中考复习-分式方程-陈睿
- 格式:doc
- 大小:268.50 KB
- 文档页数:8
第三章 方程〔组〕和不等式课时11.分式方程及其应用【课前热身】1. 方程22123=-+--xx x 的解是x= . 2. 2+x a 与2-x b 的和等于442-x x ,那么=a ,=b . 3.解方程12112-=-x x 会出现的增根是〔 〕 A .1=x B.1-=x C. 1=x 或者1-=x D.2=x4. 假如分式12-x 与33+x 的值相等,那么x 的值是( ) A .9 B .7 C .5 D .35. 假如3:2:=y x ,那么以下各式不成立的是〔 〕A .35=+y y xB .31=-y x yC .312=y xD .4311=++y x 6. 假设分式122--x x 的值是0,那么x 的值是〔 〕 A. 1B. -1C. ± 【考点链接】1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:〔1〕去分母,在方程的两边都乘以 ,约去分母,化成整式方程; 〔2〕解这个整式方程;〔3〕验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验答题.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:〔1〕检验所求的解是否是所列;〔2〕检验所求的解是否 . 5.易错知识辨析:〔1〕去分母时,不要漏乘没有分母的项.〔2〕解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.〔3〕如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.【典例精析】例1 解分式方程:1233xx x=+--.例2 在2021年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进展抢修.供电局间隔抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.吉普车速度是抢修车速度的1.5倍,求这两种车的速度.例3 某中学库存960套旧桌凳,修理后捐助贫困山区.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;每天需付甲小组修理费80元,付乙小组120元.〔1〕求甲、乙两个木工小组每天各修桌凳多少套.〔2〕在修理桌凳过程中,要委派一名维修工进展质量监视,并由负担他每天10元的生活补助.现有以下三种修理方案供选择:① 由甲单独修理;② 由乙单独修理;③ 由甲、乙一共同修理.你认为哪种方案既时又钱?试比拟说明.【中考演练】1. 方程0112=--xx 的解是 . 2. 假设关于x 方程2332+-=--x m x x 无解,那么m 的值是 . 3. 分式方程3111122=---x x 的解是 . 4. 以下是方程1211=--x x x 去分母、去括号后的结果,其中正确的选项是〔 〕 A .112=--x B.112=+-x C.x x 212=+- D.x x 212=--5. 分式方程21124x x x -=--的解是〔 〕 A .32- B .2- C .52- D .326. 分式方程1421-=+-x x x 的解是〔 〕 A.71=x , 12=x B. 71=x ,12-=xC. 71-=x , 12-=xD. 71-=x 12=x7. 今年以来受各种因素的影响,猪肉的场价格仍在不断上升.据调查,今年5月份一级猪肉的价格是1月份猪肉价格的1.25倍.小英同学的妈妈同样用20元钱在5月份购得一级猪肉比在1月份购得的一级猪肉少0.4斤,那么今年1月份的一级猪肉每斤是多少元?8. 今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定假设干天内完成.(1) 甲组单独完成这项工程所需时间是比规定时间是的2倍多4天,乙组单独完成这项工程所需时间是比规定时间是的2倍少16天.假如甲、乙两组合做24天完成,那么甲、乙两组合做能否在规定时间是内完成?(2) 在实际工作中,甲、乙两组合做完成这项工程的65后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.励志赠言经典语录精选句;挥动**,放飞梦想。
2018中考数学知识点:分式方程
新一轮中考复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!
