必修5 数列基础 练习
- 格式:doc
- 大小:313.57 KB
- 文档页数:4
高中数学必修5 数列基础题测试卷1.已知数列{a2n}的通项公式an=n-3n-4(n∈N*),则a4等于()。
A、1.B、2.C、0.D、32.在等比数列{a1n}中,已知a1=9,a5=9,则a3=()。
A、1.B、3.C、±1.D、±33.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为()。
A、81.B、120.C、168.D、1924.数列1,3,6,10,…的一个通项公式是()。
A、an=n-(n-1)。
B、an=n-1.C、an=n(n+1)/2.D、an=(n-1)/25.已知等差数列{an}中,a2+a8=8,则该数列前9项和S9等于()。
A、18.B、27.C、36.D、456.设Sn是等差数列{an}的前n项和,若S7=35,则a4=()。
A、8B、7C、6D、57.已知数列3,3,15,…,3(2n-1),那么9是数列的()项。
A、第12项B、第13项C、第14项D、第15项8.等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和是()。
A、130.B、170.C、210.D、2609.设{an}是等差数列,a1+a3+a5=9,a6=9,则这个数列的前6项和等于()。
A、12B、24C、36D、4810.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()。
A、5.B、4.C、3.D、211.已知数列2、6、10、14、32…,那么72是这个数列的第几项()。
A、23.B、24.C、19.D、25快乐的研究,快乐的考试!由等比数列通项公式可得:a2 = a1qa3 = a2q = a1q^2a4 = a3q = a1q^3a5 = a4q = a1q^4a6 = a5q = a1q^5代入已知条件,得到:a1 + a1q^2 = 10a1q^3 + a1q^5 = 25解得:a1 = 2,q = 1/2所以,a4 = a1q^3 = 1/2,S5 = a1(1-q^5)/(1-q) = 2(1-1/16)/(1/2) = 15答案:a4 = 1/2,S5 = 1519.(8分)设该等比数列的首项为a1,公比为q,由等比数列前n项和公式得:Sn = a1(1-q^n)/(1-q)代入已知条件Sn = 2+1,得到:a1(1-q^n)/(1-q) = 3又已知a1+a3 = 10,即a1+a1q^2 = 10,解得a1 = 2,q = 2/3代入前式,解得n = 2所以,该等比数列为2,4/3,8/9.答案:a(n) = 2(2/3)^(n-1)20.(10分)1) 设公比为q,根据已知条件,得到:a2 = a1qa3 = a2q = a1q^2a7 = a3q^4 = a1q^6由等比数列通项公式可得:a7 = a1q^6a2 = a1qa3 = a1q^2代入已知条件a2a3 = 10,解得a1 = 2,q = 1/2所以,a(n) = 2(1/2)^(n-1)2) 设b(n) = 2n,由已知条件a2a3 = 10,得到:2q(2q^2) = 10q^3 = 5/8代入b(n)的前n项和公式,得到:s(n) = 2(2^n - 1)s(5) = 30答案:(1) a(n) = 2(1/2)^(n-1);(2) s(n) = 2(2^n - 1),s(5) = 3021.(10分)设三个数分别为a。
高中数学必修5数列测试题含答案一、选择题1、三个正数a 、b 、c 成等比数列,则lga 、 lgb 、 lgc 是 ( )A 、等比数列B 、既是等差又是等比数列C 、等差数列D 、既不是等差又不是等比数列2、前100个自然数中,除以7余数为2的所有数的和是( )A 、765B 、653C 、658D 、6603、如果a,x 1,x 2,b 成等差数列,a,y 1,y 2,b 成等比数列,那么(x 1+x 2)/y 1y 2等于 ( )A 、(a+b)/(a-b)B 、(b-a)/abC 、ab/(a+b)D 、(a+b)/ab4、在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q= ( )A 、1B 、-1C 、-3D 、35、在等比数列{a n }中,a 1+a n =66,a 2a n -1=128,S n =126,则n 的值为( )A 、5B 、6C 、7D 、86、若{ a n }为等比数列,S n 为前n 项的和,S 3=3a 3,则公比q 为( )A 、1或-1/2B 、-1 或1/2C 、-1/2D 、1/2或-1/27、一个项数为偶数的等差数列,其奇数项和为24,偶数项和为30,最后一项比第一项大21/2,则最后一项为 ( )A 、12B 、10C 、8D 、以上都不对8、在等比数列{a n }中,a n >0,a 2a 4+a 3a 5+a 4a 6=25,那么a 3+a 5的值是( )A 、20B 、15C 、10D 、59、等比数列前n 项和为S n 有人算得S 1=8,S 2=20,S 3=36,S 4=65,后来发现有一个数算错了,错误的是 ( )A 、S 1B 、S 2C 、S 3D 、S 410、数列{a n }是公差不为0的等差数列,且a 7,a 10,a 15是一等比数列{b n }的连续三项,若该等比数列的首项b 1=3则b n 等于( )A 、3·(5/3)n-1B 、3·(3/5)n-1C 、3·(5/8)n-1D 、3·(2/3)n-1二、填空题11、公差不为0的等差数列的第2,3,6项依次构成一等比数列,该等比数列的公比q =12、各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q=13、已知a,b,a+b 成等差数列,a,b,ab 成等比数列,且0<log m ab<1,则实数m 的取值范是14、已知a n =a n -2+a n -1(n ≥3), a 1=1,a 2=2, b n =1+n n a a ,则数列{b n }的前四项依次是 ______________. 15、已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为三、解答题16、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。
高一数学必修五第二章数列测试题一 . (每小 5 分,共 60分)1、已知数列{a n}的通公式a n n 23n 4( n N * ) ,a4等于( ).A、 1B、 2C、 0D、 32、在等比数列 { a n } 中 , 已知11a59 , a3( )a9C 、1A、 1 B 、 3 D 、± 33、等比数列a n中 , a29, a5 243,a n的前 4 和()A、 81B、 120 C 、 168D、 1924、数列 1, 3, 6,10,⋯的一个通公式是()22n(n 1)n(n 1)A、a n =n -(n-1)B、 a n=n -1C、 a n= D 、a n =225、已知等差数列a n中 , a2a88 ,数列前9 和S9等于 ()A、 18B、 27C、 36D、 456、S n是等差数列a n的前n和,若S735 , a4()A、8B、 7C、 6D、 57、已知数列3 ,3, 15, ⋯ ,3(2n1), 那么 9 是数列的()A、第 12 B 、第 13C、第 14D、第 158、等差数列{ a n}的前m和 30,前2m 和100,它的前3m 和是()A、 130B、170C、 210D、 2609、a n是等差数列,a1a3a59, a69 ,个数列的前 6 和等于()A、 12B、 24C、 36D、 4810、已知某等差数列共有10 ,其奇数之和15,偶数之和30,其公差()A、 5B、4C、3D、211、已知数列 2 、 6、10 、14 、 3 2 ⋯那么 7 2 是个数列的第几()A、 23B、24C、 19D、2512、在等比数列{ a n}(n N* )中,若a11, a4110 项和为(,则该数列的前)81B 、21C 、211A、222210D 、224211二、填空题(每小题 5 分,共 20 分)13、已知数列的通项a n5n 2 ,则其前 n 项和 S n.14、已知a n是等差数列,a4a6 6 ,其前5项和 S510 ,则其公差d.15、等比数列a n的前n项和为S n,已知S1,2S2,3S3成等差数列,则a n的公比为.16、各项都是正数的等比数列a n,公比q 1 , a5, a7, a8成等差数列,则公比q=三、解答题(70 分)17、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。
一.选择题(共6小题)1.已知x+1是5和7的等差中项,则x的值为()A.5 B.6 C.8 D.92.已知数列{a n}中,a1=3,a n+1=2a n+1,则a3=()A.3 B.7 C.15 D.183.数列{a n}中,若a1=1,,则这个数列的第10项a10=()A.19 B.21 C.D.4.数列的前n项和为()A.B.C.D.5.已知等差数列{a n}中,S n是它的前n项和,若S16>0,S17<0,则当S n最大时n的值为()A.8 B.9 C.10 D.166.设等比数列{a n}的前n项和为S n,若=4,则=()A.3 B. C.D.4二.解答题(共10小题)7.已知数列{a n}的前n项和S n=3+2n,求a n.8.已知数列{a n}是一个等差数列(1)a1=1,a4=7,求通项公式a n及前n项和S n;(2)设S7=14,求a3+a5.9.已知等差数列{a n}的前n项的和记为S n.如果a4=﹣12,a8=﹣4.(1)求数列{a n}的通项公式;(2)求S n的最小值及其相应的n的值.10.已知数列{a n}与{b n},若a1=3且对任意正整数n满足a n+1﹣a n=2,数列{b n}的前n项和S n=n2+n.(1)求数列{a n},{b n}的通项公式;(2)求数列的前n项和T n.11.已知等差数列{a n}的公差不为零,a1=11,且a2,a5,a6成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)设S n=|a1|+|a2|+|a3|+…+|a n|,求 S n.12.已知等差数列{a n}中,a3=8,a6=17.(1)求a1,d;(2)设b n=a n+2n﹣1,求数列{b n}的前n项和S n.13.已知等比数列{a n}的前n项和为S n=a•2n+b,且a1=3.(1)求a、b的值及数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.14.设数列{a n}的前n项和S n=(n∈N*).(1)求a1,a2的值;(2)求数列{a n}的通项公式;(3)设T n=(n∈N*),证明:T1+T2+…+T n<.15.在数列{a n}中,a1=1,3a n a n﹣1+a n﹣a n﹣1=0(n≥2)(Ⅰ)证明:是等差数列;(Ⅱ)求数列{a n}的通项;(Ⅲ)若对任意n≥2的整数恒成立,求实数λ的取值范围.16.设各项均为正数的等比数列{a n}中,a1+a3=10,a3+a5=40.设b n=log2a n.(1)求数列{b n}的通项公式;(2)若c1=1,c n+1=c n+,求证:c n<3.(3)是否存在正整数k,使得++…+>对任意正整数n均成立?若存在,求出k的最大值,若不存在,说明理由.17、已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1﹣1(n∈N*)(Ⅰ)求a n与b n;(Ⅱ)记数列{a n b n}的前n项和为T n,求T n.。
