g <=,与()0g a >恒成立矛盾,故1112m-≤,此时()0g a '>,()g a 在(1, 2)上递增,且恒有()(1)0g a g >=,满足题设要求, 01112m m>⎧⎪∴⎨-≤⎪⎩,即14m ≥,即实数m 的取值范围为1[, )4+∞.……………14分。
江西省新余市新余一中 2015届高三第二次模拟考试物 理 试 题总分100分,考试用时90分钟一、 选择题(每小题4分,共40分。
其中1—7题为单选题,8—10题为多选题漏选得2分,有错得0分)) ⒈一颗人造地球卫星在距地球表面高度为h 的轨道上做匀速圆周运动,运动周期为T ,若地球半径为R ,则( )A.该卫星运行时的线速度为2RTπB.该卫星运行时的向心加速度为224RTπ C.物体在地球表面自由下落的加速度为224()R h T π+D.⒉如图所示,将物体A 放在容器B 中,以某一速度把容器B 竖直上抛,不计空气阻力,运动过程中容器B 的底面始终保持水平,下列说法正确的是( )A .在上升和下降过程中A 对B 的压力都一定为零B .上升过程中A 对B 的压力大于物体A 受到的重力C .下降过程中A 对B 的压力大于物体A 受到的重力D .在上升和下降过程中A 对B 的压力都等于物体A 受到的重力⒊在稳定轨道上的空间站中,物体处于完全失重状态.有如图(2)所示的装置,半径分别为r 和R (R>r )的甲、乙两个光滑的圆形轨道安置在同一竖直平面上,轨道之间有一条水平轨道CD 相通,宇航员让一小球以一定的速度先滑上甲轨道,通过粗糙的CD 段,又滑上乙轨道,最后离开两圆轨道,那么下列说法正确的是:A .小球在CD 间由于摩擦力而做减速运动B .小球经过甲轨道最高点时比经过乙轨道最高点时速度大C .如果减少小球的初速度,小球有可能不能到达乙轨道的最高点D .小球经过甲轨道最高点时对轨道的压力大于经过乙轨道最高点时对轨道的压力 ⒋.如图所示,质量相同的木块A 、B ,用轻弹簧连接置于光滑水平面上,开始弹簧处于自然状态,现用水平恒力F 推木块A ,则弹簧在第一次被压缩到最短的过程中()A .当A 、B 速度相同时,加速度a A = a BB .当A 、B 速度相同时,加速度a A > a BC .当A 、B 加速度相同时,速度v A <v BD .当A 、B 加速度相同时,速度v A >v B⒌在地面上方的A 点以E 1=3J 的初动能水平抛出一小球,小球刚要落地时的动能为E 2=7J ,落地点在B 点,不计空气阻力,则A 、B 两点的连线与水平方向的夹角为( )A .30°B .37°C .45°D .60°⒍一物体由静止开始自由下落一小段时间后突然受一恒定的水平风力的影响,则其运动轨迹可能的情况是图中的7. 一质量不计的直角形支架两端分别连接质量为m 和2m 的小球A 和B 。
2015年江西省新余市高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分,每小题只有一个选项符合题意)1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A. {x|x≥﹣2} B. {x|x>﹣1} C. {x|x<﹣1} D. {x|x≤﹣2}2.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 2++ B. 3++ C. 2++ D. 3++4.图中的程序框图所描述的算法称为欧几里得展转相除法,若输入m=209,n=121,则输出m的值等于()A. 10 B. 11 C. 12 D. 135.设变量x,y满足,若直线kx﹣y+2=0经过该可行域,则k的最大值为()A. 1 B. 3 C. 4 D. 56.已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若,则f(x)的一个单调递增区间可以是()A. B. C. D.7.已知半圆的直径AB=10,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则(+)•的最小值是()A. B.﹣25 C. 25 D.﹣8.已知正项数列{a n}的前n项和为S n,奇数项成公差为1的等差数,当n为偶数时点(a n,a n+2)在直线y=3x+2上,又知a1=1,a2=2,则数列{a n}的前2n项和S2n等于()A. n2﹣n﹣6+3n+1 B.C. D.9.已知直三棱柱ABC﹣A1B1C1的各顶点都在球O的球面上,且AB=AC=1,BC=,若球O的体积为,则这个直三棱柱的体积等于()A. B. C. 2 D.10.已知函数f(x)=sin(x﹣φ)﹣1(0<φ<),且(f(x)+1)dx=0,则函数f(x)的一个零点是()A. B. C. D.11.