分式方程:
含分式,并且分母中含未知数的方程叫做分式方程。
分式的混合运算:
分式的混合运算关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。
第7讲分式方程一、知识清单梳理2019-2020学年数学中考模拟试卷一、选择题1.(11·孝感)如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP =α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.,sin 180R Rπαα B.(90),sin 180R RR απα-- C.(90),sin 180R RR απα-- D.(90),sin 180R RR απα+- 2.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张3.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是( ) A.20元B.18元C.15元D.10元4.天津市委市政府决定在滨海新区和中心城区中间地带实施规划管控建设绿色生态屏障.全市绿色生态屏障规划面积约736000000平方米,将736000000用科学记数法可表示为( )A.B.C.D.5.如图,在ABC ∆中,//AD BC ,点E 在AB 边上,//EF BC ,交AC 边于点F ,DE 交AC 边于点G ,则下列结论中错误的是( )A.AE AFBE CF= B.AG DG GF EG = C.AG AE GF EB = D.AE AFAB AC= 6.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A.183π-B.9πC.92π-D.3π7.已知反比例函数y =﹣8x,下列结论中错误的是( ) A.图象在二,四象限内 B.图象必经过(﹣2,4) C.当﹣1<x <0时,y >8D.y 随x 的增大而减小8.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m 2,广告牌所占的面积是 30m 2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m 2,设矩形面积是xm 2,三角形面积是ym 2,则根据题意,可列出二元一次方程组为( )A .430(4)(4)2x y x y +-=⎧⎨---=⎩B .26(4)(4)2x y x y +=⎧⎨---=⎩ C .430(4)(4)2x y y x +-=⎧⎨---=⎩D .4302x y x y -+=⎧⎨-=⎩9.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+14=c+dD .a+d =b+c10.如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1,BC 1.若∠ACB =30°,AB =1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ②当x =1时,四边形ABC 1D 1是菱形 ③当x =2时,△BDD 1为等边三角形 ④s =2(x ﹣2)2(0<x <2),其中正确的有( )A .1 个B .2 个C .3 个D .4 个11.分式方程1232x x =-的解为( ) A .25x =-B .1x =-C .1x =D .25x =12.如图,⊙O 以AB 为直径,PB 切⊙O 于B ,近接AP ,交⊙O 于C ,若∠PBC =50°,∠ABC =( )A .30°B .40°C .50°D .60°二、填空题13.如图,AD 为ABC △的角平分线,AC BC = ,E 在AC 延长线上,且AD DE =,若6,2AB CE ==,则BD 的长为______.14.如图,平面直角坐标系中,点A (0,-2),B (-1,0),C (-5,0),点D 从点B 出发,沿x 轴负方向运动到点C ,E 为AD 上方一点,若在运动过程中始终保持△AED ~△AOB ,则点E 运动的路径长为_______________15.在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是_____.16.因式分解:a3-ab2=______________.17.81的算术平方根是_____.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.三、解答题19.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.20.2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1≈1.41).21.某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y (单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,下表是y与t的几组对应值,其部分图象如图所示.(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t ,y ),并补全该函数的图象; (2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为_______微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约_______小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为_______微克. 22.如图,在ABC ∆中,AB AC =,90BAC ︒∠=,以AB 为直径的O 交BC 于点F ,连结OC ,过点B 作BDOC 交O 点D .连接AD 交OC 于点E .(1)求证:BD AE =. (2)若1OE =,求DF 的值.23.“春节”假期间,小明和小华都准备在某市的九龙瀑布(记为A)、凤凰谷(记为B)、彩色沙林(记为C)、海峰湿地(记为D)这四个景点中任选一个去游玩,每个景点被选中的可能性相同. (1)求小明去凤凰谷的概率;(2)用树状图或列表的方法求小明和小华都去九龙瀑布的概率.24.如图是一个长为a ,宽为b 的长方形,在它的四角上个剪去一个边长为x 的小正方形. (1)用代数式表示图中阴影部分的面积;(2)当a =5,b =8,x =2时,求(1)中代数式的值.25.设a ,b 是任意两个不等实数,我们规定满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m≤x≤n 时,有m≤y≤n,我们就称此函数闭区间[m,n]上的“闭函数”.如函数y=﹣x+4.当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019yx=是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由.(2)若二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).【参考答案】***一、选择题二、填空题13.214.15.816.a(a+b)(a﹣b)17.918.300三、解答题19.(1)详见解析;(2)详见解析;(3)⊙O的半径是2.【解析】【分析】(1)根据AC为⊙O直径,得到∠ADC=∠CBA=90°,通过全等三角形得到CD=AB,推出四边形ABCD是平行四边形,根据矩形的判定定理得到结论;(2)根据直角三角形的性质得到NB=12MF=NF,根据等腰三角形的性质和余角的性质即可得到NB是⊙O的切线;(3)根据垂径定理得到DE=GE=6,根据四边形ABCD是矩形,得到∠BAD=90°,根据余角的性质得到∠FAE=∠ADE,推出△AEF∽△DEA,根据相似三角形的性质列比例式得到AE=,连接OD,设⊙O的半径为r,根据勾股定理列方程即可得到结论.【详解】解:(1)∵AC为⊙O直径,∴∠ADC=∠CBA=90°,在Rt△ADC与Rt△CBA中,AC AC AD BC=⎧⎨=⎩,∴Rt△ADC≌Rt△CBA,∴CD=AB,∵AD=BC,∴四边形ABCD是平行四边形,∵∠CBA=90°,∴四边形ABCD是矩形;(2)连接OB,∵∠MBF=∠ABC=90°,∴NB=12MF=NF,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∵OB=OA,∴∠5=∠4,∵DG⊥AC,∴∠AEF=90°,∴∠3+∠4=90°,∴∠1+∠5=90°,∴OB⊥NB,∴NB是⊙O的切线;(3)∵AC为⊙O直径,AC⊥DG,∴DE=GE=6,∵F为GE中点,∴EF=GF=3,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠FAE+∠DAE=90°,∵∠ADE+∠DAE=90°,∴∠FAE=∠ADE,∵∠AEF=∠DEA=90°,∴△AEF∽△DEA,∴AE EF DE AE=,∴AE=,连接OD,设⊙O的半径为r,∴OA=OD=r,OE=r﹣,∵OE2+DE2=OD2,∴(r﹣)2+62=r2,,∴r=2∴⊙O.【点睛】本题考查了圆周角定理,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理,证得AEF∽△DEA是解决(3)的关键.20.大雁塔的大体高度是65.1米.【解析】【分析】作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.解直角△CDF,得出CD=DF=185米,那么OD=OC+CD=208米,AE=OD=208米.再解直角△AEF,求出EF=AE•tan∠FAE米,然后根据OA=DE=DF﹣EF即可求解.【详解】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE,∴DE=DF﹣EF=185,∴OA =DE≈65.1米.故大雁塔的大体高度是65.1米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形. 21.(1)详见解析;(2)①1.4,8;②4.25. 【解析】 【分析】(1)根据数据先描点,再连成光滑的曲线即可; (2)①根据曲线图和表格数据即可得到答案;②根据表格数据中服药2小时后和10小时后的数据相减,即可得出答案. 【详解】(1)根据数据先描点,再连成光滑的曲线,图像如图所示(2)①根据曲线图可以大致估算出某病人第一次服药后5小时,每毫升血液中的含药量约为是1.4微克,根据表格数据数据可知持续约为8小时;②因为第一次服药2小时后,每毫升血液中的含药量4微克,10小时后每毫升血液中的含药量0.25微克,则第二次服药后2小时,每毫升血液中的含药量约为4+0.25=4.25. 【点睛】本题考查表格数据和折线图,解题的关键是读懂题中所包含的数据.22.(1)证明见解析;(2)DF = 【解析】 【分析】(1)由AAS 证明ABD CAE △△≌即可解答;(2)证明OE 是△ABD 的中位线,可得BD=2OE=2,(1)中全等得AE=BD=2,由勾股定理得AO ,2AB AO ==,又因为Rt △ABC 是等腰直角三角形, ,由三线合一得BF=FC=12,因为在BDF △中,1tan tan 2BFD BAD ∠=∠=,所以设DH a =,则2FH a =,2BH a =,在Rt △BDH 中,由勾股定理得:22222)a a =+,解得15a =,2a =(舍),再由勾股定理得DF =【详解】(1)∵AB 为直径,∴90ADB ∠=,∴90BAD ABD ∠+∠=, ∵BDOC ,∴90AEO ∠=,∴90AEC ∠=.∵90BAC =,∴90BAD EAC ∠+∠=,∴ABD EAC ∠=∠. ∵AB AC =,∴ABD CAE △△≌,∴BD AE = (2)连结AF ,作DH BF ⊥,则90AFB ∠=o . ∵1OE =,BDOC ,AO OB =,∴2BD =,∴2AE =,AD=4.∴AO ,AB =AC=AB =∵Rt △ABC 是等腰直角三角形, ,由三线合一得BF=FC=12, 在BDF △中,1tan tan 2BFD BAD ∠=∠=,设DH a =,则2FH a =,2BH a =,∴在Rt △BDH 中,由勾股定理得:22222)a a =+,解得1a =,2a =(舍),∴DF =(连结EF ,AF ,证AEF FDB ≌,证等腰直角DEF 亦可)【点睛】本题考查直径所对的圆周角是直角、勾股定理、等腰直角三角形的三线合一、三角函数等知识点,解题关键是熟练掌握以上性质. 23.(1)14;(2)116. 【解析】 【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去九龙瀑布的情况,再利用概率公式即可求得答案【详解】(1)∵小明准备到曲靖的九龙瀑布(记为A)、凤凰谷(记为B)、彩色沙林(记为C)、海峰湿地(记为D)中的一个景点去游玩,∴小明选择去凤凰谷的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中小明和小华都去九龙瀑布的有1种,所以小明和小华都选择去九龙瀑布的概率=1 16.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)ab﹣4x2;(2)24【解析】【分析】(1)直接利用矩形面积减去四个正方形面积进而得出答案;(2)把已知数据代入进而得出答案.【详解】解:(1)由题意可得,图中阴影部分的面积为:ab﹣4x2;(2)当a=5,b=8,x=2时,原式=ab﹣4x2=5×8﹣4×22=24.【点睛】本题主要考查了代数式求值,正确表示出阴影部分面积是解题关键.25.(1)是;(2)k的值是﹣2;(3)y=﹣x+m+n.【解析】【分析】(1)根据反比例函数2019yx的单调区间进行判断;(2)由于二次函数y=x2-2x-k的图象开口向上,对称轴为x=1,所以二次函数y=x2-2x-k在闭区间[1,2]内,y随x的增大而增大.当x=1时,y=1,所以k=-2.当x=2时,y=2,所以k=-2.即图象过点(1,1)和(2,2),所以当1≤x≤2时,有1≤y≤2,符合闭函数的定义,所以k=-2.(3)根据新定义运算法则,分两种情况:k>0,k<0,列出关于系数k、b的方程组,通过解该方程组即可求得系数k、b的值,即可解答.【详解】解:(1)反比例函数2019yx=是闭区间[1,2019]上的“闭函数”,理由:∵当x=1时,y=2019,当x=2019时,y=1,∴反比例函数2019yx=是闭区间[1,2019]上的“闭函数”;(2)∵二次函数y=x2﹣2x﹣k=(x﹣1)2﹣1﹣k,∴当x>1时,y随x的增大而增大,∵二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,∴当x=1时,12﹣2×1﹣k=1,得k=﹣2,即k的值是﹣2;(3)∵一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,∴当k>0时,km b m kn b n+=⎧⎨+=⎩,得k1b0=⎧⎨=⎩,即此函数的解析式为y=x;当k<0时,km b n kn b m+=⎧⎨+=⎩,得k1b m n=-⎧⎨=+⎩,即此函数的解析式为y=﹣x+m+n.【点睛】本题考查的是反比例函数的性质,解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.2019-2020学年数学中考模拟试卷一、选择题1.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°2.某工厂接到加工 600 件衣服的订单,预计每天做 25 件,正好按时完成,后因客户要求提前 3 天交货,工人则需要提高每天的工作效率,设工人每天应多做件,依题意列方程正确的是( )A. B.C. D.3.某种病菌的直径为0.00000471cm,把数据0.00000471用科学记数法表示为( )A.47.1×10﹣4B.4.71×10﹣5C.4.71×10﹣7D.4.71×10﹣640,-1,π这四个数中,最大的数是()A B.πC.0 D.-15.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A′处,若AO=OB=2,则阴影部分面积为()A.πB.23π﹣1 C.43π+1 D.43π6.在一次爱心捐款活动中,学校数学社团 10 名同学积极捐款,捐款情况如下表所示,关于这 10 名同学捐款数描述不正确的是()A.众数是 30 B.中位数是 30 C.方差是 260 D.平均数是 307.水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A.55m B.60m C.65m D.70m8.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=36°,那么∠2=()A.54°B.56°C.44°D.46°9.江西省足协2019年第三次主席办公会在南昌召开,某学校为了激发学生对体育的热情,选拔了23名学生作为校足球队成员,其中足球队23名队员的年龄情况如表:则该校足球队队员年龄的众数和中位数分别是()A.13,14 B.13,13 C.14.13.5 D.16,1410.伴随着经济全球化的发展,中外文化交流日趋频繁,中国以其悠久的历史文化和热情吸引了越来越多的外国游客的光临,据国家统计局统计,2007年至2017年中国累计接待外国游客入境3.1亿人次.小元制作了2007年至2017年外国人入境情况统计图,如图所示.数据来源:国家统计局,2016年含边民入境人数.根据以上信息,下列推断合理的是( )A.2007年45岁以上外国人入境游客约为2611万人次B.外国游客入境人数逐年上升C.每年的外国游客入境人数中,25﹣44岁游客人数占全年游客入境人数的1 3D.外国游客入境人数较前一年増涨幅度最大的是2017年11.如图,A 、B 两地之间有一池塘,要测量A 、B 两地之间的距离.选择一点O ,连接AO 并延长到点C ,使OC =12AO ,连接BO 并延长到点D ,使OD =12BO .测得C 、D 间距离为30米,则A 、B 两地之间的距离为( )A .30米B .45米C .60米D .90米12.直线y =﹣2x+5分别与x 轴,y 轴交于点C 、D ,与反比例函数y =3x的图象交于点A 、B .过点A 作AE ⊥y 轴于点E ,过点B 作BF ⊥x 轴于点F ,连结EF ;下列结论:①AD =BC ;②EF ∥AB ;③四边形AEFC 是平行四边形;④S △EOF :S △DOC =3:5.其中正确的个数是( )A .1B .2C .3D .4二、填空题13.如果﹣2x m y 3与xy n是同类项,那么2m ﹣n 的值是_____.14.在矩形ABCD 中,再增加条件_____(只需填一个)可使矩形ABCD 成为正方形.15.(4分)如图,直线l 1、l 2、…l 6是一组等距的平行线,过直线l 1上的点A 作两条射线,分别与直线l 3、l 6相交于点B 、E 、C 、F .若BC=2,则EF 的长是 .16.在ABCD □中,BC 边上的高为4,5AB =,AC =ABCD □的周长等于______. 17.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy 中,已知直线y=kx (k >0)分别交反比例函数1y x =和9y x=在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交1y x =的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是______.18.等腰三角形的两边长分别是3和7,则其周长为.三、解答题19.请你将下式化简,再求值:(x+2)(x﹣2)+(x﹣2)2+(x﹣4)(x﹣1),其中x2﹣3x=1.20.京东快递仓库使用机器人分拣货物,已知一台机器人的工作效率相当于一名分拣工人的20倍,若用一台机器人分拣8000件货物,比原先16名工人分拣这些货物要少用23小时(1)求一台机器人一小时可分拣多少件货物?(2)受“双十一”影响,重庆主城区某京东仓库11月11日当天收到快递72万件,为了在8小时之内分拣完所有快递货物,公司调配了20台机器人和20名分拣工人,工作3小时之后,又调配了若干台机器人进行增援,则该公司至少再调配多少台机器人进行增援才能在规定的时间内完成任务?21.计算:(1)(a+2)(a﹣3)﹣a(a﹣1)(2)224972 6926a aa a a--÷-+++22.对于实数a,b,定义运算“⊗”:a⊗b=22()()ab b a ba ab a b⎧-≥⎨-<⎩,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于()A.﹣1B.±2C.1D.±123.(问题)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(2×n矩形表示矩形的邻边是2和n)(探究)不妨假设有a n种不同的镶嵌方案.为探究a n的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.探究一:用1个2×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?如图(1),显然只有1种镶嵌方案.所以,a1=1.探究二:用2个2×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?如图(2),显然只有2种镶嵌方案.所以,a2=2.探究三:用3个2×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?一类:在探究一每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有1种镶嵌方案;二类:在探究二每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有2种镶嵌方案;如图(3).所以,a3=1+2=3.探究四:用4个2×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有种镶嵌方案;二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有种镶嵌方案;所以,a4=.探究五:用5个2×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?(仿照上述方法,写出探究过程,不用画图)……(结论)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(直接写出a n与a n﹣1,a n﹣2的关系式,不写解答过程).(应用)用10个2×1矩形,镶嵌一个2×10矩形,有种不同的镶嵌方案.24.如图已知抛物线y=﹣x2+(1﹣m)x﹣m2+12交x轴于点A,交y轴于点B(0,3),顶点C位于第二象限,连接AB,AC,BC.(1)求抛物线的解析式;(2)在x轴上是否存在点P,使得△PAB的面积等于△ABC的面积?如果存在,求出点P的坐标.(3)将△ABC沿x轴向右移动t个单位长度(0<t<1)时,平移后△ABC和△ABO重叠部分的面积为S,求S与t之间的函数关系.25.计算:(10)a≥;(2【参考答案】***一、选择题二、填空题13.-114.AB=BC15.16.12或2017.k=7或.18.17三、解答题19.3x2﹣9x+4,7【解析】【分析】运用平方差公式、完全平方公式和多项式的乘法的运算法则计算,再合并同类项,然后整体代入求值.【详解】(x+2)(x﹣2)+(x﹣2)2+(x﹣4)(x﹣1),=x2﹣4+x2﹣4x+x2﹣5x+4,=3x2﹣9x+4,当x2﹣3x=1时,原式=3x2﹣9x+4,=3(x2﹣3x)+4,=3×1+4,=7.【点睛】本题考查了平方差公式,完全平方公式,多项式的乘法,熟练掌握公式和运算法则是解题的关键,注意整体代入思想.20.(1)一台机器人每小时可以分拣3000件货物(2)公司至少再调配15台机器人进行增援才能在规定时间内完成任务【解析】【分析】(1)设一名工人每小时可分拣x件货物,则一台机器人每小时可分拣20x件货物,对于8000件的工作量,时间相差23小时,即可列出以时间为等量关系的方程;(2)可设公司需再调配y台机器人进行增援,从总工作量上满足不少于720000件,列一元一次不等式即可.