2016年山东省青岛市中考数学模拟试卷(二)(解析版)
- 格式:doc
- 大小:620.50 KB
- 文档页数:21
第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.如图,在平面直角坐标系中,AB //OC, A (0, 12), B (a, c) , C (b, 0),并且a, b满足b= 府市 /口' + 16. 一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点 B 运动;动点Q 从点。
出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P 运动到点B时,点Q随之停止运动.设运动时间为t (秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,APQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.(1) •, b= ^a-21 J^T^+16,••.a=21, b=16,故B (21, 12) C (16, 0); (2)由题意得:AP=2t, QO=t,贝U: PB=21-2t , QC=16-t,•••当PB=QC时,四边形PQCB是平行四边形,.•.21-2t=16-t,解得:t=5,,P (10, 12) Q (5, 0);(3)当PQ=CQ 时,过Q 作QN^AB,由题意得:122+t2=(16-t) 2, 解得:t=3.5,故P (7, 12), Q (3.5, 0),当PQ=PC时,过P作PM ±x轴,由题意得:QM=t , CM=16-2t ,则t=16-2t,解得:t=16, 2t=32, 3 3故P( 32,12), Q(16,3 30).2.如图1,在平面直角坐标系中, AB ,y 轴于点A, BC ,x 轴于点B,点D 为线段BC 的中点,若AB=a , CD=b ,且J 2 a 8 v 5 +/4我 a +2屈=b .连接AD ,在线段OC 上取一点E,使/ EAD= / DAB .(1)贝U a=, b=(2)求证:AE=OE+CD ;【解答】(1) a =4 v15 , b =2 后,(2)由(1)可知 AB=4 75, CD=BD=2 V 5 , • . AB=CB ,,.AB ±y 轴于点 A, BC±x 轴于点 B,,乙 BAO= / B= / AOC=90° ,••・四边形ABCO 是矩形,••・AB=CB , ••・四边形ABCO 是正方形,延长 CO 至u M ,使得 OM=BD ,贝u ^ABD AOM , ,/4=/M, Z1 = Z2=Z3,. OA//BC, . ・/4=/2+/5=/5+/3=/EAM , . . / M= / EAM , • . AE=EM=OE+OM=OE+BD ••• BD=CD , .1. AE=OE+CD .(3)如图 2 中,设 AE=EM=x .在 RtAAOE 中,AO 2+OE 2=AE 2, - x 2= (4<5 ) 2+ (x-2 J 5 ) 2, . . x=5石, OE=3 而,•.D (4V 5, 2 45), E (3V5 , 0), •. F (0, -6V5 )风0)3.如图,在平面直角坐标系中,有一矩形ABCD,其中A(0, 0), B (m, 0) , D (0, n), m是最接近质的整数,n是16的算术平方根,若将4ABC沿矩形又•角线AC所在直线翻折,点B落在点E处,AE与边CD相交于点M .(1)求AC的长;(2)求4AMC的面积;(3)求点E的坐标.【解答】(1)•' m是最接近#5的整数,• ' m=8,.「n 是16 的算术平方根,,n=4,,B (8, 0), D (0, 4),.••点C 矩形ABCD 的一个顶点,..C (8, 4),,AB=8, BC=4 ,AC=4 J5 ,(2)由折叠有,CE=AD=BC=4 , AE=AB=8 ,设DM=x 则CM=8-x ,・. /ADM= / CEM , /AMD=/CME, /.A ADM ^ACEM , • .AM=CM=8-x , ME=MD , 在RtAADM 中,AD=4 , DM=x , AM=8-x ,根据勾股定理有:AD2+DM 2=AM 2,即:16+x2= (8-x) 2, •1- x=3 , DM=3 , CM=5 , S AAMC = —Ch/|X AD=)>^M=10,2 2(3)过点E作EFXCD,如图,由(2)有,CM=5 , CE=4, ME=DM=3在Rt^CEM 中,由射影定理得,CE2=CFXCM , 16=CFX5,,CF=3.2,••・Ma CE=CMK EF (直角三角形的面积的两种计算) ,,EF=2.4,• . DF=CD -CF=4.8 , BC+EF=6.4 , . . E (4.8, 6.4)4 .已知正方形OABC 在平面直角坐标系中,点 A, C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E, F 分别在OA, OC 上,且OA=4 , OE=2 .将AOEF 绕点O 逆 时针旋转,得△OE I F I ,点E, F 旋转后的对应点为Ei, Fi.(I )①如图①,求EiFi 的长;②如图②,连接CFi, AEi,求证△OAEi^^OCFi;「(II)将AOEF 绕点O 逆时针旋转一周,当 OEi//CFi 时,求点Ei 的坐标(直接写出结果即可)姝 姝CB C 石【解答】(I )①解:二.等腰直角三角形 OEF 的直角顶点O 在原点,OE=2, / EOF=90 , OF=OE=2 ,「. EF=2 血,・ ••将AOEF 绕点 O 逆时针旋转,得△OE i F i, ••.E i F i =EF=2 J 2 ; ②证明:四边形OABC 为正方形,OC=OA .・ •・将AOEF 绕点 O 逆时针旋转,得 △OE i F i,AOE i =/COF i, • △OEF 是等腰直角三角形,・•.△OEiFi 是等腰直角三角形, ••OE i =OF i.在 AOAE i 和 ^OCF i 中,OA=OC, /AOEi=/COF i, OEi=OFi% E・•.△OAE 卢^OCF i (SAS);(n)解:••• OEXOF,卜过点F与OE平行的直线有且只有一条,并与OF垂直,当三角板OEF绕。
2024年中考第二次模拟考试(全国通用卷)数学·全解全析(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项最符合题目1.下列各数中,是无理数的是( )A .2024−B .0C .12024 D【答案】D【详解】解:2024−,0是整数,12024是分数,他们都不是无理数;是无限不循环小数,它是无理数;故选:D .2.若m n >,则22m n ,“W ”中应填( )A .<B .=C .>D .无法确定【答案】C【详解】解:∵m n >,∴22m n >,故选∶C .3.下列判断正确的是( )A .“四边形对角互补”是必然事件B .一组数据6,5,8,7,9的中位数是8C .神舟十三号卫星发射前的零件检查,应选择抽样调查D .甲、乙两组学生身高的方差分别为2 1.6s =甲,20.8s =乙,则乙组学生的身高较整齐 【答案】D【详解】A 、“四边形对角不一定互补”,故四边形对角一定互补是随机事件,故该选项不正确,不符合题意; B 、一组数据6,5,8,7,9,重新排列为5,6,7,8,9,则中位数是7,故该选项不正确,不符合题意; C 、神舟十三号卫星发射前的零件检查,这个调查很重要不可漏掉任何零件,应选择全面调查,故该选项不正确,不符合题意;D 、甲、乙两组学生身高的方差分别为s 甲2=1.6,s 乙2=0.8,则乙组学生的身高较整齐,故该选项正确,符合题意;故选:D .4.如图,12l l ∥,135∠=︒,250∠=︒,则3∠的度数为( )A .85︒B .95︒C .105︒D .116︒【答案】B 【详解】解:∵12l l ∥,∴123180∠+∠+∠=︒,∵135∠=︒,250∠=︒,∴3180355095∠=︒−︒−︒=︒,故选:B .5.中国古代将天空分成东、北、西、南、中区域,称东方为苍龙象,北方为玄武(龟蛇)象,西方为白虎象,南方为朱雀象,是为“四象”.现有四张正面分别印有“苍龙象”“玄武象”“白虎象”“朱雀象”的不透明卡片(除正面图案外,其余完全相同),将其背面朝上洗匀,并从中随机抽取一张,记下卡片正面上的图案后放回,洗匀后再从中随机抽取一张,则抽到的两张卡片恰好是“苍龙象”和“朱雀象”的概率为( )A .12B .14C .16D .18【答案】D 【详解】解:将四张卡片分别记为A ,B ,C ,D ,根据题意可画树状图如下,由图可知共有16种等可能的结果,其中有2种结果为抽到的两张卡片恰好是“苍龙象”和“朱雀象”, ∴抽到的两张卡片恰好是“苍龙象”和“朱雀象”的概率为21168=. 故选D. 6.不等式组11231x x −≤⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】A 【详解】解:11231x x −≤⎧⎨+>⎩①②, 解不等式①得:2x ≤,解不等式②得:1x >−,所以在数轴上表示正确的如图所示:,故选:A .7.如图,在ABCD Y 中,BAD ∠与CDA ∠的平分线相交于点O ,且分别交BC 于点E ,F .OP 为OEF 的中线.已知3BF =,2OP =,则ABCD Y 的周长为( )A .12B .17C .28D .34【答案】D 【详解】解:平行四边形ABCD ,∥,∥A B D C A D B C ∴,180BAD ADC ∴∠+∠=︒, AE 平分BAD ∠,DF 平分ADC ∠,90OAD ODA ∴∠+∠=︒,90AOD EOF ∴∠=∠=︒, OP 是Rt OEF △的中线,12OP EF ∴=,OP EP FP ∴==,3,2BF OP ==,3227BE BF EP FP ∴=++=++=, AE 平分BAD ∠,DAE BAE ∴∠=∠,AD BC ∥,DAE AEB ∴∠=∠,BAE BEA ∴∠=∠,AB BE ∴=,7BE =,7AB CD BE ∴===, DF 平分ADC ∠,ADF CDF ∠=∠∴,AD BC ∥,∴∠=∠ADF CFD ,CDF CFD ∴∠=∠,CD CF ∴=,7,3CD AB BF ===,7310BC CF BF ∴=+=+=, ABCD 的周长为()()2271034AB BC =+=⨯+=,故选:D .8.如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个,先从甲袋中取出2x 个球放入乙袋,再从乙袋中取出(22)x y +个球放入丙袋,最后从丙袋中取出2y 个球放入甲袋,此时三只袋中球的个数相同,则+2x y 的值等于( )A .128B .64C .32D .16【答案】A 【详解】调整后,甲袋中有29-22)x y +(个球,29222292x x y y +−−=−,乙袋中有(292)y −个球,52+2252x y y x +−=+,丙袋中有(52)x +个球.∵一共有29+29+5=63(个)球,且调整后三只袋中球的个数相同,∴调整后每只袋中有633=21÷(个)球,∴52=21x +,292=21y −,∴216x =,28y =,∴222168128x y x y +=⋅=⨯=.故选:A .【点睛】本题考查了幂的混合运算,找准数量关系,合理利用整体思想是解答本题的关键.9.如图,ADF 是O 的内接正三角形,四边形ACEG 是O 的内接正方形,六边形ABDEFH 是O 的内接正六边形,设上述正三角形周长为1C 、正方形周长为2C 、正六边形周长为3C ,则123C C C ::为( )A .1:2B .2C .3342D .6 【答案】D【详解】设O 的半径为r ,如图1所示,在正三角形ADF 中,连接OD ,过O 作OM DF ⊥于M ,则30·cos30ODF DM OD ∠=︒=︒=,,故2DF DM ==;∴正三角形周长1C 为;如图2所示,在正方形ACEG 中,连接OE OC 、,过O 作ON CE ⊥于N ,则OCE △是等腰直角三角形,222CN OC =,即CN =, 故CE =;∴正方形周长2C 为;如图3所示,在六边形ABDEFH 中,连接OA OB 、,过O 作OP AB ⊥于P ,则OAB 是等边三角形, 故1·cos 602AP OA r =︒=, ∴2AB AP r ==,∴正六边形周长3C 为6r ,∴123C C C ::为::66r =.故选:D .10.如图所示的是某年2月份的月历,其中“U 型”、“十字型”两个阴影图形分别覆盖其中五个数字(“U 型”、“十字型”两个阴影图形可以重叠覆盖,也可以上下左右移动),设“U 型”覆盖的五个数字之和为1S ,“十字型”覆盖的五个数字之和为2S .若121S S −=,则12S S +的最大值为( )A .201B .211C .221D .236【答案】B【详解】解:设U 型阴影覆盖的最小数字为a ,则其他的数字分别是()()()()2,7,8,9a a a a ++++, ()()()()12789526S a a a a a a ∴=++++++++=+,设十字形阴影覆盖的中间数字为b ,则其他数字分别是()()()()1,1,7,7b b b b −+−+,()()()()211775S b b b b b b ∴=+−+++−++=,121S S −=,52651a b ∴+−=,整理得:5a b −=−,即5b a =+,∴()()()125265526551051S S a b a a a +=++=+++=+,100>,∴12S S +随a 的增大而增大,∴在符合题意得情况下,当21b =时,a 有最大值16,∴此时,12S S +的最大值为:161051211⨯+=,故选:B .11.如图,量筒的液面A -C -B 呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C (即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C 时,记录量筒上点D 的高度为37mm ;仰视点C (点E ,C ,B 在同一直线),记录量筒上点E 的高度为23mm ,若点D 在液面圆弧所在圆上,量筒直径为10mm ,则平视点C ,点C 的高度为( )mm .A . 30−B .37−C .23+D .23+【答案】A【详解】解:如图,连接BD OA OB OC 、、、,OC 交AB 于点G ,∵90DAB ∠=︒,∴BD 是O 的直径,由垂径定理得AG BG =,∴OG 是BAD 的中位线,∴OC DE ∥, ∴12BC BO BE BD ==, ∴BC CE =, ∴()113723722OC DE ==−=, ∴O 的直径为14,∵10AB =,∴AD =∴14AE =−∵CF AB ∥, ∴12EF EC AE EB ==,∴)7mm EF =−,∴点F 的高度即点C的高度为)72330mm −=−,故选:A .12.如图是一个由五张纸片拼成的边长为10的正方形ABCD ,相邻纸片之间互不重叠也无缝隙,其中ABG 与CDE 是两张全等的纸片,AFD △与CHB 是两张全等的纸片,中间是一张四边形纸片.EFGH已知AF =tan 2DAF ∠=,记ABG 纸片的面积为1S ,四边形EFGH 纸片的面积为2S ,则12S S 的值是( )A .34BC .35D .914【答案】D【详解】解:过点F 作FH AD ⊥于H ,作FT AB ⊥于T ,延长AG 交BC 于P ,过点B 作BM AG ⊥于G ,连接BM ,过点M 作MQ AB ⊥于点Q ,如图,ABG △≌CDE ,AFD △≌CHB ,AG CE ∴=,BG DE =,DF BH =,AF CH =,AG AF CE CH ∴−=−,DF DE BH BG −=−,即:FG EH =,EF HG =,∴四边形EFGH 为平行四边形,EH FG ∴∥,四边形ABCD 为正方形,且边长为10,90DAB ABC ∴∠=∠=,10AB BC CD DA ====,∴四边形AHFT 为矩形,HF AT ∴=,AH FT =,在Rt AHF △中,tan 2HF DAF AH∠==, 2HF AH ∴=, 又5AF =由勾股定理得:222AH HF AF +=,即:2222AH AH +=(), 1AH ∴=,2HF AT ∴==,1FT AH ==,FT AB ⊥,MQ AB ⊥,FT MQ ∴∥,AFT ∴∽AMQ △,12FT MQ AT AQ ∴==, 即:2AQ MQ =,在Rt AMQ 中,由勾股定理得:222AQ MQ AM +=,即:222(2)MQ MQ AM +=,AM ∴=,90AQM AMB ∠=∠=,QAM MAB ∠=∠,AMQ ∴∽ABM ,AM MQ AB BM∴=,MQ BM=,BM ∴=在Rt ABM 中,10AB =,BM =由勾股定理得:AM ==FT AB ⊥,90ABC ∠=,FT BC ∴∥,AFT APB ∴∽,12FT BP AT AB ∴==, 152BP AB ∴==, 10BC =,∴点P 为BC 的中点,EH FG ∥,GP CH ∴∥,GP ∴为B C H V 的中位线,12BG BH ∴=, 在Rt DFH △中,2HF =,1019DH DA AH =−=−=,由勾股定理得:DFBH DF ∴=12BG BH ∴== 在Rt BMG中,BG =,BM =由勾股定理得:MG ==AG AM MG ∴=+==11122.522S AG BM ∴=⋅==, 122.5CDE SS ∴==, 111021022ADF S AB HF =⋅=⨯⨯=,2100ABCD S AB ==正方形, 10CHB ADF S S ∴==,()2100222.51035S ∴=−⨯+=,1222.593514S S ∴==. 故选:D .第Ⅱ卷二、填空题:本题共6小题,每小题3分,共18分。
山东省青岛市市北区2016年中考数学二模试卷(解析版)一、选择题(本题满分24分,共有8道小题,每小题3分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图所示的几何体的左视图为()A.B.C.D.3.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.4.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=6cm,则tan∠EAF的值是()A.B.C.2 D.55.反比例函数y=(k为非零常数)的图象在其所在象限内,y的值随x值的增大而增大,那么函数y=x的图象经过第()象限.A.一、二B.一、三C.二、三D.二、四6.如图,四边形ABCD的顶点坐标A(﹣3,6)、B(﹣1,4)、C(﹣1,3)、D(﹣5,3).若四边形ABCD绕点C按顺时针方向旋转90°,再向左平移2个单位,得到四边形A′B′C′D′,则点A的对应点A′的坐标是()A.(0,5) B.(4,3) C.(2,5) D.(4,5)7.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则这个等腰三角形的腰长是()A.2 B.5 C.2或5 D.3或48.如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题:(本大题满分18分,共有6道小题,每小题3分)9.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为________.10.计算()﹣1+(﹣3)0=________.11.如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是________.12.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前每个月的自行车销量的月平均增长率相同,设月平均增长率为x,由题意可得方程:________.13.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为________.14.如图所示,以O为端点画5条射线OA,OB,OC,OD,OE后,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2016个点在射线________上.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法.但要保留作图痕迹.如图:OA、OB表示两条道路,在OB上有一车站(用点P表示).现在要在两条道路形成的角的内部建一个报亭,要求报亭到两条道路的距离相等且到点P所表示的车站距离最短.请在图中作出报亭的位置.四、解答题(本题满74分,共9道小题)16.(1)化简:÷(1+);(2)关于x的一元二次方程kx2+2x﹣3=0有两个不相等的实数根,求k的取值范围.17.已知:如图,在△ABC中,∠C=90°,tanB=,AC=2.求:线段AB的长.18.小明和小刚用如图所示的两个均匀的转盘做配紫色游戏,游戏规则是:分别任意旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.若配成紫色则小刚获胜,否则小明获胜.(1)请用列表法或树形图求出小明胜的概率;(2)这个游戏公平吗?请说明理由.19.某班为确定参加学校投篮比赛的人选,在A、B两位投篮高手间进行了6此投篮比赛,每次10投,将他们的命中成绩统计如下:请根据统计图所给信息,完成下列问题:(1)完成表格的填写;(2)如果这个班只能在A、B之间选派一名学生参赛,该选派谁呢?请你利用学过的统计量对问题进行多角度分析说明,并作出决策.20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为50000元,今年销售总额将比去年减少20%,每辆销售价比去年降低400元,若这两年卖出的数量相同.(1)求今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,求销售这批车获得的最大利润是多少元.A,B两种型号车今年的进货和销售价格表:21.如图,平行四边形ABCD中,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD 于N,交BD于F,连结AF、CE.(1)求证:△ABE≌△CDF;(2)当四边形ABCD满足什么条件时,四边形AECF是菱形?证明你的结论.22.(10分)(2016•崂山区一模)某公司销售A,B两种产品,根据市场调研,确定两条信息:信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.23.(10分)(2016•市北区二模)模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线L上任取一点C′,连结AC′,BC′,B′C′.∵直线L是点B,B′的对称轴,点C,C′在L上.∴CB=________,C′B=________∴AC+CB=AC+CB′=________.在△AC′B′中,∵AB′<AC′+C′B′.∴AC+CB<AC′+C′B′.∴AC+CB<AC′+C′B′即AC+CB最小归纳小结:本问题实际是利用轴对称变换的思想,把A,B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用如图④,正方形ABCD 的边长为2,E为AB的中点,F是AC上一动点.求EF+FB的最小值分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC 对称,连结ED交AC于F,则EF+FB的最小值就是线段________的长度,EF+FB的最小值是________.如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是的中点,在直径CD 上找一点P,使BP+AP的值最小,则BP+AP的最小值是________.如图⑥,一次函数y=﹣2x+4的图象与x、y轴分别交于点A,B两点,点O为坐标原点,点C与点D分别为线段OA、AB的中点,点P为OB上一动点.求PC+PD取得最小值时P 点坐标.24.(12分)(2016•市北区二模)已知,如图,▱ABCD中,BC=8cm,CD=4cm,∠B=60°,点E从点A出发,沿BA方向匀速运动,速度为1cm/s.过点E作EF⊥CD,垂足是F,连接EF交AD于点M,过M作MN∥AB,MN与BC交于点N,设运动时间为t(s)(0<t <4)(1)用含t的代数式表示线段AM的长:AM=________;(2)是否存在某一时刻t,使EN⊥BC,求出相应的t值,若不存在,说明理由;(3)设四边形AEFN的面积为y(cm2),求y与t之间的函数关系式;(4)点P是AC与NF的交点,在点E的运动过程中,是否存在某一时刻t,使∠MNP=45°?若存在,求出相应的t值,若不存在,说明理由.2016年山东省青岛市市北区中考数学二模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的几何体的左视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=6cm,则tan∠EAF的值是()A.B.C.2 D.5【考点】矩形的性质;翻折变换(折叠问题);锐角三角函数的定义.【分析】先根据矩形的性质得CD=AB=8,AD=BC=10,再根据折叠的性质得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=BC﹣BF=4,设EF=x,则DE=x,CE=CD﹣DE=8﹣x,在Rt△CEF中,根据勾股定理得到42+(8﹣x)2=x2,解得x=5,即EF=5,然后在Rt△AEF中根据正切的定义求解.【解答】解:∵四边形ABCD为矩形,∴CD=AB=8,AD=BC=10,∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,∴AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,BF==6,∴FC=BC﹣BF=4,设EF=x,则DE=x,CE=CD﹣DE=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+(8﹣x)2=x2,解得:x=5,∴EF=5,在Rt△AEF中,tan∠EAF===;故选:A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.5.反比例函数y=(k为非零常数)的图象在其所在象限内,y的值随x值的增大而增大,那么函数y=x的图象经过第()象限.A.一、二B.一、三C.二、三D.二、四【考点】反比例函数的性质;正比例函数的性质.【分析】先根据反比例函数y=(k为非零常数)的增减性判断出k的符号,再由一次函数的性质姐看的出结论.【解答】解:∵反比例函数y=(k为非零常数)的图象在其所在象限内,y的值随x值的增大而增大,∴k<0,∴<0,∴函数y=x的图象经过二四象限.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性与系数k的关系是解答此题的关键.6.如图,四边形ABCD的顶点坐标A(﹣3,6)、B(﹣1,4)、C(﹣1,3)、D(﹣5,3).若四边形ABCD绕点C按顺时针方向旋转90°,再向左平移2个单位,得到四边形A′B′C′D′,则点A的对应点A′的坐标是()A.(0,5) B.(4,3) C.(2,5) D.(4,5)【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【分析】根据平面直角坐标系找出点A′、B′、C′、D′的位置,然后写出点A′的坐标即可.【解答】解:四边形A′B′C′D′如图所示,A′的坐标为(0,5),故选A.【点评】本题考查了坐标与图形变化﹣旋转,熟练掌握网格结构准确找出点A、B、C、D 的对应点的位置是解题的关键.7.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则这个等腰三角形的腰长是()A.2 B.5 C.2或5 D.3或4【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】先求出方程的解,分为两种情况,最后看看是否符合三角形三边关系定理即可.【解答】解:解方程x2﹣7x+10=0得:x=2或5,分为两种情况:①三边为2,2,5,不符合三角形三边关系定理,此时不能组成三角形;②三边为2,5,5,符合三角形三边关系定理,此时能组成三角形;此时腰长为5,故选B.【点评】本题考查了三角形三边关系定理,等腰三角形的性质,解一元二次方程的应用,能求出符合的所有情况是解此题的关键.8.如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意,易得△AEG、△BEF、△CFG三个三角形全等,且在△AEG中,AE=x,AG=2﹣x;可得△AEG的面积y与x的关系;进而可判断出y关于x的函数的图象的大致形状.【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2﹣x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG 中,AE=x ,AG=2﹣x . 则S △AEG =AE ×AG ×sinA=x (2﹣x );故y=S △ABC ﹣3S △AEG=﹣3×x (2﹣x )=(3x 2﹣6x +4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上; 故选:D .【点评】本题考查动点问题的函数图象问题,用图象解决问题时,要理清图象的含义即会识图.二、填空题:(本大题满分18分,共有6道小题,每小题3分)9.PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6 .【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6, 故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.计算()﹣1+(﹣3)0= 3 .【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据实数的运算顺序,首先计算乘方,然后计算加法,求出算式()﹣1+(﹣3)0的值是多少即可.【解答】解:()﹣1+(﹣3)0=2+1 =3故答案为:3.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11.如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是20°.【考点】弧长的计算;圆周角定理.【分析】连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB=∠AOB=20°.【解答】解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.12.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前每个月的自行车销量的月平均增长率相同,设月平均增长率为x,由题意可得方程:64(1+x)2=100.【考点】由实际问题抽象出一元二次方程.【分析】设该商城月平均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.【解答】解:设该商城2、3月份的月平均增长率为x,根据题意列方程:64(1+x)2=100.故答案为:64(1+x)2=100.【点评】本题考查了从实际问题中抽出一元二次方程,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.13.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为π﹣2.【考点】矩形的性质;扇形面积的计算.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得∠AED=30°,然后求出DE,﹣S△ADE列式计算即可得解.再根据阴影部分的面积=S扇形AEF【解答】解:∵AB=2DA,AB=AE(扇形的半径),∴AE=2DA=2×2=4,∴∠AED=30°,∴∠DAE=90°﹣30°=60°,DE===2,﹣S△ADE,∴阴影部分的面积=S扇形AEF=﹣×2×2,=π﹣2.故答案为:π﹣2.【点评】本题考查了矩形的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出∠AED=30°是解题的关键,也是本题的难点.14.如图所示,以O为端点画5条射线OA,OB,OC,OD,OE后,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2016个点在射线OA上.【考点】规律型:数字的变化类.【分析】每5个数为一周期.用2016除以5,根据余数来决定数2016在哪条射线上.【解答】解:根据题意可知,每5个数为一个周期.因为2016÷5=403…1,所以数2016应该在射线OA上.故答案为:OA.【点评】本题考查了图形的变化类问题,根据数的循环和余数来决定数的位置,解题的关键是找到规律.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法.但要保留作图痕迹.如图:OA、OB表示两条道路,在OB上有一车站(用点P表示).现在要在两条道路形成的角的内部建一个报亭,要求报亭到两条道路的距离相等且到点P所表示的车站距离最短.请在图中作出报亭的位置.【考点】作图—应用与设计作图.【分析】首先作出∠AOB的角平分线OM,再过P作OM的垂线,两线交于点E,点E就是报亭的位置.【解答】解:如图所示:,点E即为报亭位置.【点评】此题主要考查了作图﹣﹣应用与设计作图,关键是掌握角平分线上的点到角两边的距离相等,垂线段最短.四、解答题(本题满74分,共9道小题)16.(1)化简:÷(1+);(2)关于x的一元二次方程kx2+2x﹣3=0有两个不相等的实数根,求k的取值范围.【考点】根的判别式;分式的混合运算.【分析】(1)先算括号里面的,再算除法即可;(2)根据方程有两个不相等的实数根得出△>0,求出k的取值范围即可.【解答】解:(1)原式=÷=•=;(2)∵关于x的一元二次方程kx2+2x﹣3=0有两个不相等的实数根,∴△>0,且k≠0,即4+12k>0,解得k>﹣且k≠0.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式△之间的关系是解答此题的关键.17.已知:如图,在△ABC中,∠C=90°,tanB=,AC=2.求:线段AB的长.【考点】解直角三角形.【分析】在直角三角形ABC中,利用锐角三角函数定义表示出tanB,将AC与tanB的值代入求出BC的长,利用勾股定理求出AB的长即可.【解答】解:在△ABC中,∠C=90°,tanB=,AC=2,∴tanB=,即=,解得:BC=6,根据勾股定理得:AB==2.【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义及勾股定理是解本题的关键.18.小明和小刚用如图所示的两个均匀的转盘做配紫色游戏,游戏规则是:分别任意旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.若配成紫色则小刚获胜,否则小明获胜.(1)请用列表法或树形图求出小明胜的概率;(2)这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)画树状图展示所有9种等可能的结果数,再找出不能配成紫色的结果数,然后根据概率公式求解;(2)找出能配成紫色的结果数,则根据概率公式计算出小刚胜的概率,然后比较小刚胜的概率和小明胜的概率的大小即可判断这个游戏是否公平.【解答】解:(1)画树状图为:共有9种等可能的结果数,其中不能配成紫色的结果数为7,所以小明胜的概率=;(2)这个游戏不公平.理由如下:因为能配成紫色的结果数为2,所以小刚胜的概率=,而小明胜的概率=;>,所以这个游戏不公平.【点评】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.也考查了树状图法.19.某班为确定参加学校投篮比赛的人选,在A、B两位投篮高手间进行了6此投篮比赛,每次10投,将他们的命中成绩统计如下:请根据统计图所给信息,完成下列问题:(1)完成表格的填写;(2)如果这个班只能在A、B之间选派一名学生参赛,该选派谁呢?请你利用学过的统计量对问题进行多角度分析说明,并作出决策.【考点】方差;折线统计图;加权平均数;中位数;众数.【分析】(1)分别利用中位数、众数、方差的定义分析得出答案;(2)利用中位数、众数、方差的意义分析得出答案.【解答】解:(1)(2)从平均数看,两班平均数相同,则A、B两人的成绩一样好;从中位数看,A的中位数大,所以A的成绩较好;从众数看,A的众数大,所以A的成绩较好;从方差看,B的方差小,所以B的成绩更稳定.【点评】此题主要考查了中位数、众数、方差的定义,正确把握相关定义是解题关键.20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为50000元,今年销售总额将比去年减少20%,每辆销售价比去年降低400元,若这两年卖出的数量相同.(1)求今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,求销售这批车获得的最大利润是多少元.A,B两种型号车今年的进货和销售价格表:【考点】一次函数的应用;分式方程的应用.【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得:=,解得:x=1600,经检验,x=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.=34000元.∴a=20时,y最大∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用、一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.21.如图,平行四边形ABCD中,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD 于N,交BD于F,连结AF、CE.(1)求证:△ABE≌△CDF;(2)当四边形ABCD满足什么条件时,四边形AECF是菱形?证明你的结论.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)由平行四边形的性质可得AB=CD,∠ABE=∠CDF,再因为MA⊥AN,NC ⊥BC可得∠BAM=∠DCN,利用ASA定理可证得结论;(2)利用菱形的性质可得AC⊥EF,由全等三角形的性质可得AE=CF,由平行四边形的判定定理可得四边形AECF为平行四边形,利用菱形的判定定理得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∠BAD=∠BCD,∵MA⊥AN,NC⊥BC,∴∠BAM=∠DCN,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:四边形ABCD是菱形时,四边形AECF是菱形.∵△ABE≌△CDF,∴AE=CF,∵MA⊥AN,NC⊥BC,∴AM∥CN,∴四边形AECF为平行四边形,∵四边形ABCD是菱形,∴AC⊥EF,∴四边形AECF为菱形.【点评】本题主要考查了平行四边形的性质和菱形的性质及判定定理,综合运用各定理是解答此题的关键.22.(10分)(2016•崂山区一模)某公司销售A,B两种产品,根据市场调研,确定两条信息:信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.【考点】二次函数的应用.【分析】(1)由抛物线过原点可设y与x间的函数关系式为y=ax2+bx,再利用待定系数法求解可得;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据:A产品利润+B产品利润=总利润可得W=﹣0.1m2+1.5m+0.3(10﹣m),配方后根据二次函数的性质即可知最值情况.【解答】解:(1)根据题意,设销售A种产品所获利润y与销售产品x之间的函数关系式为y=ax2+bx,将(1,1.4)、(3,3.6)代入解析式,得:,解得:,∴销售A种产品所获利润y与销售产品x之间的函数关系式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W取得最大值,最大值为6.6万元,答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.【点评】本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,(2)中整理得到所获利润与购进A产品的吨数的关系式是解题的关键.23.(10分)(2016•市北区二模)模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题。
2013年中考数学模拟试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.9的平方根是【】A.3 B.-3 C.±3 D.62.某种微粒子,测得它的质量为0.000 067 46克,这个质量用科学记数法表示(保留三个有效数字)应为【】A.6.75×10-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克3.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个B.2个C.3个D.4个4.某市5月上旬前五天的最高气温如下(单位:°C):28,29,31,29,33,对这组数据,下列说法错误的是【】A.平均数是30 B.众数是29 C.中位数是31 D.极差是55.如图,二次函数2y ax bx c=++的图象经过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是【】A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于水平面主视方向第5题图第6题图第7题图6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是【】A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆A.30°B.45°C.60°D.90°FEDA第8题图第10题图第13题图二、填空题(每小题3分,共21分)∠AEC=_________.11.圆锥的底面圆直径和母线长均为80cm,则它的侧面展开图的圆心角是_________.12.某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1 000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________.16.(8分)先化简2111122xx x x⎛⎫-÷⎪-+-⎝⎭,然后从-2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.17.(9分)为了更好地宣传吸烟的危害,某中学九年级一班数学兴趣小组设计了如下调查问卷,调查了部分吸烟人群,并将调查结果绘制成统计图.42%调查结果的扇形统计图调查结果的条形统计图ACBDE根据以上信息,解答下列问题:(1)本次接受调查的总人数是_________人,并把条形统计图补充完整.(2)在扇形统计图中,C选项的人数百分比是________,E选项所在扇形的圆心角的度数是________.(3)若某地区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?M A E F D B C 18.(9分)已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M 点,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB 的值.19.(9分)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y (km )与时间x (h )之间的函数关系,折线BC -CD -DE 表示轿车离甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ;(2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.20.(9分)如图所示,当小华站立在镜子EF 前的A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据1.73)21.(10分)某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进 A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A ,B 两种纪念品每件各需多少元.(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这 100件纪念品的资金不少于7 500元,但不超过7 650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不与点B 重合),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G . (1)当点P 与点C 重合时(如图1),求证:△BOG ≌△POE ; (2)通过观察、测量,猜想:BF PE=________,并结合图2证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BF PE的值.(用含α的式子表示)(1)求过点A ,O ,B 的抛物线解析式.(2)在(1)中抛物线的对称轴上是否存在点M ,使△AOM 的周长最小?若存在,求出点M 的坐标;若不存在,请说明 理由.(3)在x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴 的垂线,交直线AB 于点E ,线段OE 把△AOB 分成两个三角 形,使其中一个三角形的面积与四边形BPOE 的面积之比为 2:3?若存在,求出点P 的坐标;若不存在,请说明理由.y11ACD E FG OAD E F G OOGF ED BCA2013年中考数学模拟试卷(二)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 某市1月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是【 】A .-2℃B .8℃C .-8℃D .2℃2. 下列四个图形中,既是轴对称图形又是中心对称图形的有【 】A .4个B .3个C .2个D .1个3. 某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵, 则根据题意列出方程正确的是【 】 A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-=D .5(21)6x x +=4. 一次函数|1|y mx m =+-的图象过点(0,2),且y 随x 的增大而增大,则m =【 】A .-1B .3C .1D .-1或35. 如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是【 】BOA BAAA .正三角形B .正方形C .正五边形D .正六边形6. 在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y ) = (y ,x ),如f (2,3) = (3,2);②g (x ,y ) = (-x ,-y ),如g (2,3) =(-2,-3).按照以上变换有f (g (2,3)) =f (-2,-3) =(-3,-2),那么 g (f (-6,7)) =【 】A .(7,6)B .(7,-6)C .(-7,6)D .(-7,-6)7. 如图,等边△ABC 的周长为6π,半径为1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了【 】 A .2周 B .3周 C .4周 D .5周第7题图 第8题图8. 如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,点D 的坐标为(5,4),AD =2.若动点E ,F 同时从点O 出发,点E 沿折线OA -AD -DC 运动,到达C 点时停止;点F 沿OC 运动,到达C 点时停止,它们运动的速度都是每秒1个单位长度.设点E 运动x 秒时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为【 】二、填空题(每小题3分,共21分)9. x 的取值范围是_________.10. 如图,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF ,连接AE ,BF .将△ABE 绕正方形的对角线交点O按顺时针方向旋转到△BCF ,则旋转角的度数为_________.F BN CO 第10题图 第12题图11. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程20x px q ++=有实数根的概率是_________.12. 如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB 的度数是 .13. 如图1,用8个同样大小的小立方体粘成一个大立方体,得到的几何体的三视图如图2所示,若小明从这8个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是_____个.14. 如图,□ABCD 的顶点A ,C 在双曲线11y x =-上,B ,D 在双曲线22y x=上,122k k =(k 1>0),AB ∥y 轴,S □ABCD =24,则k 1=_________.15. 已知:在△ABC 中,AC =a ,AB 与BC 所在直线成45°角,AC 与BC cosC=),则A C 边上的中线长是____________.三、解答题(本大题共8小题,满分75分)16. (8分)已知x 是一元二次方程x 2-2x +1=0的根,求代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值.17.(9分)九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:请解答以下问题:(1)把上面频数分布直方图补充完整,并计算:a=_______,b=________;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1 000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?18.(9分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与B C相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.A B MODC19.(9分)如图,四边形ABCD是正方形,其中A(1,1),B(3,1),D(1,3).反比例函数myx=(x>0)的图象经过对角线BD的中点M,与BC,CD的边分别交于点P,Q.(1)直接写出点M,C的坐标;(2)求直线BD的解析式;(3)线段PQ与BD是否平行?并说明理由.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.22.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?(2)连接DP,当t为何值时,四边形EQDP能成为平行四边形?(3)当t为何值时,△EDQ为直角三角形?23.(11分)已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为直线x=2.(1)求该抛物线的解析式.(2)点D在线段AB上,且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C出发沿线段CB匀速运动,是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时两点的运动时间t(秒)和点Q的运动速度;若不存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.。
2018 年初中数学中考模拟试卷(总分150分 考试时间120分钟)第 I 卷(选择题共36分)选择题(本题共12小题, 每小题3分, 共36分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的. 1.31-的倒数是( ) A.3 B.一3 C.31 D.31- 2.下列运算中正确的是( )A .a 2· a 3 =a 5B ( a 2 )3=a 5C a 6+ a 2= a 3D a 5+ a 5 =2a 103.下列角度中, 是多边形内角和的只有( )..270° B.560. C.630° .D.1800°4.神州五号飞船与送它上天的火箭共有零部件约120000 个, 用科学记数法表示为( ) A.1.2 ×104 B.1.2 × 105 C.1.2 ×106 D.12×l 045 .下列由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是( )6.己知圆锥的底面半径为高为4, 则圆锥的侧面积为( )A.10πB.12π C.15π D..20π7.如图, PA 为⊙O的切线, A 为切点, P O 交 ⊙O于点B, 且PO=2AO, 则 cos ∠APO 的值为 ( )A....B.....C.. .D.8.小亮在上午8 时、9时30分、10时、12 时四次到室外阳光下观察向日葵的头茎随太阳转动的情况, 无意之中, 他发现这四个时刻向日葵影子的长度各不相同, 那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时9.小彬从正面观察下图所示的两个物体, 主视图是( )10.两相似三角形的相似比为2: 3 , 其中较小三角形的面积为12, 则较大三角形的面积为( )A..B.16C.24 .D.2711.小王于上午8时从甲地出发去相距50千米的乙地.图中折线ABCD 是表示小王离开甲地的时间 t (时)与路程s (千米)之间的函数关系的图象。
2023年山东省临沂市中考数学模拟试卷(二)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. −2023的绝对值是( )A. −12023B. −2023C. 12023D. 20232. 下列图形中,不是中心对称图形的是( )A. 平行四边形B. 圆C. 等边三角形D. 正六边形3. 如图,在数轴上,点A 、B 分别表示数a 、b ,且a +b =0.若A 、B 两点间的距离为6,则点A 表示的数为( )A. −6B. 6C. −3D. 34.某几何体的三视图如图所示,这个几何体是( )A.B.C.D.5. 不等式组{2−x >0x−12≥−1的解集在数轴上表示正确的是( )A. B.C. D.6.如图,将直角三角板放置在矩形纸片上,若∠1=48°,则∠2的度数为( )A. 42°B. 48°C. 52°D. 60°7. 下列关于x的一元二次方程没有实数根的是( )A. x2+2x−5=0B. x2−6=xC. 5x2+1=5D. x2−2x+2=08. 已知二元一次方程组{2x−y=5x−2y=1,则x−y的值为( )A. 2B. −2C. 6D. −69. 不透明袋子中装有3个红球和2个白球,这些球除了颜色外都相同.从袋子中随机地摸出2个球,则这两个球都是红球的概率是( )A. 25B. 35C. 23D. 31010.如图,△ABC∽△ADE,S△A B C:S四边形B D E C=1:3,BC=2,则DE的长为( )A. 6B. 22C. 32D. 4211. 某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为( )A. 160x +400(1+20%)x=18 B. 160x+400−160(1+20%)x=18C. 160x +400−16020%x=18 D. 400x+400−160(1+20%)x=1812. 如图,点A,B在反比例函数y=kx(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连接AE.若OE=1,OC=23OD,AC=AE,则k的值为( )A. 2B. 322C. 94D. 2 2二、填空题(本大题共4小题,共12.0分)13. 比较大小: 10232.(填“>”,“<”或“=”)14. 分解因式4x 2−4x +1=______.15.如图,把△ABC 沿AC 方向平移1cm 得到△FDE ,AE =6c m ,则FC 的长是 cm .16.如图,⊙O 是等边△ABC 的外接圆,点D 是弧AC 上一动点(不与A ,C 重合),下列结论:①∠ADB =∠BDC ;②DA =DC ;③当DB 最长时,DB =2DC ;④DA +DC =DB ,其中一定正确的结论有______.(填写结论序号)三、解答题(本大题共7小题,共72.0分。
2023~2024学年度下学期二轮复习验收九年级数学试题2024.05注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡的规定位置,答案全部填涂在答题卡上,答在本试卷上不得分.考试结束后,只将答题卡交回.第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 如图,数轴上两点A,B表示的数互为相反数,则点B表示的()A. -6B. 6C. 0D. 无法确定【答案】B【解析】-6的相反数是6,A点表示-6,所以B点表示6.故答案为:B.【点睛】考点:相反数的定义2. 在数学活动课中,同学们利用几何画板绘制出了下列曲线,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】此题考查了中心对称图形和轴对称图形的识别,解题的关键是熟练掌握它们的概念,若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴;一个平面图形,绕一点旋转后,与自身完全重合,此平面图形为中心对称图形.180根据轴对称图形和中心对称图形的概念,对选项逐个判断即可.解:A 、是轴对称图形,但不是中心对称图形,不符合题意;B 、是轴对称图形,但不是中心对称图形,不符合题意;C 、是轴对称图形,但不是中心对称图形,不符合题意;D 、既是轴对称图形,也是中心对称图形,符合题意;故选D .3. 计算的结果是( )A. B. C. D. 【答案】C【解析】分析】本题考查了整式的除法,先算乘方,再算除法即可,熟练掌握单项式除以单项式的运算法则是解题的关键.解:,故选:C .4. 如图,直线,点在直线上,点在直线上,连接,过点作,交直线于点.若,则的度数为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了平行线的性质,垂直的定义,根据平行线的性质可得,根据垂直的定义得,最后由角度和差即可求解,熟练掌握知识点的应用是解题的关键.解:∵直线,∴,∵,【()3222m m -÷38m 38m -48m -46m -232(2)m m -÷628m m =-÷48m =-m n ∥A n B m AB A AC AB ⊥m C 234∠=︒1∠43︒46︒50︒56︒12180BAC ∠+∠+∠=︒90BAC ∠=︒m n ∥12180BAC ∠+∠+∠=︒AC AB ⊥∴,∵,∴,故选:.5. 函数y中,自变量x 的取值范围在数轴上表示正确的是( )AB. C. D. 【答案】B【解析】【分析】根据函数y 可得出x -5≥0,再解出一元一次不等式即可.由题意得,x -5≥0,解得x ≥5.在数轴上表示如下:故选B .【点睛】本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.6. 九(1)班采用民主投票的方式评选一名“最有责任心的班干部”,班里每位同学都可以从5名候选人中选择一名无记名投票,根据投票结果判断最终当选者所需要考虑的统计量是()A. 平均数B. 众数C. 中位数D. 方差【答案】B【解析】【分析】本题主要考查统计量的选择,解题的关键是掌握平均数、众数、中位数、方差的意义.根据众数的实际意义求解即可.解:班里每位同学都可以从5名候选人中选择一名无记名投票.根据投票结果判断最终当选者所需要考虑的统计量是众数,故选:B .7. 如图,在正方形纸片上进行如下操作:第一步:剪去长方形纸条;.90BAC ∠=︒234∠=︒1180903456∠=︒-︒-︒=︒D ABCD AEFD第二步:从长方形纸片上剪去长方形纸条.若长方形纸条和的面积相等,则的长度为()A. B. C. D. 【答案】A【解析】【分析】本题主要考查了正方形的性质和矩形的性质.设正方形的边长为,则根据题意得到数据:,,结合矩形的面积公式和已知条件“长方形纸条和的面积相等”列出方程并解答.解:设正方形的边长为,由题意,得.解得.故选:A .8. 如图,有公共顶点O 的两个边长为4的正五边形(不重叠),以点O 为圆心,4为半径作弧,构成一个“蘑菇”形图案(阴影部分),则这个“蘑菇”形图案的面积为()A. B. C. D. 【答案】C【解析】【分析】根据正五边形的性质可得,从而得到,进而得到的长,再由扇形的面积公式计算,即可求解.解:如图,BCFE CFGH AEFD CFGH AB 30cm15cm 16cm 90cmABCD a cm AD a =cm (5)cm CF a =-AEFD CFGH ABCD a cm 56(5)a a =-30a =245π285π325π365π108AOB COD ∠=∠=︒3602108144AOD BOC ∠+∠=︒-⨯︒=︒ AD BC +1444161805ππ⨯==根据题意得:,∴.∴的长.∴这个“蘑菇”形图案的面积,故选C .【点睛】本题主要考查了求扇形的面积,熟练掌握扇形的面积公式是解题的关键.9. 如图,在△ABC 中,,点D 是边上一点,点B 关于直线的对称点为,当时,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】先根据等腰三角形的性质得到,再利用平行线的性质得,接着根据轴对称的性质得到,则可出的度数,然后利用三角形内角和计算出的度数.解:∵,∴,∵,∴,∵点B 关于直线的对称点为,∴,∴.108AOB COD ∠=∠=︒3602108144AOD BOC ∠+∠=︒-⨯︒=︒ AD BC +1444161805ππ⨯==116324255ππ=⨯⨯=40AC BC B =∠= ,AB CD B 'B D AC '∥BCD ∠2530 35 4040A B ∠=∠=︒40ADB A ∠'=∠=︒CDB CDB ∠'=∠CDB ∠BCD ∠AC BC =40A B ∠=∠=︒B D AC '∥40ADB A ∠'=∠=︒CD B '()1'360180401102CDB CDB ⎡⎤∠=∠=⨯︒-︒-︒=︒⎣⎦1801804011030BCD B CDB ∠=︒-∠-∠=︒-︒-︒=︒故选:B .【点睛】本题考查了轴对称的性质:轴对称的两个图形全等.也考查了平行线的性质和等腰三角形的性质.10. 如图,关于的函数的图象与轴有且仅有三个交点,分别是,,,对此,小华认为:①当时,;②当时,有最小值;③点在函数的图象上,符合要求的点只有1个;④将函数的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. ①②③B. ②③④C. ②④D. ③④【答案】C【解析】【分析】本题考查了函数的图象与性质,一次函数图象,解题的关键是数形结合.结合函数图象逐个分析即可.由函数图象可得:当时,或;故①错误;当时,有最小值;故②正确;点在直线上,直线与函数图象有3个交点,故③错误;将函数的图象向右平移1个或3个单位长度经过原点,故④正确;故选:C .第Ⅱ卷(非选择题共90分)x y x ()3,0-()1,0-()3,00y >31x -<<-3x >-y (),1P m m --y P y 0y >31x -<<-3x >3x >-y (),1P m m --=1y x --=1y x --y二、填空题(本大题共6小题,每小题3分,共18分)11. 写一个一元二次方程,使它有两个相等的实数根:__________(写出一个即可)【答案】(答案不唯一)【解析】【分析】本题考查一元二次方程的根与判别式的关系.根据一元二次方程有两个相等的实数根可知其判别式为0,继而即可求解.解:∵一元二次方程有两个相等的实数根,∴,∴符合题意的一元二次方程可以为:,故答案为:(答案不唯一).12. 现将4种生活现象制成外表完全相同的卡片(如图),然后将卡片背面向上洗匀从中随机抽取两张,则抽出的生活现象都是化学变化的概率是______【答案】【解析】【分析】画树状图,得出所有的情况数量,确定都是化学变化的是B ,D 组合,有2种情况,根据概率公式,即可求解,此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.解:设这四个卡片从左到右分别记为:A ,B ,C ,D ,画树状图得:∴一共有12种情况,都是化学变化的是B ,D 组合,有2种情况,∴抽取的两张卡片上的生活现象都是化学变化的概率是,故答案为:.13. 已知,_____.2210x x ++=()200ax bx c a ++=≠240b ac -=2210x x ++=2210x x ++=1621126=161a =+1b =-=【答案】【解析】【分析】本题考查了二次根式的化简求值,由,,得,即可求解,掌握二次根式的运算法则和乘法公式是解题的关键.解:∵,,∴,,,故答案为:14. 如图,直线分别与x 轴,y 轴交于点A ,B ,将绕着点A 顺时针旋转得到,则点B 的对应点D 的坐标是____________.【答案】【解析】【分析】本题考查的是一次函数图象上点的坐标特点、一次函数的性质及旋转的性质等知识点,先根据坐标轴上点的坐标特征求出B 点坐标为,A 点坐标为,则,再根据旋转的性质得,,,,然后根据点的坐标的确定方法即可得到点D 的坐标,熟知图形旋转后对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等是解题的关键.当时,,则B 点坐标为;当时,,解得,则A 点坐标为,∴,∵绕点A 顺时针旋转后得到,1a =+1b =1ab =1a =1b =-)11ab =+221=-211=-====1.53y x =-+AOB 90︒ACD ()5,2()03,()20,23OA OB ==,90OAC ∠=︒90ACD AOB ∠=∠=︒2AC AO ==3CD OB ==0x = 1.533y x =-+=()03,0y = 1.530x -+=2x =()20,23OA OB ==,AOB 90︒ACD∴,,,,∴轴,轴,∴点D 的坐标为,故答案为:.15. 如图,在矩形中,对角线与相交于点,,,垂足为点,是的中点,连接,若长是______.【解析】【分析】由矩形的性质推出 ,,,,判定是等边三角形,推出是中点,由三角形中位线定理推出,最后根据三角函数得.解:∵四边形是矩形,∴,,,,∵,∴是等边三角形,∴,∵,∴是中点,∵是的中点,∴是的中位线,∴,∵,∴,90OAC ∠=︒90ACD AOB ∠=∠=︒2AC AO ==3CD OB ==AC x ⊥CD x ∥()5,2()5,2ABCDAC BD O 60ABD ∠=︒AE BD ⊥E F OC EF E F AEOA OB =AD BC =AB CD =90ABC ∠=︒AOB E OB 2BC EF ==tan AB ACB BC ∠==2AB =sin 60AE AB =⨯= ABCD OA OB =AD BC =AB CD =90ABC ∠=︒60ABD ∠=︒AOB 60BAO ∠=︒AE BD ⊥E OB F OC EF OBC △22BC EF ===906030ACB ∠=︒-︒=︒tan AB ACB BC ∠==∴,∴,【点睛】本题考查矩形的性质,等边三角形的判定和性质,三角形中位线定理,解直角三角形,解题的关键是熟练掌握知识点的应用.16. 把所有正奇数从小到大排列,并按如下规律分组:第组:,;第组:,,,;第组:,,,,,;第组:,,,,,,,;现用表示第组从左往右数第个数,则表示的数是_____.【答案】【解析】【分析】本题考查数字类规律的探究,根据已知条件数字的排列找到规律,用含的代数式表示出第组最后一个数,判断出第组最后一个奇数,进而可得答案,找到数字类规律是解题的关键.依题意得:第组中奇数的个数有个,∴第组最后一个奇数为:,∴当时,第组最后一个奇数为:,当时,第组从左往右奇数依次是为:,,,,,,则表示的数是,故答案为:.三、解答题(本大题共8小题,共72分)17. (1)计算:;(2)解方程:.【答案】(1)3;(2)【解析】2AB =sin 602AE AB =⨯== 113257911313151719212342527293133353739(),m n m n ()17,5553m m 16m 2m m ()()()12212312212112m m m m m +⨯+++-=⨯⨯-=+- 16m =16216171543⨯⨯-=17m =17545547549551553L ()17,5553553()101π32tan602-⎛⎫---+ ⎪⎝⎭︒131122x x +=--32x =【分析】本题考查了负整数指数幂,零指数幂,特殊角三角函数值,分式方程,熟知相关计算法则是解题的关键.(1)计算出各项,再加减,即可解答;(2)先去分母,再按照解方程的步骤,注意检验,即可解答.】解:(1),,;解:(2),,,经检验,是原方程的解.18. 2024年4月25日神舟十八号载人飞船发射成功.为增强学生的爱国主义情怀,普及航天知识,弘扬航天精神,某校组织学生观看了相关报道,并开展了“格物致知,叩问苍穹”知识竞赛,现随机抽取了八年级若干名学生的竞赛成绩(百分制),整理并绘制了如下的统计图表:学生成绩频数分布表分组/分频数频率组40.08组0.20组120.24组14组100.20合计 1.00学生成绩频数分布直方图的【()101π32tan602-⎛⎫--+ ⎪⎝⎭︒212=-+-+3=131122x x +=--2223x +-=23x =32x =32x =A ()5060x ≤<B ()6070x ≤<a C ()7080x ≤<D ()8090x ≤<nE ()90100x ≤≤m根据以上信息,解答下列问题:(1)在频数分布表中______,______,______,并补全频数分布直方图;(2)求所抽取的八年级学生竞赛成绩的平均数;(3)若该校八年级有200名学生,成绩在80分及以上的学生可获奖,估计此次知识竞赛八年级获奖学生有多少人?【答案】(1)10;50,0.28;补全直方图见解析(2)所抽取的所有学生成绩的平均数78.2分(3)估计此次知识竞赛八年级获奖学生有96人.【解析】【分析】本题考查频数分布直方图、用样本估计总体,解题的关键是明确题意,利用表格中的数据,求出所求问题的答案.(1)利用4除以0.08即可求出,利用14除以50即可求出的值,利用50乘以0.20即可求出的值,根据的值即可补全频数分布直方图;(2)根据加权平均数公式计算即可;(3)用20除以80分及以上的学生所占的百分比即可.【小问1】解:,,,补全频数分布直方图如图:故答案为:10;50,0.28;=a m =n =m n a a 40.0850m =÷= 14500.28n ∴=÷=500.2010a =´=【小问2】解:(分,答:所抽取的所有学生成绩的平均数78.2分;【小问3】解:(人,答:估计此次知识竞赛八年级获奖学生有96人.19. 习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书.已知购买1本甲种书和2本乙种书共需元;购买2本甲种书和3本乙种书共需元.(1)求甲,乙两种书的单价分别为多少元;(2)若学校决定购买甲,乙两种书共本,且购书总费用不超过元,那么该校最多可以购买甲种书多少本?【答案】(1)甲种书的单价是元,乙种书的单价是元(2)该校最多可以购买甲种书本【解析】【分析】本题考查了二元一次方程组应用以及一元一次不等式的应用,解题的关键找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.(1)设甲种书的单价是元,乙种书的单价是y 元,根据“购买1本甲种书和2本乙种书共需元;购买2本甲种书和3本乙种书共需元”,可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设该校购买甲种书m 本,则购买乙种书(本,利用总价单价数量,结合总价不超过元,可得出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论.【小问1】解:(1)设甲种书的单价是元,乙种书的单价是元.根据题意,得,解得,甲种书的单价是元,乙种书的单价是元;【小问2】的554651075128514951078.250⨯+⨯+⨯+⨯+⨯=)14102009650+⨯=)95160100330035306095160()100m -=⨯3300x y 29523160x y x y +=⎧⎨+=⎩3530x y =⎧⎨=⎩∴3530设该校购买甲种书本,则购买乙种书本.根据题意,得,解得,该校最多可以购买甲种书本.20. 如图,是菱形的一条对角线,点在射线上.(1)请用尺规把这个菱形补充完整.(保留作图痕迹,不要求写作法)(2)若,,求菱形的面积.【答案】(1)见解析(2)【解析】【分析】此题考查了基本作图和菱形的性质,正确作图是解题的关键.(1)作线段的垂直平分线,交于点B ,以点A 为圆心,以为半径画弧,交线段的垂直平分线于点D ,连接,即可得到所求菱形;(2)设与相交于点O ,利用特殊角的三角函数和菱形的性质求出,即可得到菱形的面积为【小问1】解:如图所示,四边形即为所求菱形,【小问2】设与相交于点O ,∵四边形为菱形,m ()100m -()35301003300m m +-≤60m ≤∴60AC ABCD B AE 6AC =30CAB ∠=︒ABCD AC AE AB AC AD BC CD 、、AC BD OB =2BD OB ==ABCD 12AC BD =⋅=ABCD AC BD ABCD∴,∵,∴,∴,∴菱形的面积为21. 视力表中蕴含着很多数学知识,如:每个“Ε”形图都是正方形结构,同一行的“Ε”是全等图形且对应着同一个视力值,不同的检测距离需要不同的视力表.素材1 国际通用的视力表以5米为检测距离,任选视力表中7个视力值,测得对应行的“Ε”形图边长,在平面直角坐标系中描点如图1.探究1 检测距离为5米时,归纳与的关系式,并求视力值1.2所对应行的“E ”形图边长.素材2 图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“E ”形图所成的角叫做分辨视角.视力值与分辨视角(分)的对应关系近似满足.探究2 当时,属于正常视力,根据函数增减性写出对应的分辨视角的范围.【答案】探究1:;探究2: 【解析】【分析】本题考查反比例函数的综合应用,涉及待定系数法,函数图象上点坐标的特征,解题的关键是读懂题意,能将生活中的问题转化为数学问题加以解决.11,3,22AC BD AO CO AC BO DO BD ⊥=====30CAB ∠=︒tan 3tan 30OB AO CAB =⋅∠=⨯︒=2BD OB ==ABCD 11622B ACD ==⋅⨯⨯=n ()mm b n b θn θ()10.510n θθ=≤≤1.0n ≥θ6mm 0.5 1.0≤≤θ探究1:由图象中的点的坐标规律得到与成反比例关系,由待定系数法可得,将代入得:;探究2:由,知在自变量的取值范围内,随着的增大而减小,故当时,,即可得.解:探究由图象中的点的坐标规律得到与成反比例关系,设,将其中一点代入得:,解得:,,将其余各点一一代入验证,都符合关系式;将代入得:;答:检测距离为5米时,视力值1.2所对应行的“”形图边长为;探究,在自变量的取值范围内,随着的增大而减小,当时,,,.22. 如图,的直径,为延长线上一点,与相切于点,过点作弦,连接.(1)求证:点为的中点;(2)若,求四边形的面积.【答案】(1)见解析(2)【解析】【分析】本题考查了切线的性质,垂径定理,平行四边形的判定和性质,解直角三角形,正确的作出辅助n b 7.2n b= 1.2n =7.2n b=6b =1n θ=θn θ 1.0n ≥0 1.0θ<≤0.5 1.0≤≤θ1:n b (0)k n k b =≠(9,0.8)0.89k =7.2k =∴7.2n b=1.2n =7.2n b=6b =E 6mm 2: 1n θ=∴θn θ∴ 1.0n ≥0 1.0θ<≤0.510θ≤≤ 0.5 1.0θ∴≤≤O 8cm AB =C AB CP O P B BD CP ∥PD P BDC D ∠=∠BCPD 2线是解题的关键.(1)连接,根据切线的性质得到,根据平行线的性质得到,根据垂径定理即可得到结论;(2)根据圆周角定理得到,根据三角形的内角和得到,推出四边形是平行四边形,于是得到结论.【小问1】(1)证明:连接,与相切于点,,度,,度,,点为的中点.【小问2】解:,,,,,,,,,四边形是平行四边形,,,,,OP PC OP ⊥BD OP ⊥2POB D ∠=∠30C ∠=︒BCPD OP CP O P PC OP ∴⊥90OPC ∴∠=BD CP ∥ 90OEB OPC ∴∠=∠=BD OP ∴⊥∴P BDC D ∠=∠ 2POB D ∠=∠ 2POB C ∴∠=∠90CPO ∠=︒ 30C ∴∠=︒BD CP ∥ C DBA ∴∠=∠D DBA ∴∠=∠BD CP ∥ ∴BCPD 14cm 2PO AB ==PC ∴=30ABD C ∠=∠=︒ 12cm 2OE OB ∴==,四边形的面积.23. 今年五一前后,临沂灯光秀火爆“出圈”,动感炫酷的沂河灯光秀震撼了无数网友.如图,是沂河河畔某楼宇建筑上的矩形电子屏中某光点的运动轨迹示意图,光点从屏边缘点处发出,运行路线近似抛物线的一部分,光点到底部的竖直高度记为,光点运行的水平距离记为,测得如下数据:水平距离竖直高度(1)观察表格,直接写出抛物线的顶点坐标;(2)求抛物线的解析式;(3)如图,电子屏一边,中间位置为一挡板,挡板高为,当光点既能跨过挡板,又能击中底部边缘时,挡板就会发光.如果只改变光点的初始高度的大小,不改变运行轨迹形状,为了使挡板发光,请求出的取值范围.(说明:电子屏足够高)【答案】(1);(2)抛物线解析式为;(3)的取值范围为.【解析】【分析】()根据二次函数图象的对称性可得对称轴以及抛物线的顶点坐标;2cm PE ∴=∴BCPD 2PC PE =⋅=1P A OB y x x 013224y 232583026OB =CD 2.5OB CD P OA OA 32,258⎛⎫ ⎪⎝⎭213222y x x =-++OA 592OA <≤1()待定系数法求解析式即可求解;()根据题意,设平移后的抛物线的解析式为,当时,,当时,,代入分别求出抛物线的解析式,即可求解;本题考查了二次函数的应用,二次函数的图象,二次函数图象的平移,熟练掌握二次函数图象与性质是解题的关键.【小问1】观察表格数据,可知当 和 时,函数值相等,∴对称轴为直线 ,∴抛物线的顶点坐标为;【小问2】设抛物线解析式为,将代入得,解得:,∴抛物线解析式为;【小问3】当光点恰好经过点时,设抛物线的解析式为,此时,当时,,解得,∴抛物线的解析式为,∴初始高度,2321325228y x h ⎛⎫=--++ ⎪⎝⎭3x = 2.5y =6x =0y =1x =2x =32x =32,258⎛⎫⎪⎝⎭232528y a x ⎛⎫=-+ ⎪⎝⎭()0,22325228a ⎛⎫=⨯+ ⎪⎝⎭12a =-22132513222822y x x x ⎛⎫=--+=-++ ⎪⎝⎭D 21325228y x h ⎛⎫=--++ ⎪⎝⎭()3,2.5D 3x =21325 2.5228y x h ⎛⎫=--++= ⎪⎝⎭0.5h =2213251350.5228222y x x x ⎛⎫=--++=-++ ⎪⎝⎭52OA =当光点恰好经过点时,设抛物线的解析式为,此时,同理可得:当时,,∴抛物线的解析式为 ,∴初始高度,∴的取值范围为.24. 综合与实践【提出问题】在一次数学活动课上,老师提出这样一个问题:如图,正方形中,点是射线上的一个动点,过点作交正方形的外角的平分线于点.求证:.(1)如图1,当点在边上时,小明的证明思路如下:在上截取,连接.则易得,,______...补全小明的证明思路,横线处应填______.【深入探究】(2)如图2,在(1)基础上,过点作交直线于点.以为斜边向右作等腰直角三角形,点在射线上.求证:;【拓展应用】(3)过点作交直线于点.以为斜边向右作等腰直角三角形,点在射线上.当,时,请求出线段的长.【答案】(1);(2)见解析;(3)3或7【解析】【分析】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性B 21325228y x h ⎛⎫=--++ ⎪⎝⎭()6,0B 6x =7h =213922y x x =-++9OA =OA 592OA <≤ABCD E BC E EF AE ⊥DCL ∠F AE EF =E BC BA BP BE =EP AP EC =135APE ECF ∠=∠=︒APE ECF ∴△≌△AE EF ∴=F FG AE ∥CD G CG HCG H CF FG EF =F FG AE ∥CD G CG HCG H CF 5AB =2CE =DG FEC EAP ∠=∠质,勾股定理等知识点.正确引出辅助线解决问题是解题的关键.(1)利用等角的余角相等求得;(2)在上截取,连接,同理,即可求解;(3)分当在线段上和当在延长线上时两种情况讨论,利用全等三角形的性质结合等腰直角三角形的性质即可求解.解:(1)在上截取,连接.四边形是正方形,,,,,,,,,,...故答案为:;(2)证明:在上截取,连接.则,是等腰直角三角形,,则,,,,;FEC EAP ∠=∠GH HQ HF =FQ ()ASA QGF CFE ≌E BC E BC BA BP BE =EP ABCD AB BC ∴=90B Ð=°BP BE = AP EC ∴=45BPE BEP ∠=∠=︒135APE ECF ∴∠=∠=︒AE EF ⊥Q 90BAE AEB ∴∠+∠=︒90AEB FEC ∠+∠=︒FEC EAP ∴∠=∠()ASA APE ECF ∴ ≌AE EF ∴=FEC EAP ∠=∠GH HQ HF =FQ 45HQF HFQ ∠=∠=︒HCG ∴ HG HC ∴=QG FC =18045135GQF FCE ∠=︒-︒=︒=∠90QGF GFH CFE ∠=︒-∠=∠()ASA QGF CFE ∴ ≌FG EF ∴=(3),则是等腰直角三角形,,,,;当在线段上时,,即,,是等腰直角三角形,,;当在延长线上时,延长,使,连接,HQ HF = HCG △∴FQ =QGF CFE △≌△FQ CE ∴=∴CE =E BC 2CE = 2CE ==∴HQ HF ==523BE =-=GF EF AE ∴====∴GH ==HCG △∴8CG ==853GD ∴=-=E BC GH HQ HF =FQ则是等腰直角三角形,,,,,,,,是等腰直角三角形,,;综上,线段的长为3或7.HFQ △45Q ∴∠=︒FQ =GQ HG HQ HC HF CF =+=+=90QGF GFH CFE ∠=︒-∠=∠()ASA QGF CFE ∴ ≌∴GF BF AE ====HQ HF ===∴GH ==HCG △∴12CG ==1257GD ∴=-=GD。
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
山东省青岛市2021版中考数学二模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)﹣的倒数是()A . 5B .C . -5D . -2. (2分)在正三角形、正方形、菱形和圆中,既是轴对称图形又是中心对称图形的个数是A . 4B . 3C . 2D . 13. (2分)据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A . 1.94×1010B . 0.194×1010C . 19.4×109D . 1.94×1094. (2分) (2016七上·端州期末) 下列计算中,正确的是()A . 2x+3y=5xyB . 3x-x=3C . 2x+3x=5x2D . -x2-x2=-2x25. (2分) (2016八上·西昌期末) 粗心的小红在计算n边形的内角和时,少加了一个内角,求得的内角和是2040°,则这个多边形的边数n和这个内角分别是()A . 11和60°B . 11和120°C . 12和60°D . 14和120°6. (2分) (2020九上·秦淮期末) 某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()操作组管理组研发组日工资(元/人)260280300人数(人)444A . 团队平均日工资不变B . 团队日工资的方差不变C . 团队日工资的中位数不变D . 团队日工资的极差不变7. (2分)知反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的解析式可能分别为()A . y=, y=kx2+2kxB . y=, y=kx2-2kxC . y=-, y=kx2-2kxD . y=-, y=kx2+2kx8. (2分)如图,直线与双曲线y=交于A,B两点,则当线段AB的长度取最小值时,a的值为A . 0B . 1C . 2D . 59. (2分) (2018九上·绍兴月考) 已知函数y= 则使y=k成立的x值都有4个,则k的取值为()A . -1≤k<3B . k<3C . -1<k≤3D . -1<k<310. (2分) (2016九上·桑植期中) 方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A . 12B . 12或15C . 15D . 不能确定二、填空题 (共8题;共11分)11. (1分)(2012·杭州) 已知(a﹣)<0,若b=2﹣a,则b的取值范围是________.12. (1分) (2016九上·大石桥期中) 若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=________.13. (1分)困式分解x4﹣4=________(实数范围内分解).14. (1分)(2012·温州) 若代数式的值为零,则x=________.15. (1分)(2016·永州) 如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=________度.16. (3分)圆锥的底面积为25π,母线长为1 3cm,这个圆锥的底面圆的半径为________cm,高为________ cm,侧面积为________ cm2.17. (1分) (2016九上·南开期中) 如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=20°,则∠C的度数是________.18. (2分)(2017·金华) 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).①如图1,若BC=4m,则S=________m.②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED 的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.三、解答题 (共10题;共107分)19. (5分) (2015八上·重庆期中) 计算:.20. (5分) (2020九上·兴安盟期末) 解方程:12x2+x-1=021. (15分)(2018·恩施) 某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?22. (10分)(2018·嘉兴模拟) 如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE= ED,延长DB到点F,使FB= BD,连接AF.(1)证明:△BDE∽△FDA;(2)试判断直线AF与⊙O的位置关系,并给出证明.23. (15分)某学校初三年级男生共200名,随机抽取10名测量他们的身高(单位:cm)为:181,176,169,155,163,175,173,167,165,166.(1)求这10名男生的平均身高和上面这组数据的中位数(2)估计该校初三年级男生身高高于170cm的人数(3)从身高为181,176,175,173的男生中任选2名,求身高为181cm的男生被抽中的概率.24. (6分)(2016·镇江) 校田园科技社团计划购进A、B两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量(单位:株)总费用(单位:元)A B第一次购买1025225第二次购买2015275(1)你从表格中获取了什么信息?________(请用自己的语言描述,写出一条即可);(2) A、B两种花卉每株的价格各是多少元?25. (10分)(2017·山西) 如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y= (k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y= 的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.26. (10分)(2014·贵港) 如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.(1)求证:CD是小半圆M的切线;(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.①求y与x之间的函数关系式,并写出自变量x的取值范围;②当y=3时,求P,M两点之间的距离.27. (15分)(2017·兴庆模拟) 如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.28. (16分) (2016九上·瑞安期中) 如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y 轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为________.(直接写出答案)个参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共107分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、27-1、27-2、27-3、28-1、28-2、28-3、28-4、。
2016年山东省青岛市李沧区中考数学二模试卷一、选择题:每小题3分,共24分.下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,不选、选错或选出的标号超过一个的不得分1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.下列各图,是轴对称图形的有()个.A.2 B.3 C.4 D.43.如图,下列水平放置的几何体中,从正面看不是长方形的是()A.B.C.D.4.据我市环保局通报,预计今年年底,我市污水处理能力可以达到1684000吨,将1684000吨用科学记数法表示为()A.1.684×105吨B.0.1684×107吨C.1.684×106吨D.16.84×105吨5.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,956.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC,若OC=5,CD=8,则tan∠COE=()A.B.C.D.7.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.148.函数y=和y=在第一象限内的图象如图所示,点P是y=的一个动点,CO⊥x轴于点C,PD⊥y 轴于点D,PD、PC交y=图象于点B,A.下列结论:①△ODB与△OAC面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=PA.其中正确的结论是()A.①②③ B.②③④ C.①③④ D.①②④二、填空题:每小题3分,共18分9.20150﹣(﹣)﹣2=.10.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有个.11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=m.12.一列火车从车站开出,预计行程为450千米,当它行驶到200千米时,因特殊情况而多停靠一站,因此耽误了20分钟,后来把速度提高了原来的20%,结果准时到达目的地,求这列火车原来的速度.若设原来速度为x千米/时,则根据题意列出的方程是.13.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD 的边长为2cm,∠A=120°,则EF=cm.14.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP 时,点P是AB的中点.其中正确的结论是.三、作图题:满分4分。
2016年山东省青岛市中考数学模拟试卷(二)一、选择题(本题共24分,共8小题,每小题3分)1.2015的相反数是()A.B.﹣C.2015 D.﹣20152.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.B.C.D.4.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参A.10.06秒,10.06秒 B.10.10秒,10.06秒C.10.06秒,10.08秒 D.10.08秒,10.06秒5.如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器()台.A.3 B.4 C.5 D.66.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.147.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤38.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本题满分18分,共有6道题,每小题3分)9.2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为.10.分解因式:ab3﹣ab=.11.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式;自变量的取值范围.12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.13.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是.14.如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别P n﹣1为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a,求作:△ABC,使AB=AC,BC=a,且BC边上的高AD=2a.四、解答题(本题满分74分,共9道题)16.(1)化简:÷(2)解不等式组:.17.小颖和小明用如图所示的两个转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小颖得2分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?18.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°.热气球A的高度为240米,求这栋大楼的高度.19.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和新款B型车共60辆,要使这批车获利不少于33000元,的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.22.盐阜人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.(1)设该种品牌服装的销售单价为x元(x>50),销售量为y件,请写出y与x之间的函数关系式;(2)若商场获得了6000元销售利润,该服装销售单价x应定为多少元?(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?23.【问题情境】张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P 为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,可得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.2016年山东省青岛市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题共24分,共8小题,每小题3分)1.2015的相反数是( )A .B .﹣C .2015D .﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D .2.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,是中心对称图形,故A 选项错误;B 、不是轴对称图形,是中心对称图形,故B 选项错误;C 、既是轴对称图形,也是中心对称图形,故C 选项正确;D 、是轴对称图形,不是中心对称图形,故D 选项错误.故选:C .3.如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向▱ABCD 内部投掷飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率为( )A .B .C .D .【考点】几何概率;平行四边形的性质.【分析】根据平行四边形的性质易得S △OEH =S △OFG ,则S 阴影部分=S △AOB =S 平行四边形ABCD ,然后根据几何概率的意义求解.【解答】解:∵四边形ABCD 为平行四边形,∴△OEH 和△OFG 关于点O 中心对称,∴S △OEH =S △OFG ,∴S 阴影部分=S △AOB =S 平行四边形ABCD ,∴飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率==.故选C .4.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参A .10.06秒,10.06秒B .10.10秒,10.06秒C .10.06秒,10.08秒D .10.08秒,10.06秒【考点】众数;算术平均数.【分析】根据众数和平均数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19, 则众数为:10.06,平均数为: =10.08.故选C .5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【考点】圆周角定理.【分析】根据∠A 的度数,可求得∠A 所对弧的度数,而圆的度数为360°,由此可求出最少要安装多少台同样的监控器.【解答】解:设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°,解得n ≥, ∴至少要安装3台这样的监控器,才能监控整个展厅.故选A .6.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质.【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.7.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3【考点】一次函数与一元一次不等式.【分析】函数y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),求不等式﹣x+2≥ax+b的解集,就是看函数在什么范围内y=﹣x+2的图象对应的点在函数y=ax+b的图象上面.【解答】解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y=ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选D.8.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.二、填空题(本题满分18分,共有6道题,每小题3分)9.2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为2.03×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2030000用科学记数法表示为:2.03×106.故答案为:2.03×106.10.分解因式:ab3﹣ab=ab(b+1)(b﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:ab3﹣ab,=ab(b2﹣1),=ab(b+1)(b﹣1).故答案为:ab(b+1)(b﹣1).11.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式s=﹣3x2+24x;自变量的取值范围≤x<8.【考点】根据实际问题列二次函数关系式.【分析】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式.【解答】解:由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米.这时面积S=x(24﹣3x)=﹣3x2+24x.∵0<24﹣3x≤10得≤x<8,故答案为:S=﹣3x2+24x,≤x<8.12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.【考点】扇形面积的计算;全等三角形的判定与性质;菱形的性质.【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【解答】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S﹣S△ABD=﹣×2×=﹣.扇形EBF故答案是:﹣.13.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是5.【考点】相似三角形的判定与性质;二次函数的最值;正方形的性质.【分析】设BE=x,则EC=4﹣x,先利用等角的余角相等得到∠BAE=∠FEC,则可判断Rt△ABE∽Rt△ECF,利用相似比可表示出FC=,则DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3,所以x=2时,DF有最小值3,而AF2=AD2+DF2,即DF最小时,AF最小,AF的最小值为=5.【解答】解:设BE=x,则EC=4﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,即=,解得FC=,∴DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3当x=2时,DF有最小值3,∵AF2=AD2+DF2,∴AF的最小值为=5.故答案为:5.14.如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P nP n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别﹣1为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为(n2,n2).【考点】相似三角形的判定与性质;坐标与图形性质.【分析】利用特殊直角三角形求出OP n的值,再利用∠AOB=60°即可求出点Q n的坐标.【解答】解:∵△AOB为正三角形,射线OC⊥AB,∴∠AOC=30°,P n=2n﹣1,P n Q n⊥OA,又∵P n﹣1P n)=(1+3+5+…+2n﹣1)=n2,∴OQ n=(OP1+P1P2+P2P3+…+P n﹣1∴Q n的坐标为(n2•cos60°,n2•sin60°),∴Q n的坐标为(n2,n2).故答案为:(n2,n2).三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a,求作:△ABC,使AB=AC,BC=a,且BC边上的高AD=2a.【考点】作图—复杂作图.【分析】首先作BC=a,然后作BC的垂直平分线,截取AD=2a,连接AB,AC即可.【解答】解:①作射线BE,在射线BE上截取BC=a,②作BC的垂直平分线EF,交BC于点D,③截取AD=2a,连接AB,AC,则△ABC即为所求.四、解答题(本题满分74分,共9道题)16.(1)化简:÷(2)解不等式组:.【考点】分式的乘除法;解一元一次不等式组.【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)原式=•=;(2),由①得:x≥﹣2,由②得:x≤,则不等式组的解集为﹣2≤x≤.17.小颖和小明用如图所示的两个转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小颖得2分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?【考点】游戏公平性.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:画树状图得:故一共有6种情况,配成紫色的有1种情况,相同颜色的有1种情况,∴配成紫色的概率是,则得出其他概率的可能是:,∵×2<,∴这个游戏对双方不公平,若配成紫色,此时小颖得2分,配成相同颜色小明得2分,∵配成相同颜色的概率是,∴此时游戏公平.18.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°.热气球A的高度为240米,求这栋大楼的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】过A作BC的垂线,设垂足为D.在Rt△ACD中,利用∠CAD的正切函数求出邻边AD的长;进而可在Rt△ABD中,利用已知角的三角函数求出BD的长;由BC=CD﹣BD即可求出楼的高度.【解答】解:作AD⊥CB,交CB的延长线于D点.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米.在Rt△ACD中,tan∠CAD=,∴AD===80.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan30°=80×=80.∴BC=CD﹣BD=240﹣80=160.答:这栋大楼的高为160米.19.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?【考点】方差.【分析】(1)利用平均数计算公式、中位数解答即可;(2)先求出方差,根据方差的大小再确定哪段台阶路走起来更舒服;(3)要使台阶路走起来更舒服,就得让方差变得更小.【解答】解:(1)将甲、乙两台阶高度值从小到大排列如下,甲:10,12,15,17,18,18;乙:14,14,15,15,16,16;甲的中位数是:(15+17)÷2=16,平均数是:(10+12+15+17+18+18)=15;乙的中位数是:(15+15)÷2=15,平均数是:(14+14+15+15+16+16)=15;故两台阶高度的平均数相同,中位数不同;(2)=[(10﹣15)2+(12﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(18﹣15)2]=,=[(14﹣15)2+(14﹣15)2+(15﹣15)2+(15﹣15)2+(16﹣15)2+(16﹣15)2]=,∵乙台阶的方差比甲台阶方差小,∴乙台阶上行走会比较舒服;(3)修改如下:为使游客在两段台阶上行比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15cm(原平均数),使得方差为0.20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和新款B型车共60辆,要使这批车获利不少于33000元,【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利不少于33000元,由条件表示出33000与a之间的关系式,进而得出答案.【解答】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得:=,解得:x=1600.经检验,x=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,由题意,得a+(60﹣a)≥33000,解得:a≤30,故要使这批车获利不少于33000元,A型车至多进30辆.21.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.【考点】全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定.【分析】(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.【解答】(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,∴OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∵OD=AC,∴OA=OB=OC=OD,且BD=AC,∴四边形ABCD为矩形.22.盐阜人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.(1)设该种品牌服装的销售单价为x元(x>50),销售量为y件,请写出y与x之间的函数关系式;(2)若商场获得了6000元销售利润,该服装销售单价x应定为多少元?(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?【考点】二次函数的应用.【分析】(1)直接利用销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装得出y与x值间的关系;(2)利用销量×每件利润=6000,进而求出答案;(3)利用销量×每件利润=总利润,再利用该商场要完成不少于350件的销售任务得出x的取值范围,进而得出二次函数最值.【解答】解:(1)由题意可得:y=400﹣10(x﹣50)=900﹣10x;(2)由题意可得:(x﹣40)=6000,整理得:﹣10x2+1300x﹣3600=6000,解得:x1=60,x2=70,答:服装销售单价x应定为60元或70元时,商场可获得6000元销售利润;(3)设利润为W,则W=﹣10x2+1300x﹣3600=﹣10(x﹣65)2+6250,∵a=﹣10<0,对称轴是直线x=65,900﹣10x≥350,解得:x≤55,∴当50<x≤55时,W随x增大而增大,=5250(元),∴当x=55时,W最大值答:商场销售该品牌服装获得的最大利润是5250元.23.【问题情境】张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P 为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,可得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.【考点】一次函数综合题.【分析】【问题情境】利用小林或小兰的思路可以证明;【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】分M 在线段BC 上和M 在线段BC 外两种情况,再分别根据△AMC 和△AMB 的面积和与差等于△ABC 的面积,求得M 到AC 的距离,即M 点的纵坐标,再代入l 2的解析式可求出M 的坐标.【解答】解:【问题情境】如图②,连接AP ,∵PD ⊥AB ,PE ⊥AC ,CF ⊥AB ,∴S △ABP =AB •PD ,S △ACP =AC •PE ,S △ABC =AB •CF ,∵S △ABP +S △ACP =S △ABC ,∴AB •PD+AC •PE=AB •CF ,又AB=AC ,∴PD+PE=CF ;【变式探究】如图3,连接AP ,∵PD ⊥AB ,PE ⊥AC ,CF ⊥AB ,∴S △ABP =AB •PD ,S △ACP =AC •PE ,S △ABC =AB •CF ,∵S △ABP ﹣S △ACP =S △ABC ,∴AB •PD ﹣AC •PE=AB •CF ,又∵AB=AC ,∴PD ﹣PE=CF ;【结论运用】由题意可求得A (﹣4,0),B (3,0),C (0,1),∴AB=5,AC=5,BC=,OB=3,当M 在线段BC 上时,过M 分别作MP ⊥x 轴,MQ ⊥AB ,垂足分别为P 、Q ,如图④,则S△AMC=AC•MP,S△AMB=AB•MQ,S△ABC=OB•AC,∵S△AMC+S△AMB=S△ABC,∴AC•MP+AB•MQ=OB•AC,即×5×MP+×5×1=×3×5,解得MP=2,∴M点的纵坐标为2,又∵M在直线y=﹣3x+3,∴当y=2时,代入可求得x=,∴M坐标为(,2);同理,由前面结论可知当M点在线段BC外时,有|MP﹣MQ|=OB,可求得MP=4或MP=﹣2,即M点的纵坐标为4或﹣2,分别代入y=﹣3x+3,可求得x=﹣或x=(舍,因为它到l1的距离不是1),∴M点的坐标为(﹣,4);综上可知M点的坐标为(,2)或(﹣,4).2016年6月8日第21页(共21页)。
2016年山东省青岛市市北区中考数学一模试卷(解析版)DA.0个B.1个C.2个D.3个4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=______.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是______.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______.12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为______.13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为______.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=______;S n=______.(用含n 的式子表示)三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:______.16.(1)化简:(2)解不等式组:.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 ______ ______ 284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽______.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=______.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的______(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.的绝对值是()A.﹣6 B.6 C.﹣D.【考点】绝对值.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.2.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人 B.骑车人数占总人数的10%C.该班总人数为50人 D.乘车人数是骑车人数的40%【考点】频数(率)分布直方图;扇形统计图.【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.3.下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°【考点】切线的性质;含30度角的直角三角形.【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA 的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.7.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APC=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.【考点】二次函数图象与系数的关系;反比例函数的图象.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx ﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c <0,∴反比例函数y=的图象在第二、四象限.故选D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=﹣.【考点】二次根式的混合运算.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10.【考点】概率公式.【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【考点】由实际问题抽象出分式方程.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【考点】位似变换.【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【考点】扇形面积的计算;切线的性质.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC 的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S 阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)【考点】相似三角形的判定与性质;等腰直角三角形.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n 的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S△AB1C1=×1×1=,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【考点】作图—复杂作图.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.16.(1)化简:(2)解不等式组:.【考点】分式的加减法;解一元一次不等式组.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>,由②得:x≤3,则不等式组的解集为<x≤3.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【考点】概率公式.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 618596.5284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【考点】折线统计图;中位数;众数;方差.【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,595,598,613,618,618,624,则其众数为:618,中位数为:=596.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比医德成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,596.5.19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【考点】解直角三角形的应用.【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE 中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购进苹果x千克,则购进丑桔千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔千克,依题意得:5x+9=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】相似三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质;菱形的判定.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【考点】二次函数的应用.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的▱ABDE(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).【考点】四边形综合题.【分析】(1)通过直角△ADH和直角△HDE中,∠AHD=∠HED证明△ADH∽△HDE,得DH2=AD×DE,再根据等量代换得出正方形DFGH与矩形ABCD等积;(3)作法:①作BC的中垂线,取BD中点,作▱ABDE;②过B作BF⊥AE,垂足为F,作矩形BDHF;③在直线AE在取BF=FM,以HM 为直径,以点F为圆心作半圆,与直线BF交于点G;④则线段FG就是所求的正方形的一边;(4)作法:①连接BD,②过A作l∥BD,③延长CD交l于E,④连接BE,则S△BEC=S四边形ABCD.【解答】解:(1)答案为:△HDE,AD•DC;(3)如图2,答案为:▱ABDE;(4)如图3,则△BEC的面积=四边形ABCD 的面积;24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)利用相似三角形的判断和性质,表示出BQ=t,QH=t,PF=t,相似三角形的面积比等于相似比的平方,S△CPF=t2,从而y用三角形的面积的差表示出,即可;(2)假设存在,建立方程,求出方程的解,全不符合题意,得到不存在;(3)假设存在,建立方程,求出方程的解符合题意,即存在时间t,使PQ⊥PE;(4)假设存在,由线段PQ的垂直平分线恰好经过点B,得到BQ=BP,建立方程,求出t,即可.【解答】解:如图1,作AG⊥BC于G,作QH ⊥BC于H,∴QH∥AG,∴=,∵AG⊥BC,AB=AC=10,BC=12,∴BG=BC=×12=6,AG=8,∵BQ=t,∴=,∴QH=t,∵PE∥AB,∴=,∴=,∴PF=t,∵BC=12,AG=8,∴S△ABC=×BC×AG=48,(1)∵PE∥AB,∴=()2==,∴S△CPF=×S△ABC=×48=t2,∵BP=BC﹣PC=12﹣t,QH=t,∴S△BPQ=BP×QH=×(12﹣t)×t,∴y=S四边形AQPE=S△ABC﹣S△BPQ﹣S△CPF=48﹣×(12﹣t)×t﹣t2=﹣t2﹣t+48,(0<t<10)(2)解:假设存在某一时刻t,使四边形AQPE 的面积为平行四边形ABCD面积的一半,由(1)由S四边形AQPE=﹣t2﹣t+48,∴=﹣t2﹣t+48=48,∴t=0(舍)或t=﹣60(舍),∴假设不成立,∴不存在这样某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半;(3)解:假设存在某一时刻t,使PQ⊥PE,∵PE∥AB,∴∠BQP=90°,∴∠BQP=∠AGB,∠B=∠B,∴△BQP∽△BGA,∴,∵BG=6,BQ=t,BP=12﹣t,AB=10,∴=,∴t=,∴存在t=,使PQ⊥PE;(4)假设存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,∴BQ=BP,当0<t<10时,∵BP=12﹣t,BQ=t,∴12﹣t=t,∴t=6,∴存在t=6,使线段PQ的垂直平分线恰好经过点B,当10≤t<12时,∵BQ=20﹣t,BP=12﹣t,∴20﹣t=12﹣t,明显等式不成立,∴不存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,即:存在t=6,使线段PQ的垂直平分线恰好经过点B.。
九年级数学试2022—2023学年度第二学期阶段性学业水平质量检测题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎参加本次考试,祝你答题成功!本试卷共有24道题,其中1—8题为选择题,共24分;9—14题为填空题,共18分;15题为作图题,16—24题为解答题,共78分.所有题目均在答题卡上作答,在试题上作答无效。
一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A.B.C.D 的四个结论,其中只有一个是正确的,每小题选对得分,不选、错选或选出的标号超过一个的不得分.1.的相反数的倒数是A .B .C .D .2.中芯国际集成电路制造有限公司,是世界领先的集成电路晶圆代工企业之一,也是中国内地技术最先进、配套最完善、规模最大、跨国经营的集成电路制造企业集团,中芯国际第一代14纳米FinFET 技术取得了突破性进展,并于2019年第四季度进入量产,代表了中国大陆自主研发集成电路的最先进水平,14纳米=0.000000014米,0.000000014用科学记数法表示为A .1.4×10﹣7B .14×10﹣7C .1.4×10﹣8D .1.4×10﹣93.在一个密闭不透明的袋子里有若干个白球,为估计白球个数,丽丽向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球100次,其中20次摸到黑球,则估计袋中大约有白球()A .18个B .28个C .32个D .42个4.已知关于x 的一元二次方程(k ﹣1)2x 2+(2k +1)x +1=0有两个不相等的实数根,则k 的取值范围为A.B .C .D.5.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)6.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为A.60°B.55°C.50°D.45°7.如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为A.B.C.D.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx﹣ac与反比例函数在同一坐标系内的图象大致为A.B.C.D.第II卷(共96分)二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算,=.10.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分.各项成绩均按百分制计,然后再按演讲内容占50%,演讲能力占40%、演讲效果占10%,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如表所示,则获得第一名的选手为.11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应.选手演讲内容演讲能力演讲效果小明908090小红80909012.某品牌瓶装饮料每箱价格是26元,某商店对该瓶装饮料进行“买一送三”的促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料每瓶多少元?设该品牌饮料每瓶是x元,则可列方程为.13.如图,在平行四边形ABCD中,AD=4,∠BAD=45°,点E是AD中点,在AB上取一点F,以点F为圆心,FB的长为半径作圆,该圆与DC边恰好相切于点D,连接BE,则图中阴影部分面积为(结果保留π).14.如图,在矩形ABCD中,点E是线段AB上的一点,DE⊥CE,将△BCE沿CE翻折,得到△FCE,若AD=3,AB=10,则点F到CD的距离为.第13题第14题三、作图题(本题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.已知:线段a,c.求作:△ABC,使BC=a,AB=c,∠C=90°四、解答题(本题满分72分)16.计算(本小题满分8分)(1)化简:;(2)解不等式组,并写出不等式组的最小整数解.17.(本小题满分6分)如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.18.(本小题满分6分)青岛胶东机场即将于2023年1月投入使用。
2024年浙江省中考数学模拟练习试卷(解析版)(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b = 【答案】C【分析】根据整式的减法运算,同底数幂的乘法、除法运算,幂的乘方进行运算求解,然后进行判断即可.【详解】解:A 中4222a a a −=≠,错误,故不符合要求;B 中8424a a a a ÷=≠,错误,故不符合要求;C 中235a a a ⋅=,正确,故符合要求;D 中()3265b b b =≠,错误,故不符合要求;故选C .3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据277000000用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710× 【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同, 当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知: 8277000000=2.7710×.故选:D .4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,中心对称,是针对两个图形而言,是指两个图形的(位置)关系;如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.由此即可求解.【详解】解:A 选项,不是轴对称图形,也不是中心对称图形,不符合题意;B 选项,不是轴对称图形,是中心对称图形,不符合题意;C 选项,是轴对称图形,也是中心对称图形,符合题意;D 选项,是轴对称图形,不是中心对称图形,不符合题意;故选:C .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】解:∵点P (m ﹣3,m ﹣1)在第二象限,∴3010m m −< −> , 解得:1<m <3,故选D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 【答案】A【分析】根据题意首先应通分,然后进行分式的加减运算进而上下约分即可得出答案. 【详解】解:24142x x −−− 224244x x x +−−−2424x x −−=− (2)(2)(2)x x x −−=−+ 12x =−+ 故选:A .7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .19【答案】C【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果.【详解】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种, 则甲被选中的概率为4263=. 故选:C .8. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°【答案】D【分析】连接 OD 、OC ,如图,利用等腰三角形的性质和三角形内角和定理计算出 100AOC ∠=° ,再根据圆心角、弧、弦的关系得到 50AOD COD ∠=∠=°,然后根据圆周角定理得到 CAD ∠ 的度数; 【详解】连接 OD 、OC ,如图,,OA OC =OCA OAC ∴∠=∠40=°180AOC ∴∠=°4040100−°−°=°AD CD =,AD CD∴= 12AOD COD AOC ∴∠=∠=∠50=° 125.2CAD COD ∴∠=∠=° 故选:D9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .【答案】C 【分析】连接OP 、OQ ,根据勾股定理知 222PQ OP OQ =﹣, 当PO ⊥AB 时,线段PQ 最短,即线段PQ 最小. 【详解】解:如图,连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;由勾股定理知222PQ OP OQ =﹣,, ∵当PO ⊥AB 时,线段PQ 最短;又∵A (4,0)、B (0,4), ∴OA =OB =4,∴AB ,∴1122OP AB ==× ∵OQ =2,∴2PQ .故选C .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A.B .5 C.D.【答案】B 【分析】由矩形的性质可得BEG DGE ∠=∠,求出AEH CGF ∠=∠,证得(AAS)AEH CGF ≌,得出AE CG =,过点K 作GK AB ⊥于K ,可证明AEH KGE ∽,利用相似三角形对应边成比例求出144AE KG ==,再求出12EK =,然后利用勾股定理列式求出EG ,然后求解即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD ,∴BEG DGE ∠=∠, ∴AEH CGF ∠=∠, ∵5个小正方形全等,∴EH GF =,在AEH △和CGF △中,90AEH CGF A C EH GF ∠=∠ ∠=∠=° =, ∴(AAS)AEH CGF ≌, ∴AE CG =,过点K 作GK AB ⊥于K ,如下图所示,则四边形BCGK 为矩形,∴,16BKCG AE KG BC ====, ∵90,90AEH KEGKGE KEG ∠+∠=°∠+∠=°, ∴AEH KGE ∠=∠, ∵90A EKG ∠=∠=°, ∴AEH KGE ∽, ∴14AE EH KG GE ==, ∴144AE KG ==, ∴204412EK AB AE BK −−−−,在Rt KEG 中,20EG ,∴小正方形的边长为5420=÷,故选:B .二、填空题:本题共6小题,每小题3分,共18分。
山东省青岛市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(10套)-03解答题(基础题)②一.分式的混合运算(共2小题)1.(2023•莱西市一模)(1)化简:;(2)解不等式组.2.(2023•即墨区一模)(1)化简:;(2)解方程组.二.根的判别式(共1小题)3.(2023•城阳区一模)计算:(1)解方程:.(2)关于x的一元二次方程3x2+2x﹣k=0有实数根,求k的取值范围.三.一次函数与一元一次不等式(共1小题)4.(2023•市北区一模)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.小刚在学习了一次方程(组)、一元一次不等式和一次函数后,结合图示对相关知识作如下归纳整理:(1)小刚学习笔记中的①②③④分别指什么呢?请你根据以上的复习阅读,在下面横线上将他们的意思体现清楚:① ;② ;③ ;④ ;(2)如果点C的坐标为(1,3),那么不等式kx+b≤k1x+b1的解集是 .四.二次函数图象与系数的关系(共1小题)5.(2023•即墨区一模)已知二次函数y=x2﹣2mx+m2﹣1.(1)求证:二次函数y=x2﹣2mx+m2﹣1的图象与x轴总有两个交点;(2)若二次函数y=x2﹣2mx+m2﹣1的图象与x轴交点的横坐标一个大于2,一个小于1,求m的取值范围.五.二次函数的应用(共1小题)6.(2023•城阳区一模)为响应国家提出由中国制造向中国创造转型的号召,某公司自主设计了一款机器人,每个生产成本为16元,投放市场进行了销售.经过调查,售价为30元/个时,每月可售出40万个,销售单价每涨价5元,每月就少售出10万个.(1)确定月销售量y(万个)与售价x(元/个)之间的函数关系式(x>30);(2)设商场每月销售这种机器人所获得的利润为w(万元),请确定所获利润w(万元)与售价x(元/个)之间的函数关系式(x>30).六.线段垂直平分线的性质(共1小题)7.(2023•市北区一模)在△ABC内找一点P,使点P到A,B两点的距离相等,并且点P 到点C的距离等于线段AC的长.七.菱形的性质(共1小题)8.(2023•即墨区一模)在菱形ABCD中,CE,AF分别是其外角∠DCN和∠DAM的平分线,AD的延长线交CE于点E,CD的延长线交AF于点F.(1)证明:△ADC≌△EDF;(2)判断四边形ACEF是什么特殊四边形.并说明理由.八.菱形的判定(共1小题)9.(2023•青岛一模)如图,在▱ABCD中,AC,BD交于点O,点E,F分别是AO,CO 的中点.(1)求证:DE=BF;(2)请从以下三个条件:①AC=2BD;②∠BAC=∠DAC;③AB=AD中,选择一个合适的作为已知条件,使四边形DEBF为菱形.你选择添加的条件是: (填写序号);添加条件后,请证明四边形DEBF为菱形.九.作图—复杂作图(共2小题)10.(2023•青岛一模)已知:线段a,b;求作:矩形ABCD,使AB=a,BC=b.11.(2023•莱西市一模)已知A、B、C三点.求作⊙O,使它经过A、B、C三点.(尺规作图,要求保留作图痕迹)一十.扇形统计图(共2小题)12.(2023•莱西市一模)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息解答下列问题:竞赛成绩统计表:组别分数人数A组75<x≤804B组80<x≤85C组85<x≤9010D组90<x≤95E组95<x≤10014(1)本次共调查了 名学生;(2)C组所在扇形的圆心角为 度;(3)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?13.(2023•青岛一模)为增强居民防治噪声污染意识,保障公共健康,某地区环保部门随机抽取了某一天部分噪声测量点18:00这一时刻的测量数据进行统计,把所抽取的测量数据分成A,B,C,D,E五组,并将统计结果绘制了两幅不完整的统计图表.组别噪声声级x/dB频数A55≤x<605B60≤x<65aC65≤x<701818D70≤x<75bE75≤x<809请解答下列问题:(1)a= ;b= ;(2)在扇形统计图中E组对应的扇形圆心角的度数是 °;(3)若该地区共有600个噪声测量点,请估计该地区这一天18:00时噪声声级低于70dB 的测量点的个数.一十一.条形统计图(共1小题)14.(2023•城阳区一模)10月16日是“世界粮食日”,某校倡导“光盘行动”,为了让学生养成珍惜粮食的优良习惯.在这天午餐后随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的条形统计图和扇形统计图:(1)把条形统计图补充完整.(2)扇形统计图中,“剩大量”所对应的扇形的圆心角度数是 °.(3)为了树立良好的节约粮食风气,学校准备对全校“剩少量”和“没有剩”的同学颁发奖状,若全校共有2000名学生,则约有多少人获得奖状?一十二.列表法与树状图法(共2小题)15.(2023•青岛一模)某强校提质校举办“数学素养”趣味赛.比赛题目分为“数与代数”“图形与几何”“统计与概率”“综合与实践”四组(依次记为A,B,C,D).小明和小亮两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小明抽到B组题目的概率是 ;(2)请用列表或画树状图的方法,求小明和小亮两名同学抽到不同题目的概率.16.(2023•即墨区一模)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)用画树状图或列表法表示同时摸出两张牌的所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张牌的牌面图形都是中心对称图形的概率.一十三.游戏公平性(共2小题)17.(2023•市北区一模)小明和小亮用如图所示的,两个均匀、可以自由转动的转盘做配紫色游戏,游戏规则是:分别任意转动两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,即可以配成紫色.此时小明胜,否则小亮胜.这个游戏对双方公平吗?请用画树状图或列表格的方法说明理由.18.(2023•城阳区一模)下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并分别标记了数字1,2,3和1,2,3,4.小明和小亮利用这两个转盘做游戏,规则如下:同时转动两个转盘,指针停止后,将指针所指区域的数字相乘(若指针停在分界线上,则重新转动转盘),如果积为奇数,则小明获胜;如果积为偶数,则小亮获胜,请你确定游戏规则是否公平,并说明理由.山东省青岛市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(10套)-03解答题(基础题)②参考答案与试题解析一.分式的混合运算(共2小题)1.(2023•莱西市一模)(1)化简:;(2)解不等式组.【答案】(1)a+1;(2)2<x≤5.【解答】解:(1)====a+1;(2),解不等式①得,x≤5,解不等式②得,x>2,∴原不等式组的解集是2<x≤5.2.(2023•即墨区一模)(1)化简:;(2)解方程组.【答案】(1);(2).【解答】解:(1)原式=1﹣•=1﹣==;(2),①×3+②得16x=10,解得x=,②×5﹣①得﹣16y=18,解得y=﹣,所以原方程组的解为.二.根的判别式(共1小题)3.(2023•城阳区一模)计算:(1)解方程:.(2)关于x的一元二次方程3x2+2x﹣k=0有实数根,求k的取值范围.【答案】(1)x=3;(2)k≥﹣.【解答】解:(1)去分母,得3﹣x﹣1=x﹣4,解得x=3,检验:当x=3时,x﹣4≠0,则x=3为原方程的解,所以原方程的解为x=3;(2)根据题意得Δ=22﹣4×3×(﹣k)≥0,解得k≥﹣,即k的取值范围为k≥﹣.三.一次函数与一元一次不等式(共1小题)4.(2023•市北区一模)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.小刚在学习了一次方程(组)、一元一次不等式和一次函数后,结合图示对相关知识作如下归纳整理:(1)小刚学习笔记中的①②③④分别指什么呢?请你根据以上的复习阅读,在下面横线上将他们的意思体现清楚:① kx+b=0 ;② ;③ kx+b>0 ;④ kx+b<0 ;(2)如果点C的坐标为(1,3),那么不等式kx+b≤k1x+b1的解集是 x≥1 .【答案】(1)kx+b=0;;kx+b>0;kx+b<0;(2)x≥1.【解答】解:(1)根据题意知:①kx+b=0;②;③kx+b>0;④kx+b<0.故答案为:kx+b=0;;kx+b>0;kx+b<0;(2)如果点C的坐标为(1,3),那么不等式kx+b≤k1x+b1的解集是:x≥1.故答案为:x≥1.四.二次函数图象与系数的关系(共1小题)5.(2023•即墨区一模)已知二次函数y=x2﹣2mx+m2﹣1.(1)求证:二次函数y=x2﹣2mx+m2﹣1的图象与x轴总有两个交点;(2)若二次函数y=x2﹣2mx+m2﹣1的图象与x轴交点的横坐标一个大于2,一个小于1,求m的取值范围.【答案】(1)见解答;(2)1<m<2.【解答】(1)证明:∵Δ=(﹣2m)2﹣4(m2﹣1)=4>0,∴二次函数y=x2﹣2mx+m2﹣1的图象与x轴总有两个交点;(2)当y=0时,x2﹣2mx+m2﹣1=0,x==m±1,解得x1=m+1,x2=m﹣1,∵抛物线与x轴的交点坐标为(m﹣1,0)、(m+1,0),∴,解得1<m<2,即m的取值范围为1<m<2.五.二次函数的应用(共1小题)6.(2023•城阳区一模)为响应国家提出由中国制造向中国创造转型的号召,某公司自主设计了一款机器人,每个生产成本为16元,投放市场进行了销售.经过调查,售价为30元/个时,每月可售出40万个,销售单价每涨价5元,每月就少售出10万个.(1)确定月销售量y(万个)与售价x(元/个)之间的函数关系式(x>30);(2)设商场每月销售这种机器人所获得的利润为w(万元),请确定所获利润w(万元)与售价x(元/个)之间的函数关系式(x>30).【答案】(1)月销售量y(万个)与售价x(元/个)之间的函数关系式为y=﹣2x+100(x>30);(2)获利润w(万元)与售价x(元/个)之间的函数关系式为w=﹣2x2+132x﹣1600(x >30).【解答】解:(1)根据题意得:y=40﹣×10=﹣2x+100,∴月销售量y(万个)与售价x(元/个)之间的函数关系式为y=﹣2x+100(x>30);(2))由题意得,w=y(x﹣16)=(﹣2x+100)(x﹣16)=﹣2x2+132x﹣1600,∴获利润w(万元)与售价x(元/个)之间的函数关系式为w=﹣2x2+132x﹣1600(x>30).六.线段垂直平分线的性质(共1小题)7.(2023•市北区一模)在△ABC内找一点P,使点P到A,B两点的距离相等,并且点P 到点C的距离等于线段AC的长.【答案】见解答.【解答】解:由题意得,点P是线段AB的垂直平分线与以点C为圆心、CA长为半径画弧的交点,再根据各选项的尺规作图即可.七.菱形的性质(共1小题)8.(2023•即墨区一模)在菱形ABCD中,CE,AF分别是其外角∠DCN和∠DAM的平分线,AD的延长线交CE于点E,CD的延长线交AF于点F.(1)证明:△ADC≌△EDF;(2)判断四边形ACEF是什么特殊四边形.并说明理由.【答案】(1)见解析过程;(2)四边形ACEF是矩形,理由见解析过程.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,AB=BC=AD=CD,∴∠MAF=∠AFD,∠AEC=∠ECN,∵AF平分∠MAE,∴∠MAF=∠FAD=∠AFD,∴AD=DF,同理可得:CD=DE,∴AD=CD=DE=DF,在△ADC和△EDF中,,∴△ADC≌△EDF(SAS);(2)解:四边形ACEF是矩形,理由如下:∵AD=DE,DC=DF,∴四边形ACEF是平行四边形,∵AD=CD=DE=DF,∴AE=CF,∴平行四边形ACEF是矩形.八.菱形的判定(共1小题)9.(2023•青岛一模)如图,在▱ABCD中,AC,BD交于点O,点E,F分别是AO,CO 的中点.(1)求证:DE=BF;(2)请从以下三个条件:①AC=2BD;②∠BAC=∠DAC;③AB=AD中,选择一个合适的作为已知条件,使四边形DEBF为菱形.你选择添加的条件是: ②③ (填写序号);添加条件后,请证明四边形DEBF为菱形.【答案】(1)见解析过程;(2)②③.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵点E,F分别是AO,CO的中点,∴EO=AO,FO=CO,∴EO=FO,∴四边形DEBF是平行四边形,∴DE=BF;(2)解:当AC=2BD时,AO=CO=BD,∴EO=FO=DO=BO,∴EF=BD,∴平行四边形DEBF是矩形;当∠BAC=∠DAC时,∵AB∥CD,∴∠BAC=∠DCA=∠DAC,∴AD=CD,又∵AO=CO,∴BD⊥AC,∴平行四边形DEBF是菱形;当AB=AD时,∵AB=AD,BO=DO,∴AC⊥BD,∴平行四边形DEBF是菱形;故答案为②③.九.作图—复杂作图(共2小题)10.(2023•青岛一模)已知:线段a,b;求作:矩形ABCD,使AB=a,BC=b.【答案】见解答.【解答】解:如图,矩形ABD为所作.11.(2023•莱西市一模)已知A、B、C三点.求作⊙O,使它经过A、B、C三点.(尺规作图,要求保留作图痕迹)【答案】见解答.【解答】解:如图,⊙O为所作.一十.扇形统计图(共2小题)12.(2023•莱西市一模)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息解答下列问题:竞赛成绩统计表:组别分数人数A组75<x≤804B组80<x≤85C组85<x≤9010D组90<x≤95E组95<x≤10014(1)本次共调查了 50 名学生;(2)C组所在扇形的圆心角为 72 度;(3)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?【答案】(1)50;6;(2)72;(3)960人.【解答】解:(1)本次共调查的学生=14÷28%=50(人);故答案为:50;(2)C组的圆心角为360°×=72°;故答案为:72;(3)B组的人数为50×12%=6(人);D组的人数为50﹣4﹣6﹣14﹣10=16(人),则估计优秀的人数为1600×=960(人).优秀的人数为960人.13.(2023•青岛一模)为增强居民防治噪声污染意识,保障公共健康,某地区环保部门随机抽取了某一天部分噪声测量点18:00这一时刻的测量数据进行统计,把所抽取的测量数据分成A,B,C,D,E五组,并将统计结果绘制了两幅不完整的统计图表.组别噪声声级x/dB频数A55≤x<605B60≤x<65aC65≤x<701818D70≤x<75bE75≤x<809请解答下列问题:(1)a= 13 ;b= 15 ;(2)在扇形统计图中E组对应的扇形圆心角的度数是 54 °;(3)若该地区共有600个噪声测量点,请估计该地区这一天18:00时噪声声级低于70dB 的测量点的个数.【答案】(1)13;15;(2)54;(3)360个.【解答】解:(1)∵样本容量为18÷30%=60,∴b=60×25%=15,∴a=60﹣(5+18+15+9)=13,故答案为:13;15;(2)在扇形统计图中E组对应的扇形圆心角的度数是360°×=54°,故答案为:54;(3)600×=360(个).答:估计该地区这一天18:00时噪声声级低于70dB的测量点的个数约360个.一十一.条形统计图(共1小题)14.(2023•城阳区一模)10月16日是“世界粮食日”,某校倡导“光盘行动”,为了让学生养成珍惜粮食的优良习惯.在这天午餐后随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的条形统计图和扇形统计图:(1)把条形统计图补充完整.(2)扇形统计图中,“剩大量”所对应的扇形的圆心角度数是 54 °.(3)为了树立良好的节约粮食风气,学校准备对全校“剩少量”和“没有剩”的同学颁发奖状,若全校共有2000名学生,则约有多少人获得奖状?【答案】(1)补全的条形统计图见解答;(2)54;(3)约有1200人获得奖状.【解答】(1)本次调查的学生有:120÷40%=300(人),剩少量的学生有:300﹣120﹣75﹣45=60(人),补全的条形统计图如图所示;(2)扇形统计图中,“剩大量”所对应的扇形的圆心角度数是:360°×=54°,故答案为:54;(3)2000×=1200(人),答:约有1200人获得奖状.一十二.列表法与树状图法(共2小题)15.(2023•青岛一模)某强校提质校举办“数学素养”趣味赛.比赛题目分为“数与代数”“图形与几何”“统计与概率”“综合与实践”四组(依次记为A,B,C,D).小明和小亮两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小明抽到B组题目的概率是 ;(2)请用列表或画树状图的方法,求小明和小亮两名同学抽到不同题目的概率.【答案】(1).(2).【解答】解:(1)∵比赛题目有四组,∴小明抽到B组题目的概率是.故答案为:.(2)画树状图如下:共有16种等可能的结果,其中小明和小亮两名同学抽到不同题目的结果有AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,共12种,∴小明和小亮两名同学抽到不同题目的概率为=.16.(2023•即墨区一模)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)用画树状图或列表法表示同时摸出两张牌的所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张牌的牌面图形都是中心对称图形的概率.【答案】(1)AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC.(2).【解答】解:画树状图如下:共有12种等可能的结果,分别为:AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC.(2)纸牌A,B,C,D的牌面图形中,为中心对称图形的是B,C,由树状图可知,共有12种等可能的结果,其中摸出两张牌的牌面图形都是中心对称图形的结果有:BC,CB,共2种,∴摸出两张牌的牌面图形都是中心对称图形的概率为=.一十三.游戏公平性(共2小题)17.(2023•市北区一模)小明和小亮用如图所示的,两个均匀、可以自由转动的转盘做配紫色游戏,游戏规则是:分别任意转动两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,即可以配成紫色.此时小明胜,否则小亮胜.这个游戏对双方公平吗?请用画树状图或列表格的方法说明理由.【答案】公平,理由见解答.【解答】解:根据题意列表如下:红蓝蓝红(红,红)(红,蓝)(红,蓝)蓝(蓝,红)(蓝,蓝)(蓝,蓝)共有6种等可能的结果数,其中能配成紫色的结果数为3,所以小明胜的概率是=,小亮胜的概率是,∵=,∴这个游戏公平.18.(2023•城阳区一模)下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并分别标记了数字1,2,3和1,2,3,4.小明和小亮利用这两个转盘做游戏,规则如下:同时转动两个转盘,指针停止后,将指针所指区域的数字相乘(若指针停在分界线上,则重新转动转盘),如果积为奇数,则小明获胜;如果积为偶数,则小亮获胜,请你确定游戏规则是否公平,并说明理由.【答案】不公平.【解答】解:根据题意画树状图如下:∵共有12种等可能的结果,积为奇数的有4种情况,积为偶数有8种情况,∴P(小明获胜)==;P(小亮获胜)==;∴P(小明获胜)≠P(小亮获胜),∴这个游戏规则对小明、小亮双方不公平.。
2016年山东省青岛市中考数学模拟试卷(二)一、选择题(本题共24分,共8小题,每小题3分)1.2015的相反数是()A.B.﹣C.2015 D.﹣20152.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.B.C.D.4.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参则苏炳添这五次比赛成绩的众数和平均数分别为()A.10.06秒,10.06秒 B.10.10秒,10.06秒C.10.06秒,10.08秒 D.10.08秒,10.06秒5.如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器()台.A.3 B.4 C.5 D.66.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.147.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤38.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本题满分18分,共有6道题,每小题3分)9.2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为.10.分解因式:ab3﹣ab=.11.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式;自变量的取值范围.12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.13.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是.14.如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别P n﹣1为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a,求作:△ABC,使AB=AC,BC=a,且BC边上的高AD=2a.四、解答题(本题满分74分,共9道题)16.(1)化简:÷(2)解不等式组:.17.小颖和小明用如图所示的两个转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小颖得2分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?18.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°.热气球A的高度为240米,求这栋大楼的高度.19.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和新款B型车共60辆,要使这批车获利不少于33000元,的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.22.盐阜人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.(1)设该种品牌服装的销售单价为x元(x>50),销售量为y件,请写出y与x之间的函数关系式;(2)若商场获得了6000元销售利润,该服装销售单价x应定为多少元?(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?23.【问题情境】张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P 为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,可得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.2016年山东省青岛市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题共24分,共8小题,每小题3分)1.2015的相反数是()A.B.﹣C.2015 D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.2.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.3.如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.B.C.D.【考点】几何概率;平行四边形的性质.【分析】根据平行四边形的性质易得S△OEH=S△OFG,则S阴影部分=S△AOB=S平行四边形ABCD,然后根据几何概率的意义求解.【解答】解:∵四边形ABCD为平行四边形,∴△OEH和△OFG关于点O中心对称,∴S△OEH=S△OFG,∴S 阴影部分=S △AOB =S 平行四边形ABCD ,∴飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率==.故选C .4.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参则苏炳添这五次比赛成绩的众数和平均数分别为( )A .10.06秒,10.06秒 B .10.10秒,10.06秒C .10.06秒,10.08秒D .10.08秒,10.06秒【考点】众数;算术平均数.【分析】根据众数和平均数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19, 则众数为:10.06,平均数为: =10.08.故选C .5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【考点】圆周角定理.【分析】根据∠A 的度数,可求得∠A 所对弧的度数,而圆的度数为360°,由此可求出最少要安装多少台同样的监控器.【解答】解:设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°, 解得n ≥, ∴至少要安装3台这样的监控器,才能监控整个展厅.故选A .6.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质.【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.7.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3【考点】一次函数与一元一次不等式.【分析】函数y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),求不等式﹣x+2≥ax+b的解集,就是看函数在什么范围内y=﹣x+2的图象对应的点在函数y=ax+b的图象上面.【解答】解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y=ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选D.8.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.二、填空题(本题满分18分,共有6道题,每小题3分)9.2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为2.03×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2030000用科学记数法表示为:2.03×106.故答案为:2.03×106.10.分解因式:ab3﹣ab=ab(b+1)(b﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:ab3﹣ab,=ab(b2﹣1),=ab(b+1)(b﹣1).故答案为:ab(b+1)(b﹣1).11.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式s=﹣3x2+24x;自变量的取值范围≤x<8.【考点】根据实际问题列二次函数关系式.【分析】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式.【解答】解:由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米.这时面积S=x(24﹣3x)=﹣3x2+24x.∵0<24﹣3x≤10得≤x<8,故答案为:S=﹣3x2+24x,≤x<8.12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.【考点】扇形面积的计算;全等三角形的判定与性质;菱形的性质.【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【解答】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S﹣S△ABD=﹣×2×=﹣.扇形EBF故答案是:﹣.13.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是5.【考点】相似三角形的判定与性质;二次函数的最值;正方形的性质.【分析】设BE=x,则EC=4﹣x,先利用等角的余角相等得到∠BAE=∠FEC,则可判断Rt△ABE∽Rt△ECF,利用相似比可表示出FC=,则DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3,所以x=2时,DF有最小值3,而AF2=AD2+DF2,即DF最小时,AF最小,AF的最小值为=5.【解答】解:设BE=x,则EC=4﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,即=,解得FC=,∴DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3当x=2时,DF有最小值3,∵AF2=AD2+DF2,∴AF的最小值为=5.故答案为:5.14.如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n ﹣1P n =2n ﹣1(n 为正整数),分别过点P 1,P 2,P 3,…,P n 向射线OA 作垂线段,垂足分别为点Q 1,Q 2,Q 3,…,Q n ,则点Q n 的坐标为 (n 2, n 2) .【考点】相似三角形的判定与性质;坐标与图形性质.【分析】利用特殊直角三角形求出OP n 的值,再利用∠AOB=60°即可求出点Q n 的坐标.【解答】解:∵△AOB 为正三角形,射线OC ⊥AB ,∴∠AOC=30°,又∵P n ﹣1P n =2n ﹣1,P n Q n ⊥OA ,∴OQ n =(OP 1+P 1P 2+P 2P 3+…+P n ﹣1P n )=(1+3+5+…+2n ﹣1)=n 2,∴Q n 的坐标为(n 2•cos60°,n 2•sin60°),∴Q n 的坐标为(n 2, n 2).故答案为:( n 2, n 2).三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a ,求作:△ABC ,使AB=AC ,BC=a ,且BC 边上的高AD=2a .【考点】作图—复杂作图.【分析】首先作BC=a ,然后作BC 的垂直平分线,截取AD=2a ,连接AB ,AC 即可.【解答】解:①作射线BE ,在射线BE 上截取BC=a ,②作BC 的垂直平分线EF ,交BC 于点D ,③截取AD=2a ,连接AB ,AC ,则△ABC 即为所求.四、解答题(本题满分74分,共9道题)16.(1)化简:÷(2)解不等式组:.【考点】分式的乘除法;解一元一次不等式组.【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)原式=•=;(2),由①得:x≥﹣2,由②得:x≤,则不等式组的解集为﹣2≤x≤.17.小颖和小明用如图所示的两个转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小颖得2分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?【考点】游戏公平性.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:画树状图得:故一共有6种情况,配成紫色的有1种情况,相同颜色的有1种情况,∴配成紫色的概率是,则得出其他概率的可能是:,∵×2<,∴这个游戏对双方不公平,若配成紫色,此时小颖得2分,配成相同颜色小明得2分,∵配成相同颜色的概率是,∴此时游戏公平.18.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°.热气球A的高度为240米,求这栋大楼的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】过A作BC的垂线,设垂足为D.在Rt△ACD中,利用∠CAD的正切函数求出邻边AD的长;进而可在Rt△ABD中,利用已知角的三角函数求出BD的长;由BC=CD﹣BD即可求出楼的高度.【解答】解:作AD⊥CB,交CB的延长线于D点.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米.在Rt△ACD中,tan∠CAD=,∴AD===80.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan30°=80×=80.∴BC=CD﹣BD=240﹣80=160.答:这栋大楼的高为160米.19.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?【考点】方差.【分析】(1)利用平均数计算公式、中位数解答即可;(2)先求出方差,根据方差的大小再确定哪段台阶路走起来更舒服;(3)要使台阶路走起来更舒服,就得让方差变得更小.【解答】解:(1)将甲、乙两台阶高度值从小到大排列如下,甲:10,12,15,17,18,18;乙:14,14,15,15,16,16;甲的中位数是:(15+17)÷2=16,平均数是:(10+12+15+17+18+18)=15;乙的中位数是:(15+15)÷2=15,平均数是:(14+14+15+15+16+16)=15;故两台阶高度的平均数相同,中位数不同;(2)=[(10﹣15)2+(12﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(18﹣15)2]=,=[(14﹣15)2+(14﹣15)2+(15﹣15)2+(15﹣15)2+(16﹣15)2+(16﹣15)2]=,∵乙台阶的方差比甲台阶方差小,∴乙台阶上行走会比较舒服;(3)修改如下:为使游客在两段台阶上行比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15cm(原平均数),使得方差为0.20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和新款B型车共60辆,要使这批车获利不少于33000元,【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利不少于33000元,由条件表示出33000与a之间的关系式,进而得出答案.【解答】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得:=,解得:x=1600.经检验,x=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,由题意,得a+(60﹣a)≥33000,解得:a≤30,故要使这批车获利不少于33000元,A型车至多进30辆.21.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.【考点】全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定.【分析】(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.【解答】(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,∴OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∵OD=AC,∴OA=OB=OC=OD,且BD=AC,∴四边形ABCD为矩形.22.盐阜人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.(1)设该种品牌服装的销售单价为x元(x>50),销售量为y件,请写出y与x之间的函数关系式;(2)若商场获得了6000元销售利润,该服装销售单价x应定为多少元?(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?【考点】二次函数的应用.【分析】(1)直接利用销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装得出y与x值间的关系;(2)利用销量×每件利润=6000,进而求出答案;(3)利用销量×每件利润=总利润,再利用该商场要完成不少于350件的销售任务得出x的取值范围,进而得出二次函数最值.【解答】解:(1)由题意可得:y=400﹣10(x﹣50)=900﹣10x;(2)由题意可得:(x﹣40)=6000,整理得:﹣10x2+1300x﹣3600=6000,解得:x1=60,x2=70,答:服装销售单价x应定为60元或70元时,商场可获得6000元销售利润;(3)设利润为W,则W=﹣10x2+1300x﹣3600=﹣10(x﹣65)2+6250,∵a=﹣10<0,对称轴是直线x=65,900﹣10x≥350,解得:x≤55,∴当50<x≤55时,W随x增大而增大,=5250(元),∴当x=55时,W最大值答:商场销售该品牌服装获得的最大利润是5250元.23.【问题情境】张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P 为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,可得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.【考点】一次函数综合题.【分析】【问题情境】利用小林或小兰的思路可以证明;【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】分M在线段BC上和M在线段BC外两种情况,再分别根据△AMC和△AMB 的面积和与差等于△ABC的面积,求得M到AC的距离,即M点的纵坐标,再代入l2的解析式可求出M的坐标.【解答】解:【问题情境】如图②,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=AB•PD,S△ACP=AC•PE,S△ABC=AB•CF,∵S△ABP+S△ACP=S△ABC,∴AB•PD+AC•PE=AB•CF,又AB=AC,∴PD+PE=CF;【变式探究】如图3,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=AB•PD,S△ACP=AC•PE,S△ABC=AB•CF,∵S△ABP﹣S△ACP=S△ABC,∴AB•PD﹣AC•PE=AB•CF,又∵AB=AC,∴PD﹣PE=CF;【结论运用】由题意可求得A(﹣4,0),B(3,0),C(0,1),∴AB=5,AC=5,BC=,OB=3,当M在线段BC上时,过M分别作MP⊥x轴,MQ⊥AB,垂足分别为P、Q,如图④,则S△AMC=AC•MP,S△AMB=AB•MQ,S△ABC=OB•AC,∵S△AMC+S△AMB=S△ABC,∴AC•MP+AB•MQ=OB•AC,即×5×MP+×5×1=×3×5,解得MP=2,∴M点的纵坐标为2,又∵M在直线y=﹣3x+3,∴当y=2时,代入可求得x=,∴M坐标为(,2);同理,由前面结论可知当M点在线段BC外时,有|MP﹣MQ|=OB,可求得MP=4或MP=﹣2,即M点的纵坐标为4或﹣2,分别代入y=﹣3x+3,可求得x=﹣或x=(舍,因为它到l1的距离不是1),∴M点的坐标为(﹣,4);综上可知M点的坐标为(,2)或(﹣,4).最大最全最精的教育资源网 全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | 2016年6月8日。