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()A. B.C. D.或12.定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意实数x,存在实常数t使得f(t+x)=﹣tf(x)恒成立,则称f(x)是一个“关于t函数”.有下列“关于t函数”的结论:①f(x)=0是常数函数中唯一一个“关于t函数”;②“关于函数”至少有一个零点;③f(x)=x2是一个“关于t函数”.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 0二、填空题(共4小题,每小题5分,满分20分)13.(x2+2)(﹣mx)5的展开式中x2项的系数490,则实数m的值为.14.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为.15.若在区间[1,2]上存在实数x使2x(2x+a)<1成立,则a的取值范围是.16.给出下列四个命题:①△ABC中,A>B是sinA>sinB成立的充要条件;②当x>0且x≠1时,有lnx+≥2;③已知S n是等差数列{a n}的前n项和,若S7>S5,则S9>S3;④若函数为R上的奇函数,则函数y=f(x)的图象一定关于点成中心对称.其中所有正确命题的序号为.三、解答题:解答应写出文字说明,证明过程或验算步骤。
17.已知数列{a n}满足:a1=1,na n+1=2(n+1)a n+n(n+1+(n∈N*).(1)若b n=+1,试证明数列{b n}为等比数列;(2)求数列{a n}的通项公式a n及其n项和S n.18.如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;(2)求平面EBD与平面ABC所成的锐二面角θ的余弦值.19.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).20.已知抛物线y2=4x的交点为椭圆(a>b>0)的右焦点,且椭圆的长轴长为4,左右顶点分别为A,B,经过椭圆左焦点的直线l与椭圆交于C,D(异于A,B)两点.(1)求椭圆标准方程;(2)求四边形ADBC的面积的最大值;(3)若M(x1,y1)N(x2,y2)是椭圆上的两动点,且满x1x2+2y1y2=0,动点P满足(其中O为坐标原点),是否存在两定点F1,F2使得|PF1|+|PF2|为定值,若存在求出该定值,若不存在说明理由.21.已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生从第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号。
选修4-1:几何证明选讲22.如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.选修4-4:参数方程选讲23.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.选修4-5:不等式选讲24.设函数f(x)=+的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣1|+|x+2|≤M的解集.2015年江西省新余市高考数学二模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分,每小题只有一个选项符合题意)1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A. {x|x≥﹣2} B. {x|x>﹣1} C. {x|x<﹣1} D. {x|x≤﹣2}考点:并集及其运算;指数函数的单调性与特殊点;一元二次不等式的解法.专题:计算题.分析:根据题意先求出集合M和集合N,再求M∪N.解答:解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.点评:本题考查集合的运算,解题时要认真审题,仔细解答.2.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:复数代数形式的乘除运算;复数的代数表示法及其几何意义.专题:计算题.分析:利用两个复数代数形式的乘除法法则化简复数为+,可得它的坐标,从而得出结论.解答:解:∵复数===+,它对应的点的坐标为(,),此点位于第二象限,故选B.