一.选择题〔共6小题〕1.x+1是5和7的等差中项,那么x的值为〔〕A.5 B.6 C.8 D.92.数列{a n}中,a1=3,a n+1=2a n+1,那么a3=〔〕A.3 B.7 C.15 D.183.数列{a n}中,假设a1=1,,那么这个数列的第10项a10=〔〕A.19 B.21 C.D.4.数列的前n项和为〔〕A. B.C.D.5.等差数列{a n}中,S n是它的前n项和,假设S16>0,S17<0,那么当S n最大时n的值为〔〕A.8 B.9 C.10 D.166.设等比数列{a n}的前n项和为S n,假设=4,那么=〔〕A.3 B.C.D.4二.解答题〔共10小题〕7.数列{a n}的前n项和S n=3+2n,求a n.8.数列{a n}是一个等差数列〔1〕a1=1,a4=7,求通项公式a n及前n项和S n;〔2〕设S7=14,求a3+a5.9.等差数列{a n}的前n项的和记为S n.如果a4=﹣12,a8=﹣4.〔1〕求数列{a n}的通项公式;〔2〕求S n的最小值及其相应的n的值.10.数列{a n}与{b n},假设a1=3且对任意正整数n满足a n+1﹣a n=2,数列{b n}的前n项和S n=n2+n.〔1〕求数列{a n},{b n}的通项公式;〔2〕求数列的前n项和T n.11.等差数列{a n}的公差不为零,a1=11,且a2,a5,a6成等比数列.〔Ⅰ〕求{a n}的通项公式;〔Ⅱ〕设S n=|a1|+|a2|+|a3|+…+|a n|,求S n.12.等差数列{a n}中,a3=8,a6=17.〔1〕求a1,d;〔2〕设b n=a n+2n﹣1,求数列{b n}的前n项和S n.13.等比数列{a n}的前n项和为S n=a•2n+b,且a1=3.〔1〕求a、b的值及数列{a n}的通项公式;〔2〕设b n=,求数列{b n}的前n项和T n.14.设数列{a n}的前n项和S n=〔n∈N*〕.〔1〕求a1,a2的值;〔2〕求数列{a n}的通项公式;〔3〕设T n=〔n∈N*〕,证明:T1+T2+…+T n<.15.在数列{a n}中,a1=1,3a n a n﹣1+a n﹣a n﹣1=0〔n≥2〕〔Ⅰ〕证明:是等差数列;〔Ⅱ〕求数列{a n}的通项;〔Ⅲ〕假设对任意n≥2的整数恒成立,数λ的取值围.16.设各项均为正数的等比数列{a n}中,a1+a3=10,a3+a5=40.设b n=log2a n.〔1〕求数列{b n}的通项公式;〔2〕假设c1=1,+1=+,求证:<3.〔3〕是否存在正整数k,使得++…+>对任意正整数n均成立?假设存在,求出k的最大值,假设不存在,说明理由.17、数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n〔n∈N*〕,b1+b2+b3+…+b n=b n+1﹣1〔n∈N*〕〔Ⅰ〕求a n与b n;〔Ⅱ〕记数列{a n b n}的前n项和为T n,求T n.2021年06月12日351088370的高中数学组卷参考答案与试题解析一.选择题〔共6小题〕1.〔2021 秋•校级期末〕x+1是5和7的等差中项,那么x的值为〔〕A.5 B.6 C.8 D.9【分析】由等差中项的概念,列出方程,求出答案来.【解答】解:∵x+1是5和7的等差中项,∴2〔x+1〕=5+7,∴x=5,即x的值为5.应选:A.【点评】此题考察了等差中项的应用问题,解题时利用等差中项的定义,列出方程,求出结果来,是根底题.2.〔2021 春•期末〕数列{a n}中,a1=3,a n+1=2a n+1,那么a3=〔〕A.3 B.7 C.15 D.18【分析】根据数列的递推关系即可得到结论.【解答】解:∵a1=3,a n+1=2a n+1,∴a2=2a1+1=2×3+1=7,a3=2a2+1=2×7+1=15,应选:C.【点评】此题主要考察数列的计算,利用数列的递推公式是解决此题的关键,比拟根底.3.〔2021春•校级期末〕数列{a n}中,假设a1=1,,那么这个数列的第10项a10=〔〕A.19 B.21 C.D.【分析】由条件可得,﹣=2,得数列{}为等差数列,公差等于2,根据等差数列的通项公式求出,从而求出a10;【解答】解:∵,∴a n﹣a n+1=2a n a n+1,∴﹣=2,∴故数列{}为等差数列,公差等于2,∴=1+9×2=19,∴a10=,应选C;【点评】此题主要考察等差关系确实定,等差数列的通项公式,解题时我们要学会发现问题,从而解决问题,此题是一道根底题;4.〔2021春•校级期末〕数列的前n项和为〔〕A.B.C.D.【分析】根据数列的特点得到数列的通项公式,然后利用裂项法进展求和即可.【解答】解:由数列可知数列的通项公式a n==,∴数列的前n项和S=2〔〕=2〔〕=,应选:C.【点评】此题只要考察数列和的计算,根据数列特点得到数列的通项公式是解决此题的关键,要求熟练掌握裂项法进展求和,此题容易出错的地方在于数列通项公式求错.5.〔2021春•华蓥市期末〕等差数列{a n}中,S n是它的前n项和,假设S16>0,S17<0,那么当S n最大时n的值为〔〕A.8 B.9 C.10 D.16【分析】根据所给的等差数列的S16>0且S17<0,根据等差数列的前n项和公式,看出第九项小于0,第八项和第九项的和大于0,得到第八项大于0,这样前8项的和最大.【解答】解:∵等差数列{a n}中,S16>0且S17<0∴a8+a9>0,a9<0,∴a8>0,∴数列的前8项和最大应选A【点评】此题考察等差数列的性质和前n项和,此题解题的关键是看出所给的数列的项的正负,此题是一个根底题.6.〔2021春•校级期末〕设等比数列{a n}的前n项和为S n,假设=4,那么=〔〕A.3 B.C.D.4【分析】由等比数列{a n}的性质可得:S3,S6﹣S3,S9﹣S6成等比数列,可得:=S3•〔S9﹣S6〕,又=4,代入计算即可得出.【解答】解:由等比数列{a n}的性质可得:S3,S6﹣S3,S9﹣S6成等比数列,∴=S3•〔S9﹣S6〕,∵=4,∴S6.∴=〔S9﹣S6〕,解得S9=S6.即=应选:B.【点评】此题考察了等比数列的求和公式及其性质,考察了推理能力与计算能力,属于中档题.二.解答题〔共10小题〕7.〔2021秋•期末〕数列{a n}的前n项和S n=3+2n,求a n.【分析】利用公式可求出数列{a n}的通项a n.【解答】解:a1=S1=3+2=5,a n=S n﹣S n﹣1=〔3+2n〕﹣〔3+2n﹣1〕=2n﹣1,当n=1时,2n﹣1=1≠a1,∴.【点评】此题考察数列的性质和应用、数列的概念及简单表示法,解题时要注意前n项和与通项公式之间关系式的灵活运用.8.〔2021春•郫县期末〕数列{a n}是一个等差数列〔1〕a1=1,a4=7,求通项公式a n及前n项和S n;〔2〕设S7=14,求a3+a5.【分析】〔1〕设出等差数列的公差,由求得公差,代入等差数列的通项公式得答案;〔2〕由结合等差数列的前n项和求得a1+a7,再由等差数列的性质得答案.【解答】解:〔1〕设{a n}的公差为d,那么,∴;〔2〕∵,∴a1+a7=4,由等差数列的性质,得a3+a5=a1+a7=4.【点评】此题考察等差数列的性质,考察了等差数列的通项公式,是根底题.9.〔2021 秋•县期末〕等差数列{a n}的前n项的和记为S n.如果a4=﹣12,a8=﹣4.〔1〕求数列{a n}的通项公式;〔2〕求S n的最小值及其相应的n的值.【分析】〔1〕可设等差数列{a n}的公差为d,由a4=﹣12,a8=﹣4,可解得其首项与公差,从而可求得数列{a n}的通项公式;〔2〕由〔1〕可得数列{a n}的通项公式a n=2n﹣20,可得:数列{a n}的前9项均为负值,第10项为0,从第11项开场全为正数,即可求得答案.【解答】解:〔1〕设公差为d,由题意可得,解得,故可得a n=a1+〔n﹣1〕d=2n﹣20〔2〕由〔1〕可知数列{a n}的通项公式a n=2n﹣20,令a n=2n﹣20≥0,解得n≥10,故数列{a n}的前9项均为负值,第10项为0,从第11项开场全为正数,故当n=9或n=10时,S n取得最小值,故S9=S10=10a1+=﹣180+90=﹣90【点评】此题考察等差数列的通项公式,及求和公式,利用等差数列的通项公式分析S n的最值是解决问题的捷径,属根底题.10.〔2021秋•期末〕数列{a n}与{b n},假设a1=3且对任意正整数n满足a n+1﹣a n=2,数列{b n}的前n项和S n=n2+n.〔1〕求数列{a n},{b n}的通项公式;〔2〕求数列的前n项和T n.【分析】〔1〕首项利用递推关系式和前n项和公式求出数列的通项公式.〔2〕利用〔1〕的结论求出性数列的通项公式,进一步利用裂项相消法求数列的和.【解答】解:〔1〕数列{a n}a1=3且对任意正整数n满足a n+1﹣a n=2那么:数列为等差数列.a n=3+2〔n﹣1〕=2n+1数列{b n}的前n项和S n=n2+n.那么:b n=S n﹣S n﹣1=n2+n﹣〔n﹣1〕2﹣〔n﹣1〕=2n当n=1时,b1=2符合通项公式.那么:b n=2n〔2〕根据〔1〕的结论:==T n=c1+c2+…+=]=【点评】此题考察的知识要点:数列通项公式的求法,利用裂项相消法求数列的和,属于根底题型.11.〔2021 秋•期末〕等差数列{a n}的公差不为零,a1=11,且a2,a5,a6成等比数列.〔Ⅰ〕求{a n}的通项公式;〔Ⅱ〕设S n=|a1|+|a2|+|a3|+…+|a n|,求S n.【分析】〔I〕设{a n}的公差为d,由题意可得d的方程,解方程可得通项公式;〔II〕由〔I〕知当n≤6时a n>0,当n≥7时a n<0,分类讨论去绝对值可得.