数学:第二章二次函数单元测试(浙教版九年级上)
- 格式:doc
- 大小:381.00 KB
- 文档页数:9
新浙教版九年级数学上册《二次函数》测试卷(附答案)二次函数测试卷(100分,90分钟)一、选择题(每题3分,共30分)1.下列函数中,y是x的二次函数的是()A。
y = (2x-1) - (2x+1)(2x-1)B。
y = x-1C。
y = 1/2D。
x-2y-2 = 2x-12.(2012,德阳,一题多解)在同一平面直角坐标系内,将函数图象沿x轴方向向右平移2个单位后再沿y轴向下平移1个单位,得到图象的顶点坐标是()A。
(-1,1)B。
(1,-2)C。
(2,-2)D。
(1,-1)3.(2012,滨州)抛物线y = -3x^2 - x + 4与坐标轴的交点个数是()A。
3B。
2C。
1D。
04.(2012,桂林)如图1,把抛物线y = x^2沿直线y=x平移2个单位后,其顶点在直线上的点A处,则平移后的抛物线表达式是()A。
y = (x+1)^2 - 1B。
y = (x+1)^2 + 1C。
y = (x-1)^2 + 1D。
y = (x-1)^2 - 15.设二次函数y = x^2 + bx + c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A。
c=3B。
c≥3C。
1≤c≤3D。
c≤36.(2013,菏泽)已知b<0,二次函数y = ax^2 + bx + a^2-1的图象为如图2所示的四个图象之一.试根据图象分析,a的值应等于()A。
-2B。
-1C。
1D。
27.(2013,内江)若抛物线y = x^2 - 2x + c与y轴的交点坐标为(0,-3),则下列说法不正确的是()A。
抛物线开口向上B。
抛物线的对称轴是直线x=1C。
当x=1时,y的最大值为-4D。
抛物线与x轴的交点坐标为(-1,0),(3,0)8.(2013,日照)如图3,已知抛物线y = -x^2 + 4x和直线y = 2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A。
第1章自我评价一、选择题(每小题2分,共20分)1.若函数y =(2-m)xm 2-3是二次函数,且图象的开口向上,则m 的值为(B)A.± 5B.- 5C. 5D.02.若抛物线y =x 2+2x +m -1与x 轴有两个不同的交点,则m 的取值范围是(A) A. m <2 B. m >2 C. 0<m ≤2 D. m <-23.在二次函数y =x 2-2x -3中,当0≤x ≤3时,y 的最大值和最小值分别是(A) A. 0,-4 B. 0,-3 C. -3,-4 D. 0,04.对于二次函数y =-14x 2+x -4,下列说法正确的是(B)A. 当x >0时,y 随x 的增大而增大B. 当x =2时,y 有最大值-3C. 图象的顶点坐标为(-2,-7)D. 图象与x 轴有两个交点(第5题)5.已知抛物线y=x2+bx+c的部分图象如图所示.若y<0,则x的取值范围是(B)A. -1<x<4B. -1<x<3C. x<-1或x>4D. x<-1或x>36.在平面直角坐标系中,某二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P,Q两点,且PQ=6.若此函数图象通过(1,a),(3,b),(-1,c),(-3,d)四点,则a,b,c,d中为正数的是(D)A. aB. bC. cD. d(第7题)7.已知抛物线y=ax2+bx+c的图象如图所示,则|a-b+c|+|2a+b|=(D)A. a +bB. a -2bC. a -bD. 3a【解】 观察图象可知: 图象过原点,c =0; 抛物线开口向上,a >0;抛物线的对称轴0<-b2a<1,-2a <b <0.∴|a -b +c|=a -b ,|2a +b|=2a +b , ∴|a -b +c|+|2a +b|=a -b +2a +b =3a.8.已知抛物线y =x 2+bx +c(其中b ,c 是常数)过点A(2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是(A)A. 4B. 6C. 8D. 10【解】 ∵抛物线y =x 2+bx +c(其中b ,c 是常数)过点A(2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,∴⎩⎪⎨⎪⎧4+2b +c =6,1≤-b 2×1≤3,解得6≤c ≤14.9.定义:若点P(a ,b)在函数y =1x的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y =ax 2+bx 称为函数y =1x 的一个“派生函数”.例如:点⎝ ⎛⎭⎪⎪⎫2,12在函数y =1x 的图象上,则函数y =2x 2+12x 称为函数y =1x 的一个“派生函数”.现给出以下两个命题:(1)存在函数y =1x的一个“派生函数”,其图象的对称轴在y 轴的右侧.(2)函数y =1x的所有“派生函数”的图象都经过同一点.下列判断正确的是(C)A. 命题(1)与命题(2)都是真命题B. 命题(1)与命题(2)都是假命题C. 命题(1)是假命题,命题(2)是真命题D. 命题(1)是真命题,命题(2)是假命题 【解】 (1)∵点P(a ,b)在y =1x上,∴a ,b 同号,∴-b2a<0,即对称轴在y 轴的左侧,∴存在函数y =1x的一个“派生函数”,其图象的对称轴在y 轴的右侧是假命题.(2)∵函数y =1x的所有“派生函数”为y =ax 2+bx ,∴当x =0时,y =0,∴所有“派生函数”都经过原点,∴函数y =1x的所有“派生函数”的图象都经过同一点是真命题.10.已知二次函数y =x 2+bx +c ,当x ≤1时,总有y ≥0;当1≤x ≤3时,总有y ≤0,则c 的取值范围是(B)A. c =3B. c ≥3C. 1≤c ≤3D. c ≤3(第10题解)【解】 ∵当x ≤1时,y ≥0;当1≤x ≤3时,y ≤0, ∴当x =1时,y =0.设y =x 2+bx +c =(x -1)(x -c). ∵当1≤x ≤3时,y ≤0, ∴得草图如解图. ∴c ≥3.二、填空题(每小题3分,共30分)11.抛物线y =(x +1)2-2的顶点坐标是(-1,-2).12.写出一个二次函数的表达式,使其图象的顶点恰好在直线y =x +2上,且开口向下,则这个二次函数的表达式可写为y =-x 2+2(答案不唯一).13.已知二次函数y =ax 2+bx +c 的图象如图所示,有下列结论:①abc>0;②a-b +c<0;③2a =b ;④4a +2b +c>0;⑤若点(-2,y 1)和⎝ ⎛⎭⎪⎪⎫-13,y 2在该图象上,则y 1>y 2.其中正确的结论是②④(填序号).(第13题)14.如图,已知点D(0,1),抛物线y =-x 2+2x +3与y 轴交于点C ,P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为(1±2,2).(第14题)15.如图是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象,写出当y 2≥y 1时x 的取值范围:-2≤x ≤1.(第15题)16.抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表: x ... -2 -1 0 1 2 ... y 046 6 4 …从上表可知,下列说法中,正确的是①③④(填序号).①此抛物线与x 轴的一个交点为(3,0);②此函数的最大值为6;③此抛物线的对称轴是直线x =12;④在对称轴左侧,y 随x 的增大而增大.17.若将二次函数y =x 2+kx -12的图象向右平移4个单位后经过原点,则k 的值是__1__.(第18题)18.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连结BD ,则对角线BD 的最小值为__1__.19.已知二次函数y =ax 2+bx +c(a ≠0)和正比例函数y =23x 的图象如图所示,则方程ax 2+⎝ ⎛⎭⎪⎪⎫b -23x +c =0(a ≠0)的两根之和__>__0(填“>”“<”或“=”).(第19题)【解】 方程ax 2+⎝ ⎛⎭⎪⎪⎫b -23x +c =0可化为ax 2+bx +c =23x ,故该方程的两根即为y =ax 2+bx +c与y =23x 的图象的交点的横坐标,由图象可知两根之和大于0.20.已知关于x 的一元二次方程ax 2-3x -1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是-94<a<-2.【解】 ∵关于x 的一元二次方程ax 2-3x -1=0有两个不相等的实数根, ∴Δ=(-3)2-4·a ·(-1)>0, 解得a>-94.设二次函数y =ax 2-3x -1,当x =0时,y =-1.∵一元二次方程ax 2-3x -1=0的两个实数根都在-1和0之间, ∴易得a<0,且当x =-1时,y<0.∴a ·(-1)2-3×(-1)-1<0,解得a<-2. 综上所述,a 的取值范围是-94<a<-2.三、解答题(共50分)21.(8分)已知以x 为自变量的二次函数y =-x 2+2x +m -1的图象与y 轴交于点(0,3).(1)求出m 的值并画出这个抛物线.(2)求出它与x 轴的交点坐标和抛物线的顶点坐标. (3)当x 取什么值时,抛物线在x 轴上方? (4)当x 取什么值时,y 随x 的增大而减小?(第21题解)【解】 (1)∵抛物线y =-x 2+2x +m -1与y 轴交于点(0,3),∴m -1=3, ∴m =4.图象如解图所示.(2)令y =0,则-x 2+2x +3=0,解得x 1=-1,x 2=3. ∴与x 轴的交点坐标为(-1,0),(3,0). ∵y =-x 2+2x +3=-(x -1)2+4,∴顶点坐标为(1,4).(3)当-1<x<3时,抛物线在x轴上方.(4)当x≥1时,y随x的增大而减小.(第22题)22.(6分)如图,正方形ABCD是一张边长为12 cm的皮革.皮雕师傅想在此皮革两相邻的角落分别切下△PDQ与△PCR后得到一个五边形PQABR,其中PD=2DQ,PC=RC,且P,Q,R三点分别在CD,AD,BC上.(1)当皮雕师傅切下△PDQ时,若DQ的长为x(cm),请用含x的式子表示此时△PDQ 的面积.(2)在(1)的条件下,当x的值为多少时,五边形PQABR的面积最大?【解】(1)设DQ=x(cm),则PD=2DQ=2x(cm),∴S△PDQ=12x·2x=x2(cm2).(2)∵PD=2x(cm),CD=12 cm,∴CR=PC=(12-2x)cm,∴S五边形PQABR=S正方形ABCD-S△PDQ-S△PCR=122-x 2-12(12-2x)2 =144-x 2-12(144-48x +4x 2) =-3(x -4)2+120,故当x =4时,五边形PQABR 的面积最大.(第23题)23.(6分)如图,正方形OABC 的边长为4,对角线OB ,AC 相交于点P ,抛物线L 经过O ,P ,A 三点,E 是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标.②求抛物线L 的函数表达式.(2)求△OAE 与△OCE 面积之和的最大值.(第23题解)【解】 (1)以O 为原点,线段OA 所在的直线为x 轴,线段OC 所在的直线为y 轴建立直角坐标系,如解图所示.①∵正方形OABC 的边长为4,对角线OB ,AC 相交于点P ,∴点O 的坐标为(0,0),点A 的坐标为(4,0),点P 的坐标为(2,2).②设抛物线L 的函数表达式为y =ax 2+bx +c.∵抛物线L 经过O ,P ,A 三点,∴⎩⎪⎨⎪⎧0=c ,0=16a +4b +c ,2=4a +2b +c ,解得⎩⎪⎨⎪⎧a =-12,b =2,c =0. ∴抛物线L 的函数表达式为y =-12x 2+2x. (2)∵E 是正方形内的抛物线上的动点,∴可设点E 的坐标为⎝ ⎛⎭⎪⎪⎫m ,-12m 2+2m (0<m <4), ∴S △OAE +S OCE =12OA ·y E +12OC ·x E =2⎝ ⎛⎭⎪⎪⎫-12m 2+2m +2m =-m 2+6m =-(m -3)2+9,∴当m =3时,△OAE 与△OCE 的面积之和最大,最大值为9.24.(8分)王大伯决定销售一批风筝,经市场调研:蝙蝠形风筝进价为10元/个,当售价为12元/个时,销售量为180个,若售价每提高1元,销售量就会减少10个.请回答以下问题:(1)求蝙蝠形风筝销售量y(个)与售价x(元/个)之间的函数表达式(12≤x≤30).(2)王大伯为了让利给顾客,并同时获得840元的利润,售价应定为多少?(3)当售价定为多少时,王大伯获得的利润最大,最大利润是多少?【解】(1)根据题意可知:y=180-10(x-12)=-10x+300(12≤x≤30).(2)设王大伯获得的利润为W,则W=(x-10)y=-10x2+400x-3000.当W=840时,-10x2+400x-3000=840,解得x1=16,x2=24.∵王大伯为了让利给顾客,∴售价应定为16元.(3)W=-10x2+400x-3000=-10(x-20)2+1000,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得的利润最大,最大利润是1000元.25.(10分)如图,在平面直角坐标系xOy中,A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(第25题)(1)求经过A ,B ,C 三点的抛物线的函数表达式.(2)在平面直角坐标系xOy 中是否存在一点P ,使得以A ,B ,C ,P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)若M 为该抛物线上一动点,在(2)的条件下,请求出当|PM -AM|的最大值时点M 的坐标,并直接写出|PM -AM|的最大值.【解】 (1)设抛物线的函数表达式为y =ax 2+bx +c.由题意,得点A(1,0),B(0,3),C(-4,0),∴⎩⎪⎨⎪⎧a +b +c =0,c =3,16a -4b +c =0,解得⎩⎪⎨⎪⎧a =-34,b =-94,c =3. ∴经过A ,B ,C 三点的抛物线的函数表达式为y =-34x 2-94x +3.(第25题解)(2)在平面直角坐标系xOy 中存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形.理由如下:∵OB =3,OC =4,OA =1,∴BC =AC =5.