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 2++ B. 3++ C. 2++ D. 3++考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是一底面为正方形,高为1的四棱锥,画出图形,结合图形求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是一底面为正方形,高为1的四棱锥,且底面正方形的底边长为,如图所示;PC⊥平面ABCD,PC=1,AC=BD=2,∴该四棱锥的表面积为S表面积=S正方形ABCD+2S△PBC+2S△PAB=+2×××1+2×××=2++.故选:A.点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.4.图中的程序框图所描述的算法称为欧几里得展转相除法,若输入m=209,n=121,则输出m的值等于()A. 10 B. 11 C. 12 D. 13考点:程序框图.专题:图表型;算法和程序框图.分析:先求出m除以n的余数,然后利用辗转相除法,将n的值赋给m,将余数赋给n,进行迭代,一直算到余数为零时m的值即可.解答:解:当m=209,n=121,m除以n的余数是88此时m=121,n=88,m除以n的余数是33此时m=88,n=33,m除以n的余数是22此时m=33,n=22,m除以n的余数是11,此时m=22,n=11,m除以n的余数是0,此时m=11,n=0,退出程序,输出结果为11,故选:B.点评:算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.5.设变量x,y满足,若直线kx﹣y+2=0经过该可行域,则k的最大值为()A. 1 B. 3 C. 4 D. 5考点:简单线性规划.专题:不等式的解法及应用.分析:先根据约束条件画出可行域,再利用直线kx﹣y+2=0过定点(0,2),再利用k的几何意义,只需求出直线kx﹣y+2=0过点B(2,4)时,k值即可.解答:解:直线kx﹣y+2=0过定点(0,2),作可行域如图所示,由得B(2,4).当定点(0,2)和B点连接时,斜率最大,此时k==1,则k的最大值为1.故选A.点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.6.已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若,则f(x)的一个单调递增区间可以是()A. B. C. D.考点:正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:由正弦函数最值的结论,得x=是方程2x+φ=+2kπ的一个解,结合|φ|<π得φ=,所以f(x)=﹣2sin(2x+),再根据正弦函数的图象与性质,得函数的单调增区间为[+kπ,+kπ](k∈Z),对照各选项可得本题答案.解答:解:∵当x=时,f(x)=﹣2sin(2x+φ)有最小值为﹣2∴x=是方程2x+φ=+2kπ的一个解,得φ=+2kπ,(k∈Z)∵|φ|<π,∴取k=0,得φ=.因此函数表达式为:f(x)=﹣2sin(2x+)令+2kπ≤2x+≤+2kπ,得+kπ≤x≤+kπ,(k∈Z)取k=0,得f(x)的一个单调递增区间是故选:D点评:本题给出函数y=Asin(ωx+φ)的一个最小值及相应的x值,求函数的单调增区间,着重考查了正弦函数的图象与性质的知识,属于基础题.7.已知半圆的直径AB=10,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则(+)•的最小值是()A. B.﹣25 C. 25 D.﹣考点:平面向量数量积的运算.专题:平面向量及应用.分析:画出图形,讨论P点的位置:P点在O点和C点时,容易求出,而P点在O,C之间时,将带入,根据基本不等式便可得到,最后即可得到的最小值.解答:解:如图,(1)若点P和O重合,则:;∴;(2)若点P和C重合,则;∴;(3)若点P在O,C之间,则:;∴=;;∴;∴;综上得的最小值为.故选D.点评:考查对零向量的理解,向量加法的平行四边形法则,数量积的计算公式,以及基本不等式:a+b,a>0,b>0.8.已知正项数列{a n}的前n项和为S n,奇数项成公差为1的等差数,当n为偶数时点(a n,a n+2)在直线y=3x+2上,又知a1=1,a2=2,则数列{a n}的前2n项和S2n等于()A. n2﹣n﹣6+3n+1 B.C. D.考点:数列的求和.专题:等差数列与等比数列.分析:首先把数列的前2n项分为奇数项和偶数项,进一步分组求和,奇数项直接利用等差数列的前n项和公式求出结果,偶数项首先利用构造新数列法求出数列的通项公式,进一步求出偶数项的前n项和,最后求出结果.