【解答】解:〔I〕设{a n}的公差为d,由题意,即,变形可得,又由a1=11可得d=﹣2或d=0〔舍〕∴a n=11﹣2〔n﹣1〕=﹣2n+13;〔II〕由〔I〕知当n≤6时a n>0,当n≥7时a n<0,故当n≤6时,S n=|a1|+|a2|+|a3|+…+|a n|=a1+a2+a3+…+a n==12n ﹣n2;当n≥7时,S n=|a1|+|a2|+|a3|+…+|a6|+|a7|+…+|a n|=a1+a2+a3+…+a6﹣〔a7+a8+…+a n〕=2〔a1+a2+a3+…+a6〕﹣〔a1+a2+…+a n〕=72﹣〔12n﹣n2〕=n2﹣12n+72.综合可得S n=【点评】此题考察等差数列的求和公式和通项公式,涉及分类讨论的思想,属中档题.12.〔2021春•期末〕等差数列{a n}中,a3=8,a6=17.〔1〕求a1,d;〔2〕设b n=a n+2n﹣1,求数列{b n}的前n项和S n.【分析】〔1〕设公差为d,那么得到解得即可,〔2〕由〔1〕求出a n的通项公式,得到b n的通项公式,根据等差数列和等比数列的求和公式计算即可.【解答】解:〔1〕由可解得:a1=2,d=3.〔2〕由〔1〕可得a n=3n﹣1,所以,所以【点评】此题考察了等差数列和等比数列的求和公式,属于根底题.13.〔2021春•永昌县校级期末〕等比数列{a n}的前n项和为S n=a•2n+b,且a1=3.〔1〕求a、b的值及数列{a n}的通项公式;〔2〕设b n=,求数列{b n}的前n项和T n.【分析】〔1〕由等比数列{a n}的前n项和为S n=a•2n+b,且a1=3,知a1=2a+b=3,a2=4a+b﹣〔2a+b〕=2a,a3=〔8a+b〕﹣〔4a+b〕=4a,由此能求出a、b的值及数列{a n}的通项公式.〔2〕b n==,T n=〔1+++…+〕由此能求出数列{b n}的前n 项和T n.【解答】解:〔1〕∵等比数列{a n}的前n项和为S n=a•2n+b,且a1=3.∴a1=2a+b=3,a2=4a+b﹣〔2a+b〕=2a,a3=〔8a+b〕﹣〔4a+b〕=4a,∴公比q==2.∵,∴a=3,b=﹣3.∴a n=3•2n﹣1…6分〔2〕b n==,T n=〔1+++…+〕①T n=〔++…++〕②①﹣②得:T n=〔1+++…+﹣〕=[]=〔2﹣﹣〕=〔1﹣﹣〕,∴T n=〔1﹣﹣〕.…..12分【点评】此题考察数列的综合运用,解题时要认真审题,仔细解答,注意合理地进展等价转化.14.〔2021 春•期末〕设数列{a n}的前n项和S n=〔n∈N*〕.〔1〕求a1,a2的值;〔2〕求数列{a n}的通项公式;〔3〕设T n=〔n∈N*〕,证明:T1+T2+…+T n<.【分析】〔1〕根据数列的和的定义得出方程组,求解即可.〔2〕将代入,得,化简裂项得出,展开T1+T2+…+T n利用放缩法求解证明即可.【解答】解:〔1〕由,得,解得a1=2,a2=12.〔2〕当n≥2时,,即,所以,所以数列是以a1+2=4为首项,4为公比的等比数列,故,又a1=2满足上式,所以数列{a n}的通项公式〔n∈N*〕.〔3〕将代入,得,所以,所以=.【点评】此题考察数列的通项公式、前n项和的运用,解题时要认真审题,注意裂项思想的合理运用证明不等式.15.〔2021春•XX校级期末〕在数列{a n}中,a1=1,3a n a n﹣1+a n﹣a n﹣1=0〔n≥2〕〔Ⅰ〕证明:是等差数列;〔Ⅱ〕求数列{a n}的通项;〔Ⅲ〕假设对任意n≥2的整数恒成立,数λ的取值围.【分析】〔Ⅰ〕将条件整理得:,由此求得是以1为首项,3为公差的等差数列.〔Ⅱ〕由〔Ⅰ〕可得:,由此求得数列{a n}的通项.〔Ⅲ〕由条件可得,利用数列的单调性可得{}为单调递增数列,所以c2最小,,由此求得λ的取值围.【解答】解:〔Ⅰ〕将3a n a n﹣1+a n﹣a n﹣1=0〔n≥2〕整理得:,所以是以1为首项,3为公差的等差数列.〔Ⅱ〕由〔Ⅰ〕可得:,所以.〔Ⅲ〕假设恒成立,即恒成立,整理得:.令,那么可得.因为n≥2,所以>0,即{}为单调递增数列,所以c2最小,,所以λ的取值围为.【点评】此题主要考察等差关系确实定,数列的递推式的应用,数列与不等式的综合,属于难题.16.〔2021 春•高安市校级期末〕设各项均为正数的等比数列{a n}中,a1+a3=10,a3+a5=40.设b n=log2a n.〔1〕求数列{b n}的通项公式;〔2〕假设c1=1,+1=+,求证:<3.〔3〕是否存在正整数k,使得++…+>对任意正整数n均成立?假设存在,求出k的最大值,假设不存在,说明理由.【分析】〔1〕设出等比数列的公比q,运用等比数列的通项公式,解得首项和公比,再由对数的运算性质可得通项公式;〔2〕运用累加法求得,再由错位相减法求和,即可得证;〔3〕假设存在正整数k,令S n=++…=++…+,判断单调性,进而得到最小值,解不等式可得k的围.【解答】解:〔1〕设各项均为正数的等比数列{a n}的公比为q,那么a1+a1q2=10,a1q2+a1q4=40,解得a1=2,q=2,即有a n=2n,b n=log22n=n;〔2〕证明:c1=1,+1=+=+,那么=c1+〔c2﹣c1〕+〔c3﹣c2〕+…+〔﹣﹣1〕=1+++…+,即有=+++…+,两式相减可得=1+〔++…+〕﹣=1+﹣=﹣,即有=3﹣<3,〔3〕假设存在正整数k,使得++…>对任意正整数n均成立.令S n=++…=++…+,S n+1=++…+++,即有S n+1﹣S n=+﹣=﹣>0,即为S n+1>S n,数列{S n}递增,S1最小,且为,那么有<,解得k<5,故存在正整数k,且k的最大值为4.【点评】此题考察等比数列的通项公式和求和公式,同时考察数列的求和方法:错位相减法,以及不等式恒成立问题转化为求数列的最值,注意运用单调性,属于中档题和易错题.。
一、选择题1.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .62.已知等比数列{}n a 的前n 项和为n S ,则下列命题一定正确的是( ) A .若20200S >,则10a > B .若20210S >,则10a > C .若20200S >,则20a >D .若20210S >,则20a >3.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞4.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51015.对于数列{}n a ,定义11222n nn a a a Y n-++⋅⋅⋅+=为数列{}n a 的“美值”,现在已知某数列{}n a 的“美值”12n n Y +=,记数列{}n a tn -的前n 项和为n S ,若6n S S ≤对任意的*n N ∈恒成立,则实数t 的取值范围是( )A .712,35⎡⎤⎢⎥⎣⎦B .712,35⎛⎫ ⎪⎝⎭C .167,73⎡⎤⎢⎥⎣⎦D .167,73⎛⎫ ⎪⎝⎭6.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 7.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .28.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a9.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .236610.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1211.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .512.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.14.设数列{}n a 是等比数列,公比2q,n S 为{}n a 的前n 项和,记219n nn n S S T a +-=(*n N ∈),则数列{}n T 最大项的值为__________.15.已知数列{}n a 的前n 项和为n S ,若121(2)n n S S n -=+≥且23S =,则55S a =_________. 16.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.17.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 18.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________. 19.已知数列{}n a 与{}nb 满足11222n n a a a ++++=-,1(1)(1)nn n n a b a a +=--,数列{}n b 的前n 项的和为n S ,若n S M ≤恒成立,则M 的最小值为_________.20.著名的斐波那契数列:1,1,2,3,5,…,的特点是从三个数起,每一个数等于它前面两个数的和,则222212320482048a a a a a ++++是数列中的第______项.三、解答题21.给出以下三个条件:①11a =,22121n n a a n +-=+,*n N ∈;②22n n S a n =+,*n N ∈;③数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n .请从这三个条件中任选一个,将下面题目补充完整,并求解.设数列{}n a 的前n 项和为n S ,0n a >,________. (1)求数列{}n a 的通项公式;(2)若12n a nn nS b a +=,*n N ∈,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.22.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值; (2)求{}n b 的通项公式.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题). (1)求n a ﹔(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <. 25.