如解图,当点P 在点B 的右侧,且BP 平行且等于AC 时,四边形ACBP 为菱形, 此时BP =AC =5,且点P 到x 轴的距离等于OB ,∴点P 的坐标为(5,3).当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不可能是菱形,则当点P 的坐标为(5,3)时,以点A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线PA 的函数表达式为y =kx +b(k ≠0).∵点A(1,0),P(5,3),∴⎩⎪⎨⎪⎧5k +b =3,k +b =0,解得⎩⎪⎨⎪⎧k =34,b =-34,∴直线PA 的函数表达式为y =34x -34. 当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系可知|PM -AM|<PA , 当点M 与点P ,A 在同一直线上时,|PM -AM|=PA ,∴当点M 与点P ,A 在同一直线上时,|PM -AM|的值最大,即M 为直线PA 与抛物线的交点,解方程组⎩⎪⎨⎪⎧y =34x -34,y =-34x 2-94x +3, 解得⎩⎪⎨⎪⎧x 1=1,y 1=0或⎩⎪⎨⎪⎧x 2=-5,y 2=-92. ∴当点M 的坐标为⎝ ⎛⎭⎪⎪⎫-5,-92时,|PM -AM|的值最大,此时|PM -AM|的最大值为5.(第26题)26.(12分)如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连结AC ,BC.(1)求过O ,A ,C 三点的抛物线的函数表达式,并判断△ABC 的形状.(2)动点P 从点O 出发,沿OB 以每秒2个单位的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t(s),当t 为何值时,PA =QA?(3)在抛物线的对称轴上是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【解】 (1)∵直线y =-2x +10与x 轴,y 轴相交于A ,B 两点,∴点A(5,0),B(0,10).∵抛物线过原点,∴可设抛物线的函数表达式为y =ax 2+bx.∵抛物线过点A(5,0),C(8,4),∴⎩⎪⎨⎪⎧25a +5b =0,64a +8b =4,解得⎩⎪⎨⎪⎧a =16,b =-56.∴抛物线的函数表达式为y =16x 2-56x. ∵点A(5,0),B(0,10),C(8,4),∴AB 2=52+102=125,BC 2=82+(10-4)2=100,AC 2=(8-5)2+42=25, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形.(第26题解)(2)如解图,当点P ,Q 运动t(s)时,OP =2t ,CQ =10-t. 由(1)可得AC =OA =5,∠ACQ =∠AOP =90°, 又∵PA =QA ,∴Rt △AOP ≌Rt △ACQ(HL),∴OP =CQ ,∴2t =10-t ,∴t =103, 即当t =103时,PA =QA. (3)存在.∵y =16x 2-56x =16⎝ ⎛⎭⎪⎪⎫x -522-2524, ∴抛物线的对称轴为直线x =52. ∵点A(5,0),B(0,10),∴AB =5 5.设点M ⎝ ⎛⎭⎪⎪⎫52,m , ①当BM =BA 时,⎝ ⎛⎭⎪⎪⎫522+(m -10)2=125, ∴m 1=20+5 192,m 2=20-5 192, ∴点M 1⎝ ⎛⎭⎪⎪⎫52,20+5 192,M 2⎝ ⎛⎭⎪⎪⎫52,20-5 192. ②当AM =AB 时,⎝ ⎛⎭⎪⎪⎫52-52+m 2=125, ∴m 3=5 192,m 4=-5 192,∴点M 3⎝ ⎛⎭⎪⎪⎫52, 5192,M 4⎝ ⎛⎭⎪⎪⎫52,- 5 192. ③当MA =MB 时,⎝ ⎛⎭⎪⎪⎫52-52+m 2=⎝ ⎛⎭⎪⎪⎫522+(m -10)2, ∴m =5.∵此时点M 恰好是线段AB 的中点,构不成三角形,故舍去.综上所述,点M 的坐标为M 1⎝ ⎛⎭⎪⎪⎫52,20+5 192,M 2⎝ ⎛⎭⎪⎪⎫52,20-5 192,M 3⎝ ⎛⎭⎪⎪⎫52,5 192,M 4⎝ ⎛⎭⎪⎪⎫52,- 5 192.。
九年级(上)数学第二章《二次函数》单元测试卷班级 姓名 学号说明:1、本卷的内容是浙教版九年级第二章:二次函数; 2、本卷考试时间70分钟;3、卷面分二部分:基础题100分(第一、二、三大题),提高题20分(第四大题)。
一、细心填一填(每小题3分,共30分)1.抛物线y=x 2+6x+8与y 轴交点坐标( ) (A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)(-4,0)2.抛物线y= -12(x+1)2+3的顶点坐标( ) (A )(1,3) (B )(1,-3) (C )(-1,-3) (D )(-1,3)3.把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )(A )y=3(x+3)2 -2 (B )y=3(x+2)2+2 (C )y=3(x-3)2 -2 (D )y=3(x-3)2+2 4.下列函数中,y 随x 的增大而增大的是( ) (A )xy 1-= (B )52+-=x y (C ))0(42≥-=x x y (D )1322-+=x x y 5.抛物线y=x 2-ax+a-2与坐标轴的交点个数有( ) A.3个 B.2个 C.1个 D.0个6.若直线y=ax+b(ab ≠0)不过第三象限,则抛物线bx ax y +=2的顶点所在的象限是( ) (A )一 (B )二 (C )三 (D )四7.二次函数1422+-=x x m y 有最小值-3,则m 等于( ) (A )1 (B )-1 (C )1± (D )21±8.已知二次函数y=ax 2+bx+c 的图象如图,下列结论中,正确的结论的个数有 ( ) ① a + b + c>0 ② a - b + c <0 ③ abc < 0 ④ b =2a ⑤ b >0A. 5个B. 4个 C .3个 D. 2个9.小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是----( ) A .3.5m B .4m C .4.5m D .4.6m10.某幢建筑物,从10米高的窗口A 用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M 离墙1米,离地面403 米,则水流下落点B 离墙距离OB 是( )(A )2米 (B )3米 (C )4米 (D )5米 二、精心选一选(每小题3分,共30分)11.二次函数=2(x - 32)2+1图象的对称轴是 。
第2章 二次函数 单元测试一、选择题1. 下列各式中,y 是的二次函数的是--------------------------------------( ) A. 1y x=B. 21y x =-+C. 22y x =- D. 3y x = 2. 已知二次函数的解析式为()221y x =-+,则该二次函数图象的顶点坐标是 ( ) A. (-2,1) B. (2,1) C. (2,-1) D. (1,2)3. 抛物线y=3(x-2)2+1图象上平移2个单位,再向左平移2个单位所得的解析式为 ( )A .y=3x 2+3B .y=3x 2-1C .y=3(x-4)2+3D .y=3(x-4)2-14..二次函数221y x x =-+与x 轴的交点个数是 ( ) A .0 B .1 C .2 D .3 5.二次函数y=ax 2+bx+c 的图像如图所示, 则点A(a, c)在 ( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限6.若y =(2-m)23mx -是二次函数,且开口向上,则m 的值为 ( )A.5±B.-5C.5D.0 7.已知二次函数y=-12x 2-3x -52,设自变量的值分别为x 1,x 2,x 3,且-3<x 1<x 2<x 3, 则对应的函数值y 1,y 2,y 3的大小关系是 ( ) A.y 1>y 2>y 3 B.y 1<y 2<y 3; C.y 2>y 3>y 1 D.y 2<y 3<y 18.小敏在今年的校运会比赛中跳出了满意一跳,函数h=3.5t -4.9t 2,可以描述他跳跃时重心高度的变化.则他跳起后到重心最高时所用的时间是 ( ) A .0.71 sB .0.70sC .0.63sD .0.36s9.如图2,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为,AE 为,则关于的函数图象大致是( )A B C D10.如图,在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )数学试卷及试题2xy OA xyOBx yOC xyOD二、填空题11.二次函数2(2)1y x =-+的图象的对称轴为 . 12.若二次函数y =ax 2的图象经过点(-1,2),则二次函数y =ax 2的解析式是__13.请写出一个开口向下,且函数有最大值2的二次函数的解析式是 .14.抛物线y =x 2+8x -4与直线x 轴的交点坐标是______ ___. 15.平移抛物线822-+=x x y ,使它经过原点.写出平移后抛物线的一个解析 式 . 16.如图是二次函数和一次函数的图象,观察图象,写出时x 的取值范围:____ ___。
浙教版九年级上-二次函数-单元测试(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《二次函数》测试卷(满分150分;完卷时间100分钟)班级 姓名 成绩一.选择题(每题4分,共48分)1. 下列各式中,y 是x 的二次函数的是 ( )A . 21xy x +=B . 220x y +-=C . 22y ax -=-D . 2210x y -+=2.在同一坐标系中,作22y x =+2、22y x =--1、212y x =的图象,则它们 ( ) A .都是关于y 轴对称 B .顶点都在原点 C .都是抛物线开口向上 D .以上都不对3.若二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值必为 ( )A . 0或2B . 0C . 2D . 无法确定4、已知点(a ,8)在抛物线y=ax 2上,则a 的值为( )A 、±2B 、±22C 、2D 、-25.把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )(A )y=3(x+3)2 -2 (B )y=3(x+2)2+2 (C )y=3(x-3)2 -2 (D )y=3(x-3)2+26.抛物线y=x 2+6x+8与y 轴交点坐标( )(A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)(-4,0)7、二次函数y=x 2+4x +a 的最大值是2,则a 的值是( )A 、4B 、5C 、6D 、78.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是 ( )A . 1-<mB . 1<mC . 1->mD . 2->m9.抛物线122+-=x x y 则图象与x 轴交点为 ( )A . 二个交点B . 一个交点C . 无交点D . 不能确定 10.)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2的图象大致为 ( )x y y y yO x O x O x O xA B C D11.对于2)3(22+-=x y 的图象下列叙述正确的是 ( )A 顶点作标为(-3,2)B 对称轴为y=3C 当3≥x 时y 随x 增大而增大D 当3≥x 时y 随x 增大而减小12、二次函数c bx ax y ++=2的图象如图所示,则下列结论中正确的是:( )A a>0 b<0 c>0B a<0 b<0 c>0C a<0 b>0 c<0D a<0 b>0 c>0二.填空题:(每题5分,共30分)13.若132)1(--=a x a y 是关于x 的二次函数,则a= 。
第2章 二次函数 单元测试一、耐心填一填,一锤定音!1.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____. 2.请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .3.函数42-=x y 的图象与轴的交点坐标是________. 4.抛物线y = ( x – 1)2 – 7的对称轴是直线 .5.二次函数y =2x 2-x -3的开口方向_____,对称轴_______,顶点坐标________.6.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx +c =0(a ≠0)的解是_______.7.用配方法把二次函数y =2x 2+2x -5化成y =a (x -h )2+k 的形式为___________. 8.抛物线y =(m -4)x 2-2mx -m -6的顶点在x 轴上,则m =______.9.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相同,则此函数关系式______.10.如图1,直角坐标系中一条抛物线经过网格点A 、B 、C ,其中,B 点坐标为(44),,则该抛物线的关系式__________.图1 二、精心选一选,慧眼识金!11.抛物线y =-2(x -1)2-3与y 轴的交点纵坐标为( ) (A )-3 (B )-4 (C )-5 (D)-112.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A) y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-413.抛物线y =21x 2,y =-3x 2,y =x 2的图象开口最大的是( ) (A) y =21x 2(B)y =-3x 2 (C)y =x 2 (D)无法确定14.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( ) (A)4 (B)8 (C)-4 (D)16 15.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7) 16.过点(1,0),B (3,0),C (-1,2)三点的抛物线的顶点坐标是( ) (A)(1,2) (B )(1,32) (C) (-1,5) (D)(2,41-) 17. 若二次函数y =ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( ) (A )a +c (B )a -c (C )-c (D )c18. 在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为252s t t =+,则当物体经过的路程是88米时,该物体所经过的时间为( ) (A)2秒 (B) 4秒 (C)6秒 (D) 8秒19.如图2,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为,AE 为,则关于的函数图象大致是( ) 图2(A ) (B ) (C ) (D ) 20.抛物线y =ax 2+bx +c 的图角如图3,则下列结论:①abc >0;②a +b +c =2;③a >21; ④b <1.其中正确的结论是( )(A )①② (B )②③ (C )②④ (D )③④图3 三、用心做一做,马到成功!21. 已知一次函()()2322++++-=m x m x m y 的图象过点(0,5)⑴ 求m 的值,并写出二次函数的关系式; ⑵ 求出二次函数图象的顶点坐标、对称轴.22.已知抛物线2y ax bx c =++ 经过(-1,0),(0,-3),(2,-3)三点.⑴求这条抛物线的表达式;⑵写出抛物线的开口方向、对称轴和顶点坐标.23.有一个抛物线形的桥洞,桥洞离水面的最大高度BM 为3米,跨度OA 为6米,以OA 所在直线为x 轴,O 为原点建立直角坐标系(如图4所示). ⑴请你直接写出O 、A 、M 三点的坐标;⑵一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)? 图424. 甲车在弯路作刹车试验,收集到的数据如下表所示:(1y (米). (2)在一个限速为40千米/时的弯路上,甲、乙两车相向速度x (千米/时)的函数图象,并求函数的解析式.而行,同时刹车,但还是相撞了.事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车的刹车距离y (米)与速度x (千米/时)满足函数14y x,请你就两车的速度方面分析相撞的原因.25. 某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后, 图5 从第1年到第x 年的维修、保养费用累计为y (万元),且y =ax 2+bx ,若第1年的维修、保养费用为2万元,第2年为4万元. (1)求y 的解析式;(2)投产后,这个企业在第几年就能收回投资?第2章二次函数水平测试(八)参考答案:一、1.y =-2(x -3)2+4; 2.y =(x -2)2+3; 3.(0,-4) ; 4.x =1 ; 5.向上,x =41,(12548-,); 6.x 1=5,x 2=-2. 7.y =2(x +21)2-211; 8.-4或3; 9.y =-2x 2+8x 或y =-2x 2-8x ; 10.432612++-=x x y 二、11-15 CCADB 16-20 DDBBB .三、21. (1)将x =0,y =5代入关系式,得m +2=5,所以m =3,所以y =x 2+6x +5; (2)顶点坐标是(-3,-4),对称轴是直线x =-3.22.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4). 23. 解:(1)0(0,0),A (6,0),M (3,3).(2)设抛物线的关系式为y =a (x -3)2+3,因为抛物线过点(0,0),所以0=a (0-3)2+3,解得a =-31,所以y =-31(x -3)2+3=-31x 2+2x , 要使木版堆放最高,依据题意,得B 点应是木版宽C D 的中点,把x =2代入y =-31x 2+2x ,得y =38,所以这些木版最高可堆放38米. 24. 解:(1)如图,设函数的解析式为y =ax 2+bx +c .因为图象经过点(0,0)、(10,2)、(20,6), 所以c =0.所以21001006400200a b a b =++⎧⎨=++⎩,解得1100110a b ⎧=⎪⎪⎨⎪=⎪⎩.所以函数的解析式为21110010y x x =+. (2)因为y =12,所以21110010y x x =+=12, 解得x 1=30,x 2=-40(不符合题意,舍去) 又因为y 乙=10.5,所以110.54x =,x =42. 因为乙车速度为42千米/时,大于40千米/时, 所以,就速度方面原因,乙车超速,导致两车相撞.25.(1)由题意,x =1时,y =2;x =2时,y =2+4=6,分别代入y =ax 2+bx ,得a +b =2,4a +2b =6,解得,a =1,b =1,所以y =x 2+x .(2)设G =33x -100-x 2-x ,则G =-x 2+32x -100=-(x -16)2+156.由于当1≤x ≤16时,G 随x 的增大而增大,故当x =4时,即第4年可收回投资.。
浙教版九年级数学上册二次函数单元测试56一、选择题(共10小题;共50分)1. 抛物线的顶点坐标是A. B. C.2. 抛物线可以由抛物线平移得到,则下列平移过程正确的是A. 先向左平移个单位,再向上平移个单位B. 先向左平移个单位,再向下平移个单位C. 先向右平移个单位,再向下平移个单位D. 先向右平移个单位,再向上平移个单位3. 已知函数,则当时,自变量的取值范围是A. 或C. 或4. 下列函数是二次函数的是A. B. C. D.5. 已知二次函数的图象经过,,当该二次函数的自变量分别取,时,对应的函数值是,,且,设该函数图象的对称轴是,则的取值范围是A. B. C. D.6. 已知二次函数,当取互为相反数的任意两个实数值时,对应的函数值总相等,则关于的一元二次方程的两根之积为A.7. 已知抛物线过,,,四点,则与的大小关系是A. B. C. D. 不能确定8. 函数的图象的顶点坐标是A. C. D.9. 已知函数的图象上两点,,其中,则与的大小关系为A. B. C. D. 无法判断10. 已知二次函数(为常数),在自变量的值满足的情况下,与其对应的函数值的最大值为的值为A. 或B. 或C. 或D. 或二、填空题(共6小题;共30分)11. 某种产品现在的年产量是吨,若接下来平均每年的增长率都是,写出两年后这种产品的产量与之间的关系式.12. 抛物线的对称轴是.13. 如图,在平面直角坐标系中,抛物线与交于点,过点作轴的平行线,分别交两条抛物线于点,(点与点左侧),则线段的长为.14. 如图,在平面直角坐标系中,抛物线交轴的负半轴于点.点是轴正半轴上一点,点关于点的对称点恰好落在抛物线上.过点作轴的平行线交抛物线于另一点.若点的横坐标为,则的长为.15. 定义为关于的函数的“特征数”,如:函数的“特征数”是.在平面直角坐标系中,将“特征数”是的函数的图象向下平移个单位长度,得到一个新的图象,这个新图象的函数解析式是.16. 如图,抛物线与轴相交于,两点,与轴相交于点,点在抛物线上,且,与轴相交于点,过点的直线平行于轴,与抛物线相交于,两点,则线段的长为.三、解答题(共8小题;共104分)17. 已知,是方程的两个实数根.(1)求的取值范围;(2)当时,求的值及方程的解.18. 已知关于的二次函数,当为何值时,它的图象开口向上?当为何值时,它的图象开口向下?19. 已知抛物线的对称轴是直线,求抛物线的顶点坐标.20. 如果抛物线的对称轴是直线,求的值.21. 用一根长为的木条做一个长方形框,若宽为,写出它的面积与之间的函数表达式,指出自变量的取值范围,并判断是的二次函数吗?22. 抛物线与坐标轴交于,,,求抛物线的解析式.23. 卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面的比例图上,跨度,拱高,线段表示大桥拱内桥长,,如图①在比例图上,以直线为轴,抛物线的对称轴为轴,以作为数轴的单位长度,建立平面直角坐标系,如图②.(结果精确到,参考数据:)(1)求出图②中以这一部分抛物线为图象的函数解析式,并写出函数的定义域;(2)如果与的距离,求卢浦大桥拱内实际桥长.24. 已知关于的二次函数的图象与轴交于点,,并经过点,求这个二次函数的解析式.(1)点,的横坐标分别为,点的坐标为.(2)点,的横坐标分别为,点的坐标为.(3)点,的横坐标分别为,,点是顶点,纵坐标为答案第一部分1. B2. B3. A4. C5. C【解析】当时,抛物线开口向上,则点的对称点为,,对称轴为中.6. D 【解析】二次函数,当取互为相反数的任意两个实数值时,对应的函数值总相等,可知二次函数图象的对称轴为直线,即轴,则,解得:,则关于的一元二次方程为,则两根之积为.7. A8. D9. B 【解析】函数,函数的对称轴是直线,开口向下,图象上两点,,其中,.10. C【解析】当时,随的增大而增大,当时,随的增大而减小,①若,时,取得最大值可得:,解得:或(舍);②若,当时,取得最大值可得:,解得:或(舍).综上,的值为或.第二部分11.12.【解析】由抛物线的解析式可知,其对称轴是直线.13.【解析】设抛物线的对称轴与线段交于,如图所示,由抛物线的对称性,可知:,.所以.14.【解析】当时,,解得,,则,点关于点的对称点为,点的横坐标为,点的坐标为,抛物线解析式为,当时,,则,当时,,解得,,则,的长为.15.【解析】依题意得“特征数”是的函数解析式为,其顶点坐标是,向下平移个单位后得到的顶点坐标是,所以新函数的解析式为.16.【解析】当时,,解得或,点的坐标为.当时,,点的坐标为.当时,,解得或,点的坐标为.设直线的解析式为,将,代入,得解得直线的解析式为.当时,,点的坐标为.当时,,解得,,点的坐标为,点的坐标为,.第三部分17. (1)即,,.(2),,,把代入方程得:,,.18. 当时,图象开口向上;当时,图象开口向下..20. ,解得.21. 由题意,得矩形的周长为,,.是的二次函数.22. 设抛物线的解析式为.过点,,.则则解析式为.23. (1)由于顶点在轴上,所以设以这部分抛物线为图象的函数解析式为.因为点或在抛物线上,所以,得.因此所求函数解析式为.(2)因为点,的纵坐标为,所以,得.所以点的坐标为,点的坐标为.所以.因此卢浦大桥拱内实际桥长为.24. (1).(2).(3).。
第二章《二次函数》单元测验一、选择题(30分)1、与y=2(x-1)2+3形状相同的抛物线解析式为( )A 、y=1+21x 2B 、y=(2x+1)2C 、y = (x-1)2D 、y=2x 22.下列关于抛物线y =x 2+2x +1的说法中,正确的是( )A.开口向下B.对称轴为直线x =1C.与x 轴有两个交点D.顶点坐标为(-1,0)3.二次函数y=ax 2+bx+c 的图像如图所示, 则点A(a, b)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.当a <0时,抛物线y =x 2+2ax +1+2a 2的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c的图象大致为( )AyB yC 2x 2+4x +k (其中k 为常数),分别取x 1=-0.99、x 2=0.98应的函数值为y 1, y 2, y 3中,最大的为( )A.y 3B.y 2C.y 1D.不能确定,与k 的取值有关 7.已知二次函数y =2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2 时的函数值与( )A .x =1 时的函数值相等B .x =0时的函数值相等C .x =41时的函数值相等 D .x =-49时的函数值相等 8.已知二次函数y=x 2-bx+1(-1≤b ≤1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( )A 、先往左上方移动,再往左下方移动B 、先往左下方移动,再往左上方移动C 、先往右上方移动,再往右下方移动D 、先往右下方移动,再往右上方移动9.根据下列表格中二次函数y =a x 2+b x +c 的自变量x 与函数值y 的对应值,判断方程a x 2+b x +c =0(a ≠0)的一个解x 的范围是( )A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.2010.小敏在校运会比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s, h的单位:m)可以描述他跳跃时重心高度的变化.则他跳起后到重心最高时所用的时间是() A.0.71 s B.0.70s C.0.63s D.0.36s二、填空题(共24分)11.已知二次函数的图象开口向上,且顶点在y轴的负半轴上,请你写出一个满足条件的二次函数的表达式_ ___.12.若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则c=_________(只要求写出一个)13.平移抛物线y=x2+2x+8.使它经过原点.写出平移后抛物线的一个解析式 .14.如图,在平面直角坐标系中,二次函数y=a x2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是 .15.已知y=ax2+bx+c的图象如下,则:a+b+c____0,a-b+c_____0。
九年级数学第二章 二次函数单元过关检测 浙教版 A 卷 一、选择题(共25分) 1.二次函数y=x 2+4x+c 的对称轴方程是 ( )A.x = -2B.x=1C.x=2D.由c 的值确定2.已知抛物线y=ax 2+bx+c 经过原点和第一、二、三象限,那么 ( )A.a>0,b>0,c>0B.a<0,b<0,c=0C.a<0,b<0,c>0D.a>0,b>0,c=03.若(2, 5)、(4, 5)是抛物线y = ax 2+bx+c 上的两点,则它的对称轴方程是 ( )A.x = -1B.x = 1C.x = 2D.x = 34.若直线y=x-n 与抛物线y = x 2-x-n 的交点在x 轴上,则n 的取值一定为 ( )A.0B.2C.0或2D.任意实数5.二次函数y = ax 2+bx+c 的图像如图所示,则点(,a b c c) 在直角坐标系中的 ( )A .第一象限B .第二象限C .第三象限D .第四象限6.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4m ,手距地面均为lm ,学生丙、丁分别站在距甲拿绳的手水平距离lm 、2.5m 处.绳子在甩到最高处时刚好通过丙、丁的头顶.已知学生丙的身高是1.5m ,则学生丁的身高为(建立的平面直角坐标系如图所示)( )A.1.5mB.1.625mC.1.66mD.1.67m7.已知抛物线y=21(4)33x --的部分图像(如图)图像再次与x 轴相交时的坐标是 ( )A.(5,0)B.(6,0 )C.(7,0)D.(8,0 )8.如图,四个二次函数的图像中,分别对应的是①y = ax 2;②y = ax 2;③y = cx 2; ④y = cx 2.则a 、b 、c 、d 的大小关系为( )A.a>b>c>dB. a>b>d> cC.b > a >c>dD.b>a>d> c9.(05绍兴)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t 2(t 的单位:s , h 的单位:m )可以描述他跳跃时重心高度的变化.则他起跳后到重心最高时所用的时间是( )A.0.71sB.0.70sC.0.63sD.0.36s二、填空题(共25分)10.抛物线y = ax 2+bx+c 如图所示,则它关于x 轴对称的抛物线的解析式是 .11.若抛物线y = x 2+(k-1)x+(k+3)经过原点,则k= .12.如果函数y = ax 2+4x-16的图像的顶点的横坐标为l ,则a 的值为 .13.已知抛物线y = ax2+12x-19的顶点的横坐标是3,则 a= .14.抛物线y = a(x-k)2+m的对称轴是直线,顶点坐标是 .15.抛物线y = 2x2+bx+c的顶点坐标为(2,-3),则b= , c= .三、解答题(共 50 分)16.(8分)已知二次函数的图像经过(3,0)、(2,-3)点,对称轴x=l,求这个函数的解析式.17.(10分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A与射击目标B的水平距离为600cm,炮弹运行的最大高度为1200m.(l)求此抛物线的解析式.(2)若在A、B之间距离A点500m处有一高350cm的障碍物,计算炮弹能否越过障碍物.18.(10分)已知函数y = x2+bx-1的图像经过(3,2).(l)求这个函数的解析式;(2)画出它的图像,并指出图像的顶点坐标;(3)当x>0时,求使y 2的x的取值范围.19.(10分)利用9m长的木料做一“日”字形窗框,它的长和宽各为多少时,窗户面积最大?20. (12分)卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示大桥拱内桥长,DE//AB ,如左图所示;在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如右图所示.(1)求出右图x 轴以上这一部分抛物线为图像的函数解析式,写出函数定义域;(2)如果DE 与AB 的距离OM=0.45cm ,求卢浦大桥拱内实际桥长(备用数据:2≈1.4,计算结果精确到lm).B 卷一、选择题(共25分)1.在下列关系式中,y 是x 的二次函数的关系式是 ( )A.2xy+x 2=1B.y 2-ax+2=0C.y+x 2-2=0D.x 2-y 2+4=02.设等边三角形的边长为x(x>0),面积为y ,则y 与x 的函数关系式是( )A.212y x =B.214y x =C.232y x =D.234y x = 3.抛物线y=x 2-8x+c 的顶点在x 轴上,则c 等于( )A.-16B.-4C.8D.164.若直线y=ax +b (a ≠0)在第二、四象限都无图像,则抛物线y=ax 2+bx+c ( )A.开口向上,对称轴是y 轴B.开口向下,对称轴平行于y 轴C.开口向上,对称轴平行于y 轴D.开口向下,对称轴是y 轴5.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( )6.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( )A.2,4B.-2,-4C.2,-4D.-2,07.对于函数y=-x 2+2x-2使得y 随x 的增大而增大的x 的取值范围是 ( )A.x>-1B.x ≥0C.x ≤0D.x<-18.抛物线y=x 2-(m+2)x+3(m-1)与x 轴 ( 0A.一定有两个交点 B .只有一个交点C .有两个或一个交点D .没有交点9.二次函数y=2x2+mx-5的图像与x轴交于点A (x1, 0)、B(x2,0), 且x12+x22=294,则m的值为()A.3B.-3C.3或-3D.以上都不对10.对于任何的实数t,抛物线 y=x2 + (2-t) x + t总经过一个固定的点,这个点是( )A . (1, 0) B.(-l, 0) C.(-1, 3) D. (l, 3)二、填空题(共25 分)11.抛物线y=-2x+x2+7的开口向,对称轴是,顶点是 , 所在象限是 .12.若二次函数y=mx2-3x+2m-m2的图像过原点,则m的值是 .13.如果把抛物线y=2x2-1向左平移l个单位,同时向上平移4个单位,那么得到的新的抛物线是 .14.对于二次函数y=ax2, 已知当x由1增加到2时,函数值减少4,则常数a的值是 .15.已知二次函数y=x2-6x+n的最小值为1,那么n的值是 .16.抛物线在y=x2-2x-3在x轴上截得的线段长度是 .17.设矩形窗户的周长为6m,则窗户面积S(m2)与窗户宽x (m)之间的函数关系式是,自变量x的取值范围是 .18.设A、B、C三点依次分别是抛物线y=x2-2x-5与y轴的交点以及与x轴的两个交点,则△ABC的面积是 .19.抛物线上有三点(-2, 3)、(2,-8)、(1,3),此抛物线的解析式为 .20.已知一个二次函数与x轴相交于A、B, 与y轴相交于C,使得△ABC为直角三角形,这样的函数有许多,其中一个是 .三、解答题(共50分)21.(4分)已知抛物线的顶点坐标为M(l,-2 ),且经过点N(2,3).求此二次函数的解析式.22.(8分)把抛物线y=ax2+bx+c向左平移2个单位,同时向下平移l个单位后,恰好与抛物线y=2x2+4x+1重合.请求出a、b、c的值,并画出一个比较准确的示意图.23.(8分)二次函数y=ax 2+bx+c 的图像的一部分如下图,已知它的顶点M 在第二象限,且该函数图像经过点A (l,0)和点B(0,1).(1)请判断实数a 的取值范围,并说明理由;(2)设此二次函数的图像与x 轴的另一个交点为c ,当△AMC 的面积为△ABC 面积的1.25倍时,求a 的值.24.(10分)对于抛物线y=x 2+bx+c 给出以下陈述:① 它的对称轴为x=2;②它与x 轴有两个交点为A 、B;③△APB 的面积不小于27(P 为抛物线的顶点).求使①、②、③ 得以同时成立时,常数b 、c 的取值限制.25.(10分)分别写出函数y=x 2+ax+3(-1≤x ≤1)在常数a 满足下列条件时的最小值:(l)0<a <3;(2)a>2.3.提示:可以利用图像哦,最小值可用含有a 的代数式表示26.(10分)已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10, OC=6,(1)如图甲:在OA 上选取一点D ,将△COD 沿CD 翻折,使点O 落在BC 边上,记为E .求折痕CD 所在直线的解析式;(2)如图乙:在OC 上选取一点F ,将△AOF 沿AF 翻折,使点O 落在BC 边,记为G. ①求折痕AF 所在直线的解析式;②再作GH//AB 交AF 于点H ,若抛物线2112y x h =-+过点H,求此抛物线的解析式,并判断它与直线AF 的公共点的个数.(3)如图丙:一般地,在以OA、OC上选取适当的点I、J,使纸片沿IJ翻折后,点O落在BC边上,记为K.请你猜想:①折痕IJ所在直线与第(2)题②中的抛物线会有几个公共点;②经过K作KL//AB与IJ相交于L,则点L是否必定在抛物线上. 将以上两项猜想在(l)的情形下分别进行验证.[参考答案]A 卷B 卷。
1.若265(1)m m y m --=+是二次函数,则m=( )A .5 B .6 C .7 D .8 2.2y ax bx c =++ (其中a 、b 、c 为常数)为二次函数的条件是() A .0b ≠ B .0c ≠ C .000a b c ≠≠≠,, D .0a ≠3.已知函数2y x =,下列说法不正确的是( )A .当0x <时,y 随x 增大而减小 B .0x≠时,函数值总是正的 C .当0x>时,y 随x 增大而增大 D .函数图像有最高点 4.二次函数2y x =-,若0y <,则自变量x 的取值范围是( )A .x 可取一切实数B . 0x ≠ C . 0x > D . 0x <5.已知二次函数y ax bx c =++2的图象如下左图所示,下列结论:(1)a b c ++<0;(2)a b c -+>0;(3)abc >0(4)b a =2.其中正确的结论有( ) A . 4个B . 3个C . 2个D . 1个6242,M a b c =++N a b c =-+,42P a b =+,则( )A .000M N P >>>,,B .000M N P ><>,,C .000M N P <>>,,D .000M N P <><,,7.二次函数的图像经过(0,3),(-2,-5),(1,4)三点,则它的解析式为( )A .322++-=x x yB . 32+-=x x yC .223y x x =--+D .223y x x =-+8.已知抛物线的顶点坐标为(2,1),且抛物线经过点(3,0),则这条抛物线的解析式是( ) A .21413999y x x =++ B .245y x x =-+C . 2145999y x x =--+ D .243y x x =+- 9.二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A .ab <0B .bc <0C .a+b+c >0D .a-b+c <010.已知二次函数 y =ax 2+bx +c ,且a <0,a -b +c >0,则一定有( )A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac ≤011.二次函数221y x x =-+与x 轴的交点个数是( )A .0个 B .1个 C .2个 D .不能确定12.与x 轴无交点的抛物线是( ) A .223yx =- B .22y x x =+ C .2112y x =-+ D .21(1)12y x =--- 13.已知抛物线2253y x x =+-,在x 轴截得的线段长是( )A .-92 B . 92 C .72 D .52 14.把二次函数122--=x x y 配方成顶点式为( )A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x y D .2)1(2-+=x yx=-1 y -1 0 1 x x yO15.直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )A .(0,0)B .(1,-2)C .(0,-1)D .(-2,1)2.已知点2(1)a -,在抛物线上,则a 的值为__________;3.直线2y x =+与抛物线2y x =的交点坐标为__________; 7.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到;8.对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 ; 9.已知抛物线1C 的解析式是5422+-=x x y ,抛物线2C 与抛物线1C 关于x 轴对称,则抛物线2C 的解析式为_____________;12.已知抛物线y =ax 2+bx +c 经过(-1,2)和(3,2)两点,则4a +2b +3的值为 ;13.抛物线3(4)(2)y x x =+-与x 轴的两交点坐标为____________,与y 轴的交点坐标为_______;14.设A ,B ,C 分别为抛物线224y x x =--的图像与y 轴的交点及与x 轴的两个交点, 则ABC △的面积为_________; 2.已知二次函数23)(2)(2++++-m x m x m y =的图象过点(0,5).(1)求m 的值,并写出二次函数的解析式;(2)求出二次函数图象的顶点坐标、对称轴.3.在同一平面直角坐标系中,抛物线2y ax =和直线2y x =+,相交于两点A 、B ,而2y ax =和直线2y x b =+相交于两点B 、C ,已知A 点坐标是(2,4),求点B 和C 的坐标.4.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题: (1)由已知图象上的三点坐标,求累积利润s (万元)与时间t (月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)问第8个月公司所获利润是多少万元?5. 已知抛物线822--=x x y . (Ⅰ)求证:该抛物线与x 轴一定有两个交点;(Ⅱ)若该抛物线与x 轴的两个交点分别为A 、B ,且它的顶点为P ,求△ABP 的面积.6.已知二次函数的图象过A (-3,0)、B (1,0)两点. (1)当这个二次函数的图象又过点C (0,3)时,求其解析式;(2)设(1)中所求二次函数图象的顶点为P ,求::APCABC S S △△的值;8.如下图,已知抛物线c bx x y ++-=2与x 轴的两个交点分别为A (1x ,0),B (2x ,0),且1x +2x =4,3121=x x .(1)求此抛物线的解析式; (2)设此抛物线与y 轴的交点为C ,过点B 、C 作直线,求此直线的解析式;(3)求△AB C 的面积.。
CD A 第2章 二次函数 单元测试一、选择题(本题有lO 小题。
每小题3分,共30分.每小题只有一个选项是正确的。
) 1.2008的相反数是( ) (A) 2008 (B)20081 (C)2008- (D)20081-2.使分式21-x 有意义的x 的取值范围为 ( ) (A )2≠x (B )2-≠x (C )2->x (D )2<x3.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个, 则摸到黄球的概率是( ) (A )18 (B )13 (C )38 (D )354、下列函数中,反比例函数是( )A 、 ()11x y -=B 、 11y x =+C 、 21y x= D 、 13y x = 5. 如果反比例函数y=xk的图像经过点(2,3),那么次函数的图像经过点( ) A.(-2,3) B.(3,2) C.(3,-2) D.(-3,2)6.下列各点中,不在函数y=2x+1的图象上的是 ( ) (A )( 0,1 ) (B )( 1,3 ) (C )( -12,0 ) (D )( -1, 3 )7、如果矩形的面积为6cm 2,那么它的长cm 与宽cm 之间的函数关系用图象表示大致( )A B C D 8、函数y=2x-1与y= -x2在同一坐标系中的大致图象是( )9.如图,是某人骑自行车的行驶路程S (千米)与行驶时间t (时)的函数图象,下列说法错误的是 ( )(A ) 从11时到14时共行驶了30千米 (B )从12时到13时匀速前进(C )从12时到13时原地休息(D )从13时到14时的行驶速度与11时到12时的行驶速度相同10.如图,等腰梯形ABCD 中,AD ∥BC ,AB=CD,AE ∥DC ,∠B=60º,BC=3,△ABE 的周长为o y x y x o y x o y x o乘车50% 步行20%骑车人数0 5 15 20 25 6,则此等腰梯形的周长是( ).(A )8 (B )10 (C )12 (D ) 16 二、填空题(本题有9小题,每空3分,共30分) 11.计算:__________1)-2(-)1(02008=-。
第2章 二次函数 单元测试一、选择题〔每题3分,共24分〕1.点〔a ,8〕在二次函数y =a x 2的图象上,那么a 的值是〔 〕 A .2 B .-2 C .±2 D .±2 2.抛物线y =x 2+2x -2的图象最高点的坐标是〔 〕A .〔2,-2〕B .〔1,-2〕C .〔1,-3〕D .〔-1,-3〕3.假设y =(2-m)23mx -是二次函数,且开口向上,那么m 的值为( )A .5±B .-5C .5D .04.二次函数y ax bx c =++2的图象如图1所示,那么以下结论正确的选项是〔 〕 A .a b c ><>000,, B .a b c <<>000,, C .a b c <><000,,D .a b c <>>000,,5.如果二次函数y ax bx c =++2〔a >0〕的顶点在x 轴上方,那么〔 〕A .b 2-4ac ≥0B .b 2-4ac <0C .b 2-4ac >0D .b 2-4ac =0 6.h 关于t 的函数关系式为h =12gt 2(g 为正常数,t 为时间), 那么如图2中函数的图像为( )7.二次函数y =-12x 2-3x -52,设自变量的值分别为x 1,x 2,x 3,且-3<x 1<x 2<x 3, 那么对应的函数值y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 18.关于二次函数y =x 2+4x -7的最大(小)值,表达正确的选项是( ) A .当x =2时,函数有最大值 B .x =2时,函数有最小值 C .当x =-1时,函数有最大值D .当x =-2时,函数有最小值二、填空题〔每题3分,共24分〕 9.二次函数y =-122x 2+3的开口方向是_________. 0thAth BthDthC图2图110.抛物线y =x 2+8x -4与直线x =4的交点坐标是__________.11.假设二次函数y =ax 2的图象经过点〔-1,2〕,那么二次函数y =ax 2的解析式是___. 12.抛物线22b x x y ++=经过点1()4a -,和1()a y -,,那么1y 的值是 .13.二次函数y =ax 2+bx +c 的图象与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C (0,3),那么二次函数的解析式是 .14.假设函数y =3x 2与直线y =kx +3的交点为〔2,b 〕,那么k =__,b =__. 15.函数y =9-4x 2,当x =_________时有最大值________.16.两数和为10,那么它们的乘积最大是_______,此时两数分别为________. 三、解答题〔共52分〕17.求以下函数的图像的对称轴、顶点坐标及与x 轴的交点坐标.(1)y =4x 2+24x +35; (2)y =-3x 2+6x +2; (3)y =x 2-x +3; (4)y =2x 2+12x +18.18.抛物线C 1的解析式是5422+-=x x y ,抛物线C 2与抛物线C 1关于x 轴对称,求抛物线C 2的解析式.19.填表并解答以下问题:x … -1 0 1 2 … y 1=2x +3 … … y 2=x 2……(1)(2)当x 从1开场增大时,预测哪一个函数的值先到达16.(3)请你编出一个二次项系数是1的二次函数,使得当x =4时,函数值为16.编出的函数解析式是什么? 20.抛物线y =x 2-2x -8.(1)试说明该抛物线与x 轴一定有两个交点.(2)假设该抛物线与x 轴的两个交点分别为A 、B (A 在B 的左边),且它的顶点为P , 求△ABP 的面积. 21.:如图3,在Rt △ABC 中,∠C =90°,BC =4,AC =8,点D 在斜边AB 上, 分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE =x ,DF =y . (1)用含y 的代数式表示AE .(2)求y 与x 之间的函数关系式,并求出x 的取值范围.(3)设四边形DECF 的面积为S ,求出S 的最大值.DCBF EA图3 图422.〔2005年浙江省丽水市中考试题〕某校的围墙上端由一段段一样的凹曲拱形栅栏组成,如图4所示,其拱形图形为抛物线的一局部,栅栏的跨径AB 间,按一样的间距0.2米用5根立柱加固,拱高OC 为0.6米.(1) 以O 为原点,OC 所在的直线为y 轴建立平面直角坐标系,请根据以上的数据,求出抛物线y =ax 2的解析式;(2)计算一段栅栏所需立柱的总长度〔准确到0.1米〕.第2章二次函数水平测试〔四〕参考答案:一、1,A ;2,D ;3,B ;4,D ;5,B ;6,A ;7,A ;8,D . 二、9,下;10,(-4,-20);11,y =2x 2;12,43;13,y =x 2-4x +3;14,k =92,b =12;15,0、9;16,25 5、5.三、17,(1)对称轴是直线x =-3,顶点坐标是(-3,-1),解方程4x 2+24x +35=0,得x 1=52-,x 2=72-.故它与x 轴交点坐标是(52-,0),(72-,0).(2)对称轴是直线x =1,顶点坐标是(1,5),解方程-3x 2+6x +2=0,得1211x x =+=x 轴的交点坐标是1010⎛⎫⎛⎫+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,.(3)对称轴是直线x =12,顶点坐标是11124⎛⎫⎪⎝⎭, ,解方程x 2-x +3=0,得12x x ==,故它与x 轴的交点坐标是00⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭.(4)对称轴是直线x=-3,顶点坐标是(-3,0),它与x轴的交点坐标是(-3,0);18,经检验,点A〔0,5〕、B〔1,3〕、C〔-1,11〕都在抛物线C1上.点A、B、C关于x轴的对称点分别为A′〔0,-5〕、B′〔1,-3〕、C′〔-1,-11〕,它们都在抛物线C2上.设抛物线C2的解析式为cbxaxy++=2,那么5311.ca b ca b c=-⎧⎪++=-⎨⎪-+=-⎩,,解得245.abc=-⎧⎪=⎨⎪=-⎩,,所以抛物线的解析式是5422-+-=xxy;19,(1)图略,(2)y2=x2的函数值先到达16,(3)如:y3=(x-4)2+16;20,(1)解方程x2-2x-8=0,得x1=-2,x2=4.故抛物线y=x2-2x-8与x轴有两个交点.(2)由(1)得A(-2,0),B(4,0),故AB=6.由y=x2-2x-8=x2-2x+1-9=(x-1)2-9.故P点坐标为(1,-9),过P作PC⊥x轴于C,那么PC=9,∴S△ABP=12AB·PC=12×6×9=27;21,(1)由得DECF是矩形,故EC=DF=y,AE=8-EC=8-y.(2)∵DE∥BC,∴△ADE∽△ABC,∴DE AE BC AC=,即848x y-=.∴y=8-2x(0<x<4).(3)S=xy=x(8-2x)=-2(x-2)2+8.∴当x=2时,S有最大值8;22,〔1〕由OC=0.6,AC=0.6,得点A的坐标为〔0.6,0.6〕,代入y=ax2,得a=53,∴抛物线的解析式为y=53x2,〔2〕可设右边的两个立柱分别为C1D1,C2D2,那么点D1,D2的横坐标分别为0.2,0.4,代入y=53x2,得点D1,D2的纵坐标分别为:y1=53×0.22≈0.07,y2=53×0.42≈0.27,∴立柱C1D1=0.6-0.07=0.53,C2D2=0.6-0.27=0.33,由于抛物线关于y轴对称,栅栏所需立柱的总长度为:2〔C1D1+ C2D2〕+OC=2〔0.53+0.33〕+0.6≈2.3米.。
2020浙教版九年级数学上册二次函数单元测试卷含答案一.填空题(共8小题,3*8=24)1.若y与x的函数+3x是二次函数,则m=.2.如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标系,作出函数y=2x2与y=﹣2x2的图象,则阴影部分的面积是.3.若抛物线y=﹣3x2+2x+m与x轴有两个公共点,则m的取值范围是.4.已知抛物线y=ax2+bx+c经过A(0,2),B(4,2),对于任意a>0,点P(m,n)均不在抛物线上.若n>2,则m的取值范围是.5.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.6.在实际问题中往往需要求得方程的近似解,这个时候,我们通常利用函数的图象来完成.如,求方程x2﹣2x﹣2=0的实数根的近似解,观察函数y=x2﹣2x﹣2的图象,发现,当自变量为2时,函数值小于0(点(2,﹣2)在x轴下方),当自变量为3时,函数值大于0(点(3,1)在x轴上方).因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在2<x<3这一段经过x轴,也就是说,当x取2、3之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在2、3之间有根.进一步,我们取2和3的平均数2.5,计算可知,对应的数值为﹣0.75,与自变量为3的函数值异号,所以这个根在2.5与3之间任意一个数作为近似解,该近似解与真实值的差都不会大于3﹣2.5=0.5.重复以上操作,随着操作次数增加,根的近似值越来越接近真实值.用以上方法求得方程x2﹣2x﹣2=0的小于0的解,并且使得所求的近似解与真实值的差不超过0.3,该近似解为7.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,则下列结论:①abc>0②a﹣b+c<0;③2a+b+c>0;④x(ax+b)≤a+b;其中正确的有8.已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标;(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=.二.选择题(共10小题,3*10=30)9.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.半圆面积S与半径R之间的关系10.抛物线y=2x2﹣4x+c经过点(2,﹣3),则c的值为()A.﹣1 B.2 C.﹣3 D.﹣211.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2 D.y=x2+212.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x2B.y=﹣x2C.y=x2D.y=﹣x213.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b 的大致图象不可能是()A.B.C.D.14.已知当x≥1时,关于x的二次函数y=x2+2kx+1的函数值y随x的增大而增大,则k的取值范围为()A.k=﹣1 B.k≥﹣1 C.k≤﹣1 D.k≤115.已知二次函数y=4x2+4x﹣1,当自变量x取两个不同的值x1,x2时,函数值相等,则当x取时的函数值为()A.﹣1 B.﹣2 C.2 D.116.当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.1 B.2 C.1或2 D.0或317.如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为()A.2.2 B.2.3 C.2.4 D.2.518.已知抛物线y=a(x﹣3)2+过点C(0,4),顶点为M,与x轴交于A、B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x=3;②点C在⊙D外;③在抛物线上存在一点E,能使四边形ADEC为平行四边形;④直线CM与⊙D相切.正确的结论是()A.①③B.①④C.①③④D.①②③④三.解答题(共8小题,66分)19.(6分)在平面直角坐标系xOy中,已知点A(0,2),B(2,2),抛物线F:y=x2﹣2mx+m2﹣2.(1)求抛物线F的顶点坐标(用含m的式子表示);(2)当抛物线F与线段AB有公共点时,直接写出m的取值范围.20.(6分)函数y=mx2﹣2mx﹣3m是二次函数.(1)如果该二次函数的图象与y轴的交点为(0,3),那么m=;(2)在给定的坐标系中画出(1)中二次函数的图象.21.(8分)阅读材料:我们学过一次函数的图象的平移,如:将一次函数y=2x的图象沿x轴向右平移1个单位长度可得到函数y=2(x﹣1)的图象,再沿y轴向上平移1个单位长度,得到函数y=2(x﹣1)+1的图象;如果将一次函数y=2x的图象沿x轴向左平移1个单位长度可得到函数y=2(x+1)的图象,再沿y 轴向下平移1个单位长度,得到函数y=2(x+1)﹣1的图象;仿照上述平移的规律,解决下列问题:(1)将一次函数y=﹣2x的图象沿x轴向右平移3个单位长度,再沿y轴向上平移1个单位长度,得到函数的图象;(2)将y=x2的函数图象沿y轴向下平移3个单位长度,得到函数的图象,再沿x轴向左平移1个单位长度,得到函数的图象;(3)函数y=(x+2)2+2x+5的图象可由y=x2+2x的图象经过怎样的平移变换得到?22.(8分)问题:探究y=x3﹣2x的图象与性质操作:(1)请在横线上补充完整表格:﹣﹣﹣﹣﹣(2)请在图中根据剩余的点补全此函数的图象;发现:写出该函数图象的一条性质;应用:(1)方程实数根的个数为个.(2)x的解集为.23.(8分)某班数学兴趣小组对函数y=|x2﹣2x|的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围取足全体实数,x与y的几组对应值列表如下:其中m=.(2)根括上表数据,在如图所示的平面直角坐标系中描点,井画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出函数的一条性质;(4)进一步探究函数图象解决问题:①方程|x2﹣2x|=有个实数根;②在(2)问的平面直角坐标系中画出直线y=﹣x+1,根据图象写出方程|x2﹣2x|=﹣x+1的一个正数根约为.(精确到0.1)24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)经过点A(0,﹣3)和B(3,0).(1)求c的值及a、b满足的关系式;(2)若抛物线在A、B两点间从左到右上升,求a的取值范围;(3)结合函数图象判断,抛物线能否同时经过点M(﹣1+m,n)、N(4﹣m,n)?若能,写出一个符合要求的抛物线的表达式和n的值,若不能,请说明理由.25.(10分)在平面直角坐标系中,如果一个点的纵坐标恰好是横坐标倍,那么我们就把这个点定义为“萌点”.(1)若点A、B、C、D的坐标分别为(﹣1,0)、(0,)、(1,0)、(0,),则四边形ABCD四条边上的“萌点”坐标是.(2)若一次函数y=kx+2k﹣1的图象上有一个“萌点”的横坐标是﹣3,求k值;(3)若二次函数y=+k的图象上没有“萌点”,求k的取值范围.26.(10分)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x =2.(1)求抛物线的函数表达式;(2)设D为抛物线的顶点,连接DA、DB,试判断△ABD的形状,并说明理由;(3)设P为对称轴上一动点,要使PC﹣PB的值最大,求出P点的坐标.参考答案一.填空题(共8小题)1.若y与x的函数+3x是二次函数,则m=﹣1.【分析】由二次函数的定义可知m2+1=2,m﹣1≠0,从而可求得m的值.【解答】解:∵+3x是二次函数,∴m2+1=2,m﹣1≠0.解得:m=﹣1.故答案为:﹣1.【点评】本题主要考查的是二次函数的定义,掌握二次函数的定义是解题的关键.2.如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标系,作出函数y=2x2与y=﹣2x2的图象,则阴影部分的面积是8.【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,而正方形面积为16,由此可以求出阴影部分的面积.【解答】解:∵函数y=2x2与y=﹣2x2的图象关于x轴对称,∴图中的阴影部分的面积是图中正方形面积的一半,而边长为4的正方形面积为16,所以图中的阴影部分的面积是8.故答案为8.【点评】本题考查的是关于x轴对称的二次函数解析式的特点,解答此题的关键是根据函数解析式判断出两函数图象的特点,再根据正方形的面积即可解答.3.若抛物线y=﹣3x2+2x+m与x轴有两个公共点,则m的取值范围是.【分析】根据抛物线y=﹣3x2+2x+m与x轴有两个公共点,可知b2﹣4ac>0,从而可以求得m的取值范围.【解答】解:∵抛物线y=﹣3x2+2x+m与x轴有两个公共点,∴22﹣4×(﹣3)×m>0,解得,m>﹣,故答案为:m>﹣.【点评】本题考查二次函数图象与系数的关系、抛物线的交点,解答本题的关键是明确题意,利用二次函数的性质解答.4.已知抛物线y=ax2+bx+c经过A(0,2),B(4,2),对于任意a>0,点P(m,n)均不在抛物线上.若n>2,则m的取值范围是0≤m≤4.【分析】依照题意画出图形,由二次函数图象上点的坐标特征可得出当n>2时m<0或m>4,再结合图形即可找出:当n>2时,若点P(m,n)均不在抛物线上,则0≤m≤4,此题得解.【解答】解:依照题意,画出图形,如图所示.∵当n>2时,m<0或m>4,∴当n>2时,若点P(m,n)均不在抛物线上,则0≤m≤4.故答案为:0≤m≤4.【点评】本题考查了二次函数图象上点的坐标特征,依照题意画出图形,利用数形结合解决问题是解题的关键.5.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是5.【分析】设MN=y,PC=x,根据正方形的性质和勾股定理列出y2关于x的二次函数关系式,求二次函数的最值即可.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.【点评】本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.6.在实际问题中往往需要求得方程的近似解,这个时候,我们通常利用函数的图象来完成.如,求方程x2﹣2x﹣2=0的实数根的近似解,观察函数y=x2﹣2x﹣2的图象,发现,当自变量为2时,函数值小于0(点(2,﹣2)在x轴下方),当自变量为3时,函数值大于0(点(3,1)在x轴上方).因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在2<x<3这一段经过x轴,也就是说,当x取2、3之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在2、3之间有根.进一步,我们取2和3的平均数2.5,计算可知,对应的数值为﹣0.75,与自变量为3的函数值异号,所以这个根在2.5与3之间任意一个数作为近似解,该近似解与真实值的差都不会大于3﹣2.5=0.5.重复以上操作,随着操作次数增加,根的近似值越来越接近真实值.用以上方法求得方程x2﹣2x﹣2=0的小于0的解,并且使得所求的近似解与真实值的差不超过0.3,该近似解为﹣0.75【分析】观察函数y=x2﹣2x﹣2的图象,发现,当自变量为0时,函数值小于0,当自变量为﹣1时,函数值大于0,求得﹣1和0的平均数﹣0.5,对应的数值为﹣0.75,与自变量为﹣1的函数值异号,再求﹣1和﹣0.5的平均数﹣0.75,对应的数值为0.0625,即可求得这个根在﹣0.75与﹣0.5之间任意一个数作为近似解,由﹣0.5﹣(﹣0.75)=0.25<0.3,即可求得近似值.【解答】解:观察函数y=x2﹣2x﹣2的图象,发现,当自变量为0时,函数值小于0,当自变量为﹣1时,函数值大于0,因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在﹣1<x<0这一段经过x轴,也就是说,当x取﹣1、0之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在﹣1、0之间有根.我们取﹣1和0的平均数﹣0.5,计算可知,对应的数值为﹣0.75,与自变量为﹣1的函数值异号,所以这个根在﹣1与﹣0.5之间,取﹣1和﹣0.5的平均数﹣0.75,计算可知,对应的数值为0.0625,与自变量为﹣0.5的函数值异号,所以这个根在﹣0.75与﹣0.5之间任意一个数作为近似解,该近似解与真实值的差都不会大于﹣0.5﹣(﹣0.75)=0.25<0.3,该近似解为﹣0.75,故答案为﹣0.75.【点评】本题考查的是根据图象求一元二次方程的解,读懂函数图象,从中获取正确的信息是解题的关键.7.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,则下列结论:①abc>0②a﹣b+c<0;③2a+b+c>0;④x(ax+b)≤a+b;其中正确的有②③④【分析】由已知对称轴x=1,b=﹣2a,由图可知c>0,a<0,①abc<0;②当x=﹣1时,y<0,则有a ﹣b+c<0;③2a+b+c=2a﹣2a+c=c>0;④当x=1时,函数y有最大值a+b+c,所以x(ax+b)+c≤a+b+c,即x(ax+b)≤a+b;【解答】解:∵对称轴x=1,∴b=﹣2a,由图可知c>0,a<0,①abc<0,不正确;②当x=﹣1时,y<0,∴a﹣b+c<0;正确;③2a+b+c=2a﹣2a+c=c>0;正确;④当x=1时,函数y有最大值a+b+c,∴x(ax+b)+c≤a+b+c,∴x(ax+b)≤a+b;正确;故答案为②③④;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.8.已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标(1,4);(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=﹣.【分析】(1)利用待定系数法求得抛物线解析式,然后利用配方法将抛物线解析式转化为顶点式,可以直接得到答案;(2)将点Q(x,y)代入抛物线解析式得到:y=ax2﹣2ax+c.结合一次函数解析式推知:D(x,kx+c).则由两点间的距离公式知QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.在Rt△QED中,由锐角三角函数的定义推知tanβ===ax﹣2a﹣k.所以tanβ随着x的增大而减小.结合已知条件列出方程组,解该方程组即可求得a的值.【解答】解:(1)当a=﹣1,m=0时,y=﹣x2+2x+c,A点的坐标为(3,0),∴﹣9+6+c=0.解得c=3.∴抛物线的表达式为y=﹣x2+2x+3.即y=﹣(x﹣1)2+4.∴抛物线的顶点坐标为(1,4),故答案为:(1,4).(2)∵点Q(x,y)在抛物线上,∴y=ax2﹣2ax+c.又∵QD⊥x轴交直线l:y=kx+c(k<0)于点D,∴D点的坐标为(x,kx+c).又∵点Q是抛物线上点B,C之间的一个动点,∴QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.∵QE=x,∴在Rt△QED中,tanβ===ax﹣2a﹣k.∴tanβ是关于x的一次函数,∵a<0,∴tanβ随着x的增大而减小.又∵当2≤x≤4时,β恰好满足30°≤β≤60°,且tanβ随着β的增大而增大,∴当x=2时,β=60°;当x=4时,β=30°.∴,解得,故答案为:﹣.【点评】考查了二次函数综合题,涉及了待定系数法求二次函数解析式,二次函数图象的性质,二次函数解析式的三种性质,一次函数的性质,锐角三角函数的定义等知识点,综合性较强,难度较大.二.选择题(共10小题)9.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.半圆面积S与半径R之间的关系【分析】根据二次函数的定义,分别列出关系式,进行选择即可.【解答】解:A、y=kx+b,是一次函数,错误;B、t=,是反比例函数,错误;C、C=3a,是正比例函数,错误;D、S=.是二次函数,正确;故选:D.【点评】本题主要考查的是二次函数定义,根据题意列出函数关系式是解题的关键.10.抛物线y=2x2﹣4x+c经过点(2,﹣3),则c的值为()A.﹣1 B.2 C.﹣3 D.﹣2【分析】将经过的点的坐标代入抛物线求解即可.【解答】解:∵抛物线y=2x2﹣4x+c经过点(2,﹣3),∴2×22﹣4×2+c=﹣3,解得c=﹣3,故选:C.【点评】本题考查了待定系数法求二次函数解析式,二次函数图象上点的坐标适合解析式是解题的关键.11.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2 D.y=x2+2【分析】过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,由此得出关于x和y的方程,即可得出关系式.【解答】解:过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,∴HC=3,PC=1,BP=5,PE=AH,∵BD=DE=y,∴在Rt△EDP中,y2=(5﹣y)2+PE2,∵x=6AH÷2=3AH,∴y2=(5﹣y)2+,∴y=x2+,故选:A.【点评】此题主要考查了根据实际问题列二次函数关系式的知识,关键是根据等腰三角形的性质进行分析,难度适中.12.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x2B.y=﹣x2C.y=x2D.y=﹣x2【分析】直接利用图象假设出抛物线解析式,进而得出答案.【解答】解:设抛物线的解析式为:y=ax2,将B(45,﹣78)代入得:﹣78=a×452,解得:a=﹣,故此抛物线钢拱的函数表达式为:y=﹣x2.故选:B.【点评】此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是解题关键.13.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b 的大致图象不可能是()A.B.C.D.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.【解答】解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A错误;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B错误;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C错误;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D正确;故选:D.【点评】本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点.14.已知当x≥1时,关于x的二次函数y=x2+2kx+1的函数值y随x的增大而增大,则k的取值范围为()A.k=﹣1 B.k≥﹣1 C.k≤﹣1 D.k≤1【分析】利用二次函数的性质得到抛物线的对称轴为:x=﹣k,则当x≥﹣k时,函数值y随x的增大而增大,再根据“当x≥1时,关于x的二次函数y=x2+2kx+1的函数值y随x的增大而增大”,得到关于k的不等式,解之即可.【解答】解:抛物线的对称轴为:x=﹣=﹣k,∵抛物线开口向上,∴x≥﹣k时,函数值y随x的增大而增大,又∵当x≥1时,关于x的二次函数y=x2+2kx+1的函数值y随x的增大而增大,∴﹣k≤1,解得:k≥﹣1,故选:B.【点评】本题考查了二次函数图象与系数的关系,熟练掌握二次函数的图象和性质是解题的关键.15.已知二次函数y=4x2+4x﹣1,当自变量x取两个不同的值x1,x2时,函数值相等,则当x取时的函数值为()A.﹣1 B.﹣2 C.2 D.1【分析】先求出抛物线的对称轴,根据抛物线的对称性得到x2﹣(﹣)=﹣﹣x1,所以=﹣,然后计算当x=﹣时的函数值即可.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣,而自变量x取两个不同的值x1,x2时,函数值相等,∴x2﹣(﹣)=﹣﹣x1,∴x1+x2=﹣1,∴x==﹣,当x=﹣时,y=4×(﹣)2+4×(﹣)﹣1=﹣2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.16.当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.1 B.2 C.1或2 D.0或3【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.17.如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为()A.2.2 B.2.3 C.2.4 D.2.5【分析】根据函数值,可得一元二次方程的近似根.【解答】解:如图:x=2.3,y=﹣0.11,x=2.4,y=0.56,x2+2x﹣10=0的一个近似根是2.32.故选:B.【点评】本题考查了图象法求一元二次方程的近似根,图象与x轴的交点的横坐标就是一元二次方程的解.18.已知抛物线y=a(x﹣3)2+过点C(0,4),顶点为M,与x轴交于A、B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x=3;②点C在⊙D外;③在抛物线上存在一点E,能使四边形ADEC为平行四边形;④直线CM与⊙D相切.正确的结论是()A.①③B.①④C.①③④D.①②③④【分析】①根据抛物线的解析式即可判定;②求得AD、CD的长进行比较即可判定,③过点C作CE∥AB,交抛物线于E,如果CE=AD,则根据一组等边平行且相等的四边形是平行四边形即可判定;④求得直线CM、直线CD的解析式通过它们的斜率进行判定;【解答】解:由抛物线y=a(x﹣3)2+可知:抛物线的对称轴x=3,故①正确;∵抛物线y=a(x﹣3)2+过点C(0,4),∴4=9a+,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+,令y=0,则﹣(x﹣3)2+=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0);∴AB=10,∴AD=5,∴OD=3∵C(0,4),∴CD==5,∴CD=AD,∴点C在圆上,故②错误;过点C作CE∥AB,交抛物线于E,∵C(0,4),代入y=﹣(x﹣3)2+得:4=﹣(x﹣3)2+,解得:x=0,或x=6,∴CE=6,∴AD≠CE,∴四边形ADEC不是平行四边形,故③错误;由抛物线y=a(x﹣3)2+可知:M(3,),∵C(0,4),∴直线CM为y=x+4,直线CD为:y=﹣x+4,∴CM⊥CD,∵CD=AD=5,∴直线CM与⊙D相切,故④正确;故选:B.【点评】本题考查了抛物线的顶点坐标的求法和对称轴,平行四边形的判定,点是在圆上还是在圆外的判定,切线的判定等.三.解答题(共8小题)19.在平面直角坐标系xOy中,已知点A(0,2),B(2,2),抛物线F:y=x2﹣2mx+m2﹣2.(1)求抛物线F的顶点坐标(用含m的式子表示);(2)当抛物线F与线段AB有公共点时,直接写出m的取值范围.【分析】(1)由函数解析式y=x2﹣2mx+m2﹣2,可求顶点坐标为(m,﹣2);(2)当m≤0时,令x=0,则m2﹣2≤2;当0<m<2时,m2﹣2>2或m2﹣4m+2>2;当m≥2时,令x=2,则m2﹣4m+2≤2;【解答】解:(1)由函数解析式y=x2﹣2mx+m2﹣2=(x﹣m)2﹣2,∴顶点坐标为(m,﹣2);(2)如图,当m≤0时,抛物线F与线段AB有公共点时,令x=0,则m2﹣2≤2,∴﹣2≤m≤2,∴﹣2≤m≤0;当0<m<2时,抛物线F与线段AB有公共点时,m2﹣2>2或m2﹣4m+2>2,∴m>2或m<﹣2或m>4或m<0,∴m不存在;当m≥2时,抛物线F与线段AB有公共点时,令x=2,则m2﹣4m+2≤2,∴0≤m≤4,∴2≤m≤4;综上所述:﹣2≤m≤0,2≤m≤4;【点评】本题考查二次函数图象及性质;分情况讨论函数图象与线段的交点的存在,并将问题转化为不等式求解是关键.20.函数y=mx2﹣2mx﹣3m是二次函数.(1)如果该二次函数的图象与y轴的交点为(0,3),那么m=﹣1;(2)在给定的坐标系中画出(1)中二次函数的图象.【分析】(1)由抛物线与y轴交于(0,3),将x=0,y=3代入抛物线解析式,即可求出m的值;(2)由(1)求得解析式,配方后找出顶点坐标,根据确定出的解析式列出相应的表格,由表格得出7个点的坐标,在平面直角坐标系中描出7个点,然后用平滑的曲线作出抛物线的图象.【解答】解:(1)∵该函数的图象与y轴交于点(0,3),∴把x=0,y=3代入解析式得:﹣3m=3,解得m=﹣1,故答案为﹣1;(2)由(1)可知函数的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4);列表如下:描点;画图如下:【点评】此题考查了待定系数法确定函数解析式,函数图象的画法,以及二次函数的图象上点的坐标特征.21.阅读材料:我们学过一次函数的图象的平移,如:将一次函数y=2x的图象沿x轴向右平移1个单位长度可得到函数y=2(x﹣1)的图象,再沿y轴向上平移1个单位长度,得到函数y=2(x﹣1)+1的图象;如果将一次函数y=2x的图象沿x轴向左平移1个单位长度可得到函数y=2(x+1)的图象,再沿y轴向下平移1个单位长度,得到函数y=2(x+1)﹣1的图象;仿照上述平移的规律,解决下列问题:(1)将一次函数y=﹣2x的图象沿x轴向右平移3个单位长度,再沿y轴向上平移1个单位长度,得到函数的图象;(2)将y=x2的函数图象沿y轴向下平移3个单位长度,得到函数的图象,再沿x轴向左平移1个单位长度,得到函数的图象;(3)函数y=(x+2)2+2x+5的图象可由y=x2+2x的图象经过怎样的平移变换得到?【分析】(1)由于把直线平移k值不变,利用“左加右减,上加下减”的规律即可求解;(2)由于把抛物线平移k值不变,利用“左减右加,上加下减”的规律即可求解;(3)利用平移规律写出函数解析式即可.【解答】解:(1)将一次函数y=﹣2x的图象沿x轴向右平移3个单位长度,再沿y轴向上平移1个单位长度后,得到一次函数解析式为:y=﹣2(x﹣3)+1;(2)∵y=x2的函数图象沿y轴向下平移3个单位长度,∴得到函数y=x2﹣3,再沿x轴向左平移1个单位长度,得到函数y=(x+1)2﹣3;(3)函数y=x2+2x的图象向左平移两个单位得到:y=(x+2)2+2(x+2),然后将其向上平移一个单位得到:y=(x+2)2+2(x+2)+1=(x+2)2+2x+5.【点评】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.22.问题:探究y=x3﹣2x的图象与性质操作:(1)请在横线上补充完整表格:﹣﹣﹣﹣﹣(2)请在图中根据剩余的点补全此函数的图象;发现:写出该函数图象的一条性质当x<﹣2时,y随x的增大而增大;应用:(1)方程实数根的个数为3个.(2)x的解集为﹣<x<0或x>.【分析】操作:(1)把x=4代入函数解析式即可得到结论;(2)由题意补全函数图象即可;发现:根据函数图象得到函数的性质即可;应用:(1)作出直线y=x的图象,根据y=x3﹣2x的图象和直线y=x的交点个数即可得到结论;(2)根据函数图象即可得到结论.【解答】解:操作:(1)当x=4时,函数y=x3﹣2x=×64﹣2×4=;故答案为:;(2)补全函数图象如图所示,发现:根据图象得,当x<﹣2时,y随x的增大而增大;故答案为:当x<﹣2时,y随x的增大而增大;应用:(1)作出直线y=x的图象,由图象知,函数y=x3﹣2x的图象和直线y=x有三个交点,∴方程实数根的个数为3,故答案为:3;(2)根据图象得,当﹣<x<0或x>时,x,∴x的解集为﹣<x<0或x>,故答案为:﹣<x<0或x>.【点评】本题考查了二次函数的图象,函数自变量的取值范围,二次函数的性质,正确的画出函数的图形是解题的关键.23.某班数学兴趣小组对函数y=|x2﹣2x|的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围取足全体实数,x与y的几组对应值列表如下:其中m=0.75.(2)根括上表数据,在如图所示的平面直角坐标系中描点,井画出了函数图象的一部分,请画出该函数图象的另一部分.。
第2章 二次函数 单元测试一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的) 1.函数432-+=x xy 是( )(A )一次函数 (B )二次函数 (C )正比例函数 (D )反比例函数 2.抛物线y=3(x-1)+1的顶点坐标是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1) 3.抛物线y =x 2+x 的顶点在( ) A.第一象限 B.第二象限C.第三象限D.第四象限4.已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥35.二次函数22,,04y ax bx c b ac x y =++===-且时则( )A .=4y -最大, B.=4y -最小, C.=3y -最大, D.=3y -最小, 6.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①>0; ②>0; ③b 2-4>0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个7.将二次函数y =x 2的图象平移后,可得到二次函数y =(x +1)2的图象,平移的方法是( ) A.向上平移1个单位 B.向下平移1个单位 C.向左平移1个单位D.向右平移1个单位8.若抛物线y=ax 2+bx+c 经过原点和第一、二、三象限,则 ( )A .a>0,b>0,c =0B .a<0,b>0,c =0C .a<0,b>0,c =0D .a<0,b<0,c =09.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为252s t t =+,则当4t =时,该物体所经过的路程为( )A .28米B . 48米C .68米D . 88米10.小敏在某次投篮中,球的运动路线是抛物线5.3512+-=x y 的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m二、填空题(本大题共5小题,每小题4分,共20分) 11.抛物线y =4x 2-11x -3与y 轴的交点坐标是______. 12.二次函数223y x x =--的最小值是 .13.请写出一个开口向上,与y 轴交点纵坐标为-1,且经过点(1,3)的抛物线的解析式 . 14.如果将二次函数22y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 .15.如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是 .三、解答题(本大题共6小题,共50分.解答应写出文字说明,证明过程或演算步骤)16.(本题6分)用配方法求出下列二次函数y=x 2-2x-3图象的顶点坐标和对称轴.17.(本题8分)已知y 是关于x 的二次函数,x 与y 的对应值如下表所示:x 的值 -2 0 2 4 y 的值3-2(1)求y 关于x 的二次函数解析式;(2)填出表中空格数值.18.(本题8分)抛物线y= -x 2+ (m-l )与y 轴交于(0,3 )点. (1)求出 m 的值并画出这条抛物线; (2)求它与 x 轴的交点和抛物线顶点的坐标; (3) x 取什么值时,抛物线在x 轴上方?(4)x取什么值时,y的值随 x 值的增大而减小?19.(本题8分)如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.(1)设矩形的一边为(m),面积为 (m2),求关于的函数关系式,并写出自变量的取值范围;(2)当为何值时,所围苗圃的面积最大,最大面积是多少?20.(本题10分)某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个.(1)假设销售单价提高元,那么销售每个篮球所获得的利润是元;这种篮球每月的销售量是__________________个;(用含的代数式表示)(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求最大利润. 21.(本题10分)如图,在矩形ABCD中,AB=6厘米,BC=12厘米,点P从点A出发,沿边AB向点B以1厘米/秒的速度移动,同时,Q 点从B 点出发沿边BC 向点C 以2厘米/秒的速度移动,如果P 、Q 两点分别到达B 、C 两点后就停止移动.据此解答下列问题: (1)运动开始第几秒后,△PBQ 的面积等于8平方厘米?(2)设运动开始后第t 秒时,五边形APQCD 的面积为S 平方厘米,写出S 与t 的函数关系式,并指出自变量的取值范围;(3)求出S 的最小值及t 的对应值.A BCDPQ参考答案1.B 2.A 3.C 4.D 5.C 6.C 7.C 8.A 9.D 10.B 11. (0,-3) 12.-4 13.y=x 2+3x-1等 14.22y x =+1 15.2π16.顶点坐标为(1,-4),对称轴为x=1. 17.(1)y=87x 2-43x-2.(2)9 18.(1)m=4;(2)与x 轴交点为)03(,-,)03(,,顶点为(0,3);(3)3-<x <3;(4)x 0≥19.(1) = ()x x -18 =x x 182+-.自变量的取值范围是0<<18.(2)∵ =x x182+-=()8192+--x ,∴ 当=9时(0<9<18=,苗圃的面积最大,最大面积是81 2m .20.(1)x +10,x 10500- ;(2)设月销售利润为元,由题意得:)10500)(10(x x y -+=,整理得:9000)20(102+--=x y .当20=x 时,有最大值9000.705020=+ , 答:8000元不是最大利润,最大利润是9000元,此时篮球售价为70元. 21.(1)运动开始第2秒或第4秒时,△PBQ 的面积等于8平方厘米.(2)根据题意,得S =6×12-21(6-t )·2t .所以S =t 2-6t +72,其中t 大于0且小于6. (3)由S =t 2-6t +72,得S =(t -3)2+63.因为t 大于0, 所以当t =3秒时,S 最小=63平方厘米.。
1九上《二次函数》单元检测卷(实验中学)一、选择题1、下列各函数中,是y 关于x 的二次函数的为( )A . y =3x -1B . y =x 2+x -1C . y =(x +4)2-x 2D . y =1x 22、抛物线y =(x -3)2-5的顶点坐标是( )A . (3,-5)B . (3,5)C . (-3,5)D . (-3,-5) 3、已知点(-1,2)在二次函数y =ax 2的图像上,那么a 的值是( )A . 1B . -1C . 2D . -2 4、将二次函数y =x 2-2x -2化成y =a (x -m )2+k 的形式,下列变形正确的是( )A . y =(x +1)2-1B . y =(x +1)2-3C . y =(x -1)2-1D . y =(x -1)2-3 5、将函数y =x 2的图像向左平移2个单位后,所得抛物线的解析式是( )A . y =(x +1)2B . y =x 2+4x +3C . y =x 2+4x +4D . y =x 2-4x +4 6、抛物线y =x 2-2x 的图像上三个点的坐标分别为A (-1,y 1),B (2,y 2),C (4,y 3),则y 1,y 2,y 3的大小关系是( ) A . y 3>y 1>y 2 B . y 3>y 2>y 1 C . y 2>y 1>y 3 D . y 2>y 3>y 1 7、抛物线y =ax 2+bx +c (a <0)与x 轴的一个交点坐标为(-1,0),对称轴是直线x =1,其部分图像如图所示,则一元二次方程ax 2+bx +c =0的根是( )A . x 1=0,x 2=3B . x 1=-1,x 2=0C . x 1=-1,x 2=1D . x 1=-1,x 2=3(第7题图) (第8题图)8、抛物线y =ax 2+bx +c (a ≠0)的图像如图所示,对称轴为直线x =- 13 ,则下列结论中不正确的是( )A . abc >0B . a -b +c <0C . a +b +c <0D . 2a -3b =0 9、已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是( ) ( )A . 有最大值-1,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-210、在平面直角坐标系中,若点P 的横坐标和纵坐标相等,则称点P 为“蜕变点”,已知二次函数y =ax 2+2x +c (a ≠0)的图像上有且只有一个蜕变点(12 ,12 ),且当0≤x ≤m 时,函数y =ax 2+2x +c +134 (a ≠0)的最小值为3,最大值为4,则m 的取值范围是 ( )A . -1≤m ≤12B . 12≤m <1 C . 1≤m ≤2 D . m ≥2二、填空题11、若抛物线y =-x 2+3x +c 与y 轴的交点坐标是(0,1),则c 的值为 . 12、已知二次函数y =ax 2+bx +c 的函数值y 与自变量x 的部分对应值如表:则该二次函数图像的对称轴是直线 .13、平时我们在跳绳时,绳子甩到最高处的形状可近似看做抛物线,如图,建立直角坐标系,抛物线的函数表达式为y =- 16 x 2+13 x +32 (单位:m ),绳子甩到最高处时刚好通过站在x =2点处跳绳的学生小明的头顶,则小明的身高为 m .14、已知二次函数y =x 2+6x +m 的顶点在x 轴上,则m 的值为 . 15、函数y =x 2+2x +1 的最小值为 .16、如图,已知二次函数y = 3 x 2的图像经过点O 、B 、C ,点A 在y 轴的正半轴上,若四边形OBAC 为菱形,且∠OBA =120°,则菱形OBAC 的面积为 .17、如图,点A 是抛物线y =x 2-4x 对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ',当O '恰好落在抛物线上时,点A 的坐标为 .(第13题图) (第16题图)(第17题图)18、两栋大楼的部分截面及相关数据如图,小明在甲楼透过窗户E 发现乙楼F 处出现火灾,此时A ,E ,F 在同一直线上,跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在离地面1.2m 高的D 处喷出,水流正好经过E ,F .已知点B 和点E 、点C 和点F 离地高度分别相同,PC =6.2m ,BC =3m ,AB =12m . (1)CF = m ;(2)若消防员将水流抛物线向上平移0.84m ,在向左后退 m ,恰好可把水喷到F 处进行灭火.2三、解答题19、已知抛物线y =x 2+bx +c 经过A (0,2)、B (1,0)两点. (1)求抛物线的解析式;(2)试判断点P (2,0)是否在此函数图像上,请说明理由.20.已知抛物线y =-x 2+4x -3与x 轴交于点A ,B 两点,与y 轴交于点C . (1)求点A ,B 的坐标;(2)平移该二次函数的图像,使平移后的图像经过 原点,求平移后图像对应的二次函数的表达式.21、如图,已知抛物线y =ax2+32 x +4的对称轴是直线x =3,且与x 轴相交于A ,B 两点(B 点在A 点右侧)与y 轴交于点C . (1)求直线BC 的解析式;(2)若M 是直线BC 上方抛物线上一动点,过点M 作y 轴的平行线,交直线BC 于点N ,当线段MN 的长度取得最大值时,求M 点的坐标.22、某服装厂生产A 品种服饰,每件成本为71元,零售商到此服装厂一次性批发A 品牌服装x 件时,批发单价为y 元,y 与x 之间满足如图所示的函数关系,其中批发件数x 为10的正整数倍. (1)当100≤x ≤300时,y 与x 的函数关系式为 ;(2)某零售商到此服装厂一次性批发A 品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A 品牌服装x (100≤x ≤400)件,服装厂的利润为w 元,求x 为何值时,w 最大?最大值为多少?23、如图,抛物线y =x 2+bx +c 与y 轴交于点A (0,2),对称轴为直线x =2,点P 是对称轴上位于抛物线顶点B 上方的一动点,连接AP 并延长交抛物线于点C ,连接AB 、BC . (1)求此抛物线的解析式;(2)若S △ABP :S △BCP =2:1,求点C 的坐标;(3)当∠BAC =45°,求点P 的坐标;(4)将△ABC 沿直线AC 翻折后点B 的对应点恰好落在坐标轴上时,请直接写出此时BP 的长为 .。
第二章 二次函数单元卷班级 姓名 成绩一、 选择题1.二次函数522-+=x x y 取最小值时,自变量x 的值是 ( ) A. 2 B. -2 C. 1 D. -1 2.函数12+-=x y 的图象大致为 ( )A B C D3.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y>0,则m 的取值范围是( ) A .m ≥14 B .m>14 C .m ≤14 D .m<144.无论m 为何实数,二次函数y=x 2-(2-m)x+m 的图象总是过定点( ):A.(1,3)B.(1,0);C.(-1,3)D.(-1,0) 5.二次函数y=mx 2-4x+1有最小值-3,则m 等于( ) A .1 B .-1 C .±1 D .±126.把抛物线1422++-=x x y 的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是 ( )A.6)1(22+--=x y B. 6)1(22---=x yC .6)1(22++-=x y D. 6)1(22-+-=x y7.把抛物线y=2x 2 -4x-5绕顶点旋转180º,得到的新抛物线的解析式是( ) (A )y= -2x 2 -4x-5 (B )y=-2x 2+4x+5 (C )y=-2x 2+4x-9 (D )以上都不对|8.函数y=ax 2+bx+c 的图象如图所示, 那么关于x 的方程ax 2+bx+c-3=0的根的情况是( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等实数根D.无实数根9.如图,Rt △AOB 中,AB⊥OB ,且AB=OB=3,设直线x=•t 截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )10.已知不等式x 2+px +q<0的解集是 -3<x<2,则( ) A .p=-1,q=6; B .p=1,q=6;。
C .p=-1,q=-6;D .p=1,q=-611.若函数y=mx 2+mx+m-2的值恒为负数,则m 取值范围是( ) A .m<0或m>83 B .m<0 C .m ≤0 D .m>8312.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,•若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价( )A .5元B .10元C .15元D .20元 二填空题1.炮弹从炮口射出后飞行的高度h (m )与飞行的时间t (s )•之间的函数关系式为h=v 0tsin3xOyα-5t2,其中v0•是发射的初速度,α是炮弹的发射角,当v0=300m/s,α=30°时,炮弹飞行的最大高度为______m,该炮弹在空中运行了______s落到地面上.2.抛物线y=9x2-px+4与x轴只有一个公共点,则不等式9x2-p2<0的解集是__________.、3.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.4.如图,用2m长的木条,做一个有横档的矩形窗子,为使透进的光线最多,那么这个窗子的面积应为_______m2.5.王翔同学在一次跳高训练中采用了背跃式,跳跃路线正好和抛物线y=2x2+3x+3相吻合,那么他能跳过的最大高度为_________ m.6.有一长方形条幅,长为a m,宽为b m,四周镶上宽度相等的花边,求剩余面积S(m2)与花边宽度x(m)之间的函数关系式为,自变量x的取值范围为。
;三、解答题1.(12分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=++43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,学生的接受能力y的值是多少(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了通过计算来回答.^2.(创新实践题)如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m,跨度为40m,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长3.如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约213.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动员的成绩吗^y4.(应用题)(6分)如图所示,一单杠高2.2m,两立柱间的距离为1.6m,将一根绳子的两端拴于立柱与铁杠的结合处A、B,绳子自然下垂,虽抛物线状,一个身高0.7m的小孩站在距立柱0.4m处,其头部刚好触上绳子的D处,求绳子的最低点O到地面的距离.…5.我县市某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图甲的一条折线表示;西红柿的种植成本与上市时间的关系用图乙表示的抛物线段表示.(1)写出图26-4甲表示的市场售价与时间的函数关系式;(2)写出图26-4乙表示的种植成本与时间的函数关系式;(3)设定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大(注:市场售价和种植成本的单位:元/102kg,时间单位:天)'答案一、DBDCA CCCDD CA二、1.125 30 2. -•4<x<4=-4x2+16x-13'4.165.158;=(a-2x)(b-2x);0<x<b/2三、1.解:(1)当x=10时,y=++43=×102+×10+43=59.(2)当x=8时,y=++43=×82+×8+43=,∴用8分钟与用10分钟相比,学生的接受能力减弱了;当x=15时,y=++43=×152+×15+43=.∴用15分钟与用10分钟相比,学生的接受能力增强了. 2.解:由题意,知抛物线的顶点坐标为(20,16),点B(40,0),∴可设抛物线的关系为y=a(x-20)2+16.)∵点B(40,0)在抛物线上,∴0=a(40-20)2+16,∴a=-1 25.∴y=-125(x-20)2+16.∵竖立柱的点为(15,0)或(25,0),∴当x=15时,y=-125(15-20)2+16=15;当x=25时,y=-125(25-20)2+16=15.∴铁柱应取15m.]3.解:能.∵OC=4,CD=3,∴顶点D坐标为(4,3),设 y=a(x-4)2+3,把A 50,3⎛⎫⎪⎝⎭代入上式,得 53=a(0-4)2+3,∴a=-112-, ∴y= -112-(x-4)2+3,即y=112-x 2+2533x +.令y=0,得112-x 2+2533x +=0,∴x 1=10,x 2=-2(舍去),故该运动员的成绩为10m4.解:如图所示,以O 为坐标原点,水平方向为x 轴,垂直方向为y 轴,建立直角坐标系,设抛物线的解析式为y=ax 2(a ≠0).设A 、B 、D 三点坐标依次为(x A ,y A ),(x B ,y B ),(x D ,y D ),由题意,得AB=,¥∴x A =,x B =,又可得x D =-(12×)=. ∴当x=时,y A =a ·()2=0.64a ; 当x=时,y D =a ·()2=0.16a . ∵y A -y D =, ∴0.64a-0.16a=,∴a=258,∴抛物线解析式为y=258x 2. (当x=时,y D =258×()2=, ∴0.2m 答:绳子的最低点距地面0.2m .5.解:(1)w 1=300(0200),2300(200300).t t t t -≤≤⎧⎨-<≤⎩(2)由图知,抛物线的顶点坐标为(150,100),可设w 2=a (t-150)2+100.又当t=50时,w 2=150,代入求得a=1200, ∴w 2=1200(t-150)2+100.(0≤t ≤300) (3)设t 时刻的纯收益为y ,依题意有y=w 1-w 2,即y=2211175(0200),20022171025(200300).20022t t t t t t ⎧-++≤≤⎪⎪⎨⎪-+-<≤⎪⎩当0≤t ≤200时,配方整理得y=-1200×(t-50)2+100, 所以,当t=50时,y 在0≤t ≤200上有最大值为100. 当200<t ≤300时,配方整理得y=-1200(t-350)2+100. 所以,当t=300时,y•在200<•t•≤300上有最大值.综上所述,由100>可知,y 在0≤t ≤300上,可以取最大值100, 此时t=50,即从2月1日开始的第50天时,上市的西红柿纯收益最大.’。