解答:解:正项数列{a n}奇数项成公差为1的等差数列,所以:数列{a n}的前2n项,奇数项和偶数项都为n项,则:前n项奇数项的和为:S n=1+2+…+n=,由于n为偶数时点(a n,a n+2)在直线y=3x+2上,所以:a n+2=3a n+2,整理得:,所以:数列{a n+2+1}是以a2+1为首项,3为公比的等比数列,求得:,则:前n项的偶数项的和为:S n=31+32+…+3n﹣n.所以:S2n=S奇数+S偶数=+31+32+…+3n﹣n==故选:D点评:本题考查的知识要点:等差数列前n项和公式的应用,利用构造新数列法求数列的通项公式,进一步利用分组求和法求数列的前n项和,主要考查学生的应用能力.9.已知直三棱柱ABC﹣A1B1C1的各顶点都在球O的球面上,且AB=AC=1,BC=,若球O的体积为,则这个直三棱柱的体积等于()A. B. C. 2 D.考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:根据直三棱柱的性质和球的对称性,得球心O是△ABC和△A1B1C1的外心连线段的中点,连接OA、OB、OC、O1A、O1B、O1C.在△ABC中利用正、余弦定理算出O1A=1,由球O的体积算出OA=,然后在Rt△O1OA中,用勾股定理算出O1O=2,得三棱柱的高O1O2=4,最后算出底面积S△ABC=,可得此直三棱柱的体积.解答:解:设△ABC和△A1B1C1的外心分别为O1、O2,连接O1O2,可得外接球的球心O为O1O2的中点,连接OA、OB、OC、O1A、O1B、O1C△ABC中,cosA==﹣∵A∈(0,π),∴A=根据正弦定理,得△ABC外接圆半径O1A==1∵球O的体积为V==,∴OA=R=Rt△O1OA中,O1O==2,可得O1O2=2O1O=4∵直三棱柱ABC﹣A1B1C1的底面积S△ABC=AB•ACsin=∴直三棱柱ABC﹣A1B1C1的体积为S△ABC×O1O2=故选:B点评:本题给出直三棱柱的底面三角形的形状和外接球的体积,求此三棱柱的体积,着重考查了球的体积公式式、直三棱柱的性质和球的对称性等知识,属于中档题.10.已知函数f(x)=sin(x﹣φ)﹣1(0<φ<),且(f(x)+1)dx=0,则函数f(x)的一个零点是()A. B. C. D.考点:定积分;函数的零点.专题:函数的性质及应用;导数的概念及应用.分析:把f(x)=sin(x﹣φ)﹣1代入(f(x)+1)dx=0,由定积分求得φ,得到函数解析式,再由f(x)=0求得函数f(x)的一个零点.解答:解:由f(x)=sin(x﹣φ)﹣1且(f(x)+1)dx=0,得[sin(x﹣φ)]dx=0,∴[﹣cos(x﹣φ)]=0.即,∴.∵0<φ<,∴φ=,则f(x)=sin(x﹣)﹣1,由sin(x﹣)﹣1=0,解得:.取k=0,得x=.故选:A.点评:本题考查了定积分,考查了由三角函数值求角,训练了函数零点的判断方法,是中档题.11.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()A. B.C. D.或考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用椭圆的定义、三角形的三边的关系、椭圆C的离心率e的计算公式即可得出解答:解:∵椭圆C上的点P满足,∴|PF1|==3c,由椭圆的定义可得|PF1|+|PF2|=2a,∴|PF2|=2a﹣3c.利用三角形的三边的关系可得:2c+(2a﹣3c)≥3c,3c+2c≥2a﹣3c,化为.∴椭圆C的离心率e的取值范围是.故选:C.点评:本题考查了椭圆的定义、三角形的三边的关系、椭圆的离心率的计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.12.定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意实数x,存在实常数t使得f(t+x)=﹣tf(x)恒成立,则称f(x)是一个“关于t函数”.有下列“关于t函数”的结论:①f(x)=0是常数函数中唯一一个“关于t函数”;②“关于函数”至少有一个零点;③f(x)=x2是一个“关于t函数”.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 0考点:函数恒成立问题.专题:新定义;函数的性质及应用.分析:举例说明①不正确;由函数零点存在性定理结合新定义说明②正确;把f(x)=x2代入定义求得λ的矛盾的值说明③错误.解答:解:由题意得,①不正确,如f(x)=c≠0,取t=﹣1,则f(x﹣1)﹣f(x)=c﹣c=0,即f(x)=c≠0是一个“t函数”;②正确,若f(x)是“是关于函数”,则f+f(x)=0,取x=0,则f+f (0)=0,若f(0)、f 任意一个为0,则函数f(x)有零点;若f(0)、f 均不为0,则f(0)、f 异号,由零点存在性定理知,在区间内存在零点;若f(x)=x2是一个“关于t函数”,则(x+λ)2+λx2=0,求得λ=0且λ=﹣1,矛盾.