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知等比数列{}n a 满足26a =,13630a a +=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若12a >,设23n n b n a =⋅(*N n ∈),记数列{}n b 的前n 项和为n S ,求n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.2.B解析:B 【分析】根据等比数列的前n 项和公式分别讨论20200S >和20210S >即可得答案. 【详解】当1q =时,2020120200S a =>,故10a >,20a >, 当1q ≠时,()202012020101a q S q-=>-,分以下几种情况,当1q <-时,10a <,此时210a a q =>; 当10q -<<时,10a >,此时120a a q =<, 当01q <<时,10a >,此时210a a q =>; 当1q >时,10a >,此时210a a q =>; 故当20200S >时,1a 与2a 可正可负,故排除A 、C . 当1q =时, 2021120210S a =>,故10a >, 20a >; 当1q ≠时,()202112021101a q S q-=>-,由于20211q-与1q -同号,故10a >,所以21a a q =符号随q 正负变化,故D 不正确,B 正确; 故选:B 【点睛】关键点点睛:本题解决时根据等比数列的求和公式,分类讨论公比的情形是解决问题的关键,分析出首项及公比的情况即可确定第二项的符号,属于中档题.3.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.4.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.5.C解析:C 【分析】由1112222n n n n a a a Y n-+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+, 所以()22n a tn t n -=-+, 可得数列{}n a tn -是等差数列, 由6n S S ≤对任意的*n N ∈恒成立, 可得:660a t -≥,770a t -≤, 即()2620t -⨯+≥且()2720t -⨯+≤, 解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦, 故选:C 【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,6.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-,()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.7.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 8.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =- 70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.9.C解析:C 【解析】依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 10.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.11.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q-++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q qa a a a a -=-++=++, 两式相除得210551112(1)(1)(1)6111a q a q a q q q q --+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【解析】数列是等比数列公比为的前项和当且仅当时取等号又或时取最大值数列最大项的值为故答案为 解析:3【解析】数列{}n a 是等比数列,公比q 2=,n S 为{}n a 的前n 项和,219()n n n n S S T n N a *+-=∈ ,2111(12)(12)9812129222n nn n n na a T a --⋅---∴==--⋅822n n +≥=, 当且仅当822nn =时取等号,又,1n N n *∈=或2 时,n T 取最大值19243T =--= .∴ 数列{}n T 最大项的值为3 .故答案为3 .15.【分析】先计算出数列的前两项分别为和由题意可知可得再结合得数列是首项为公比为的等比数列然后利用等比数列的相关公式计算【详解】由①得则所以得:②②-①得:即又成立所以数列是首项为公比为的等比数列则故故解析:3116.【分析】先计算出数列{}n a 的前两项分别为1和2,由题意可知()1121212n n nn S S S S n +-=+⎧⎨=+≥⎩可得()122n na n a +=≥,再结合212aa =得数列{}n a 是首项为1,公比为2的等比数列,然后利用等比数列的相关公式计算55S a . 【详解】由121(2)n n S S n -=+≥ ①得12121213S S a =+=+=,则11a =,所以2212a S a =-=,得:121n n S S +=+②, ②-①得:()122n n a a n +=≥,即()122n na n a +=≥ 又212a a =成立,所以数列{}n a 是首项为1,公比为2的等比数列, 则4451216a a q =⋅==,()()55151********a q S q-⨯-===--,故553116Sa =. 故答案为:3116【点睛】本题考查利用递推关系式求解数列的通项公式,考查等比数列的通项公式、求和公式的应用,较简单.16.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.17.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.18.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.19.【分析】由已知式写出为的式子相减求得检验是否相符求得用裂项相消法求得和由表达式得的范围从而得最小值【详解】∵所以时两式相减得又所以有从而显然所以的最小值为1故答案为:1【点睛】方法点睛:本题主要考查 解析:1【分析】由已知式写出n 为1n -的式子,相减求得n a ,检验1a 是否相符,求得n b ,用裂项相消法求得和n S ,由n S 表达式得M 的范围,从而得最小值. 【详解】 ∵11222n n a a a ++++=-,所以2n ≥时,12122n n a a a -+++=-,两式相减得1222n n nn a +=-=,又21222a =-=,所以*n N ∈,有2nn a =,从而11211(21)(21)2121n n n n n n b ++==-----,122231111111212121212121n n n n S b b b +⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--,显然1n S <,所以1M ≥,M 的最小值为1.故答案为:1. 【点睛】方法点睛:本题主要考查求数列的通项公式,考查裂项相消法求和,数列求和的常用方法有:(1)公式法,(2)错位相减法,(3)裂项相消法,(4)分组(并项)求和法,(5)倒序相加法.20.【分析】由题意可得进而可得然后再利用累加法即可求出结果【详解】由题意可知所以即所以……所以又所以∴所以是数列中的第项故答案为:【点睛】本题考查了数列的递推公式和累加法的应用考查学生的计算能力属于中档题 解析:2049【分析】由题意可得21n n n a a a ++=+,进而可得21211n n n n n a a a a a ++++⋅=+⋅,然后再利用累加法,即可求出结果. 【详解】由题意可知21n n n a a a ++=+,所以()1211n n n n n a a a a a ++++⋅=⋅+,即21211n n n n n a a a a a ++++⋅=+⋅所以220482049204820482047a a a a a ⋅=+⋅,220472048204720472046a a a a a ⋅=+⋅,……223221·a a a a a ⋅=+,所以2222048204920482047221·a a a a a a a ⋅=++⋯++, 又21a a =所以2222204820492048204721a a a a a a ⋅=++⋯++∴2222123204820492048a a a a a a ++++=.所以222212320482048a a a a a ++++是数列中的第2049项.故答案为:2049 . 【点睛】本题考查了数列的递推公式和累加法的应用,考查学生的计算能力,属于中档题.三、解答题21.(1)条件性选择见解析,n a n =;(2)12n n T n +=⋅.【分析】(1)选择①,由累加法求得2n a ,从而得n a ;选择②,由当2n ≥时1n n n a S S -=-得出数列{}n a 的递推关系,利用0n a >排除一个,由另一个得出通项公式n a ;选择③,类似选择②求出通项2211n n a ++,从而得n a .(2)由(1)可得n b ,然后用错位相减法求和n T . 【详解】 (1)选择①,因为22121n n a a n +-=+,*n ∈N ,所以2n ≥时,2221211a a -=⨯+, 2232221a a -=⨯+,()221211n n a a n --=-+,2n ≥,所以当2n ≥时,()()221212311n a a n n -=++++-+-⎡⎤⎣⎦,因为11a =,所以当2n ≥时,22n a n =,当1n =时,也满足上式. 因为0n a >,所以n a n =. 选择②,因为22n n S a n =+,所以当2n ≥时,21121n n S a n --=+-,两式相减,得22121n n n a a a -=-+,即()2211n n a a --=,所以11n n a a --=或11n n a a --=,因为21121a a =+,所以11a =,因为0n a >,所以11n n a a --=舍去, 所以11n n a a --=,即11n n a a --=,2n ≥, 所以n a n =. 