【详解】(1)设一名工人每小时可分拣x件货物,则一台机器人每小时可分拣20x件货物,根据题意得:800080002 16203x x-=,解得:x=150,经检验:x =150 是原方程的根, ∴20x =3000,答:一台机器人每小时可以分拣3000件货物;(2)设公司需再调配y 台机器人进行增援才能在规定时间内完成任务, 根据题意得:8×(20×150+20×3000)+(8﹣3)×3000y≥720000, 可得:y≥14.4 ∵y 为正整数,∴y 的最小整数解为15,答:公司至少再调配15台机器人进行增援才能在规定时间内完成任务. 【点睛】本题考查的是分式方程的应用,并结合了一元一次不等式的应用,明确等量关系进行列式是解题的关键. 21.(1)-6(2)83a - 【解析】 【分析】(1)根据整式的混合运算顺序和运算法则计算可得; (2)先计算除法,再计算减法即可得. 【详解】(1)原式=a 2﹣a ﹣6﹣a 2+a =﹣6; (2)原式=2(+7)(7)2(3)2(3)7a a a a a -+⋅-+-=2(+7)2(3)33a a a a +-++=83a +.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 22.D 【解析】 【分析】先解方程,求出方程的解,分为两种情况,当x 1=1,x 2=2时,当x 1=2,x 2=1时,根据题意求出即可. 【详解】解方程x 2﹣3x+2=0得x =1或x =2, 当x 1=1,x 2=2时,x 1⊗x 2=12﹣2×1=﹣1; 当x 1=2,x 2=1时,x 1⊗x 2=2×1﹣12=1. 故选:D . 【点睛】考查解一元二次方程-因式分解法,注意分类讨论,不要漏解. 23.(1)2,3,5;(2)a n =a n ﹣1+a n ﹣2;(3)89. 【解析】 【分析】探究四:画图进行说明:a 4=2+3=5;探究五:同理在探究三每个镶嵌图的右侧再横着镶嵌2个2×1矩形和探究四每个镶嵌图的右侧再竖着镶嵌个1个2×1矩形,相加可得结论;结论:根据探究四和五可得规律:a n =a n-1+a n-2;应用:利用结论依次化简,将右下小标志变为5和4,并将探究四和五的值代入可得结论.【详解】解:探究四:如图4所示:一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有2种镶嵌方案;二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有3种镶嵌方案;所以,a 4=2+3=5.故答案为:2,3,5;探究五:一类:在探究三每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有3种镶嵌方案;二类:在探究四每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有5种镶嵌方案;所以,a 5=3+5=8.……结论:a n =a n ﹣1+a n ﹣2;应用:a 10=a 9+a 8=a 7+a 8+a 8=2a 8+a 7=2(a 7+a 6)+a 7=3a 7+2a 6=3(a 6+a 5)+2a 6=5a 6+3a 5=5(a 5+a 4)+3a 5=8a 5+5a 4=8×8+5×5=89.故答案为:89.【点睛】本题是规律型问题和方案作图题,主要考查了计数方法,培养学生根据已知问题和图形的关系,进行分析推断,得出规律的能力,并运用类比的方法解决问题.24.(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,0)或(﹣5,0);(3)233012()S t t k =-+<< 【解析】【分析】(1)利用二次函数图象上点的坐标特征可求出m 的值,结合抛物线的顶点在第二象限可得出m >1,进而可确定m 的值,再将其代入抛物线解析式中即可得出结论;(2)过点C 作CD ⊥x 轴,垂足为点D ,利用二次函数图象上点的坐标特征及配方法,可求出点A ,C 的坐标,利用分割图形求面积法可求出△ABC 的面积,再由三角形的面积公式结合S △PAB =S △ABC 可求出AP 的长,结合点A 的坐标,即可求出点P 的坐标;(3)设△ABC 平移后得到△A′B′C′,A′B′与y 轴交于点M ,A′C′交AB 于点N ,根据点的坐标,利用待定系数法可求出线段AB ,AC 所在直线的解析式,结合平移的性质可得出线段A′B′,A′C′所在直线的解析式,利用一次函数图象上点的坐标特征可求出点M ,N 的坐标,由三角形、梯形的面积公式结合S =S △AOB ﹣S △AA′N ﹣S △AA′M ,即可得出S 关于t 的函数关系式.【详解】(1)∵抛物线y =﹣x 2+(1﹣m )x ﹣m 2+12交y 轴于点B (0,3),∴﹣m 2+12=3,∴m =±3.又∵抛物线的顶点C 位于第二象限, ∴﹣1-01m -< , ∴m >1,∴m =3,∴抛物线的解析式为y =﹣x 2﹣2x+3.(2)过点C 作CD ⊥x 轴,垂足为点D ,如图1所示.当y =0时,﹣x 2﹣2x+3=0,解得:x 1=﹣3,x 2=1,∴点A 的坐标为(﹣3,0).∵y =﹣x 2﹣2x+3=﹣(x+1)2+4,∴点C 的坐标为(﹣1,4),点D 的坐标为(﹣1,0),∴S △ABC =S △ACD +S 梯形CDOB ﹣S △AOB , =12AD•CD+12(OB+CD )•OD﹣12OA•OB, =12×2×4+12×(3+4)×1﹣12×3×3, =3.∵S △PAB =S △ABC , ∴12AP•OB=3, ∴AP =2,∴点P 的坐标为(﹣1,0)或(﹣5,0).(3)设△ABC 平移后得到△A′B′C′,A′B′与y 轴交于点M ,A′C′交AB 于点N ,如图2所示. 设线段AB 所在直线的解析式为y =kx+b (k≠0),将A (﹣3,0),B (0,3)代入y =kx+b ,得:303k b b -+=⎧⎨=⎩ ,解得:13k b =⎧⎨=⎩ , ∴线段AB 所在直线的解析式为y =x+3.同理,可得出线段AC 所在直线的解析式为y =2x+6.∵将△ABC 沿x 轴向右移动t 个单位长度(0<t <1)得到△A′B′C′,∴点A′的坐标为(t ﹣3,0),线段A′B′所在直线的解析式为y =x+3﹣t (0<t <1),线段A′C′所在直线的解析式为y =2x+6﹣2t (0<t <1).当x =0时,y =x+3﹣t =3﹣t ,∴点M 的坐标为(0,3﹣t ).将y =x+3代入y =2x+6﹣2t ,整理,得:x+3﹣2t =0,解得:x=2t﹣3,∴点N的坐标为(2t﹣3,2t),∴S=S△AOB﹣S△AA′N﹣S△AA′M,=12OA•OB﹣12AA′•y A′﹣12OA′•OM,=12×3×3﹣12t•2t﹣12(3﹣t)•(3﹣t),=﹣32t2+3t.∴S与t之间的函数关系式为S=﹣32t2+3t(0<t<1).【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、三角形的面积、梯形的面积、待定系数法求一次函数解析式、平移的性质以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征及二次函数的性质,求出m的值;(2)利于三角形的面积公式结合S△PAB=S△ABC,求出AP 的长;(3)利用分割图象求面积法,找出S关于t的函数关系式.25.(1)4a2;(2).【解析】【分析】(1)根据二次根式的乘法法则得出即可;(2)可以把二次根式化简,合并括号里同类二次根式,再做乘法;也可以用分配律计算【详解】(1=4a2(2=【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则。
中考复习-分式方程西安市第四十二中陈睿一、教材分析(一)教材所处的地位分式方程是中学数学的比较重要内容,在初中代数中占有重要的地位.分数的化简和运算、分母不为零的前提和整式的有关知识、整式方程的解法是学习分式方程的基础,通过分式方程的学习,可以对上述内容加以巩固.(二)考纲要求1.理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个),知道解分式方程的基本思想是把分式方程化为整式方程.2.了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论.3.会列分式方程解决实际问题。
4、体会方程是刻画现实世界的一个有效的数学模型;经历用观察、画图或计算器等手段估计方程的解。
(三)教学重难点及关键:中考中多以选择题、填空题、解答题的形式考查以下几点:1、找分式方程的最简公分母,将分式方程化成整式方程;2、已知方程有增根,确定未知数的值;3、解分式方程.列分式方程解决实际问题是中考的重点,也是本课时的难点.(四)中考目标:1、会解可化为一元一次方程的分式方程(方程中分式不超过两个);能够根据具体问题的数量关系,列出方程。
2、体会方程是刻画现实世界的一个有效的数学模型;经历用观察、画图或计算器等手段估计方程的解。
二、教法与学法分析:教法分析:针对九年级学生复习时的知识结构和心理特征,本节课可选择引导探索归纳法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,归纳总结。
这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:总体感知—分类探讨—问题解决—课堂小结—布置作业五部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,回顾和获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程:本节课的教学过程共分为七个阶段分别为:导入新课、明确目标;呈现问题,自主学习;教师引导,精讲要点;合作学习,交流展示;课堂训练,达标检测;课堂小结;布置作业。
第一阶段:导入新课、明确目标学习目标:1.理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个),知道解分式方程的基本思想是把分式方程化为整式方程.2.了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论.3.会列分式方程解决实际问题。
年份 题型(题号) 分值 考查内容2011年 解答题(17) 5 分式方程的解法2012年 / / /2013年 解答题(17) 5 分式方程的解法2014年 分式方程是本节课的考查重点,陕西中考每隔一年考查一道题,且考查直接解方程的解答题,2013年考查了一道,估计2014年继续考察的可能性不大,但也不能忽视。
第二阶段:呈现问题,自主学习活动内容:学生独立完成1.(2013 山西)解分式方程3-121-2=++xx x 时,去分母后变形为( D ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)2.(2013 重庆)分式方程 01-2-2=xx 的根是 ( D ) A .x =1 B .x = -1 C .x =2 D .x = - 2 3、请你给x 选择一个合适的值,使方程2112x x =--成立,你选择的x =_______3_____.4、2-4-22x x x 与的最简公分母为 (x +2)(x -2) ,1-11-42x x x +与的最简公分母为 (x +1)(x -1) 。
5、(2010 陕西副题)解分式方程1-32-3-1=xx x 设计目的:考查学生对分式方程知识点的掌握情况,使后面的精讲以及学生合作探究可以顺利进行。
第三阶段:教师引导,精讲要点◆考点链接1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根A 、把求出的未知数的值代入 ,看原分式方程两边的值是否相等或使分母为零的值为原方程的增根。
B 、把求出的未知数的值代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根。
3.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .◆备考兵法(1) 去分母时,不要漏乘没有分母的项.(2) 解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,也可直接代入原方程验根.(3) 如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.例1 (2013 陕西)解分式方程12-4-22=+x x x 【分析】由分式方程的概念可知,此方程是分式方程,因此根据其特点应选择其方法是──去分母法,并且在解此方程时必须验根.解:去分母 2+x (x +2)=x 2-4去括号 2+x 2+2x =x 2-4合并同类项 2x = -6系数化1 x = -3检验:将x = -3代入(x +2)(x -2)中,得x 2-4≠0所以,x = -3是原方程的解【点评】去分母法解分式方程的具体做法是:把方程的分母分解因式后,找出分母的最简公分母;然后将方程两边同乘以最简公分母,将分式方程化成整式方程.注意去分母时,不要漏乘;最后还要注意解分式方程必须验根,并掌握验根的方法.例2 (2011 陕西副题17题) 解分式方程1-111-42x x x +=+ 解:去分母 4+x 2-1=(x +1)2去括号 4+x 2-1=x 2-2x +2合并同类项 2x = 2系数化1 x = 1检验:将x = 1代入x 2-1中,得x 2-1=0所以,x = 1是方程的增根,原方程无解课堂训练1、(2013 陕西副题)13-2-3-1-2=xx x x 2、(2009 陕西)4-31-22-2x x x =+ 3、(2008 陕西)11-2-=xx x 4、(2013 交大附中模拟) 233-3-2=+x x x注意事项:在解这个方程的过程中,学生容易忽视两个分母互为相反数,所以在去分母时会化简为繁.要提醒学生先将一个分母化为另一个分母的相反数.了解增根的概念,及产生的原因,提高了对方程验根的重视程度,总结出验根的方法(其方法是代入最简公分母中或原方程中进行检验,使分母为零的是增根,否则不是) 学生独立完成解分式方程,并板演。
让学生认真完成从审题到最后检验的完整过程,熟练掌握解题方法.表现出问题从而再次强调解分式方程的规范性。
第四阶段:合作学习,交流展示例3 (2013 威海)若关于x 的方程xm x x 2-105-1-=无解,则m= -8 。
例4 (2013 青海)几名同学准备参加“大美青海”旅游活动,包租一辆面包车往青海湖,面包车的租价为240元,出发时又增加了4名同学,结果每个同学比原来少分担了10元车费。
设原有人数为x 人,则可列方程 ( A )A .104240-240=+x xB .10240-4240=+x xC .104-240-240=x xD .10240-4-240=xx 【点评】分式方程的应用,解题时要检验,先检验所求x•的值是否是方程的解,再检验是否符合题意.第五阶段:课堂训练,达标检测1、分式方程131x x x x +=--的解为( D ) A .1 B .-1 C .-2 D .-32、解分式方程x x -=-22482的结果是( D ) A .2-=xB .2=xC .4=xD .无解 3、方程xx 527=+的解是 x = 5 . 4、解分式方程:132x x =- 解:去分母,得36x x =-解得:3x =检验:把3x =代入原方程得:左边=右边所以3x =是原方程的解5、解分式方程:6122x x x +=-+ 解:去分母,得(2)6(2)(2)(2)x x x x x ++-=-+解得1x =经检验1x =是原方程的解所以原方程的解是1x =.6、某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?解:设该厂原来每天加工x 个零件,由题意得:72500100=+xx 解得 x =50经检验:x =50是原分式方程的解答:该厂原来每天加工50个零件。
设计目的:以解分式方程的检测题为主,贴近中考,通过学生的反馈练习,使老师能全面了解学生对分式方程解法的掌握程度,以及对增根的理解,以便老师能及时进行查漏补缺.让学生在此问题上不失分,不丢分。
注意事项:从学生的反馈练习中来看,学生能熟练解出分式方程,但对增根的理解及灵活处理还不够,在今后的练习中还要巩固渗透,要让学生弄清增根产生的原因,因此要正确验根从而排除增根.第六阶段:课堂小结活动内容:在今天的学习活动中,你学会了哪些知识?掌握了哪些数学方法?活动目的:鼓励学生独立思考,并用自己的语言描述,然后再与同伴讨论、交流自己的结果.通过学生的回顾小结,加深分式方程解法和数学转化思想的理解.注意事项:学生在解方程过程中易犯的错误:1、解方程时忘记检验;2、去分母时忘记加括号;3、去分母时漏乘不含分母的项.第七阶段:布置作业完成《试题研究》分式方程相关试题附:课堂导学案中考复习-分式方程学习目标:1.理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个),知道解分式方程的基本思想是把分式方程化为整式方程.2.了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论.3.会列分式方程解决实际问题。
一、自主学习1.(2013 山西)解分式方程3-121-2=++x x x 时,去分母后变形为( ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1) C .2-(x +2)=3(1-x ) D .2-(x +2)=3(x -1)2.(2013 重庆)分式方程01-2-2=xx 的根是 ( ) A .x =1 B .x = -1 C .x =2 D .x =-2 3、请你给x 选择一个合适的值,使方程2112x x =--成立,你选择的x =___________. 4、2-4-22x x x 与的最简公分母为 ,1-11-42x x x +与的最简公分母为 。
5、(2010 陕西副题)解分式方程1-32-3-1=x x x◆考点链接1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根A 、把求出的未知数的值代入 ,看原分式方程两边的值是否相等或使分母为零的值为原方程的增根。