③不正确,∴正确结论的个数是1.故选:A.点评:本题是新定义题,考查了函数的性质,关键是对题意的理解,是中档题.二、填空题(共4小题,每小题5分,满分20分)13.(x2+2)(﹣mx)5的展开式中x2项的系数490,则实数m的值为±.考点:二项式定理的应用.专题:计算题;二项式定理.分析:(x2+2)(﹣mx)5的展开式中x2项是由(﹣mx)5的展开式中常数项与x2项所组成的,求出(﹣mx)5的展开式的常数项以及x2项的系数即可.解答:解:(x2+2)(﹣mx)5的展开式中x2项是由(﹣mx)5的展开式中常数项与x2项所组成的,∵(﹣mx)5的展开式的通项公式为:T r+1=••(﹣mx)r=(﹣m)r••x3r﹣10;令3r﹣10=0,解得r=,不合题意,应舍去;令3r﹣10=2,解得r=4,∴(x2+2)(﹣mx)5的展开式中x2项的系数为2•(﹣m)4•=490,即m4=49,解得m=±.故答案为:±.点评:本题考查了二项式定理的应用问题,也考查了多项式乘法运算问题,是基础题目.14.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为8 .考点:正弦函数的图象.专题:函数的性质及应用.分析:设t=1﹣x,则x=1﹣t,原函数可化为g(t)=2sinπt﹣,由于g(x)是奇函数,观察函数y=2sinπt与y=的图象可知,在[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,从而 x1+x2+…+x7+x8的值.解答:解:设t=1﹣x,则x=1﹣t,原函数可化为:g(t)=2sin(π﹣πt)﹣=2sinπt﹣,其中,t∈[﹣3,3],因g(﹣t)=﹣g(t),故g(t)是奇函数,观察函数 y=2sinπt(红色部分)与曲线y=(蓝色部分)的图象可知,在t∈[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,即t1+t2+…+t7+t8=0,从而x1+x2+…+x7+x8=8,故答案为:8.点评:本题主要考查正弦函数的图象特征,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于中档题.15.若在区间[1,2]上存在实数x使2x(2x+a)<1成立,则a的取值范围是(﹣∞,).考点:函数恒成立问题.专题:转化思想;函数的性质及应用;不等式的解法及应用.分析: 2x(2x+a)<1可化为a<2﹣x﹣2x,则在区间[1,2]上存在实数x使2x(2x+a)<1成立,等价于a<(2﹣x﹣2x)max,利用函数的单调性可求最值.解答:解:2x(2x+a)<1可化为a<2﹣x﹣2x,则在区间[1,2]上存在实数x使2x(2x+a)<1成立,等价于a<(2﹣x﹣2x)max,而2﹣x﹣2x在[1,2]上单调递减,∴2﹣x﹣2x的最大值为2﹣1﹣2=﹣,∴a<﹣,故a的取值范围是(﹣∞,),故答案为:(﹣∞,).点评:该题考查函数恒成立问题,考查转化思想,注意“存在”与“恒成立”问题的区别与联系是解题关键.16.给出下列四个命题:①△ABC中,A>B是sinA>sinB成立的充要条件;②当x>0且x≠1时,有lnx+≥2;③已知S n是等差数列{a n}的前n项和,若S7>S5,则S9>S3;④若函数为R上的奇函数,则函数y=f(x)的图象一定关于点成中心对称.其中所有正确命题的序号为①③.考点:命题的真假判断与应用.专题:函数的性质及应用;等差数列与等比数列;解三角形;简易逻辑.分析:由三角形中的大边对大角结合正弦定理判断①;举反例说明②错误;根据等差数列的性质可说明③正确;直接由函数图象的平移说明④错误.解答:解:对于①,由A>B,得边a>边b(大角对大边),根据正弦定理知:=,则sinA>sinB;由sinA>sinB,根据正弦定理知:=,则边a>边b,根据大边对大角,则有A>B.∴△ABC中,A>B是sinA>sinB成立的充要条件.命题①正确;对于②,若0<x<1,则lnx<0,lnx+≥2不成立.命题②错误;对于③,等差数列{a n}若S7>S5,则2a1+11d>0,则S9﹣S3=6a1+33d>0,即S9>S3,命题③正确;对于④,函数y=f(x﹣)为R上的奇函数,则其图象关于(0,0)中心对称,而函数y=f(x)的图象是把y=f(x﹣)的图象向左平移个单位得到的,∴函数y=f(x)的图象一定关于点F(﹣,0)成中心对称.命题④错误.故答案为:①③点评:本题考查了命题的真假判断与应用,考查了充分必要条件的判断方法,考查了函数图象的平移,是中档题.三、解答题:解答应写出文字说明,证明过程或验算步骤。