选择③,因为数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n ,所以当2n ≥时,()221111n n n n a +=--=+,即22n a n =, 当1n =时,211111a +=+,即211a =,也满足上式, 所以22n a n =,因为0n a >,所以n a n =. (2)()()11122212n n a n nn nn n S b n a n+++⨯===+⋅, 所以()1212223212n n n T b b b n =+++=⋅+⋅+++⋅,()23122232212n n n T n n +=⋅+⋅++⋅++⋅,所以()()231422212n n n T n +-=++++++⋅()()1141241212n n n -+-=+-+⋅-12n n +=-⋅,所以12n n T n +=⋅.【点睛】方法点睛:本题考查累加法求通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 22.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥,()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅, 12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 24.条件选择见解析;(1)32n a n =-;(2)证明见解析. 【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式;(2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-. (2)()()111111323133231n n nb a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 25.(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n n S a 和2n a 的等差中项为1,所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n nn a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.26.(Ⅰ)123n n a -=⨯或132n n a -=⨯;(Ⅱ)1(1)22n n S n +=-⨯+.【分析】(Ⅰ)设等比数列{}n a 的公比为q ,由已知建立方程组,求得数列的首项和公比,从而求得数列的通项;(Ⅱ)由(Ⅰ)及已知可得132n n a -=⨯和223n n n b n a n =⋅=⋅(*n ∈N ),运用错位相减法可求得数列的和.【详解】解:(Ⅰ)设等比数列{}n a 的公比为q ,由26a =,可得16a q =,记为①. 又因为13630a a +=,可得12630a a q +=,即15a q +=记为②,由①②可得123a q =⎧⎨=⎩或132a q =⎧⎨=⎩, 故{}n a 的通项公式为123n n a -=⨯或132n n a -=⨯.(Ⅱ)由(Ⅰ)及12a >可知132n n a -=⨯,所以223n n n b n a n =⋅=⋅(*n ∈N ), 所以1212222n n S n =⨯+⨯++⨯ ③231212222n n S n +=⨯+⨯++⨯ ④ ③-④得1212222n n n S n +-=+++-⨯111222(1)22n n n n n +++=--⨯=-⨯-,所以1(1)22n n S n +=-⨯+.【点睛】 方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等. (4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.。
高二上期数列单元达标卷第I卷(选择题)一、选择题(每题5分,本大题共12小题,共60.0分)1.已知数列{a n}中,a n+1=3a n,a1=2,则a4=()A. 18B. 54C. 36D. 722.已知在等差数列{a n}中,a1007=4,S2014=2014,则S2015=()A. −2015B. 2015C. −4030D. 40303.已知等比数列{a n}的公比q=2,前100项的和S100=90,则a2+a4+a6+⋯+a100=()A. 15B. 30C. 45D. 604.设等比数列{a n}满足a1+a2=12,a1−a3=6,则a1a2⋯a n的最大值为()A. 32B. 128C. 64D. 2565.已知数列{a n}中,a1=1,a n+a n+1=3,则S2017=()A. 3009B. 3025C. 3010D. 30246.已知等差数列的前n项和为18.若S3=1,a n+a n−1+a n−2=3,则n的值为()A. 27B. 21C. 9D. 367.在等差数列{a n}中,已知a2+a5+a12+a15=36,则S16=()A. 288B. 144C. 572D. 728.等差数列{a n}的前n项和为S n,已知a5=8,S3=6,则S10−S7的值是()A. 24B. 48C. 60D. 729.在等比数列{a n}中,a2,a18是方程x2+6x+4=0的两根,则a4a16+a10=()A. 6B. 2C. 2或6D. −210.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A. 21B. 42C. 63D. 8411.已知S n是等差数列{a n}的前n项和,a2+a4+a6=12,则S7=()A. 20B. 28C. 36D. 412.在正项等比数列{a n}中,a2a7=4,则log2a1+log2a2+⋯+log2a8=()A. 2B. 4C. 6D. 8第II卷(非选择题)二、填空题(每题5分,本大题共4小题,共20.0分)=6,则{a n}的公差d=.13.已知等差数列{a n}的前n项和为S n.若a2=3,S9S314.等差数列{a n}中,a1=1,a9=21,则a3与a7等差中项的值为.15.公差不为零的等差数列{a n}中,2a3−a72+2a11=0,数列{b n}是等比数列,且b7=a7,则b6b8=.16.已知数列{a n}的前n项和为S n,且S n=n2+4,则a n=.三、解答题(本大题共6小题,共70.0分)17.(本题10分)已知等差数列{a n}满足a1+a2=10,a4−a3=2.(1)求{a n}的通项公式.(2)设等比数列{b n}满足b2=a3,b3=a7,问b6与数列{a n}中的第几项相等⋅18.(本题12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=−5.(1)求{a n}的通项公式;(2)求a1+a4+a7+⋯+a3n+1.19. (本题12分)设数列{a n }满足a n+1=13a n +2,a 1=4.(1)求证:{a n −3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n .20. (本题12分)已知S n 是数列{a n }的前n 项和,且S n =2a n +n −4.(1)求a 1的值;(2)若b n =a n −1,试证明数列{b n }为等比数列.21. (本题12分)已知数列{a n }是首项a 1=14,公比q =14的等比数列,设b n +3log 4a n +2=0,数列{c n }满足c n =a n ·b n .(1)求数列{b n}的通项公式;(2)求数列{c n}的前n项和S n.,n∈N∗.(本题12分)已知数列{a n}的各项均为正数,前n项和为S n,且S n=a n(a n+1)2(1)求证:数列{a n}是等差数列;,T n=b1+b2+⋯+b n,求T n.(2)设b n=12S n高二上期数列单元卷参考答案1-5BCDCB 6-10ABBBB 11-12BD13.d=1 14.11 15. 16 16、 {5,n =1,2n −1,n ≥2,n ∈N ∗17. 【分析】本题主要考查等差数列和等比数列的通项公式,熟练利用公式进行计算是解题的关键, 属于基础题.(1)根据已知条件列出关于a 1和d 的方程组,解方程组得出a 1和d 的值,进一步即可得出{a n }的通项公式;(2)根据已知条件代入等比数列的通项公式,列出关于b 1和q 的方程组,解方程组得出b 1和q 的值,进而得出数列{b n }的通项公式,算出b 6的值,令a n =b 6,解出n ,即为所求.【解答】解:(1)设等差数列{a n }的公差为d .∵a 4−a 3=2,∴d =2.∵a 1+a 2=10,∴2a 1+d =10,∴a 1=4. ∴a n =4+2(n −1)=2n +2. (2)设等比数列{b n }的公比为q(q ≠0). ∵b 2=a 3=8,b 3=a 7=16,∴{b 1q =8,b 1q 2=16, ∴{q =2,b 1=4,∴b 6=4×26−1=128.令128=2n +2,∴n =63, ∴b 6与数列{a n }中的第63项相等.18. 【分析】本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,是中档题.(Ⅰ)设出等差数列{a n }的首项和公差,直接由S 3=0,S 5=−5列方程组求出,然后代入等差数列的通项公式整理;(Ⅱ)由{a n }为等差数列,可得a 1+a 4+a 7+⋯+a 3n+1以1为首项,以−3为公差的等差数列,进而可得出答案.【解答】 解:(1)由等差数列的性质可得{3a 1+3d =05a 1+5×4d 2=−5,解得a 1=1,d =−1, 则{a n }通项公式a n =1−(n −1)=2−n ; (2)∵{a n }为等差数列,∴a 1+a 4+a 7+⋯+a 3n+1以1为首项,以−3为公差的等差数列, ∴a 1+a 4+a 7+⋯+a 3n+1=n +1+(n+1)(n+1−1)×(−3)2=(n+1)(2−3n )2.19. 【分析】本题考查的知识要点:等比数列的判定与证明,等比数列的通项公式的求法,分组转化求和在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.(1)直接利用递推关系式得{a n −3}是首项为1,公比为13的等比数列,进而即可求出数列的通项公式.(2)利用(1)的通项公式,进一步利用分组法求出数列的和.【解答】(1)证明:∵a n+1=13a n +2,a 1=4,∴a n+1−3=13(a n −3), 因为a 1−3=1≠0,所以{a n −3}是首项为1,公比为13的等比数列. a n −3=(13)n−1,∴a n =3+(13)n−1.(2)解:由(1)知,a n =3+(13)n−1,故T n =3n +[(13)0+(13)1+⋯+(13)n−1]=3n +1−(13)n1−13=3n +32−12⋅3n−1.20. 【分析】本题主要考查的是数列的递推公式及等比数列的定义. (1)直接令n =1求解即可.(2)先把所给的递推公式转化为a n =2a n−1−1,再结合等比数列的定义证明即可. 【解答】 解:(1)因为S n =2a n +n −4,所以当n =1时,S 1=2a 1+1−4,解得a 1=3; (2)证明:因为S n =2a n +n −4,所以当n ≥2时,S n−1=2a n−1+(n −1)−4, S n −S n−1=(2a n +n −4)−(2a n−1+n −5), 即a n =2a n−1−1,所以a n −1=2(a n−1−1),又b n =a n −1,所以b n =2b n−1,且b 1=a 1−1=2≠0, 所以数列{b n }是以b 1=2为首项,2为公比的等比数列.21. 【分析】本题主要考查了等比数列的通项公式,错位相减法,属于中档题. (1)由等比数列通项公式得a n =(14)n ,代入b n =−3log 4a n −2,求得b n ; (2)由(1)知,c n =(3n −2)(14)n ,利用错位相减法求和. 【解答】解:(1)由题意,得a n =(14)n , 又b n =−3log 4a n −2, 故b n =3n −2.(2)由(1)知a n =(14)n ,b n =3n −2, 所以c n =(3n −2)(14)n ,所以S n =1×14+4×(14)2+7×(14)3+ ⋯+(3n −5)×(14)n−1+(3n −2)×(14)n ,① 于是14S n =1×(14)2+4×(14)3+7×(14)4+ ⋯+(3n −5)×(1)n +(3n −2)×(1)n+1,②①−②得,34S n =14+3×[(14)2+(14)3+⋯+(14)n ] −(3n −2)×(14)n+1=12−(3n +2)×(14)n+1,所以S n =23−3n+23×4.22、【分析】(1)运用数列的递推式:当n =1时,a 1=S 1,当n ≥2时,a n =S n −S n−1,结合等差数列的定义,即可得证;(2)运用等差数列的通项公式和求和公式,求得b n =12S n=1n(n+1)=1n −1n+1,数列的求和方法:裂项相消求和,化简即可得到所求和.本题考查数列的递推式的运用:求通项,考查等差数列的定义和通项公式的运用,数列的求和方法:裂项相消求和,化简整理的运算能力,属于中档题. 【解答】解:(1)证明:∵S n =a n (a n +1)2,n ∈N ∗,∴当n =1时,a 1=S 1=a 1(a 1+1)2,∴a 1=1(0舍去);当n ≥2时,由2S n =a n 2+a n , 2S n−1=a n−12+a n−1,相减可得2a n =a n 2+a n −a n−12−a n−1,即(a n +a n−1)(a n −a n−1−1)=0, ∵a n +a n−1>0,∴a n −a n−1=1(n ≥2), 所以数列{a n }是以1为首项,1为公差的等差数列; (2)由(1)可得a n =n , 2S n =n(n +1),∴b n =12S n=1n(n+1)=1n −1n+1,∴T n =b 1+b 2+b 3+⋯+b n =1−12+12−13+⋯+1n−1n+1=1−1n+1=nn+1.22.。
1.等差数列99637419,27,39,}{S a a a a a a a n 项和则前已知中=++=++的值为( ) A .66 B .99 C .144 D .297 2.已知数列{}n a 是公比为2的等比数列,若416a =,则1a = ( ) A .1 B .2 C .3 D .43.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于( ) A .18 B . 24 C .60 D . 904.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =( ) A .21B .22C .2D .25.已知等差数列}{n a 的前n 项和为n S ,且854,18S a a 则-==( ) A .18 B .36 C .54 D .72 6.等比数列{}n a 中,44=a ,则=⋅62a a ( ) A .4 B .8 C .16 D .32 7.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.6308.已知等比数列前n 项和为n S ,若42=S ,164=S ,则=8S ( ) A.160 B.64 C.64- D.160-9.公比为2的等比数列{}n a 的各项都是正数,且311=16a a ⋅,则6a = ( ) (A )1 (B )2 (C )4 (D )8 10.数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a =( ) A .5 B .1- C .0 D .111.已知等比数列{}n a 中,121a a +=, 458a a +=-,则公比q =( )(A )2- (B )2 (C )12-(D )1212.观察下列数的特点,1,1,2,3,5,8,x,21,34,55,…中,其中x 是( )A .12B .13C .14D .1513.若n n n a a a a a -===++1221,6,3,则33a = ( )A. -3B. 3C. -6D. 6 14.已知数列{a n }满足,那么的值是( )A .20112B .2012×2011C . 2009×2010D .2010×2011 15. 数列K ,431,321,211⨯⨯⨯的一个通项公式是A .)1(1-n n B .)1(1+n n C .)2)(1(1++n n D .以上都不对16.数列{}n a 是等差数列,494,4,a a =-= n S 是{}n a 的前n 项和,则( ) A. 56S S < B. 56S S = C. 57S S = D. 67S S =17.各项都是正数的等比数列{}n a 中,13a ,,22a 成等差数列,)A.1B.3C.6D.918.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若)A19.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则公差为 20.在等差数列{}n a 中,S 10=120,则a 1+a 10等于 ( ) A .12 B.24 C.36 D.4821.数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a =( ) A .5 B .1- C .0 D .122.已知数列{}n a 中,11a =,*13,(2,)n n a a n n N -=+≥∈,则n a =___________.23.若数列}中的最大项是第k 项,则k= . 24.设n S 为数列{}n a 的前n 项和,若*2(N )nnS n S ∈是非零常数,则称该数列{}n a 为 “和等比数列”.若数列{}n b 是首项为3,公差为(0)d d ≠的等差数列, 且数列{}n b 是“和等比数列”,则d = .25.如果数列}{n a 的前n 项和n n S n 322-=,那么这个数列是 数列26m=________. 27.已知等比数列{}n a 中,n S 为前n 项和且135a a +=,415S =, (1)求数列{}n a 的通项公式。
一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .54 3.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3925.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .96.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n7.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .20228.公元1202年意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即121a a ==,12n n n a a a --=+(*3,n n ≥∈N ).此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.若记212n n n n b a a a ++=-(*n ∈N ),数列{}n b 的前n 项和为n S ,则2020S =( ) A .0B .1C .2019D .20209.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-10.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1211.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.数列{}n a 满足()()1232312n a a a na n n n ++++=++,则n a = __________.14.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.15.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.16.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.17.数列{}n a 中,若31()n na a n *+=∈N ,13a =,则{}n a 的通项公式为________. 18.已知等差数列{}n a 的前n 项和为()*n S n N∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,当0n S >时,n 的最大值为______.19.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.20.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________.三、解答题21.在①119n n a a +-=-,②113n n a a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分22.在数列{}n a ,{}n b 和{}n c 中,{}n a 为等差数列,设{}n a 前n 项的和为n S ,{}n c 的前n 项和为n T ,11a =,410S a =,12b =,n n n c a b =⋅,22n n T c =-. (1)求数列{}n a ,{}n b 的通项公式; (2)求证:()()()()()()12122311111111nn n c c c c c c c c c ++++<------.23.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T .24.从①1a 、2a 、5a 成等比数列,②525S =,③222n nS S n n+-=+,这三个条件中任选一个,补充在下面问题中并作答.已知等差数列{}n a 的前n 项和为n S ,47a =, ,122na n nb a +=+,求数列{}n b 的前n 项和为n T .25.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,35a =,749=S . (1)求数列{}n a 的通项公式及前n 项和n S ;(2)若数列{}n b 满足2n b =,求数列{}n b 的前n 项和n T .26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥ ⎪⎝⎭,设272n n n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】 因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q ==故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.5.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.7.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.8.A解析:A 【分析】由1n nb b +用递推式可得到值为-1,{}n b 是等比数列,再求前2020项和. 【详解】 由题意可知()2221121213221212n n n n n n n n n n n n n n n a a a a b a a a b a a a a a a ++++++++++++-+-===--()222211212212121n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++++---==---, 又212131b a a a =-=-,因此()1nn b =-,故()()()20201111110S =-++-+++-+=,故选:A. 【点睛】本题考查了通过递推数列揭示数列存在的规律即等比数列,还考查了数列求和,属于中档题.9.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.10.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q ==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.11.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】对递推关系多递推一次再相减可得再验证是否满足;【详解】∵①时②①-②得时满足上式故答案为:【点睛】数列中碰到递推关系问题经常利用多递推一次再相减的思想方法求解 解析:31n【分析】对递推关系多递推一次,再相减,可得31n a n ,再验证1n =是否满足;【详解】 ∵()()1232312n a a a na n n n ++++=++①2n ∴≥时,()()()123123111n a a a n a n n n -++++-=-+② ①-②得31,31n nna n n a n ,1n =时,1123=6,a 满足上式,31na n .故答案为:31n . 【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列,所以2122n n a n ⎛⎫=+-⨯= ⎪⎝⎭,所以20202020a =. 故答案为:2020.【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.16.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.17.【分析】两边取对数化简整理得得到数列是以为首项公比为3的等比数列结合等比数列的通项公式即可求解【详解】由两边取对数可得即又由则所以数列是以为首项公比为3等比数列则所以故答案为:【点睛】本题主要考查了 解析:133()n n a n -*=∈N【分析】两边取对数,化简整理得313log 3log n na a +=,得到数列3{log }n a 是以1为首项,公比为3的等比数列,结合等比数列的通项公式,即可求解. 【详解】由31()n na a n *+=∈N ,两边取对数,可得313log 3log n n a a +=,即313log 3log n na a +=, 又由13a =,则31log 1a =,所以数列3{log }n a 是以31log 1a =为首项,公比为3等比数列,则113log 133n n n a --=⋅=,所以133()n n a n -*=∈N . 故答案为:133()n n a n -*=∈N 【点睛】本题主要考查了对数的运算性质,以及等比数列的通项公式的求解,其中解答中合理利用对数的运算性质,结合等比数列的通项公式求解是解答的关键,着重考查推理与运算能力.18.【分析】根据是与的等比中项求出和再根据等差数列的求和公式求出解不等式即可得解【详解】因为是与的等比中项所以所以化简得因为所以因为所以即将代入得解得所以所以由得即解得所以正整数的最大值为故答案为:20解析:【分析】根据690S =,7a 是3a 与9a 的等比中项求出1a 和d ,再根据等差数列的求和公式求出n S ,解不等式0n S >即可得解.【详解】因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅,所以()()()2111628a d a d a d +=++,化简得21100a d d +=,因为0d ≠,所以110a d =-, 因为690S =,所以1656902a d ⨯+=,即15152a d +=, 将110a d =-代入得510152d d -+=,解得2d =-,所以120a =, 所以2(1)20(2)212n n n S n n n -=+⨯-=-+, 由0n S >得2210n n -+>,即2210n n -<,解得021n <<, 所以正整数n 的最大值为20. 故答案为:20 【点睛】关键点点睛:熟练掌握等差数列的通项公式和求和公式以及等比中项的应用是解题关键.19.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++, 2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.20.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】 令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8.【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.三、解答题21.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭. 由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =;2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大.22.(1)n a n =,2nn b n=;(2)证明见解析;【分析】(1)设{}n a 的公差为d ,由410S a =,即可得到1d a =,从而求出{}n a 的通项公式,再由1122n n n n n c T T c c --=-=-,可得{}n c 是首项为2,公比为2的等比数列,即可求出{}n c 的通项,最后由n n n c a b =⋅,求出{}n b 的通项公式;(2)依题意可得()()1111112121n n n n n c c c ++=-----,利用裂项相消法求和即可得证;【详解】解:(1)因为{}n a 为等差数列,且{}n a 前n 项的和为n S ,设其公差为d , 因为410S a =,11a =,所以()11441492a d a d ⨯-+=+,所以11d a ==,所以n a n =,因为11a =,12b =,n n n c a b =⋅,所以1112c a b =⋅=,因为{}n c 的前n 项和为n T 且22n n T c =-,当2n ≥时,()()111222222n n n n n n n c T T c c c c ---=-=---=-,所以()122n n c c n -=≥,所以{}n c 是首项为2,公比为2的等比数列,所以2n n c =,因为n n n c a b =⋅,所以2nn n n c b a n==(2)因为()()()()1112111121212121n n n n n n n n c c c +++==-------所以()()()()()()1212231111111nn n c c c c c c c c c ++++------122311111111111111212121212121212121n n n n +++=-+-++-=-=-<--------- 【点睛】数列求和的方法技巧 (1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 23.(1)13n n a =,12n n b +=;(2)151144323nn nn T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n nn a b +=∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n n n T -+=--⋅⋅. 【点睛】本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 24.答案见解析. 【分析】选①,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而可求得n T ;选②,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T ; 选③,设等差数列{}n a 的公差为d ,利用等差数列的求和公式求出d 的值,可求得1a 的值,求出数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T . 【详解】解:选①,设数列{}n a 的公差为d ,则由47a =可得137a d +=,由1a 、2a 、5a 成等比数列得()()21114a a d a d +=+,可得212d a d =,所以,121372a d d a d +=⎧⎨=⎩,解得170a d =⎧⎨=⎩或112a d =⎧⎨=⎩,若17a =,0d =,则7n a =,23n b =,23n T n =;若11a =,2d =,则()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选②,设数列{}n a 的公差为d ,则由47a =可得137a d +=, 由525S =得1545252a d ⨯+=,即125a d +=, 联立以上两式可得11a =,2d =,所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选③,设数列{}n a 的公差为d ,则由47a =可得137a d +=,()112n n n d S na -=+,()112n n d Sa n -∴=+,()21122n n d S a n ++∴=++, 由222n nS S n n+-=+得2d =,则11a =, 所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.25.(1)21n a n =-,2n s n =;(2)21n nT n =+. 【分析】(1)根据条件列出式子求出数列{}n a 的首项和公差,即可求出通项公式和前n 项和; (2)可得112+1n b n n ⎛⎫=- ⎪⎝⎭,利用裂项相消法即可求出. 【详解】(1)设等差数列{}n a 的公差为d ,则3171+25767+492a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()1+1221n a n n ∴=-⨯=-,()21+212n n n S n -==; (2)()2112+1+1n b n n n n ⎛⎫===- ⎪⎝⎭, 1111122122311n nT n n n ⎛⎫∴=-+-++-=⎪++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出;(2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】(1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212a b a ==,3313a b a ==, (2)设1n a k +=,n n n A b B =, 若n k B ≤,则+1n n n n nk A A b b B =≥=, 若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=; (3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n n n A b q B -==, 由(2)可得1n n b b +≥,则1q ≥,当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列; 当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。
数列 一、数列的概念
对于任一数列}{n a ,其通项n a 和它的前n 项和n s 之间的关系是
⎩⎨
⎧≥-==-)2()1(11
n s s n s a n n n
二、等差数列
1、等差数列的通项公式:1(1)n a a n d =+-;
2、等差中项的概念:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2
a b
A +=
3、等差数列的前n 和的求和公式:11()(1)
22
n n n a a n n S na d +-=
=+。
4、在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,
n m a a d n m -=-()m n ≠; 5、在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+;6、在等差数列{}n a 中,若m+n=2p,则p n m a a a 2=+
7、数列最值
(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值; (2)n S 最值的求法:①若已知n S ,可用二次函数最值的求法(n N +∈);②若已
知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或1
0n n a a +≤⎧⎨≥⎩。
8、若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k
k S S 23-成等差数列
练习
1.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( )
A .14
B .21
C .28
D .35
2、在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )
A .58
B .88
C .143
D .176
3.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值
时,n 等于( )
A .6
B .7
C .8
D .9
4.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )
A .13项
B .12项
C .11项
D .10项
5、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数
C. 有最大值且是整数
D. 有最大值且是分数
6、已知等差数列{}n a 的公差1
2
d =,8010042=+++a a a ,那么=100S
A .80
B .120
C .135
D .160 7、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S
A .390
B .195
C .180
D .120
8、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )
A. 130
B. 170
C. 210
D. 260
9、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )
A.54S S <
B.54S S =
C. 56S S <
D. 56S S = 10、等差数列{}n a 中,若232n S n n =+,则公差d = .
11.在等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使前n 项和S n 取得最大值的自然数n 是________.
12.设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列.
13.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{n
S n
}的前n 项和,求T n 。
等比数列
1.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n 。
2.等比中项:如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项)。
3.等比数列前n 项和公式1≠q 时,q
q a S n n --=1)1(1 或11n n a a q
S q -=-;当q=1时,
1na S n =(错位相减法)。
4、等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的
第m 项,且n m ≤,公比为q ,则有m n m n q a a -=; 5、等比数列{}n a ,若v u m n +=+,则.
6、若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k
k S S 23-成等比数列。
1.在等比数列{}n a 中,3712,2a q ==,则19_____.a = 2.23+和23-的等比中项为( ) .
()1A ()1B - ()1C ± ()2D
3.在等比数列{}n a 中,1a 和10a 是方程22510x x ++=的两个根,则47a a ⋅=( )
5()2A - 2()2
B 1()2
C - 1()2D
4.等比数列{a n }中,a 6+a 2=34,a 6﹣a 2=30,那么a 4等于( )
A . 8
B . 16
C . ±8
D . ±16
5.正项等比数列{a n }中,a 2a 5=10,则lga 3+lga 4=( ) A . ﹣1 B . 1 C . 2 D .
6. 在等比数列{}n a ,已知51=a ,100109=a a ,求18a .
7、设等比数列{}n a 的公比12q =
,前n 项和为n S ,则44S
a = . 8、已知等比数列{a n }中,a 1=13,公比q =1
3.
(1)S n 为{a n }的前n 项和,证明:S n =1-a n
2
;
(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.
9、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.
(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.
10.[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81.
(1)求a n ;
(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .。