九年级数学教学质量检测题附答案
- 格式:pdf
- 大小:1.04 MB
- 文档页数:7
2024年教学质量监测九年级数学参考答案一、单选题.1.A2.C3.C4.A5.C6.B7.B8.D9.B10.D二、填空题.11.2-;12.2)1(3-a ;13.9;14.6>x ;15.1360; 1.4三、解答题(一).(本大题3小题,每小题6分,共18分)17.解:(1)原式=25912422+-+-a a a ,4分(公式对一个给2分)=341232+-a a 6分18.解:(1)解①得:4<x ;解②得:1>x 2分∴原不等式组的解集为41<<x 3分(2)当3=m 时,解方程0322=--x x 4分得:31=x 或12-=x 6分19.解:221132111x x x x x ⎛⎫--÷ ⎪-+--⎝⎭()()()()221311111x x x x x x ⎡⎤+--=-⨯⎢--⎣⎦-⎢⎥2分()()23111x x x x -=-⨯-3分3x =,4分∵()10213132x -⎛⎫=+-⎪=⎭+ =⎝,5分∴原式3133x ===.6分四、解答题(二)(本大题3小题,每小题8分,共24分)20.解:∵AB AC =,AD BC ⊥于点D ,∴12BD BC =.2分∵10BC =,∴5BD =.4分∵AD BC ⊥于点D ,∴90ADB ∠=︒,∴在Rt △ABD 中,222AB AD BD =+.5分∵12AD =,∴222512513AB AD BD =+=+=,7分∵E 为AB 的中点,∴11322DE AB ==.8分21.(1)50,72分(2)条形统计图见解析,108︒4分(3)该校学生答题成绩为A 等和B 等共有672人6分(4)168分22.解:(1)∵一次函数24y x =-的图象与x 轴交于点A ,∴令0y =240x -=解得2x =∴点A 的坐标是()2,01分∵点(),4B m 在一次函数24y x =-的图象上把(),4B m 代入24y x =-,得244m -=,2分∴4m =,∴点B 的坐标是()4,4;3分(2)解:如图所示,5分(3)解:如图所示,当BA BP =时,()16,0P ;6分∵()2,0A ,()4,4B ,∴()242225AB 2=-+=,7分当AB AP =时,()2225,0P +8分∴符合条件的点P 坐标是()6,0,()225,0+.五、解答题(三):本大题共3小题,23小题8分,24小题10分,25小题12分,共30分.23.解:【验证】∵矩形纸片ABCD 沿MC 所在的直线折叠∴CMD ∠CMD ∠'∵四边形ABCD 是矩形∴AD BC ∥(矩形的对边平行)∴CMD ∠MCN ∠(两直线平行,内错角相等)∴CMD MCN ∠∠'=(等量代换)∴MN CN =(等角对等边)3分(对1-2空给1分,3-4空给2分,5-6空给3分)【应用】(1)2EC MN =4分理由如下:∵由四边形ABEM 折叠得到四边形A B EM ''∴AME A ME ∠'=∠5分∵四边形ABCD 是矩形∴AD BC ∥(矩形的对边平行)∴AME MEN =∠∠(两直线平行,内错角相等)∴A ME MEN ∠∠'=∴MN EN =(等角对等边)∵MN CN =∴MN EN NC==即2EC MN =;6分(2)∵矩形ABCD 沿MC 所在直线折叠∴90D D '∠=∠=︒,2DC D C '==,4MD MD ='=.设MN NC x==∴4ND MD MN x '=='--7分在Rt ND C '△中,90D '∠=︒∴222ND D C NC '='+(勾股定理)∴222(4)2x x -+=解得52x =∴25EC MN ==.8分24.(1)证明:∵PD PE =,∴∠=∠PED PDE ,1分∵PED BEC ∠=∠,∴PDE BEC ∠=∠,2分∵OB OD =,∴B ODB ∠=∠,3分∵PC AB ⊥,∴90BCP ∠=︒,则90B BEC ∠+∠=︒,4分∴90ODB PDE ∠+∠=︒,即90ODP ∠=︒,∴PD 是O 的切线;5分(2)解:∵PD PE =,72PE =,∴72PD =,∵4DF =,∴152PF PD DF =+=,∵4cos 5PFC ∠=,∴154cos 625PF CF P C F ⋅=⨯=∠=,6分∵PD 是O 的切线,∴OD PD ⊥,则90ODF ∠=︒,∴454cos 5DF OF PFC ===∠,∴651OC CF OF =-=-=,7分根据勾股定理可得:2222543OD OF DF =-=-=,2292PC PF CF =-=,8分∴3OB OD ==,∴97312,122BC OB OC CE PC PE =-=-==-=-=,9分∴根据勾股定理可得:2222125=+=+BE CE BC .10分25.解:(1)由题意得164404240a b a b --=⎧⎨+-=⎩1分解得121a b ⎧=⎪⎨⎪=⎩,3分故抛物线的表达式2142y x x =+-;4分(2)当0x =时,4y =-,()0,4C ∴-,设直线AC 的解析式为y kx b =+,则有404k b b -+=⎧⎨=-⎩,解得:14k b =-⎧⎨=-⎩,5分∴直线AC 的解析式为4y x =--,点D 的横坐标是()42mm -<<,过点D 作直线DE x ⊥轴,(),0E m ∴,(),4F m m --,21,42D m m m ⎛⎫+- ⎪⎝⎭,6分①如图,当=EF FD 时,()044EF m m ∴=---=+,21442FD m m m ⎛⎫=---+- ⎪⎝⎭2122m m =--,21422m m m ∴+=--,整理得:2680m m ++=,解得:12m =-,24m =-,42m -<< ,4m ∴=-不合题意,舍去,2m ∴=-,∴()()212222DF =-⨯--⨯-2=;7分②如图,当DE DF =时,2142DE m m ∴=--+,()21442DF m m m =+----2122m m =+,22114222m m m m ∴--+=+,整理得:2340m m +-=,解得:11m =,24m =-(舍去),∴211212DF =⨯+⨯52=;综上所述:线段DF 的长为2或52.8分(3)设点21,42P x x x ⎛⎫+- ⎪⎝⎭,()1,M m -,当四边形CMPN 是矩形时,则PMC ∠为直角,9分①当P 在对称轴的左侧时,如图,过M 作MG x ∥轴交y 轴于G ,交过P 作y 轴的平行线于H ,∵PMC ∠为直角,则90HMP GMC ∠+∠=︒,∵90HPM HMP ∠+∠=︒,∴GMC HPM ∠=∠,∴CGM MHP △∽△,∵CMPN 是矩形邻边之比为1:2,即:2:1CM PM =或1:2,即CGM △和MHP 的相似比为2:1或1:2,10分即122CG MG MH PH ==或,由题意得:1MG =,4CG m =+,∴1MH x =--,则2142PH m x x ⎛⎫=-+-⎪⎝⎭,即2411211242m xm x x +==--⎛⎫-+- ⎪⎝⎭或,解得:5x =-,1x =-(不符合题意,舍去);11分②当P 在对称轴的右侧时,同理可得:2141122412x x mx m +--+==+或,解得:121162x -±=±或,综上,5x =-或121162x -±=±或.12分。
五华区2022-2023学年上学期初中学业水平教育质量监测九年级数学测试 参考答案一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBDDBBACCDAA二、填空题(本大题共4小题,每小题2分,共8分)13.3.46×108 14.1x >- 15.25° 16.(63,3)-或(63,3)--三、解答题(本大题共8小题,共56分)17.(本小题满分6分)解:任务一:①以上化简步骤中,第 一 步是通分;………………………………………1分 ②第 二 步开始出现错误;………………………………………2分 任务二: 解:212()422x x x x -÷-+- 2222()442x x x x x --=-⋅--………………………………………3分 22242x x x x -+-=⋅-………………………………………4分 22(2)(2)2x x x -=⋅+-………………………………………5分 12x =+. ………………………………………6分 18.(本小题满分6分) 解:(1)补全条形统计如图所示;………………………………………2分(2)乙公司10个司机月收入从小到大分别是4,4,4,4,4,5,5,9,9,12(单位:千元)∴乙公司的中位数=254+=4.5 ………………………………………4分 (3)你建议他选 甲 公司. ………………………………………6分 2(1)1分(2)根据题意列表如下:由表可以看出,所有可能出现的结果共有20种,这些结果出现的可能性相等.…………………………5分其中收到的西瓜平均重量在5公斤以上的结果有14种,即(4,7),(5,6),(5,6),(5,7),(6,5),(6,6),(6,7),(6,5),(6,6),(6,7),(7,4),(7,5),(7,6),(7,7).……………………6分∴P(他收到的西瓜重量符合卖家承诺)=147=2010.………………………………………7分20.(本小题满分7分)解:(1)设租用甲种客车每辆x元,租用乙种客车每辆y元,………………………………………1分根据题意可得,600231560x yx y+=⎧⎨+=⎩,………………………………………2分解得240360xy=⎧⎨=⎩.………………………………………3分答:租用甲种客车每辆240元,租用乙种客车每辆360元.(2)设租用甲型客车m辆,则租用乙型客车(8)m-辆,租车总费用为w元,根据题意可知,240360(8)1202880w m m m=+-=-+,………………………………………3分30m+45(8-m)≥330解得m≤2………………………………………4分又1200-<,w∴随m的增大而减小,………………………………………5分∴当2m=时,w的最小值为120228802640-⨯+=.………………………………………6分答:当租用甲型客车2辆,租用乙型客车6辆,租车总费用最少为2640元.……………………………7分解:(1)由题意得,BC =a ,CD =b ,BP =DP =2ba , AB=21a ,FC=ED=21b . ∴S 1=21×21(a +b )×21a =81(a 2+ab ),………………………………………1分S 2=21×21(a +b )×21b =81(b 2+ab );………………………………………2分 (2)由(1)题可得, S 1+S 2=81(a 2+ab )+81(b 2+ab ) =81(a 2+ab +ab +b 2) =81(a 2+2ab +b 2) =81(a +b )2 =81[(a ﹣b )2+4ab ],………………………………………4分 ∴当a ﹣b =2,ab =15时, S 1+S 2=81(22+4×15) =81(4+60) =81×64 =8 ………………………………………5分 (3)∵S 1+S 2=81(a 2+2ab +b 2)=3,ab =1, 即81(a 2+b 2+2×1)=3 解得a 2+b 2=22,………………………………………6分 由题意得,S 3=21a 2+21b 2﹣(S 1+S 2) =21(a 2+b 2)﹣[81(ab +b 2)+81(a 2+ab )] =21(a 2+b 2)﹣81(a 2+2ab +b 2) ∴S 3=21×22﹣3=8 ………………………………………7分解:(1)∵224=(2)4y kx kx n k x k n =+++-+,………………………………………1分 ∴二次函数图象的对称轴为直线2x =-.………………………………………3分 (注:用公式法同样得分)(2)由(1)得抛物线对称轴为直线2x =-, 当0a >时,抛物线开口向上,3(2)1(2)(1)(2)(2)(3)-->-->---=---,………………………………………4分b acd ∴>>=.………………………………………5分当0a <时,抛物线开口向下,3(2)1(2)(1)(2)(2)(3)-->-->---=---,………………………………………6分b acd ∴<<=.………………………………………7分23.(本小题满分8分) (1)证明:∵AB 是∵O 的直径,∵∵ACB =90°, ………………………………………1分 ∵∵ACD +∵BCD =90°, ∵AC =AD , ∵∵ACD =∵ADC , ∵∵ADC =∵BDF ,∵∵ACD =∵BDF ,………………………………………2分 ∵BC =BF , ∵∵BCD =∵F ,∵∵BDF +∵F =90°,………………………………………3分 ∵∵FBD =180°-(∵FDB +∵F )=90°, ∵AB∵BF ,且OB 是∵O 的半径,∵BF 是∵O 的切线;………………………………………4分 (2)解:连接CO ,EO , ∵AB =2, ∵OC =OE =1,∵CE =2,∵CO 2+EO 2=2,CE 2=(2)2=2,∵CO 2+EO 2=CE 2,………………………………………5分 ∵∵COE =90°, ………………………………………6分21411213601902-=⨯⨯-⨯=∴ππ阴影S………………………………………8分24.(本小题满分8分)(1)证明:∵四边形ABCD 是正方形, ∴∠BAD =90°,AD =AB , ∴∠BAN +∠DAF =90°, ∵DF ⊥AE ,BN ⊥AE ,∴∠AFD =∠ANB =90°,………………………………………1分 ∴∠ADF +∠DAF =90°,∴∠ADF =∠BAN , ………………………………………2分 在△ADF 和△BAN 中,AFD ANB ADF BAN AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△BAN (AAS );………………………………………3分 (2)证明:∵四边形ABCD 是正方形, ∵∵ADC =90°, ∵FH =F A ,DF ∵AH , ∵DF 是AH 的垂直平分线 ∵DH =DA , ∵∵ADF =∵HDF =21∵ADH , ∵DM 平分∵HDC , ∵∵HDM =∵CDM =21∵HDC ,∵∵MDF =∵HDF +∵HDM =21(∵ADH +∵HDC )=21∵ADC =45°, ∵DF ∵AE , ∵∵DFM =90°, ∵∵FMD =90°﹣45°=45°∵tan∵FMD =1; ………………………………………5分 (3)AMBM DM +的值是定值.理由如下:如图,过点A 作AM ′∵AM 交MD 的延长线于点M ′,由(2)中∵FMD =45°得,AM =AM ′………………………………………6分 ∵四边形ABCD 是正方形, ∵∵BAD =90°,AB =AD ,∵∵BAM+∵M AD =∵DAM ′+∵M AD =90°, ∵∵BAM =∵DAM ′, 在∵ABM 和∵ADM ′中,AB AD BAM DAM AM AM =⎧⎪∠∠'⎨⎪='⎩=, ∵∵ABM ∵∵ADM ′(SAS ),………………………………………7分 ∵BM =DM ′,∵∵AMM ′是等腰直角三角形, ∵MM ′=2AM ,∵MM ′=DM +DM ′=DM +BM ,∵AM BM DM +=AMM M '=AM AM 2=2,故AMBM DM +=2是定值.………………………………………8分。
人教版2023-2024学年九年级上册期中数学质量检测试题一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置()A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为()A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是()A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是()A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过()A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是()A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a=.14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn=.15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c=.16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是.17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为,其中自变量的取值范围是,水管AB的长为m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+1向左平移3个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2)解:∵方程有两个不相等的实数根,∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y =x 上,则此时抛物线的解析式为:y =﹣(x ﹣4)2+4或y =﹣(x ﹣1)2+1.22.解:(1)由抛物线的顶点A (﹣4,﹣1)设二次函数为y =a (x +4)2﹣1,将B (﹣2,3)代入得,3=a (﹣2+4)2﹣1,解得a =1,∴二次函数为y =(x +4)2﹣1(或y =x 2+8x +15),设一次函数的解析式为y =kx +b ,将A (﹣4,﹣1)和B (﹣2,3)代入得,解得,∴一次函数的解析式为y =2x +7;(2)由直线y =2x +7可知C (0,7),设P (0,n ),∴PC =|n ﹣7|,∴S △PAB =S △PAC ﹣S △BPC =(4﹣2)•|n ﹣7|=9,∴|n ﹣7|=9,∴n =﹣2或16,∴P (0,﹣2)或P (0,16).23.解:令y =0,则﹣(x ﹣3)2+=0,解得:x 1=8,x 2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm ,则折成的长方体盒子的底面的长为(32﹣2x )cm ,宽为=(16﹣x )(cm ),由题意得:2x (16﹣x )+2(16﹣x )(32﹣2x )+2x (32﹣2x )=864,整理得:x 2+16x ﹣80=0,解得:x =4或x =﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t •t=﹣t 2+2t=﹣(t ﹣3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0).。
广东省2024年九年级数学第一学期开学质量检测模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列点在直线5y x =-+上的是()A .()2,1-B .33,2⎛⎫- ⎪⎝⎭C .()4,1D .()1,22、(4分)如图,直线y =-x +m 与直线y =nx +5n (n ≠0)的交点的横坐标为-2,则关于x 的不等式-x +m >nx +5n >0的整数解为()A .-5,-4,-3B .-4,-3C .-4,-3,-2D .-3,-23、(4分)|2|0b -=,则不等式0ax b +≤的解集在数轴上表示为()A .B .C .D .4、(4分)如图,平行四边形ABCD 中,AD ∥BC ,AB=BC=CD=AD=4,∠A=∠C=60°,连接BD ,将△BCD 绕点B 旋转,当BD (即BD′)与AD 交于一点E ,BC (即BC′)同时与CD 交于一点F 时,下列结论正确的是()①AE=DF ;②∠BEF=60°;③∠DEB=∠DFB ;④△DEF 的周长的最小值是4+2A .①②B .②③C .①②④D .①②③④5、(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是()A .606030(125%)x x -=+B .606030(125%)x x -=+C .60(125%)6030x x ⨯+-=D .6060(125%)30x x ⨯+-=6、(4分)如果等腰三角形的两边长分别为2和5,则它的周长为()A .9B .7C .12D .9或127、(4分)如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()A .4种B .3种C .2种D .1种8、(4分)若一组数据1-,0,2,4,x 的极差为7,则x 的值是().A .3-B .6C .7D .6或3-二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某正比例函数图象经过点(1,2),则该函数图象的解析式为___________10、(4分)如图,AB ∥CD ,则∠1+∠3—∠2的度数等于__________.11、(4分)如图,△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为_____.12、(4分)若一元二次方程214480x x -+=的两个根分别是矩形的边长,则矩形对角线长为______.13、(4分)如图,在矩形纸片ABCD 中,5BC =,13CD =折叠纸片,使点D 落在AB 边上的点H 处,折痕为MN ,当点H 在AB 边上移动时,折痕的端点M ,N 也随之移动,若限定点M ,N 分别在AD ,CD 边上移动,则点H 在AB 边上可移动的最大距离为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,矩形OABC 摆放在平面直角坐标系中,点A 在x 轴上,点C 在y 轴上,3OA =,2OC =,过点A 的直线交矩形OABC 的边BC 于点P ,且点P 不与点B 、C 重合,过点P 作CPD APB ∠=∠,PD 交x 轴于点D ,交y 轴于点E .(1)若APD △为等腰直角三角形.①求直线AP 的函数解析式;②在x 轴上另有一点G 的坐标为()2,0,请在直线AP 和y 轴上分别找一点M 、N ,使GMN △的周长最小,并求出此时点N 的坐标和GMN △周长的最小值.(2)如图2,过点E 作EF AP 交x 轴于点F ,若以A 、P 、E 、F 为顶点的四边形是平行四边形,求直线PE 的解析式.15、(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下 2.20.80超过17吨但不超过30吨的部分 4.20.80超过30吨的部分 6.000.80说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.(1)设小王家一个月的用水量为x 吨,所应交的水费为y 元,请写出y 与x 的函数关系式;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家7月份最多能用多少吨水?16、(8分)如图,在Rt △ABC 中,∠B=90°,∠C=30°,AC=48,点D 从点C 出发沿CA 方向以每秒4个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒2个单位长的速度向点B 匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D 、E 运动的时间是t 秒(t >0),过点D 作DF ⊥BC 于点F ,连接DE 、EF .(1)求证:AE=DF ;(2)当四边形BFDE 是矩形时,求t 的值;(3)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.×17、(10分)如图,在▱ABCD 中,DE =CE ,连接AE 并延长交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若AB =2BC ,∠F =36°,求∠B 的度数.18、(10分)如图,在平面直角坐标系中,O 为坐标原点,直线l 1:y=kx+4与y 轴交于点A ,与x 轴交于点B .(1)请直接写出点A 的坐标:______;(2)点P 为线段AB 上一点,且点P 的横坐标为m ,现将点P 向左平移3个单位,再向下平移4个单位,得点P′在射线AB 上.①求k 的值;②若点M 在y 轴上,平面内有一点N ,使四边形AMBN 是菱形,请求出点N 的坐标;③将直线l 1绕着点A 顺时针旋转45°至直线l 2,求直线l 2的解析式.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在ABC △中,AB AC ==,90BAC ∠=,点D 、E 为BC 边上两点,将AB 、AC 分别沿AD 、AE 折叠,B 、C 两点重合于点F ,若5DE =,则AD 的长为__________.20、(4分)若α是锐角且sinα=32,则α的度数是.21、(4分)在菱形ABCD 中,其中一个内角为60︒,且周长为16cm ,则较长对角线长为__________.22、(4分)如图,在Rt △ABC 中,∠ACB =90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD =6cm ,则EF =_____cm .23、(4分)已知一次函数y=mx+n(m≠0,m,n 为常数),x 与y 的对应值如下表:x ﹣2﹣10123y ﹣101234那么,不等式mx+n<0的解集是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图是甲、乙两名射击运动员的5次训练成绩的折线统计图:(1)分别计算甲、乙运动员射击环数;(2)分别计算甲、乙运动员射击成绩的方差;(3)如果你是教练员,会选择哪位运动员参加比赛,请说明理由.25、(10分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y (元)与所买水性笔支数x (支)之间的函数关系式;(2)对x 的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.26、(12分)小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,小亮和小明一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程y (米)与小明出发的时间x (秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,小明共跑了________米,小明的速度为________米/秒;(2)求小亮跑步的速度及小亮在途中等候小明的时间;(3)求小亮出发多长时间第一次与小明相遇?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】将四个选项中的点分别代入解析式,成立者即为函数图象上的点.【详解】解:将x=2代入y=-x+5得,y=3,不符合题意;将x=3代入y=-x+5得,y=2,不符合题意;将x=4代入y=-x+5得,y=1,符合题意;将x=1代入y=-x+5得,y=4,不符合题意;故选C .本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.2、B 【解析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n 中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x 的不等式-x+m >nx+5n >0的解集为-5<x <-2故整数解为-4,-3,故选B.此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.3、C【解析】先根据非负性求出a,b 的值,再求出不等式的解集即可.【详解】根据题意,可知10a +=,20b -=,解得1a =-,2b =,∴20x -+≤则不等式的解集为2x ≥.在数轴上表示为:故选C .此题只要不等式的求解,解题的关键是熟知非负性的应用及不等式的求解.4、C 【解析】根据题意可证△ABE ≌△BDF ,可判断①②③,由△DEF 的周长=DE +DF +EF =AD +EF =4+EF ,则当EF 最小时△DEF 的周长最小,根据垂线段最短,可得BE ⊥AD 时,BE 最小,即EF 最小,即可求此时△BDE 周长最小值.【详解】∵AB =BC =CD =AD =4,∠A =∠C =60°,∴△ABD ,△BCD 为等边三角形,∴∠A =∠BDC =60°.∵将△BCD 绕点B 旋转到△BC 'D '位置,∴∠ABD '=∠DBC ',且AB =BD ,∠A =∠DBC ',∴△ABE ≌△BFD ,∴AE =DF ,BE =BF ,∠AEB =∠BFD ,∴∠BED +∠BFD =180°.故①正确,③错误;∵∠ABD =60°,∠ABE =∠DBF ,∴∠EBF =60°.故②正确;∵△DEF 的周长=DE +DF +EF =AD +EF =4+EF ,∴当EF 最小时.∵△DEF 的周长最小.∵∠EBF =60°,BE =BF ,∴△BEF 是等边三角形,∴EF =BE ,∴当BE ⊥AD 时,BE 长度最小,即EF 长度最小.∵AB =4,∠A =60°,BE ⊥AD ,∴EB ,∴△DEF 的周长最小值为4+.故④正确.故选C .本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.5、C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米,依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=.故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.6、C 【解析】试题分析:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C .考点:等腰三角形的性质、三角形的三边关系.7、B【解析】结合图象根据轴对称图形的概念求解即可.【详解】根据轴对称图形的概念可知,一共有3种涂法,如下图所示:.故选B .本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、D 【解析】解:根据极差的计算法则可得:x -(-1)=7或4-x=7,解得:x=6或x=-3.故选D 二、填空题(本大题共5个小题,每小题4分,共20分)9、2y x =【解析】设正比例函数的解析式为y=kx ,然后把点(1,2)代入y=kx 中求出k 的值即可.【详解】解:设正比例函数的解析式为y=kx ,把点(1,2)代入得,2=k ×1,解得k=2,∴该函数图象的解析式为:2y x =;故答案为:2y x =.本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.10、180°【解析】解:∵AB ∥CD∴∠1=∠EFD∵∠2+∠EFC=∠3∠EFD=180°-∠EFC∴∠1+∠3—∠2=180°故答案为:180°11、2【解析】先由含30°角的直角三角形的性质,得出BC ,再由三角形的中位线定理得出DE 即可.【详解】因为,△ABC 中,∠C=90°,∠A=30°,所以,118422BC AB ==⨯=,因为,DE 是中位线,所以,114222DE BC ==⨯=.故答案为2本题考核知识点:直角三角形,三角形中位线.解题关键点:熟记直角三角形性质,三角形中位线性质.12、1【解析】利用因式分解法先求出方程的两个根,再利用勾股定理进行求解即可.【详解】方程x 2-14x+48=0,即(x-6)(x-8)=0,则x-6=0或x-8=0,解得:x 1=6,x 2=8,=1,故答案为:1.本题考查了矩形的性质,勾股定理,解一元二次方程等知识,熟练掌握相关知识是解题的关键.13、1【解析】分别利用当点M 与点A 重合时,以及当点N 与点C 重合时,求出AH 的值进而得出答案.【详解】解:如图1,当点M 与点A 重合时,根据翻折对称性可得AH=AD=5,如图2,当点N 与点C 重合时,根据翻折对称性可得CD=HC=13,在Rt △HCB 中,HC 2=BC 2+HB 2,即132=(13-AH )2+52,解得:AH=1,所以点H 在AB 上可移动的最大距离为5-1=1.故答案为:1.本题主要考查的是折叠的性质、勾股定理的应用,注意利用翻折变换的性质得出对应线段之间的关系是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)①直线AP 解析式3y x =-+,②N(0,25),GMN ∆;(2)22y x =-.【解析】(1)①利用矩形的性质确定A 、B 、C 点的坐标,再利用等腰三角的性质确定45BAP BPA ∠=∠=︒,所以2BP AB ==,确定P 点的坐标,再根据A 点的坐标确定确定直线AP 的函数表达式.②作G 点关于y 轴对称点G'(-2,0),作点G 关于直线AP 对称点G''(3,1)连接G'G''交y 轴于N ,交直线AP 于M ,此时ΔGMN 周长的最小.(2)过P 作PM ⊥AD 于M ,先根据等腰三角形三线合一的性质证明DM=MA ,再根据角角边定理证明ΔODE ≌ΔMDP ,根据全等三角形的性质求出点P 、D 的坐标,代入直线解析式得k=2,b=-2,所以直线PE 的解析式为y=2x-2.【详解】(1)①∵矩形OABC ,3,2OA OC ==∴()()()3,0,0,2,3,2A C B ,,3,90,2AO BC AO BC B CO AB ==∠=︒==∕∕∵APD ∆为等腰直角三角形∴45PAD ∠=︒∵AO BC ∕∕∴45BPA PAD ∠=∠=︒∵90B ∠=︒∴45BAP BPA ∠=∠=︒∴2BP AB ==∴()1,2P 设直线AP 解析式y kx b =+,过点A ,点P ∴203k b k b =+⎧⎨=+⎩∴13k b =-⎧⎨=⎩∴直线AP 解析式3y x =-+②作G 点关于y 轴对称点()'2,0G -,作点G 关于直线AP 对称点()''3,1G 连接'''G G 交y 轴于N ,交直线AP 于M ,此时GMN ∆周长的最小.∵()()'2,0,''3,1G G -∴直线'''G G 解析式1255y x =+当0x =时,25y =,∴20,5N ⎛⎫⎪⎝⎭∵'''G G =学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………∴GMN ∆周长的最小值为26(2)如图:作PM AD ⊥于M ∵BC OA ∕∕∴CPD PDA ∠=∠且CPD APB ∠=∠∴PD PA =,且PM AD ⊥∴DM AM =∵四边形PAEF 是平行四边形∴PD DE =又∵,PMD DOE ODE PDM ∠=∠∠=∠∴PMD ODE ∆∆≌∴,OD DM OE PM ==∴OD DM MA ==∵2,3PM OA ==∴2,2OE OM ==∴()()0,2,2,2E P -设直线PE 的解析式y mx n =+222n m n =-⎧⎨=+⎩∴22m n =⎧⎨=-⎩∴直线PE 解析式22y x =-本题主要考查矩形的性质、等腰三角形的性质、角边角定理以及一次函数的应用.15、(1)y =3(17)534(1730)6.888(30)x x x x x x ≤⎧⎪-≤⎨⎪-⎩<>;(2)40吨.【解析】(1)由水费=自来水费+污水处理,分段得出y 与x 的函数关系式;(2)先判断用水量超过30吨,继而再由水费不超过184,可得出不等式,解出即可.【详解】解:(1)设小王家一个月的用水量为x吨,所应交的水费为y元,则①当用水量17吨及以下时,y=(2.2+0.8)x=3x;②当17<x≤30时,y=17×2.2+4.2(x−17)+0.8x=5x−34;③当x>30时,y=17×2.2+13×4.2+6(x−30)+0.8x=6.8x−1.∴y=3(17)534(1730) 6.888(30)x xx xx x≤⎧⎪-≤⎨⎪-⎩<>;(2)当用水量为30吨时,水费为:6.8×30−1=116元,9200×2%=184元,∵116<184,∴小王家七月份的用水量超过30吨,设小王家7月份用水量为x吨,由题意得:6.8x−1≤184,解得:x≤40,∴小王家七月份最多用水40吨.本题考查了一次函数的应用及一元一次不等式的应用,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.16、(1)证明见解析;(2)1s;(2)8s.【解析】分析:(1)由∠DFC=90°,∠C=30°,证出DF=2t=AE;(2)当四边形BEDF是矩形时,△DEF为直角三角形且∠EDF=90°,求出t的值即可;(3)先证明四边形AEFD为平行四边形.得出AB=3,AD=AC-DC=48-4t,若△DEF为等边三角形,则四边形AEFD为菱形,得出AE=AD,2t=48-4t,求出t的值即可;详解:(1)在Rt△CDF中,∠C=30°,∴DF=12CD,∴DF=12•4t=2t,又∵AE=2t,∴AE=DF.(2)当四边形BFDE是矩形时,有BE=DF,∵Rt △ABC 中,∠C=30°∴AB=12AC=12×48=24,∴BE=AB-AE=24-2t ,∴24-2t=2t ,∴t=1.(3)∵∠B=90°,DF ⊥BC ∴AE ∥DF ,∵AE=DF ,∴四边形AEFD 是平行四边形,由(1)知:四边形AEFD 是平行四边形则当AE=AD 时,四边形AEFD 是菱形∴2t=48-4t ,解得t=8,又∵t≤AB v =242=12,∴t=8适合题意,故当t=8s 时,四边形AEFD 是菱形.点睛:本题是四边形综合题,主要考查了平行四边形、菱形、矩形的性质与判定以及锐角三角函数的知识,考查学生综合运用定理进行推理和计算的能力.17、(1)见解析;(2)108°【解析】(1)利用平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠D=∠ECF ,由ASA 即可证出△ADE ≌△FCE ;(2)证出AB=FB ,由等腰三角形的性质和三角形内角和定理即可得出答案.【详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠D=∠ECF ,在△ADE 和△FCE 中,D ECF DE CE AED FEC===∠∠⎧⎪⎨⎪∠∠⎩∴△ADE ≌△FCE (ASA );(2)∵△ADE ≌△FCE ,∴AD=FC ,∵AD=BC ,AB=2BC ,∴AB=FB ,∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°.运用了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18、(1)(0,1);(2)①k=43;②N (-3,258);③直线l 2的解析式为y=17x+1.【解析】(1)令0x =,求出相应的y 值,即可得到A 的坐标;(2)①先设出P 的坐标,然后通过点的平移规律得出平移后P '的坐标,然后将P '代入4y kx =+中即可求出k 的值;②作AB 的中垂线与y 轴交于M 点,连结BM ,分别作AM ,BM 的平行线,相交于点N ,则四边形AMBN 是菱形,设M (0,t ),然后利用勾股定理求出t 的值,从而求出OM 的长度,然后利用BN=AM 求出BN 的长度,即可得到N 的坐标;③先根据题意画出图形,过点B 作BC ⊥l 1,交l 2于点C ,过点C 作CD ⊥x 轴于D ,利用等腰三角形的性质和AAS 证明△AOB ≌△BDC ,得出AO=BD ,OB=DC ,进一步求出点C 的坐标,然后利用待定系数法即可求出直线l 2的解析式.【详解】(1)∵y=kx+1与y 轴交于点A ,令0x =,4y =,∴A (0,1).(2)①由题意得:P (m ,km+1),∵将点P 向左平移3个单位,再向下平移1个单位,得点P′,∴P′(m-3,km ),∵P′(m-3,km )在射线AB 上,∴k (m-3)+1=km ,解得:k=43.②如图,作AB 的中垂线与y 轴交于M 点,连结BM ,过点B 作AM 的平行线,过点A 作BM 的平行线,两平行线相交于点N ,则四边形AMBN 是菱形.43k =,443y x ∴=+,当0y =时,4403x +=,解得3x =-,∴3OB =.设M (0,t ),则AM=BM=1-t ,在Rt △BOM 中,OB 2+OM 2=BM 2,即32+t 2=(1-t )2,解得:t=78,∴M (0,78),∴OM=78,BN=AM=1-78=258,∴N (-3,258).③如图,过点B 作BC ⊥l 1,交l 2于点C ,过点C 作CD ⊥x 轴于D .则∠ABC=∠BDC=90°,∵∠BAC=15°,∴△ABC是等腰直角三角形,∴AB=BC,∠ABO+∠CBD=90°,又∵∠ABO+∠BAO=90°,∴∠BAO=∠CBD,在AOB和BDC中,AOB BDC BAO CBD AB BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOB≌△BDC(AAS),∴AO=BD=1,OB=DC=3,∴OD=OB+BD=3+1=7,∴C(-7,3),设直线l2的解析式为:y=ax+1,则-7a+1=3,解得:a=1 7.∴直线l2的解析式为:y=17x+1.本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线,构造出全等三角形.一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】过点A 作AG ⊥BC ,垂足为G ,由等腰三角形的性质可求得AG=BG=GC=2,设BD=x ,则DF=x ,EF=7-x ,然后在Rt △DEF 中依据勾股定理列出关于x 的方程,从而可求得DG 的值,然后依据勾股定理可求得AD 的值.【详解】如图所示:过点A 作AG ⊥BC ,垂足为G .∵,∠BAC=90°,∴.∵AB=AC ,AG ⊥BC ,∴AG=BG=CG=2.设BD=x ,则EC=7-x .由翻折的性质可知:∠B=∠DFA=∠C=∠AFE=35°,DB=DF ,EF=EC .∴DF=x ,EF=7-x .在Rt △DEF 中,DE 2=DF 2+EF 2,即25=x 2+(7-x )2,解得:x=3或x=3.当BD=3时,DG=3,=当BD=3时,DG=2,=∴AD 的长为或故答案为:或2本题主要考查的是翻折的性质、勾股定理的应用、等腰直角三角形的性质,依据题意列出关于x 的方程是解题的关键.20、60°【解析】试题分析:由α是锐角且sinα=2,可得∠α=60°.考点:特殊角的三角函数值21、【解析】由菱形的性质可得4AB cm =,AC BD ⊥,2BDOB =,由直角三角形的性质可得2AO cm =,由勾股定理可求BO的长,即可得BD 的长.【详解】解:如图所示:菱形ABCD 的周长为16cm ,4AB cm ∴=,AC BD ⊥,2BD OB=,60ABC ∠=︒,1302ABO ABC ∴∠=∠=︒,2AO cm ∴=,BO ∴==.BD ∴=.故答案为:.本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.22、1【解析】根据直角三角形的性质求出AB ,根据三角形中位线定理计算即可.【详解】解:∵∠BCA =90°,D 是AB 的中点,∴AB =2CD =12cm ,∵E 、F 分别是AC 、BC 的中点,∴EF =12AB =1cm ,故答案为1.本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.23、x<﹣1【解析】由表格得到函数的增减性后,再得出0y =时,对应的x 的值即可.【详解】当1x =-时,0y =,根据表可以知道函数值y 随x 的增大而增大,故不等式0mx n +<的解集是1x <-.故答案为:1x <-.此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间联系.理解一次函数的增减性是解决本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)8(环),8(环);(2)2.8,0.8;(3)选择甲,因为成绩呈上升趋势;选择乙,因为成绩稳定.【解析】(1)由折线统计图得出甲、乙两人的具体成绩,利用平均数公式计算可得;(2)根据方差计算公式计算可得;(3)答案不唯一,可从方差的意义解答或从成绩上升趋势解答均可.【详解】(1)x 甲=15×(6+6+9+9+10)=8(环),x 乙=15×(9+7+8+7+9)=8(环);(2)2S 甲=15×[(6﹣8)2×2+(9﹣8)2×2+(10﹣8)2]=2.8,2S 乙=15×[(9﹣8)2×2+(7﹣8)2×2+(8﹣8)2]=0.8;(3)选择甲,因为成绩呈上升趋势;选择乙,因为成绩稳定.本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及平均数、方差的计算公式.25、(1)见解析;(2)见解析;(3)见解析【解析】解:(1)设按优惠方法①购买需用y 1元,按优惠方法②购买需用y 2元y 1=(x−4)×5+20×4=5x+60,y 2=(5x+20×4)×0.9=4.5x+72.(2)分为三种情况:①∵设y 1=y 2,5x+60=4.5x+72,解得:x=24,∴当x=24时,选择优惠方法①,②均可;②∵设y 1>y 2,即5x+60>4.5x+72,∴x>24.当x>24整数时,选择优惠方法②;③当设y 1<y 2,即5x+60<4.5x+72∴x<24∴当4⩽x<24时,选择优惠方法①.(3)因为需要购买4个书包和12支水性笔,而12<24,购买方案一:用优惠方法①购买,需5x+60=5×12+60=1元;购买方案二:采用两种购买方式,用优惠方法①购买4个书包,需要4×20=80元,同时获赠4支水性笔;用优惠方法②购买8支水性笔,需要8590%36⨯⨯=元.共需80+36=116元.显然116<1.用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.26、(1)900,1.5;(2)小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)小亮出发150秒时第一次与小明相遇.【解析】(1)观察图象可知小明共跑了900米,用了600秒,根据路程÷时间=速度,即可求出小明的速度;(2)根据图象先求出小亮超过小明150米时,小明所用的时间,然后据此求出小亮的速度,小明赶上小亮时所用的时间-小亮在等候小明前所用的时间=小亮在途中等候小明的时间,据此计算即可;(3)设小亮出发t秒时第一次与小明相遇,根据(1)、(2)计算出的小亮和小明的速度列出方程求解即可.【详解】解:(1)由图象可得,在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,故答案为900,1.5;(2)当x=500时,y=1.5×500=750,当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),故小亮的速度为:750÷(400﹣100)=2.5米/秒,小亮在途中等候小明的时间是:500﹣400=100(秒),即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)设小亮出发t秒时第一次与小明相遇,2.5t=1.5(t+100),解得,t=150,答:小亮出发150秒时第一次与小明相遇.一元一次方程和一次函数在实际生活中的应用是本题的考点,根据题意读懂图象并熟练掌握“路程=速度×时间”这一等量关系,是解题的关键.。
2025届河北省保定市高阳县数学九上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图所示是二次函数y =ax 2﹣x +a 2﹣1的图象,则a 的值是( )A .a =﹣1B .a =12 C .a =1 D .a =1或a =﹣1 2.方程()3-=x x x 的根是( )A .3x =B .0x =C .120,3x x ==D .120,4x x ==3.若方程()23220190m x x ---=是关于x 的一元二次方程,则m 应满足的条件是() A . 3 m > B .3m < C .3m ≠ D .3m =4.如图所示,几何体的左视图为( )A .B .C .D .5.已知:m 2+1,n 2﹣1223m n mn ++=( )A .±3B .﹣3C .3D 56.若双曲线1k y x-=经过第二、四象限,则直线21y x k =+-经过的象限是( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 7.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( )A .1B .3C .4D .68.如图所示,在半径为10cm 的⊙O 中,弦AB =16cm ,OC ⊥AB 于点C ,则OC 等于( )A .3cmB .4cmC .5cmD .6cm9.如图,已知10AB =,E 是AB 的中点,且矩形ABDC 与矩形ACFE 相似,则AC 长为( )A .5B .52C .42D .610.四边形ABCD 内接于⊙O ,点I 是ABC ∆的内心,124AIC ∠=,点E 在AD 的延长线上,则CDE ∠的度数为( )A .56°B .62°C .68°D .48°二、填空题(每小题3分,共24分)11.如图,已知二次函数y=x 2+bx+c 的图象经过点(﹣1,0),(1,﹣2),当y 随x 的增大而增大时,x 的取值范围是______.12.若关于x 的一元二次方程2210x x m ++-=有实数根,则m 的取值范围是_______.13.毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是_______.14.若a 、b 、c 、d 满足,则=_____.15.请你写出一个函数,使它的图象与直线y x =无公共点,这个函数的表达式为_________.16.方程(x ﹣1)(x ﹣3)=0的解为_____.17.如图,已知公路L 上A ,B 两点之间的距离为100米,小明要测量点C 与河对岸的公路L 的距离,在A 处测得点C 在北偏东60°方向,在B 处测得点C 在北偏东30°方向,则点C 到公路L 的距离CD 为_____米.18.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.三、解答题(共66分)19.(10分)如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,E 为AC 上一点,直线ED 与AB 延长线交于点F ,若∠CDE =∠DAC ,AC =1.(1)求⊙O 半径;(2)求证:DE 为⊙O 的切线;20.(6分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。
1九年级(上)数学质量检测卷说明:1.本试题卷分第Ⅰ卷和第Ⅱ卷两部分.满分120分,考试时间120分钟.请同学们按规定用笔将所有试题 的答案写在第Ⅱ卷上. 2. 不能使用计算器。
第Ⅰ卷一、选择题:(本题共10小题,每小题3分,共30分.) 1.如果反比例函数xky =(k ≠0)的图象经过点(-2,1),那么k 的值为()A. -21 B. 21C. 2D. -2 2. 抛物线()212y x =-+的对称轴为( ). A .直线1x = B .直线1x =- C .直线2x = D .直线2x =-3. 如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠C=15°,则∠BOC =( ). A .60° B .45° C .30° D .15° 4. 如图,在8×4的矩形网格中,每格小正方形的边长都 是1,若△ABC 的三个顶点在图中相应的格点上,则 tan ∠ACB 的值为( ).A .1B .13 C .12 D . 225.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为( )A .12B .13C .14D .16 6. 如图,在⊙O 中,CD 是直径,AB 是弦,CD AB ⊥于M ,8=AB , 5=OC ,则MD 的长为( ) A. 4 B. 2 C. 1 D. 27. 如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )8. 下列所给二次函数的解析式中,其图象不与x 轴相交的是( )温馨提示:用心思考 细心答题相信你一定会 有出色的表现第3题图第4题图 M ODCB A 第6题图 ▲▲▲ ▲ ▲ ▲▲▲ C B A B D C2A. 542+=x yB. 2x y -=C. x x y 52--=D. 3)1(22-+=x y 9.已知:ABC △中,︒=∠90C ,52cos =B ,15=AB ,则AC 的长是( ) A . 213B .293C .6D . 3210.定义[,,a b c ]为函数2y ax bx c =++的特征数,下面给出特征数为 [2m ,1 – m ,–1– m]的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ②当m < 0时,函数在x >41时,y 随x 的增大而减小; ③ 当m ≠ 0时,函数图象经(1,0)点. 其中正确的结论有( ) A .①②③ B . ①② C .②③ D .①③二、填空题 (本题有6小题,每小题4分,共24分) 11.已知两个相似三角形的周长比是1:3,则它们的 面积比是 .12.如图,在△ABC 中,点D 、E 分别在AC 、BC 边上,DE ∥AB ,若 AD:DC=1:2,BE=2,则BC= .13. 李红同学为了在新年晚会上表演节目,她利用半径为40cm 的扇形纸片制作一个圆锥形纸帽 (如图,接缝处不重叠),如果圆锥底面半径 为10cm ,那么这个圆锥的侧面积是______2cm 14.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是 .15. 如图,已知∠AOB=45°,A 1是OA 上的一点,OA 1=1,过A 1作OA 的垂线交OB 于点B 1,过点B 1作OB 的垂线交OA 于点A 2;过A 2作OA 的垂线交OB 于点B 2……如此继续,依次记△A 1B 1A 2,△A 2B 2A 3,A 3B 3A 4……的面积为S 1,S 2,S 3……,则S n = 16.如图,在直角坐标系中,抛物线y=x 2-x -2过第13题图第12题图▲ ▲ ▲ ▲ ▲ ▲ODABC 第14题图▲ S3S2S1B3B2B1A3A 、B 、C 三点,在对称轴上存在点P ,以 P 、A 、C 为顶点三角形为直角三角形。
九年级阶段质量检测数学试题考试时间为120分钟 试卷满分150分一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.3-的倒数是··································································( ▲ )A .31B .31-C .3D .3-2.函数12++-=x y 中自变量x 的取值范围是······································( ▲ ) A .x ≠2B .x <2C .x ≤2D .x ≥23.下列运算正确的是·····························································( ▲ ) A .532=m +m mB .()532=m m C .=m m m 34- D .=m m m 34÷4.已知一组数据:35,33,31,35,36,这组数据的平均数和中位数分别是···················( ▲ ) A .34,35B .34,34C .35,34D .35,355.若点A (3-,4)、B (2,m )在同一个反比例函数的图像上,则m 的值为····················( ▲ ) A .6B .-6C .12D .-126.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是······( ▲ )A .B .C .D .7.已知圆锥的底面半径为2 cm ,母线长为3 cm ,则它的侧面展开图的面积等于·············( ▲ ) A .6 cm 2B .6π cm 2C .3π cm 2D .12 cm 28.小明想测量一棵树的高度,在点A 处测得树顶端的仰角为30°,向树方向前进8m 到点B 处,又测得树顶端的仰角为45°.则树的高度为·······( ▲ ) A .38mB .68mC .(244+)mD .(344+)m第8题 第10题9.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点H (x ,y )满足x=3d a +,y =3cb +,那么称点H 是点A ,B 的和睦点.例如:A (-2,2),B (1,5),当点H (x ,y )满足x =352+-=1,y =312+=1时,则点H (1,1)是点A ,B 的和睦点.已知点D (3,0),点E (t ,2t +3),点H (x ,y )是点D ,E 的和睦点.则y 与x 的关系式为····················( ▲ ) A .121-=x y B .12-=x y C .121+=x y D .12+=x y10.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为AB 边上的一个动点,连接CD ,以BD 为直径作圆交CD 于点P ,连接AP .则线段AP 长的最小值为·····················( ▲ ) A .15-B .27 C .413 D .23273- 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置) 11.分解因式:3632-+-a a = ▲ .12.2月国内乘用车零售销量为1390000辆,这个数据用科学记数法可表示为 ▲ .13.方程组⎩⎨⎧=-=+522y x y x 的解是 ▲ .14.请写出一个图形,既是轴对称图形又是中心对称图形: ▲ . 15.命题“如果 a > b ,那么a >b ”的逆命题是: ▲ .16.如图,在△ABC 中,D 是边BC 上一点,以BD 为直径的⊙O 经过点A ,且AC 是⊙O 的切线.若CD =2,CA =4,则AB 的长为 ▲ .17.已知抛物线c bx ax y ++=2(a ≠0)与x 轴只有一个公共点(2,0),则a 、c 满足的关系式为▲ .18.如图,在平面直角坐标系中,已知点A(3-,0),点B(0,m)是y轴正半轴上一动点,以AB为一边向右作矩形ABCD,且AB:BC=3:4,当点B运动时,点C也随之运动.当点C 落在x轴上时,m的值为▲;运动过程中,线段OC长的最小值为▲.第16题第18题三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:(1)()22123⎪⎭⎫⎝⎛+---;(2)()()xxx---221.20.(本题满分8分)(1)解方程:0122=-+xx;(2)解不等式组:()⎪⎩⎪⎨⎧+-≤+-+12311112xxxx>.21.(本题满分10分)如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD,BC 分别交于点E,F.求证:(1)△AOE≌△COF;(2)四边形AFCE是菱形.22.(本题满分10分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图:课外阅读时长情况条形统计图课外阅读时长情况扇形统计图(1)本次调查共随机抽取了▲名中学生,其中课外阅读时长为“2~4小时”的有▲.(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为▲.(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.23.(本题满分10分)为了响应国家“双减”政策,某学校的课后延时服务开设了A班电影鉴赏,B班漫画漫游,C班跑步健身三门兴趣课程,小明和小红需选择一门课程学习.(1)小明选择跑步健身课程的概率▲;(2)小明、小红两人选择同课程的概率.(请用“画树状图”或“列表”等方法写出分析过程)24.(本题满分10分)无锡地铁5号线一期工程全长25.4公里,设22个站点,起自渔父岛站,串联蠡湖未来城、无锡主城区、南长街、坊前、梅村等地.某站点由A、B两个工程队一起建设了8个月,剩下的部分由A队单独建设,还需4个月.(1)若A队单独建设需要24个月,B队单独建设需要多少时间?(2)若A 队单独建设的时间为a 个月(12<a <20),试分析说明A 、B 两队谁的施工速度更快.25.(本题满分10分)请用圆规和不带刻度的直尺按要求作图(不要求写作法,但要保留作图痕迹),并简要说明作图的道理.(1)如图1,在ABCD 中,在边BC 上作点P ,使得PAB PAD S ABADS ∆∆⋅=; (2)如图2,在ABCD 中,在边AD 上作点Q ,使得ACD CQDS ADCD S ∆∆⋅=22.图1 图226.(本题满分10分)如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别为点E ,F ,且点F 在矩形内部,MF 的延长线交边BC 于点G ,EF 交边BC 于点H . (1)说明:MG =GN ;(2)当EN =2,AB =6,且GH =2HN 时,求MD 的长.ABCDMNEHF G27.(本题满分10分)如图,平面直角坐标系中,已知A (2-,0),B (4,0),点C 是在y 轴的负半轴上,且△ABC 的面积为 9.(1)点C 的坐标为 ▲ ;(2)P 是第四象限内一点且横坐标为m ,tan ∠PBA =23. ①连接AP ,交线段BC 于点D .根据题意画出示意图并求DAPD的值(用含m 的代数式表示); ②连接CP ,是否存在点P ,使得∠BCO +2∠PCB =90°,若存在,求m 的值;若不存在, 请说明理由.备用图28.(本题满分10分)已知直线l :7+=kx y 经过点(1,6). (1)求直线l 的解析式;(2)若点P (m ,n )在直线l 上,以P 为顶点的抛物线G 过点(0,-3),且开口向下. ①求m 的取值范围;②设抛物线G 与直线l 的另一个交点为Q ,当点Q 向左平移1个单位长度后得到的点Q ′也在G 上时,求m 的值;并直接写出此时G 在54m ≤x ≤54m+1的图象对应纵坐标y G 的取值范围.九年级阶段质量检测数学试题答案一、选择题(本大题共10小题,每小题3分,共30分)11.()213--a12.61039.1⨯13.⎩⎨⎧-==13y x14.线段、菱形等,答案不唯一 15.如果a >b ,那么a >b 16.5512 17.c =4a18.4(1分),516(2分) 三、解答题(本大题共10小题,共96分) 19.(本题满分8分) (1)210-; (2)1+-x .20.(本题满分8分)(1)x 1=21+-,x 2=21--; (2)2-<x ≤52-.21.(本题满分10分)(1)∵四边形ABCD 是平行四边形∴AD ∥BC ·············1分 ∴∠DAC =∠BCA ···········2分∵O 是AC 的中点∴AO =CO ·············3分在△AOE 和△COF 中⎪⎩⎪⎨⎧∠=∠=COF AOE CO AO BCA DAC ∠=∠ ∴△AOE ≌△COF (ASA ) ·······5分(2)∵△AOE ≌△COF (ASA )∴AE =CF ·············6分 又∵AD ∥BC ∴四边形AFCE 是平行四边形 ·····8分 ∵AC ⊥EF∴四边形AFCE 是菱形 (10)分22.(本题满分10分)(1)200,40 ·················4分 (2)144° ····················6分 (3)13000 ·················10分 23.(本题满分10分)(1)31····························3分(2)31···························10分24.(本题满分10分)(1)16 ····························5分(2)设B 队单独建设需要b 个月,根据题意得:14118=+⎪⎭⎫ ⎝⎛+ab a解得:b =128-a a···············7分 ∴b a -=128--a a a =()1220--a a a ···············8分 ∵12<a <20∴b a -<0,即a <b ················9分 ∴A 队的施工速度更快 ················10分25.(本题满分10分)(1)由题意可知点P 到AB 、AD 的距离相等,故作∠BAD 平分线与BC 的交于点P ;····2分图1 (5)分(2)由题意构造△CQD ∽△ACD ,则∠DCQ =∠CAD ,故作∠DCQ =∠CAD 交AD 于点Q . 7分图2 ·············10分26.(本题满分10分)解:(1)∵在矩形ABCD ,AD ∥BC ,∴∠DMN =∠GNM .∵折叠的对应角相等,∴∠DMN =∠GMN .∴∠GMN =∠GNM .∴MG =GN ; ……………………………………3分(2)∵四边形NCDM 折叠至四边形NEFM ,∴DM =FM ,∠MFH =∠D =90°,CN =EN ,∠NEH =∠C =90°,CD =EF . ∴∠GFH =∠E =90°,∠FHG =∠EHN ,∴△FGH ∽△ENH , ……………………………………………5分 ∴FG EN =GH NH =FHHE =2,∴FG =2EN =4, …………………………………6分 ∵CD =EF =AB =6,∴HE =12FH =13EF =2.∴△HEN 为等腰直角三角形. ∴NH =22,∴GH =42,∴GN =62. ……………………………8分 ∴MG =NG =62,∴MD =FM =MG -FG =62-4. …………………10分27.(本题满分10分)解:(1)(0,-3); …………………………………………………………2 分 (2)过点 P 作 PE ∥AB 交直线 BC 于点 E ,过点 P 作 PF ⊥AB 交 x 轴于点 F . ∵P 是第四象限内一点且横坐标为 m ,∴F (m ,0),∴BF =4-m ,∵tan ∠PBA =23,∴PF =6-23m ,∴P (m ,23m -6) . ………………………3 分∵PE ∥AB ,∴E 点坐标为(2m -4,23m -6),∵PE ∥AB ,∴ ABPE=DA PD ………………………………………………4 分 ∵B (4,0),C (0,-3),∴BC 的解析式为 y =43x -3.∴PE =m -(2m -4)=4-m .∴ mAB PE DA PD 64-==. …………………………6 分(3)过点 C 作 CH ∥x 轴交抛物线与点 H ,延长 CP 交 x 轴于点 G . ∵CH ∥x 轴,∴∠HCO =∠COB =90°,即∠BCO +∠HCB =90°, ∵∠BCO +2∠PCB =90°,∴∠HCB =2∠PCB ,即∠HCP =∠PCB .∵CH ∥x 轴,∴∠HCP =∠AEC .∴∠PCB =∠AGC .∴BC =BG . ………………8 分∵BC =5,∴点 G 的坐标为(9,0) .∴CG 的解析式为 y =31x -3.把 P (m ,23m -6))代入 x y 331 -=可得 m =718. ………………10 分28.(本题满分10分)解:(1)把点(1,6)代入y =kx +7得,k =-1,所以直线l 的解析式为:y =-x +7. ……2分(2)①∵点P (m ,n )在直线l 上,∴n =-m +7,设抛物线的解析式为y =a (x -m )2+7-m , ∵抛物线经过点(0,-3),∴am 2+7-m =-3,∴am 2=m -10. ………………4分 当m =0时,顶点P (0,7)与抛物线过点(0,-3)矛盾,∴m ≠0.当m≠0时,a=m-10m2,∵抛物线开口向下,∴a<0,∴a=m-10m2<0,∴m<10且m≠0;…………………………………………………………6分②∵抛物线的对称轴为直线x=m,∴Q点与Q'关于x=m对称,∴Q点的横坐标为m+12,∴Q点的坐标为(m+12,132-m) .…………………7分把点Q(m+12,132-m)代入y=a(x-m)2+7-m得a=-2,∴y=-2(x-m)2+7-m,∴-2m2+7-m=-3,解得m=2或m=-52.…………8分∴1075≤y G≤5或5≤y G≤9.……………………………………………10分。
人教版 九年级上册数学 第24章质量检测(含答案)24.1 圆的有关性质一、选择题(本大题共10道小题) 1. 2018·衢州 如图,点A ,B ,C 在⊙O 上,∠ACB =35°,则∠AOB 的度数是( )A .75°B .70°C .65°D .35°2. 如图,AB是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵C .△BOC 是等边三角形D .四边形ODBC 是菱形3. 如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点.若∠BAD =105°,则∠DCE 的度数为 ( )A .115°B .105°C .100°D .95°4. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 35. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.86.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC 互补,则弦BC 的长为( ) A . 3 3 B . 4 3 C . 5 3 D . 6 37. 如图,△ABC 的内心为I ,连接AI 并延长交△ABC 的外接圆于点D ,则线段DI 与DB 的关系是( )A .DI =DB B .DI >DBC .DI <DBD .不确定如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD 的延长线上,则∠CDE的度数为( )A.56°B.62°C.68°D.78°9. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°10. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB上升()A.1分米B.4分米C.3分米D.1分米或7分米二、填空题(本大题共7道小题)11. 如图,C,D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=________.12. 如图所示,动点C在⊙O的弦AB上运动,AB=23,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为________.13. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.14. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.15. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.16. 将量角器按图所示的方式放置在三角形纸片上,使顶点C在半圆上,点A,B 的读数分别为100°,150°,则∠ACB的大小为________°.17. 如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,C 为弧BD 的中点.若∠DAB =40°,则∠ABC =________°.三、解答题(本大题共4道小题)18. 如图,在△ABC 中,∠C =90°,D 是BC 边上一点,以BD 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连接EF. (1)求证:∠1=∠F ;(2)若AC =4,EF =2 5,求CD 的长.19.如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,延长AB 到点E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF.求证:BF =12BD.20. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.21. 2018·牡丹江如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .人教版 九年级数学 24.1 圆的有关性质 同步训练-答案一、选择题(本大题共10道小题) 1. 【答案】B2. 【答案】B[解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的.故选B.3. 【答案】B4. 【答案】C5. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=, ∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .6.【答案】B【解析】如解图,延长CO 交⊙O 于点A ′,连接A ′B .设∠BAC =α,则∠BOC =2∠BAC=2α,∵∠BAC +∠BOC =180°,∴α+2α=180°,∴α=60°.∴∠BA ′C =∠BAC =60°,∵CA ′为直径,∴∠A ′BC =90°,则在Rt △A ′BC 中,BC =A ′C ·sin ∠BA ′C=2×4×32=4 3.7. 【答案】A[解析] 连接BI ,如图.∵△ABC 的内心为I , ∴∠1=∠2,∠5=∠6. ∵∠3=∠1, ∴∠3=∠2.∵∠4=∠2+∠6,∠DBI =∠3+∠5, ∴∠4=∠DBI ,∴DI =DB. 故选A.8. 【答案】C[解析] ∵点I 是△ABC 的内心,∴∠BAC =2∠IAC ,∠ACB =2∠ICA . ∵∠AIC =124°,∴∠B =180°-(∠BAC +∠ACB )=180°-2(∠IAC +∠ICA )=180°-2(180°-∠AIC )=68°.又四边形ABCD 内接于⊙O , ∴∠CDE =∠B =68°.9. 【答案】D[解析] ∵∠BOC =110°,∴∠AOC =70°.∵AD ∥OC ,∴∠A =∠AOC =70°.∵OA =OD ,∴∠D =∠A =70°.在△OAD 中,∠AOD =180°-(∠A +∠D)=40°.10. 【答案】D二、填空题(本大题共7道小题)11. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.12. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.13. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.14. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.15. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.16. 【答案】25[解析] 设量角器的中心为O ,由题意可得∠AOB =150°-100°=50°,所以∠ACB =12∠AOB =25°.17. 【答案】70[解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C为弧BD 的中点,∴∠CAB =12∠DAB =20°, ∴∠ABC =70°.三、解答题(本大题共4道小题)18. 【答案】解:(1)证明:如图,连接DE. ∵BD 是⊙O 的直径, ∴∠DEB =90°,即DE ⊥AB. 又∵E 是AB 的中点, ∴AD =BD ,∴∠1=∠B. 又∵∠B =∠F ,∴∠1=∠F.(2)∵∠1=∠F ,∴AE =EF =2 5, ∴AB =2AE =4 5.在Rt △ABC 中,∵AC =4,∠C =90°, ∴BC =AB2-AC2=8. 设CD =x ,则AD =BD =8-x. 在Rt △ACD 中,∵∠C =90°,∴AC2+CD2=AD2,即42+x2=(8-x)2, 解得x =3,即CD =3.19. 【答案】证明:连接AC.∵AB =BE ,F 是EC 的中点, ∴BF 是△EAC 的中位线, ∴BF =12AC. ∵AD ︵=BC ︵,∴AD ︵+AB ︵=BC ︵+AB ︵,即BD ︵=AC ︵, ∴BD =AC ,∴BF =12BD.20. 【答案】证明:如图,延长AD 交⊙O 于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD. ∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD.21. 【答案】证明:如图,延长AD 交⊙O 于点E , ∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD . ∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD .24.2 点和圆、直线和圆的位置关系一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A .与圆有公共点的直线B .垂直于圆的半径的直线C .到圆心的距离等于半径的直线D .经过圆的直径一端的直线2. 下列说法中,正确的是()A .垂直于半径的直线是圆的切线B .经过半径的外端且垂直于这条半径的直线是圆的切线C .经过半径的端点且垂直于这条半径的直线是圆的切线D .到圆心的距离等于直径的直线是圆的切线3. 如图,P是⊙O 外一点,OP 交⊙O 于点A ,OA =AP .甲、乙两人想作一条经过点P 且与⊙O 相切的直线,其作法如下:甲:以点A 为圆心,AP 长为半径画弧,交⊙O 于点B ,则直线BP 即为所求. 乙:过点A 作直线MN ⊥OP ,以点O 为圆心,OP 长为半径画弧,交射线AM 于点B ,连接OB ,交⊙O 于点C ,直线CP 即为所求. 对于甲、乙两人的作法,下列判断正确的是( )A .甲正确,乙错误B .乙正确,甲错误C .两人都正确D .两人都错误4. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5. 如图,AB为⊙O的切线,切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 2020·黄石模拟如图,在平面直角坐标系中,A(-2,2),B(8,2),C(6,6),点P为△ABC的外接圆的圆心,将△ABC绕点O逆时针旋转90°,点P的对应点P′的坐标为()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)9. 如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外、⊙O内、⊙O上,则原点O的位置应该在()图A.点A与点B之间靠近点AB.点A与点B之间靠近点BC.点B与点C之间靠近点BD.点B与点C之间靠近点C10. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.8二、填空题(本大题共7道小题)11. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.12. 如图,∠APB =30°,⊙O 的半径为1 cm ,圆心O 在直线PB 上,OP =3 cm ,若⊙O 沿BP 方向移动,当⊙O 与直线PA 相切时,圆心O 移动的距离为__________.13. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.14. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次15. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.17. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)18. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.19.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.20. 在Rt△ABC中,∠C=90°,AB=13,AC=5.(1)以点A为圆心,4为半径的⊙A与直线BC的位置关系是________;(2)以点B为圆心的⊙B与直线AC相交,求⊙B的半径r的取值范围;(3)以点C为圆心,R为半径的⊙C与直线AB相切,求R的值.21. 如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM是⊙O的切线.人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C[解析] 对于甲的作法:连接OB ,如图①.∵OA =AP ,∴OP 为⊙A 的直径, ∴∠OBP =90°,即OB ⊥PB , ∴PB 为⊙O 的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在△OAB 和△OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.4. 【答案】B5. 【答案】D[解析] ∵AB 为⊙O 的切线,∴∠OAB =90°.∵∠ABO =36°,∴∠AOB =90°-∠ABO =54°. ∴∠ADC =12∠AOB =27°.故选D.6. 【答案】A7.【答案】D 【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B=20°,∴∠AOD=∠B+∠BDO=2∠B=2×20°=40°.8. 【答案】A9. 【答案】C[解析] 如图.10. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB 的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.二、填空题(本大题共7道小题)11. 【答案】3<r<5[解析] 连接BD.在Rt△ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.12. 【答案】1 cm或5 cm[解析] 当⊙O与直线PA相切时,点O到直线PA的距离为1 cm.∵∠APB=30°,∴PO=2 cm,∴圆心O移动的距离为3-2=1(cm)或3+2=5(cm).13. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O 到直线l 的距离OC =1时,直线l 与半圆O 相切,设直线l 与y 轴交于点D ,则OD =2,即t = 2.当直线过点A 时,把A (-1,0)代入直线l 的解析式,得t =y -x =1. 当直线过点B 时,把B (1,0)代入直线l 的解析式,得t =y -x =-1. 即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.14. 【答案】B[解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.15. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F . ∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P为Rt△ACQ的外心,故③正确.16. 【答案】3或4 3[解析] 如图①,当⊙P与CD边相切时,设PC=PM=x. 在Rt△PBM中,∵PM2=BM2+BP2,∴x2=42+(8-x)2,∴x=5,∴PC=5,∴BP=BC-PC=8-5=3.如图②,当⊙P与AD边相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形,∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,BP=82-42=4 3.综上所述,BP的长为3或4 3.17. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19. 【答案】解:(1)证明:如图,连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.20. 【答案】解:(1)∵AC ⊥BC ,而AC >4,∴以点A 为圆心,4为半径的⊙A 与直线BC 相离.故答案为相离.(2)BC =AB 2-AC 2=12.∵BC ⊥AC ,∴当⊙B 的半径大于BC 的长时,以点B 为圆心的⊙B 与直线AC 相交,即r >12.(3)如图,过点C 作CD ⊥AB 于点D .∵12CD ·AB =12AC ·BC ,∴CD =5×1213=6013.即当R =6013时,以点C 为圆心,R 为半径的⊙C 与直线AB 相切.21. 【答案】证明:如图,作直径DG ,连接BG .∵点E 是△ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G .∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.24.3正多边形和圆一.选择题1.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个2.下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根C.一次函数y=﹣3x+2的图象经过第一、二、四象限D.正六边形每个内角的度数是外角度数的2倍3.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C 重合),则∠CPD=()A.45°B.36°C.35°D.30°4.如图,用若n个全等的正五边形按如下方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n的值为()A.5 B.6 C.8 D.105.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形中心角∠COD的度数是()A.60°B.36°C.76°D.72°6.如图,正方形ABCD和正三角形AEF内接于⊙O,DC、BC交EF于G、H,若正方形ABCD的边长是4,则GH的长度为()A.2B.4﹣C.D.﹣7.如图,⊙O是正八边形ABCDEFGH的外接圆,则下列结论:①弧DF的度数为90°;②AE=DF;③S正八边形ABCDEFGH=AEDF.其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③8.如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则的值为()A.B.C.D.29.如图,正五边形ABCDE与正三角形AMN都是⊙O的内接多边形,若连接BM,则∠MBC的度数是()A.12°B.15°C.30°D.48°10.如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是()A.1 B.2 C.3 D.4二.填空题11.正六边形的边长为2,则边心距为.12.如图,正方形ABCD内接于⊙O,若⊙O的半径是1,则正方形的边长是.13.中心角为36°的正多边形边数为.14.如图,正五边形ABCDE内接于圆O,P为弧DE上的一点(点P不与点D、E重合),则∠CPD的度数为.15.如图1,将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;如图2,将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转°,所得图形与原图的重叠部分是正多边形.在图2中,若正方形的边长为4,则所得正八边形的面积为.三.解答题16.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.17.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.18.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.19.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D 两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.参考答案与试题解析一.选择题1.【解答】解:①若m>n,则ma2>nb2,当a=0时错误;故不符合题意;②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故不符合题意;③有两个角互余的三角形一定是直角三角形,故符合题意;④各边都相等,各角也相等的多边形是正多边形,故不符合题意.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故不符合题意;故选:A.2.【解答】解:A、为了解一种灯泡的使用寿命,此调查具有破坏性,宜采用抽查的方法;故此选项符合题意;B、一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根;故此选项不符合题意;C、一次函数y=﹣3x+2的图象经过第一、二、四象限;故此选项不符合题意;D、正六边形每个内角的度数是外角度数的2倍;故此选项不符合题意;故选:A.3.【解答】解:如图,连接OC,OD,∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.4.【解答】解:∵正五边形的每个内角为:=108°,∴组成的正多边形的每个内角为:360°﹣2×108°﹣24°=120°,∵n个全等的正五边形拼接可以拼成一个环状,中间会形成一个正多边形,∴组成的正多边形为正n边形,则=120°,解得:n=6,故选:B.5.【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:D.6.【解答】解:连接AC交EF于M,连接OF,∵四边形ABCD是正方形,∴∠B=90°,∴AC是⊙O的直径,∴△ACD是等腰直角三角形,∴AC=AD=4,∴OA=OC=2,∵△AEF是等边三角形,∴AM⊥EF,∠OFM=30°,∴OM=OF=,∴CM=,∴∠ACD=45°,∠CMG=90°,∴∠CGM=45°,∴△CGH是等腰直角三角形,∴GH=2CM=2.故选:A.7.【解答】解:设圆心为O ,连接OD ,OF , ∵∠DOE =∠EOF ==45°,∴∠DOF =90°,∴弧DF 的度数为90°,∴①正确;∵∠DOF =90°,OD =OF ,∴2OD 2=DF 2,∴OD =, ∵AE =2OD ,∴AE =DF ,∴②正确;∵S 四边形ODEF =DFOE ,∴S 正八边形ABCDEFGH =4S 四边形ODEF =2DFOE , ∵OE =AE ,∴S 正八边形ABCDEFGH =AEDF ,∴③正确;故选:D .8.【解答】解:如图,连接AC、BD、OF,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OF A=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r sin60°=r,∴EF=r×2=r,∵AO=2OI,∴OI=r,CI=r﹣r=r,∴==,∴GH=BD=r,∴==.故选:C.9.【解答】解:连接OA、OC.∵五边形ABCDE是正五边形,∴∠AOB==72°,∴∠AOC=72°×2=144°,∵△AMN是正三角形,∴∠AOM==120°,∴∠COM=∠AOC﹣∠AOM=144°﹣120°=24°,∴∠MBC=∠COM=×24°=12°.故选:A.10.【解答】解:AB的长等于六边形的边长+最长对角线的长,据此可以确定共有2个点C,位置如图,故选:B.二.填空题(共5小题)11.【解答】解:如图所示:连接OA、OB,作OC⊥AB于C,则∠OCA=90°,AC=BC=AB=1,∠AOB=60°,∴∠AOC=30°,∴OC=AC=;故答案为:.12.【解答】解:连接OB,OC,则OC=OB=1,∠BOC=90°,在Rt△BOC中,BC==.∴正方形的边长是,故答案为:.13.【解答】解:由题意可得:∵360°÷36°=10,∴它的边数是10.故答案为10.14.【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故答案为:36°.15.【解答】解:如图2所示:将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转,所得图形与原图的重叠部分是正多边形.在图2中,由题意得:PM=MN=NQ,AM=AP=BN=BQ,则MN=PM=AM,∵AM+MN+BN=AB=4,∴AM+AM+AM=4,解得:AM=4﹣2,则所得正八边形的面积为4×4﹣4××(4﹣2)2=32﹣32;故答案为:(),32﹣32.三.解答题(共4小题)16.【解答】(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.17.【解答】解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.18.【解答】解:由正方形、正五边形和正六边形的性质得,∠AOM=108°,∠OBC=120°,∠NBC=90°,∴∠AOB=×120°=60°,∠MOB=108°﹣60°=48°,∴∠OBN=360°﹣120°﹣90°=150°,∴∠NOB=×(180°﹣150°)=15°,∴∠MON=33°.19.【解答】(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36:24.4《弧长和扇形面积》一.选择题1.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.2.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cm C.3cm D.cm3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4D.2+4.如图,P A、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.πB.πC.D.5.如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点O'处,折痕交OB于点C,则弧O'B的长是()A.πB.πC.2πD.3π6.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm27.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)πm2B.40πm2C.(30+5)πm2D.55πm28.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3B.6C.3πD.6π9.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S1 10.已知一个圆心角为270°扇形工件,未搬动前如图所示,A、B两点触地放置,搬动时,先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A、B两点再次触地时停止,半圆的直径为6m,则圆心O所经过的路线长是()m.(结果用含π的式子表示)A.6πB.8πC.10πD.12π二.填空题11.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.12.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为.13.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.15.如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是cm(计算结果保留π).16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题17.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.(1)求证:BE=CE;(2)若AB=6,∠BAC=54°,求劣弧的长.19.如图,在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.如果A(﹣4,0),B(﹣1,2).请回答:(1)点B'的坐标为.(2)点A经过的路径的长度为π.(友情提示:已经有π)20.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.21.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DP A=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.22.如图,在正方形网格中建立平面直角坐标系,一条圆弧经过网格点A(0,8)、B(﹣8,8)、C(﹣12,4),请在网格图中进行如下操作:(1)若该圆弧所在圆的圆心为D,则D点坐标为;(2)连接AD、CD,则⊙D的半径长为(保留根号).∠ADC的度数为°;(3)若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面圆的半径长.(结果保留根号)参考答案一.选择题1.解:设半径为r,∵扇形的弧长为3π,所含的圆心角为120°,∴=3π,∴r=,故选:C.2.解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr=,r=cm.3.解:如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选:B.4.解:∵P A、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选:C.5.解:连接OO′,∴OO′=OA,∵将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点O'处,∴OA=O′A,∴△AOO′是等边三角形,∴∠AOO′=60°,∵∠AOB=90°,∴∠BOO′=30°,∴的长==π,故选:B.6.解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π故选:B.7.解:设底面圆的半径为R,则πR2=25π,解得R=5,圆锥的母线长==,所以圆锥的侧面积=•2π•5•=5π;圆柱的侧面积=2π•5•3=30π,所以需要毛毡的面积=(30π+5π)m2.故选:A.8.解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×10,解得r=6.故选:B.9.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC=,S弓形==,>>,∴S2<S1<S3.故选:B.10.解:∠AOB=360°﹣270°=90°,则∠ABO=45°,则∠OBC=45°,O旋转的长度是:2×=π,O移动的距离是:=π,则圆心O所经过的路线长是:π+π=6π.故选:A.二.填空题11.解:根据l===11π,解得:n=110,故答案为:110.12.解:∵ABCDEF为正六边形,∴∠AOB=360°×=60°,的长为=.故答案为:.13.解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为:12π.14.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.15.解:∵圆锥的高h为12cm,OA=13cm,∴圆锥的底面半径为=5cm,∴圆锥的底面周长为10πcm,∴扇形AOC中的长是10πcm,故答案为:10π.16.解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.三.解答题17.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.18.(1)证明:如图,连接AE.∵AB是圆O的直径,∴∠AEB=90°,即AE⊥BC.又∵AB=AC,∴AE是边BC上的中线,∴BE=CE;(2)解:∵AB=6,∴OA=3.又∵OA=OD,∠BAC=54°,∴∠AOD=180°﹣2×54°=72°,∴的长为:=.19.解:如图所示:∵A(﹣4,0),B(﹣1,2).∴A'的坐标为(0,4),B'的坐标为(2,1),∴OA=OA'=4,∴点A经过的路径的长度==2π.20.(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形BOC=.在Rt△OCD中,.∴.∴图中阴影部分的面积为:.21.解:(1)连接OF,∵直径AB⊥DE,∴CE=DE=1.∵DE平分AO,∴CO=AO=OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x=.∴OE=2x=.即⊙O的半径为.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF==π.∵∠EOF=2∠D=90°,OE=OF=S Rt△OEF==.∴S阴影=S扇形OEF﹣S Rt△OEF=π﹣.22.解:(1)点D的坐标为(﹣4,0);(2)如图,AD==4,即⊙D的半径长为4;∵AD=CD=4,AC==4,∴AD2+DC2=AC2,∴△ACD为直角三角形,∠ADC的度数为90°;故答案为(﹣4,0);4;90;(3)设该圆锥的底面圆的半径长为r,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径长为.。
2023-2024学年湖南省长沙市九年级上学期期中数学质量检测模拟试题一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.下列各数中,是无理数的是A .12B .0C .23πD .3-2.某新闻媒体发布“王亚平成为中国首位出舱的女航天员”,据不完全统计,总播放量超过次,将数据用科学记数法表示为A .729.610⨯B .72.9610⨯C .62.9610⨯D .70.29610⨯3.下列事件是必然事件的是A .四边形内角和是360︒B .校园排球比赛,九年一班获得冠军C .掷一枚硬币时,正面朝上D .打开电视,正在播放神舟十六号载人飞船发射实况4.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“大雪”、“芒种”,其中既是轴对称图形,又是中心对称图形的是A .B .C .D .5x 的取值范围是A .2x ≤-B .2x ≥-C .12x ≥-D .12x ≤-6.不等式组2201x x +⎧⎨->-⎩的解集在数轴上表示为A .B .C .D .7.如图,线段CD 是O 的直径,CD AB ⊥于点E ,若弦AB 长为16,OE 长为6,则O 的半径是A .5B .6C .8D .108.已知一个扇形的圆心角为150︒,半径是6,则这个扇形的面积是A .15πB .10πC .5πD .2.5π9.在同一平面内,点P 到圆上的点的最大距离为6,最小距离为4,则此圆的半径为A .2B .5C .1D .5或110.如图所示是抛物线2(0)y ax bx c a =++≠的部分图象,其顶点坐标为(1,)n ,且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①0a b c -+<;②30a c +>;③24()b a c n =-;④一元二次方程220ax bx c n ++--=没有实数根.其中正确的结论个数是A .1个B .2个C .3个D .4个二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知(,3)M a 和(4,)N b -关于原点对称,则a b +=________.12.在一个不透明的箱子里放有7个红球和3个黑球,它们除颜色外其余都相同.从这个箱子里随机摸出一个球,摸出的球是红球的概率是________.13.一元二次方程2230x mx -+=的一根为3,则m 的值为________.14.如图,在O 中,弦2BC =,点A 是圆上一点,且30BAC ∠=︒,则O 的半径是________.15.如图,将ABC △绕点C 顺时针旋转得到CDE △,若点A 恰好在ED 的延长线上,110ABC ∠=︒,则ADC ∠的度数为________.16.如图,二次函数2y ax bx c =++的图象与x 轴相交于(2,0)-和(4,0)两点,当函数值0y >时,自变量x 的取值范围是________.三、解答题(本大题共有9小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:201|5|(20232022)205-⎛⎫--++ ⎪⎝⎭.18.先化简,再求值2211121x x x x x -⎛⎫-÷ ⎪+-+⎝⎭,其中5x =.19.如图,在平面直角坐标系内,ABC △三个顶点的坐标分别为(1,2)A -,(4,1)B -,(3,3)C -(网格中,每个小正方形的边长都是1个单位长度)(1)以坐标原点O 为旋转中心,将ABC △逆时针旋转90︒,得到111A B C △,请画出111A B C △,写出点1A 的坐标;(2)求旋转过程中点C 经过的路径长.20.2022年虎年新春,中国女足3:2逆转韩国,时隔16年再夺亚洲杯总冠军。
第1页(共23页)北师大新版九年级上册数学期末复习试卷说明:1.本试卷分为第Ⅰ卷和第Ⅰ卷,满分为120分,考试时间90分钟.2.用黑色或蓝色钢笔或圆珠笔在答卷上作答.第Ⅰ卷一.选择题(本大题10小题,每小题3分,共30分)1.下列方程属于一元二次方程的是( )A .x 2+y ﹣2=0B .x +y =3C .x 2+2x =3D .x +x 1=52.已知3a =2b (a ≠0,b ≠0),下列变形错误的是( )A .32b a= B .32a b= C .23a b= D .3b2a=3.关于菱形,下列说法错误的是( )A .对角线互相平分B .对角线互相垂直C .四条边相等D .对角线相等4.在中ABC R △t 中,ⅠC = 90,若ⅠABC 的三边都缩小5倍,则A sin 的值( )A . 放大5倍B . 缩小5倍C . 不变D .无法确定5.关于x 的一元二次方程9x 2﹣6x +k =0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥16.如图,已知Ⅰ1=Ⅰ2,那么添加下列一个条件后,仍无法判定ⅠABC ~ⅠADE 的是()A .DE BCAD AB = B .AE ACAD AB = C .ⅠB =ⅠD D .ⅠC =ⅠAED第2页(共23页)7. 如图,已知ABC R △t 中,斜边BC 上的高AD =3,B cos =53,则AC 的长为( ) A . 3 B . 3.5 C . 4.8 D . 58.四张完全相同的卡片上,分别画有菱形、矩形、等边三角形、等腰梯形,现从中随机抽取一张卡片上画的恰好是中心对称图形的概率为( )A .41B .21C .43 D .1 9.如下表给出了二次函数y =x 2+2x ﹣10中x ,y 的一些对应值,则可以估计一元二次方程y =x 2+2x ﹣10的一个近似解(精确到0.1)为( )A .2.2B . 2.3C . 2.4D . 2.510. 如图,点A 在反比例函数y 1=x 20(x >0)的图象上,过点A 作AB Ⅰx 轴,垂足为B ,交反比例函数y 2=x8的图象于点C ,P 为轴上一点,连接P A ,PC ,则ⅠAPC 的面积为( )A . 6B . 8C . 12D . 20第6题图 第7题图 第10题图 第Ⅰ卷二.填空题(本大题7小题,每小题4分,共28分)第3页(共23页)11.方程x 2=4x 的解是.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知ⅠAOD =120°,AB =2.5则AC 的长为。
学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………北京市西城区第十三中学2024-2025学年数学九年级第一学期开学教学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是()A .13千米B .14千米C .15千米D .16千米2、(4分)如图,在ABC 中,90ACB ∠=,10AB =,点D 是AB 的中点,则(CD =)A .4B .5C .6D .83、(4分)三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有()A .1个B .2个C .3个D .4个4、(4分)在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则布袋中白色球的个数可能是()A .24B .18C .16D .65、(4分)测得某人一根头发的直径约为0.0000715米,该数用科学记数法可表示为()A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣56、(4分)将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形()A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位7、(4分)已知a 是方程的一个根,则代数式的值是()A .6B .5C .D .8、(4分)若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点()A .(2,4)B .(-2,-4)C.(-4,2)D .(4,-2)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若分式23122x x --的值为零,则x =_____.10、(4分)如图,P 是矩形ABCD 内一点,4AB =,2AD =,AP BP ⊥,则当线段DP 最短时,CP =________.11、(4分)在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为2,把△EFO 放大,则点E 的对应点E ′的坐标是_____.12、(4分)八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来_______盆红花.如果一条对角线用了25盆红花,还需要从花房运来_______盆红花.13、(4分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.三、解答题(本大题共5个小题,共48分)14、(12分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.15、(8分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(1)在图①、图②中,以格点为顶点,线段AB为一边,分别画一个平行四边形和菱形,并直接写出它们的面积.(要求两个四边形不全等)(2)在图③中,以点A为顶点,另外三个顶点也在格点上,画一个面积最大的正方形,并直接写出它的面积。
准考证号:______________ 姓名:_____________(在此卷上答题无效)2022-2023学年第二学期福州市九年级质量抽测数 学(完卷时间120分钟,满分150分)友情提示:请把所有答案填写(涂)到答题纸上!请不要错位、越界答题!!第Ⅰ卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是A.2B.-2C.12D.-122.下列交通标志图案中,是中心对称图形的是A. B. C. D.3.湿地被称为“地球之肾”.福州市现有湿地206800公顷,将数据206.800用科学记数法表示,其结果是A.2068×102B.206.8×1023C.2.068×105D.0.2068×1064.如图所示的几何体,其主视图是A. B. C. D.5.如图,直线a、b被直线c所截,若a∥b,∠1=70°,则∠2的大小是A.70°B.80°C.100°D.110°6.下列运算正确的是A.a3+a2=a5B.a3-a2=aC.a3·a2=a6D.(a3)2=a6应聘者内容文化甲8085乙8580丙9080丁80907.林则徐纪念馆作为“福州古盾”的典型代表,是全国重点文物保护单位.该纪念馆计划招聘一名工作人员,评委从内容、文化两个方面为甲、乙、丙、丁四位应聘者打分(具体分数如表),按内容占40%,文化占60%计算应聘者综合分,并录用综合分最高者,则最终录用的应聘者是A.甲B.乙C.丙D.丁8.如图,在平面直角坐标系xOy中,已知点A(2,0),点A′(-2,4).若点A与点A′关于直线l成轴对称,则直线l的解析式是A.y=2B.y=xC.y=x+2D.y=-x+29.我国名院士策隆平被誉为“杂交水稻之父”,他在杂交水稻事业方面取得了巨大成就.某水稻研究基地统计,杂交水稻的亩产量比传统水稻的亩产量多400公斤,总产量同为3000公斤的杂交水稻种植面积比传统水稻种植面积少2亩.设传统水稻亩产量为x公斤,则符合题意的方程是A.3000x+400=3000x-2 B.3000x+400=3000x+2 C.3000x+2=3000x-400 D.3000x+2=3000x+40010.如图,△ABC中,O是BC上一点,以O为圆心,OC长为半径作半圆与AB相切于点D.若∠BCD=20°,∠ACD=30°,则∠A的度数是A.75°B.80°C.85°D.90°第Ⅱ卷二、填空题(本题共6小题,每小题4分,共24分)11.如图,点A在数轴上对应的数是a,则实数a的值可以是.(只需写出一个符合条件的实数)12.不等式2x-3>0的解集是.13.四边形的内角和度数是.14.我国数学家祖冲之是第一个将圆周率的计算精确到小数点后七位的人,他将圆周宰精确到3.1415926.若从该数据的8个数字中随机抽取一个数字,则所抽到的数字是1的概率是.15.两个正方形按如图所示的位置放置,若重叠部分是一个正八边形,则这两个正方形边长的比值是.16.已知直线y=-x+b(b>0)与x轴,y轴交于A、B两点,与双曲线y=k x(k>0)交于E、F两点.若AB=2EF,且b<k<3b,则b的取值范围是.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:4+│-12│-2-1.18.(本小题满分8分)如图,点A、B在CD的同侧,线段AC、BD相交于点E,∠ECD=∠EDC,∠ECB=∠EDA,求证:AD=BC.19.(本小题满分8分)先化简,再求值:1x-1-1x+1÷x x2-1,其中x=2.20.(本小题满分8分)荔枝是一种具有悠久历史的水果,深受广大人民群众喜爱.某超市现售卖桂味和黑叶两种荔枝.已知购买2千克桂味和1千克黑叶需要花费80元,购买1千克桂味和4千克黑叶需要花费96元.求桂味和黑叶每千克的价格.如图,AB 是半圆O 的直径,AC =BC ,D 是BC 上一点,CD =12AB ,E 是AC 的中点,连接OC 、OD 、DE .(1)求∠COD 的大小;(2)求证:DE ∥AB .22.(本小题满分10分)某学校食堂计划推行午餐套餐制,现随机抽取中午在学校食堂用餐的20名学生,收集到他们午餐消费金额x (单位:元)的数据,并对数据进行整理、描述和分析.下面给出部分信息:A .这20名学生午餐消费金额数据如下:4 8 10 9 9 6 9 6 8 87 8 8 6 7 9 10 7 8 5B .这20名学生午餐消费金额数据的频数分布表:消费金额4≤x <66≤x <88≤x <1010≤x <12频数26m 2C .这20名学生午餐消费金额数据的平均数,中位数,众数:平均数中位数众数7.6n t根据以上信息,回答下列问题:(1)写出表中m 、n 、t 的值;(2)为了合理膳食结构,学校食堂推出A 、B 、C 三种价格不同的套餐.据调查,午餐消费金额在6≤x <8的学生中有50%选择B 套餐,消费金额在8≤x <10的学生中有60%选择B 套餐,其余学生选择A 套餐或C 套餐.若每天中午约有800名的学生在食堂用餐,估计食堂每天中午需准备B 套餐的份数.如图,已知∠MON=90°,A、B为射线ON上两点,且OB<BA.(1)求作菱形ABCD,使得点C在射线OM上(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接AC、OD,当△OAC∽△OCB时,求tan∠ODC的值.24.(本小题满分12分)如图1,Rt△ABC中,∠ABC=90°,AC=5,AB=4,将△ABC绕点B顺时针旋转得到△A'BC',其中A′是点A 的对应点,且O°<∠ABA'<360°,连接AA',CC'.(1)求证:CC=34;AA(2)如图2,当点C在线段AA'上时,求△CBC'的面积;(3)直线AA'与直线CC'交于点D,点E是边AB的中点,连接DE,在旋转过程中,求DE的最大值.已知抛物线y=ax2+bx-4与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,且OB=OC= 2OA.直线y=kx-2(k>0)与抛物线交于D、E两点(点D在点E的左侧),连接OD、OE.(1)求抛物线的解析式;(2)若△ODE的面积为42,求k的值;(3)求证:不论k取何值,抛物线上都存在定点F,使得△DEF是以DE为斜边的直角三角形.2022-2023学年第二学期福州市九年级质量抽测数学答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.A 2.B 3.C 4.B 5.D6.D 7.D 8.C 9.A 10.B二、填空题(共6小题,每小题4分,满分24分,请在答题卡的相应位置作答)11.3−(任何负数均可) 12.32x >13. 360 14.14 15.116.16163b << 三、解答题(共9小题,满分86分,请在答题卡的相应位置作答)17.(本小题满分8分) 解:原式11222=+− ·········································································································· 6分 2=. ················································································································ 8分18.(本小题满分8分) 证明:∵ECD EDC ∠=∠,∴ED EC =. ········································································································· 2分 在△EAD 和△EBC 中,AED BEC ED EC EDA ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,····································································································· 4分 ∴△EAD ≌△EBC , ································································································· 6分 ∴AD BC =. ········································································································· 8分19.(本小题满分8分) 解:原式2111[](1)(1)(1)(1)x x x x x x x x+−−=−⋅+−+− ········································································· 3分 221111x x x x x +−+−=⋅− ······························································································ 4分 2x=. ················································································································ 6分 当x =时,原式= ················································································································ 7分 = ·············································································································· 8分D C A B E20.(本小题满分8分)解:设桂味和黑叶每千克的价格分别x 元和y 元. ·································································· 1分根据题意,得280496x y x y +=⎧⎨+=⎩., ··························································································· 5分 解得3216x y =⎧⎨=⎩., ············································································································· 7分 答:桂味每千克的价格是32元,黑叶每千克的价格是16元. ············································· 8分21.(本小题满分8分) (1)解:∵12CD AB =, ∴CD OA OC OD ===, ······················································································ 2分 ∴△COD 是等边三角形, ···················································································· 3分 ∴60COD ∠=°. ································································································ 4分 (2)证明:连接OE .∵ AC BC=, ∴AOC BOC ∠=∠.∵180AOC BOC ∠+∠=°,∴90AOC BOC ∠=∠=°. ················································································· 5分∵E 是AC 中点, ∴12OE AC EC ==, ······················································································· 6分 ∴点E 在OC 的垂直平分线上,∵DC DO =, ∴点D 在OC 的垂直平分线上,∴DE 垂直平分OC ,记垂足为F , ······································································ 7分∴90OFE ∠=°,∴90OFE BOC ∠=∠=°,∴DE ∥AB . ··································································································· 8分22.(本小题满分10分) 解:(1)10m =,8n =,8t =; ························································································· 6分 (2)由样本估计总体,得食堂每天中午需准备B 套餐的份数约为650%1060%80036020×+××=. ············································································· 10分23.(本小题满分10分)解:(1)·································································· 4分如图,菱形ABCD 为所求作的图形. ········································································· 5分 (2)∵△OAC ∽△OCB ,∴OAC OCB ∠=∠. ······························································································· 6分 ∵四边形ABCD 是菱形,∴AB BC CD ==,AB ∥CD , ·················································································· 7分 ∴BAC BCA ∠=∠.∵90BOC ∠=°,∴90OCB BCA BAC ∠+∠+∠=°,90OCD ∠=°,∴30OCB BCA BAC ∠=∠=∠=°, ············································································· 8分A B C DMNO A C E D F∴60OBC ∠=°.在Rt △OBC中,sin OC OBC BC ∠==. ···································································· 9分 在Rt △ODC中,tan OC OC ODC CD BC∠=== ··························································· 10分24.(本小题满分8分) 解:(1)在Rt △ABC ,90ABC ∠=°,5AC =,4AB =,∴3BC ==, ····················································································· 1分 记BAC α∠=,则3sin 5α=,4cos 5α=. ∵△ABC 绕点B 顺时针旋转得到△A ′BC ′,∴△ABC ≌△A ′BC ′,CBC ABA ′′∠=∠,4BA BA ′==,3BC BC ′==, ··························· 2分 ∴BA C BAC α′′∠=∠=,34BC BC BA BA ′==′, (180180=22CBC ABA BCC BAA ′′°−∠°−∠′′∠==∠) ∴△CBC ′∽△ABA ′, ···························································································· 3分 ∴34CC AA ′=′. ······································································································· 4分 (2)过点B 作CC ′的垂线,垂足为M ,∴90BMC ∠=°.由(1)可得△CBC ′∽△ABA ′,BA BA ′=, ∴BCC BAA BA A α′′′∠=∠=∠=, ············································································ 5分∴9sin 5BM BC α=⋅=, ························································································ 6分 12cos 5CM BC α=⋅=, ∵BC BC ′=,∴2425CC CM ′==, ···························································································· 7分 ∴1081225CBC S CC BM ′′=⋅=△. ················································································· 8分 (3)由(2)得△CBC ′∽△ABA ′, ∴BCC BAA ′′∠=∠. ·分 当点B ,D 在AC 异侧时,∵180BAA BAD ′∠+∠=°,∴180BCC BAD ′∠+∠=°, ∴180ABC ADC ∠+∠=°,∴90ADC ∠=°.10分 当点B ,D 在AC 同侧时, ∵90ACB CAB ∠+∠=°,∴90ACD BCC CAB ′∠+∠+∠=°, 即90ACD BAA CAB ′∠+∠+∠=°,∴90ACD CAA ′∠+∠=°,∴90ADC ∠=°. 取AC 中点O ,连接OD ,OE ,∴5122OD AC ==.11分 ∵E 为AB 中点,∴OE 为△ABC 的中位线,∴3122OE BC ==, ∴53422DE OD OE +=+= (当且仅当点O 在线段DE 上时等号成立), 即DE 的最大值为4. ·························································································· 12分A B C A ′C ′A ′′A B C ′C ′ M25.(本小题满分14分)解:(1)∵将0x =代入24y ax bx =+−,得4y =−,∴C (0,4−), ··································································································· 1分 即4OC =.∵2OB OC OA ==,∴4OB =,2OA =.∵点A 在x 轴负半轴,点B 在x 轴正半轴,∴A (2−,0),B (4,0).将A ,B 代入24y ax bx =+−,得424016440a b a b −−=⎧⎨+−=⎩,, ······························································································· 3分 解得121a b ⎧=⎪⎨⎪=−⎩,,∴该抛物线的解析式为2142y x x =−−. ··································································· 4分 (2)记直线DE 交y 轴于点G .将0x =代入2y kx =−,得2y =−,∴G (0,2−), ··································································································· 5分 ∴2OG =.将2y kx =−代入2142y x x =−−, 化简得2(22)40x k x −+−=,∴2(22)160k Δ=++>,设D (D x ,D y ),E (E x ,E y ),0D E x x <<,∴22D E x x k +=+,4D E x x ⋅=−. ··········································································· 6分 ∵DOE OGD OGE S S S =+△△△11||||22D E OG x OG x =⋅+⋅ 12()2E D x x =×−E D x x =−=, ·分 ∴2()32E D x x −=,即2()432E D E D x x x x +−⋅=,∴2(22)1632k ++=, 解得11k =,230k =−<(舍去), ············································································ 8分 ∴若△ODE 的面积为k 的值为1. ······························································· 9分 (3)根据题意,得90DFE ∠=°,设F (m ,n ),∴222DF EF DE +=. ·························································································· 10分 根据勾股定理得222()()D D DF x m y n =−+−,222()()E E EF x m y n =−+−,222()()D E D E DE x x y y =−+−,即222222()()()()()()D D E E E D E D x m y n x m y n x x y y −+−+−+−=−+−,22()()0D E D E D E D E m n m x x n y y x x y y +−+−+++=.∵22D E x x k +=+,4D E x x ⋅=−,∴222()4224D E D E D E y y kx kx k x x k k +=−+−=+−=+−,22(2)(2)2()4844D E D E D E D E y y kx kx k x x k x x k k ⋅=−−=⋅−++=−−+, ···························· 11分 ∴2222(22)(224)48440m n m k n k k k k +−+−+−−−−+=,22224(28)(224)m n m n n k m n k +−+=++++. ························································· 12分 ∵不论k 为何值,该等式始终成立,。
湖北省武汉江汉区四校联考2024届数学九上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,在ABC △中,DE BC ∥,且DE 分别交AB ,AC 于点D ,E ,若:=2:3AD AB ,则△ADE 和△ABC 的面积之比等于( )A .2:3B .4:9C .4:5D .2:32.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是( ).A .18米B .16米C .20米D .15米3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )A .甲、乙两队身高一样整齐B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐 4.若点()11,A y -,()22,By 均在反比例函数2y x =的图象上,则1y 与2y 关系正确的是( ) A .12y y > B .12y y = C .12y y < D .120y y ⋅>5.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k ≠0C .k ≥﹣1且k ≠0D .k ≥﹣16.如图,⊙O 是△ABC 的外接圆,连接OA 、OB ,∠C =40°,则∠OAB 的度数为( )A.30°B.40°C.50°D.80°7.在直角梯形ABCD中,AD//BC,∠B=90º,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论:①DE⊥EC;②点E是AB的中点;③AD∙BC=BE∙DE;④CD=AD+BC.其中正确的有()A.①②③B.②③④C.①②④D.①③④8.反比例函数y=2x的图象位于()A.第一、三象限B.第二、三象限C.第一、二象限D.第二、四象限9.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=010.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形二、填空题(每小题3分,共24分)11.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(﹣3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是_____.12.□ABCD的两条对角线AC、BD相交于O,现从下列条件:①AC⊥BD②AB=BC③AC=BD ④∠ABD=∠CBD中随机取一个作为条件,可推出□ABCD 是菱形的概率是_________13.如图,ABC ∆为等边三角形,点D 在ABC ∆外,连接BD 、CD .若2ABD ACD ∠=∠,23tan 5ACD ∠=,37BD =,则CD =__________.14.如图,内接于⊙O ,,是⊙O 上与点关于圆心成中心对称的点,是边上一点,连结.已知,,是线段上一动点,连结并延长交四边形的一边于点,且满足,则的值为_______________.15.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.16.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是_____.17.如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7…叫做“正六边形的渐开线”,其中弧FK 1、弧K 1K 2、弧K 2K 3、弧K 3K 4、弧K 4K 5、弧K 5K 6、…的圆心依次按点A 、B 、C 、D 、E 、F 循环,其弧长分别为l 1、l 2、l 3、l 4、l 5、l 6、….当AB =1时,l 3=________,l 2019=_________.18.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A 、B 两组对抗赛方式进行,实际报名后,A 组有男生3人,女生2人,B 组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.三、解答题(共66分)19.(10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°, 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?20.(6分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ).(1)写出点M 所有可能的坐标;(2)求点M 在直线3y x =-+上的概率.21.(6分)已知关于x 的一元二次方程:x 2﹣(t ﹣1)x+t ﹣2=1.求证:对于任意实数t ,方程都有实数根;22.(8分)如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m ,宽为40m .(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.23.(8分)如图1,已知点A (a ,0),B (0,b ),且a 、b 1a ++(a +b +3)2=0,平等四边形ABCD 的边AD与y轴交于点E,且E为AD中点,双曲线y=kx经过C、D两点.(1)a=,b=;(2)求D点的坐标;(3)点P在双曲线y=kx上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点Q的坐标;(4)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,MNHT的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.24.(8分)先化简,再求值:2224x xx+-÷(1+x+222xx+-),其中x=tan60°﹣tan45°.25.(10分)某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.(1)第一次购进的甲、乙两种水果各多少千克?(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.26.(10分)如图,已知抛物线y=﹣x2+bx+c的图象经过(1,0),(0,3)两点.(1)求b,c的值;(2)写出当y>0时,x的取值范围.参考答案一、选择题(每小题3分,共30分)1、B【解题分析】由DE ∥BC ,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC ,∠AED=∠ACB ,进而可得出△ADE ∽△ABC ,再利用相似三角形的面积比等于相似比的平方即可求出结论.【题目详解】∵DE ∥BC ,∴∠ADE=∠ABC ,∠AED=∠ACB ,∴△ADE ∽△ABC , ∴249ADE ABC S AD S AB ==(). 故选B .【题目点拨】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.2、A【解题分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【题目详解】根据题意解:标杆的高:标杆的影长=旗杆的高:旗杆的影长,即1.5:2.5=旗杆的高:30,∴旗杆的高=1.5302.5⨯=18米. 故选:A . 【题目点拨】考查了相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可得出旗杆的高.3、B【解题分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【题目点拨】此题考查方差,掌握波动越小,数据越稳定是解题关键4、C【分析】将点()11,A y -,()22,B y 代入2y x=求解,比较大小即可. 【题目详解】解:将点()11,A y -,()22,By 代入2y x = 解得:1221y ==--;2212y == ∴12y y <故选:C【题目点拨】 本题考查反比例函数解析式,正确计算是本题的解题关键.5、C【分析】根据根的判别式(240b ac =-≥△ )即可求出答案.【题目详解】由题意可知:440k +≥△=∴1k ≥-∵0k ≠∴1k ≥- 且0k ≠ ,故选:C .【题目点拨】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.6、C【分析】直接利用圆周角定理得出∠AOB 的度数,再利用等腰三角形的性质得出答案.【题目详解】解:∵∠ACB =40°,∴∠AOB =80°,∵AO =BO ,∴∠OAB =∠OBA =12(180°﹣80°)=50°. 故选:C .【题目点拨】本题主要考查了三角形的外接圆与外心,圆周角定理. 正确得出∠AOB 的度数是解题关键.7、C【解题分析】如图(见解析),过点E 作EF CD ⊥,根据平行线的性质、角平分线的性质、相似三角形的判定定理与性质逐个判断即可.【题目详解】如图,过点E 作EF CD ⊥ //AD BC180ADC BCD ∴∠+∠=︒,即1234180∠+∠+∠+∠=︒ED 平分ADC ∠,EC 平分BCD ∠12,34∴∠=∠∠=∠2223180∴∠+∠=︒,即2390∠+∠=︒1802390CED ∴∠=︒-∠-∠=︒DE EC ∴⊥,故①正确//,90AD BC B ∠=︒18090A B ∴∠=︒-∠=︒ 又ED 平分ADC ∠,EC 平分BCD ∠,EF CD ⊥,AE EF EF EB ∴==AE EB ∴=∴点E 是AB 的中点,故②正确在Rt AED ∆和Rt FED 中,ED ED AE FE=⎧⎨=⎩()Rt AED Rt FED HL ∴∆≅∆AD FD ∴=同理可证:BC FC =CD FD FC AD BC ∴=+=+,故④正确190AED BEC AED ∠+∠=∠+∠=︒1BEC ∴∠=∠又90A B ∠=∠=︒Rt AED Rt BCE ∴∆~∆ AD DE BE EC ∴=,即AD EC DE BE ⋅=⋅ 在Rt BCE ∆中,BC EC <AD BC AD EC DE BE ∴⋅<⋅=⋅,故③错误综上,正确的有①②④故选:C.【题目点拨】本题考查了平行线的性质、角平分线的性质、相似三角形的判定定理与性质,通过作辅助线,构造垂线和两组全等的三角形是解题关键.8、A【分析】由反比例函数k >0,函数经过一三象限即可求解;【题目详解】∵k =2>0,∴反比例函数经过第一、三象限;故选:A .【题目点拨】本题考查的是反比例函数的图像与性质,比较简单,需要熟练掌握反比例函数的图像与性质.9、C【题目详解】解:设人行道的宽度为x 米,根据题意得,(18﹣3x )(6﹣2x )=61,化简整理得,x 2﹣9x+8=1.故选C .10、C【解题分析】试题分析:A 、对角线AC 与BD 互相垂直,AC=BD 时,无法得出四边形ABCD 是矩形,故此选项错误.B 、当AB=AD ,CB=CD 时,无法得到四边形ABCD 是菱形,故此选项错误.C 、当两条对角线AC 与BD 互相垂直,AB=AD=BC 时,∴BO=DO ,AO=CO ,∴四边形ABCD 是平行四边形.∵两条对角线AC 与BD 互相垂直,∴平行四边形ABCD 是菱形,故此选项正确.D 、当AC=BD ,AD=AB 时,无法得到四边形ABCD 是正方形,故此选项错误.故选C .二、填空题(每小题3分,共24分)11、.x 1=-3,x 2=2【题目详解】解:∵抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的坐标分别是(−3,0),(2,0),∴当x =−3或x =2时,y =0,即方程20ax bx c ++=的解为123 2.x x =-=, 故答案为:123 2.x x =-=, 12、34【分析】根据菱形的判定方法直接就可得出推出菱形的概率.【题目详解】根据“对角线互相垂直的平行四边形是菱形”直接判断①符合题意;根据“一组邻边相等的平行四边形是菱形”可直接判断②符合题意;根据“对角线相等的平行四边形是矩形”,所以③不符合菱形的判定方法;ABD CBD ∠=∠,//AB CD ,∴=ABD CBD BDC ∠=∠∠∴BC=CD ,∴ABCD □是菱形,故④符合题意;∴推出菱形的概率为:34P =. 故答案为34. 【题目点拨】本题主要考查菱形的判定及概率,熟记菱形的判定方法是解题的关键,然后根据概率的求法直接得出答案.13、1【分析】作∠ABD 的角平分线交DC 于E ,连接AE ,作AF DC ⊥于F ,延长BE 交AD 于R ,先证明BED BEA △≌△,可得AB BD ==BR AD ⊥,利用三角函数求出DF ,FC 的值,即可求出CD 的值.【题目详解】作∠ABD 的角平分线交DC 于E ,连接AE ,作AF DC ⊥于F ,延长BE 交AD 于R∵2ABD ACD ∠=∠∴ABE ACE =∠∠∴A ,E ,C ,D 四点共圆∴60AEC ABC ==︒∠∠∴60BEC BAC ==︒∠∠∴120BED BEA ==︒∠∠∵EBD EBA =∠∠,BE BE =∴BED BEA △≌△∴AB BD ==∵AB AD =,ABR DBR =∠∠∴BR AD ⊥∴AC =,tan ACD ∠=∴AF =5FC =∵AB =,tan ABR =∠∴AR =∴AD =∴AF =∴6DF =∴11CD DF FC =+=故答案为:1.【题目点拨】本题考查了三角形的综合问题,掌握角平分线的性质、等腰三角形的性质、全等三角形的性质以及判定定理、锐角三角函数是解题的关键.14、1或【题目详解】解:因为内接于圆,,D是⊙O上与点B关于圆心O成中心对称的点,∴AB=BC=CD=AD,是正方形①点R在线段AD上,∵AD∥BC,∴∠ARB=∠PBR,∠RAQ=∠APB,∵AP=BR,∴△BAP≌ABR,∴AR=BP,在△AQR与△PQB中,,②点R在线段CD上,此时△ABP≌△BCR,∴∠BAP=∠CBR .∵∠CBR+∠ABR=90°,∴∠BAP+∠ABR=90°,∴BQ 是直角△ABP 斜边上的高,∴QR=BR-BQ=5-2.4=2.6,.故答案为:1或.【题目点拨】本题考查正方形的性质和判定,全等三角形的性质和判定,勾股定理,中心对称的性质.解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL ,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15、1米【分析】设建筑物的高度为x ,根据物高与影长的比相等,列方程求解.【题目详解】解:设建筑物的高度为x 米,由题意得,4366x ,解得x=1. 故答案为:1米.【题目点拨】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.16、23. 【解题分析】直接利用概率求法进而得出答案. 【题目详解】一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:42 63 =.故答案为:23.【题目点拨】此题主要考查了概率公式,正确掌握概率公式是解题关键.17、π673π【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2019的长.【题目详解】解:根据题意得:l1=6011803ππ⨯=,l 2=6022 1803,l3=60331803πππ⨯==,则l2019=20196733ππ=.故答案为:π;673π.【题目点拨】本题考查的是弧长的计算,先用公式计算,找出规律,则可求出l n的长.18、14 25【分析】利用列表法把所有情况列出来,再用概率公式求解即可.【题目详解】列表如下根据表格可知共有25种可能的情况出现,其中抽取到的两人刚好是1男1女的有14种情况∴抽取到的两人刚好是1男1女的概率是14 25故答案为:14 25.【题目点拨】本题考查了概率的问题,掌握列表法和概率公式是解题的关键.三、解答题(共66分)19、(203+17)cm.【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF 的长,再由CE=CM+BF+ED即可求出CE的长.【题目详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt △ABF 中,AB=40cm ,∠BAD=60°,∴BF=AB•sin ∠.∵∠ADC=∠BMD=∠BFD=90°, ∴四边形BFDM 为矩形,∴MD=BF ,∴(cm ).答:此时灯罩顶端C 到桌面的高度CE 是(+17)cm .【题目点拨】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM 、BF 的长是解题的关键.20、点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).(2)13. 【解题分析】试题分析:(1)通过列表展示所有9种等可能的结果数;(2)找出满足点(),x y 落在函数3y x =-+的图象上的结果数,然后根据概率公式求解.试题解析:(1)列表如下:从表格中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).共有9种等可能的结果数; (2)当x =0时,y =-0+3=3,当x =1时,y =-1+3=2,当x =2时,y =-2+3=1,由(1)可得点M 坐标总共有九种可能情况,点M 落在直线3y x =-+上(记为事件A )有3种情况.()31.93P A ==21、见解析【分析】根据方程的系数结合根的判别式,可得出△=(t-3)2≥1,由此可证出:对于任意实数t,方程都有实数根.【题目详解】证明:△=[-(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2,∴对于任意实数t,都有(t﹣3)2≥1,∴方程都有实数根.【题目点拨】本题考查了根的判别式,解题的关键是:牢记“当△≥1时,方程有实数根” .22、(1)5m,(2)20%【分析】(1)设通道的宽度为x米.由题意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降价后承包金额的代数式,再根据第一次的承包金额列出第二次降价的承包金额的代数式,然后令它等于51.2即可列出方程.【题目详解】(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.【题目点拨】本题考查了一元二次方程的应用,根据题意,正确列出关系式是解题的关键.23、(1)﹣1,﹣2;(2)D(1,4);(3)Q1(0,6),Q2(0,﹣6),Q3(0,2);(4)不变,MNHT的定值为12,证明见解析【分析】(1)先根据非负数的性质求出a、b的值;(2)故可得出A、B两点的坐标,设D(1,t),由DC∥AB,可知C(2,t﹣2),再根据反比例函数的性质求出t的值即可;(3)由(2)知k=4可知反比例函数的解析式为y=4x,再由点P在双曲线y=4x上,点Q在y轴上,设Q(0,y),P(x,4x),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(4)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=12HT由此即可得出结论.【题目详解】解:(1(a+b+3)2=0≥0,(a+b+3)2≥0,∴1030 aa b+=⎧⎨++=⎩,解得:12ab=-⎧⎨=-⎩,故答案是:﹣1;﹣2;(2)∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵四边形ABCD是平行四边形,∴C(2,t﹣2).∴t=2t﹣4,∴t=4,∴D(1,4);(3)∵D(1,4)在双曲线y=kx上,∴k=xy=1×4=4,∴反比例函数的解析式为y=4x,∵点P在双曲线y=kx上,点Q在y轴上,∴设Q(0,y),P(x,4x ),①当AB为边时:如图1所示:若ABPQ为平行四边形,则12x-+=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示:若ABQP为平行四边形,则122x-=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示:当AB为对角线时:AP=BQ,且AP∥BQ;∴122x-=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);综上所述,Q1(0,6);Q2(0,﹣6);Q3(0,2);(4)如图4,连接NH、NT、NF,∵MN 是线段HT 的垂直平分线,∴NT =NH ,∵四边形AFBH 是正方形,∴∠ABF =∠ABH ,在△BFN 与△BHN 中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,∴△BFN ≌△BHN (SAS ),∴NF =NH =NT ,∴∠NTF =∠NFT =∠AHN ,四边形ATNH 中,∠ATN +∠NTF =180°,而∠NTF =∠NFT =∠AHN ,所以,∠ATN +∠AHN =180°,所以,四边形ATNH 内角和为360°,所以∠TNH =360°﹣180°﹣90°=90°,∴MN =12HT , ∴MN HT =12, 即MN HT 的定值为12. 【题目点拨】此题考查算术平方根的非负性,平方的非负性,待定系数法求函数的解析式,正方形的性质,平行四边形的性质,全等三角形的判定及性质.24、11x +3 【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.【题目详解】原式()()()()()21222222x x x x x x x x +--++=÷+--()122x x x x x +=÷-- 2x x =-•()21x x x -+ 11x =+.当x =tan60°﹣tan45°=1时,原式3===. 【题目点拨】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.25、(1)第一次购进甲种水果200千克,购进乙种水果10千克;(2)m 的值为1.【分析】(1)设第一次购进甲种水果x 千克,购进乙种水果y 千克,根据该超市花费2200元购进甲、乙两种水果共350千克,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总利润=每千克的利润×销售数量,即可得出关于m 的一元二次方程,解之取其正值即可得出结论.【题目详解】(1)设第一次购进甲种水果x 千克,购进乙种水果y 千克,依题意,得:350582200x y x y +=⎧⎨+=⎩, 解得:200150x y =⎧⎨=⎩. 答:第一次购进甲种水果200千克,购进乙种水果10千克.(2)依题意,得:[10(1+m %)﹣5]×200(1+2m %)+(12﹣8)×100=2090, 整理,得:0.4m 2+40m ﹣690=0,解得:m 1=1,m 2=﹣11(不合题意,舍去).答:m 的值为1.【题目点拨】考核知识点:一元二次方程应用. 理解:总利润=每千克的利润×销售数量.只有验根.26、(1)b=-2,c=3;(2)当y >0时,﹣3<x <1.【分析】(1)由题意求得b 、c 的值;(2)当y>0时,即图象在第一、二象限的部分,再求出抛物线和x 轴的两个交点坐标,即得x 的取值范围;【题目详解】(1)根据题意,将(1,0)、(0,3)代入,得:103b c c -++=⎧⎨=⎩,解得:23b c =-⎧⎨=⎩; (2)由(1)知抛物线的解析式为223y x x =--+,当y=0时,2230x x --+=,解得:3x =-或x=1,则抛物线与x 轴的交点为()()30,10-,,, ∴当y >0时,﹣3<x <1.【题目点拨】考查待定系数法求二次函数解析式,抛物线与x 轴的交点,二次函数的性质,数形结合是解题的关键.。
人教版数学九年级上册质量监测试题(考试时间120分钟 满分120分)一、选择题(本题共10小题,每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )。
2.关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )。
A .m ≥94B .m <94C .m =94D .m <-943.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )。
A .B .C .D .4.抛物线y =x 2+4x +4的对称轴是( )。
A .直线x =4B .直线x =-4C .直线x =2D .直线x =-25、如图,A,B,C 是⊙O 上三个点,∠AOB=2∠BOC,则下列说法中正确的是( )。
A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6.如图,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道路的宽应为多少米?设道路的宽为xm,则可列方程为()。
A.100×80-100x-80x=7644B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644D.100x+80x-x2=76447.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()。
A.B.C.D.8.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()。
A.45° B.30° C.75° D.60°9.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()。
10.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是( )。
2022-2023学年度泉州市初中教学质量监测(二)初三数学(满分:150分;考试时间:120分钟)友情提示:所有答案必须填写到答题卡相应的位置上。
一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.等于()A.2B.C.1D.02.据报道,位于渤海南部海域的渤中油田获亿吨级大发现,探明地质储量超130000000吨油当量,这是我国第一大原油生产基地连续三年获得的亿吨级大发现.130000000可用科学记数法表示为()A. B. C. D.3.如图,该几何体的主视图是()A. B. C. D.4.对于不为零的实数a,下列运算正确的是()A. B. C. D.5.垃圾分类一小步,低碳生活一大步,垃圾桶上常有以下四种垃圾分类标识的图案,下列图案(不含文字说明)既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图是甲乙两位同学在参加体育中考前的5次体能测试成绩折线统计图,则下列说法正确的是()A.甲成绩比较稳定,且平均成绩较低B.乙成绩比较稳定,且平均成绩较低C.甲成绩比较稳定,且平均成绩较高D.乙成绩比较稳定,且平均成绩较高7.如图,BC与相切于点B,CO的延长线交于点A,连接AB,若,则等于()A. B. C. D.8.我国古代数学家程大位在其数学著作《算法统宗》有题如下:“甲乙间说牧放,二人暗里参详.甲云得乙九个羊,多你一倍之上.乙说得甲九只,两家之数相当.二边闲坐恼心肠,画地算了半晌.”其大意是:甲乙牧人隔着山沟放羊,两人都在暗思对方有多少羊.甲对乙说:“我若得你9只羊,我的羊多你一倍”.乙说:“我若得你9只羊,我们两家的羊数就相等.”两人都在用心计算对方的羊数,在地上列算式计算了半天才知道对方羊数.若设甲有羊x只,乙有羊y只,则依题意可列方程组为()A. B. C. D.9.若不等式的解集是,则下列各点可能在一次函数的图象上的是()A. B. C. D.10.如图,在矩形ABCD中,,,将沿BC的方向平移至,使得,其中E是与AC的交点,F是与CD的交点,则的长为()A. B. C. D.二、填空题:本题共6小题,每小题4分,共24分。
注意事项:1、本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2、答案全部在答题卡上完成,答在本试卷上无效.2023-2024学年第一学期九年级期中质量监测试题(卷)数学3、考试结束后,只收回答题卡.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.下列方程是关于x 的一元二次方程的是A.B.02342=++xx 0122=--y x C.D.0122=++x ax ()024=-x x 2.如图,将含有30°角的三角尺ABC (∠BAC =30°),以点A 中心,顺时针方向旋转,使得点C ,A ,B ′在同一直线上,则旋转角的大小是A.30°B.60°C.120°D.150°3.方程的两个实数根是x x =2A.x 1=x 2=1B.x 1=1,x 2=-1C.x 1=0,x 2=1D.x 1=0,x 2=-14.将关于x 的方程配方成的形式,则的值是0862=+-x x ()p x =-23p A.1B.28C.17D.445.如果关于x 的一元二次方程有两个实数根,则k 的取值范围是032=+-k x x A.k≥B.k≤C.k>D.k<49494949C′B′CB A6.将二次函数的图象先向左平移2个单位,再向上平移1个单()2122---=x y 位,则所得到的二次函数的解析式是A.B.()1322---=x y ()1122-+-=x y C.D.()3122-+-=x y ()3322---=x y 7.冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA 病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类和人.在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染.若每轮感染中平均一只动物会感染x 只动物,则下面所列方程正确的是A.3x(x+1)=363B.3+3x+3x ²=363C.3(1+x)²=363D.3+3(1+x)+3(1+x)²=3638.已知二次函数(c 为常数)的图象与x 轴的一个交点为(1,0),c x x y +-=42则关于x 的一元二次方程的两个实数根是042=+-c x x A.x 1=1,x 2=-1B.x 1=-1,x 2=2C.x 1=-1,x 2=0D.x 1=1,x 2=39.二次函数的图象上部分点的坐标(x,y)对应值列表如下:c bx ax y ++=2则关于该二次函数的图象与性质,下列说法正确的是A.开口方向向上B.当x>-2时,y 随x 增大而增大C.函数图象与x 轴没有交点D.函数有最小值是-210.在同一平面直角坐标系中,二次函数与一次函数的图bx ax y +=2a bx y +=象可能是x …-3-2-101…y…-3-2-3-6-11…第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,AC =BC ,半径OC 与AB 交于点D ,若AB =8cm,OB =5cm,则CD =▲cm.13.已知点A (4,y 1)和点B (-1,y 212.2022年2月4日—2月20日,北京冬奥会隆重开幕,北京成为世界上第一个既举办过夏季奥运会,又举办过冬季奥运会的国家.下面图片是在北京冬奥会会徽征集过程中,征集到的一副图片,整个图片由“京字组成的雪花图案”、“beijing2022”、“奥运五环”三部分组成.对于图片中的“雪花图案”,至少旋转▲°能与原雪花图案重合.)是二次函数(m 为常数)()m x y +-=21-215.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,若四边形EFGH 是矩形,且其周长是20,则四边形ABCD 的图象上两点,则y 1和y 2的大小关系是▲.14.2021年我国高速铁路总里程为2.9万公里,2023年我国高速铁路总里程达到3.8万公里,高速铁路已经覆盖了全国80%以上的大城市,形成以“八纵八横”主通道为骨架、区域连接线衔接、城际铁路补充的高速铁路网.若设2021年到2023年我国高速铁路总里程的平均年增长率为x,则依题意可列方程为▲.的面积的最大值是▲.HG FED CBA⌒⌒三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.解方程(每小题5分,共10分)(1)()910-=+x x (2)()12832+=+x x x 17.(本小题5分)如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于点G .求证:EF =FG .18.(本小题8分)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (5,4),B (1,3),C (3,1).点P (a,b)是△ABC 内的一点.(1)以点O 为中心,把△ABC 顺时针旋转90°,画出旋转后的△A 1B 1C 1,并写出A 1,B 1,C 1的坐标:A 1▲,B 1▲,C 1▲.注:点A 与A 1,B 与B 1,C 与C 1分别是对应点.(2)点P 的对应点P 1的坐标是▲;(3)若以点O 为中心,把△ABC 逆时针旋转则点P 的对应点P 2的坐标是▲,点P 1与点P2关于▲对称.(填写“x 轴、y 轴或原点”)⌒⌒19.(本小题8分)阅读下列材料,并完成相应学习任务:一元二次方程在几何作图中的应用如图1,在矩形ABCD 中,AB =3,BC =4.求作一个矩形,使其周长和面积分别是矩形ABCD 的周长和面积的2倍.因为矩形ABCD 的周长是14,面积是12,所以所求作的矩形周长是28,面积是24.若设所求作的矩形一边的长为x,则与其相邻的一边长为14-x.所以,得x(14-x)=24.解得x 1=2,x 2=12.当x=2时,14-x=12;当x=12时,14-x=2.所以求作的矩形相邻两边长分别是2和12.如图2,在边AB 的延长线取点G ,使得AG =4AB .在AD 上取AE =AD .21以AG 和AE 为邻边作出矩形AGFE .则矩形AGFE 的周长和面积分别是矩形ABCD 的周长和面积的2倍.学习任务:(1)在作出矩形AGFE 的过程中,主要体现的数学思想是▲;(填出序号即可)A.转化思想B.数形结合思想C.分类讨论思想D.归纳思想(2)是否存在一个矩形,使其周长与面积分别是矩形ABCD 的周长和面积的?21若存在,请在图1中作出符合条件的矩形;若不存在,请说明理由.图1 图2GFEDCBA D CB A20.(本小题9分)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA =60米,在水面的跨度BC =80米,桥面距水面的垂直距离OE =7米,以桥面所在水平线为x 轴,OE 所在直线为y 轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?21.(本小题10分)下面是小明解决某数学问题的过程,请认真阅读并解决相应学习任务:数学问题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:“,”现已知商品的进价为每件40元,如何定价才能使每个星期的利润达到6080元,且顾客能够得到更大的实惠?解:设….根据题意,所列出方程:.()6080402300-20=⎪⎭⎫⎝⎛⨯+x x …根据小明所列方程,完成下列任务:(1)填空:数学问题中“”处短缺的条件是▲,小明所列方程中未知数x 的实际意义是▲.(2)请你重新设一个未知数,要求所设未知数与小明所列方程中未知数的意义不同,并结合所补充的条件,解决上面的数学问题.图1图222.(本小题12分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,点E 是边CD 上一点,将△ADE 以点A 为中心,顺时针旋转90°,得到△ABF ,连接EF .过点A 作AG ⊥EF ,垂足为G .试猜想FG 与GE 的数量关系,并证明.(1)独立思考:请你解决老师所提出的问题;(2)拓展探究:智慧小组在老师所提问题的基础上,连接DG ,他们认为DG 平分∠ADC .请你利用图2说明,智慧小组所提出的结论是否正确?请说明理由;(3)问题解决:在图2中,若AD +DE =28,则四边形AGED 的面积为▲.(直接写出答案即可)图1 图2AB CDEFGGFEDCBA23.(本小题13分)综合与探究已知抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 32-2-=x x y 轴交于点C ,点D 是y 轴右侧抛物线上一个动点.(1)求出点A ,B ,C 的坐标;(2)如图1,当点D 在第四象限时,求出△BCD 面积的最大值,并求出这时点D 坐标;(3)当∠DAB =∠ABC 时,求出点D的坐标.图1 备用图一、选择题:1—10:DDCAB BCDCC二、填空题:11.2;12.60°;13.y 1<y 2;14.2.9(1+x)²=3.8;15.50.三、解答题:16.解:(1)x 1=-1,x 22023~2024学年第一学期九年级期中质量监测试题数学参考答案=-9;…………………………………………………………5分(2)x 1=,x 2=4.…………………………………………………………………5分23-注:阅卷组自行制定评分细则17.证明:∵AB=AE,∴∠B=∠AEB.……………………………………………………………………1分∵四边形ABCD 是平行四边形,∴AD∥BC,……………………………………………………………………2分∴∠B=∠GAF,∠FAE=∠AEB,……………………………………………………………………3分∴∠GAF=∠FAE,…………………………………………………………………4分∴EF=FG.……………………………………………………………………5分18.解:(1)画图略,画图正确.………………………………………………2分A 1(4,-5),B 1(3,-1),C 1(1,-3).………………………………………5分(2)(b,-a).……………………………………………………………………6分(3)(-b,a),原点.………………………………………………………………8分19.解:(1)B;…………………………………………………………………2分(2)不存在.……………………………………………………………………3分理由如下:若存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的,21则所求的矩形周长为7,面积为6.………………………………………………4分设所求的矩形一边长为x,则与其相邻的另一边的长为-x.………………5分27所以,得x(-x)=6.……………………………………………………………6分27整理,得2x ²-7x+12=0.…………………………………………………………7分因为△=(-7)²-4×2×12=49-96<0.所以该方程无解.…………………………………………………………8分所以,不存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的……9分21⌒⌒20.解:(1)设桥拱所在抛物线的函数关系表达式为y=ax ²+bx.………………1分∵OA=60,∴A 点坐标为(60,0).∵BC=80,根据对称性可知,点C 坐标为(70,-7).…………………………2分把A(60,0),B(70,-7)代入y=ax ²+bx,得………3分⎩⎨⎧-=+=+77049000603600b a b a 解得………………………………………………………………4分⎪⎩⎪⎨⎧=-=531001b a ∴桥拱所在抛物线的函数关系表达式是.………………5分x x y 5310012+-=(2)∵x x y 5310012+-=……………………………………………………7分().93010012+--=x ∴该函数的顶点为(30,9).……………………………………………………8分∵9+7=16.∴桥拱最高点到水面的距离是16米.…………………………………………9分21.解:(1)每件商品的售价每降价2元,每个星期的销售量可增加40件;每件商品的售价降了x 元.………………………………………………………………2分(2)设每件商品的定价为x 元,根据题意可列方程…………………………3分.………………………………………6分()60804026030040=⎪⎭⎫ ⎝⎛⨯-+-x x 整理,得x ²-115x+3304=0.……………………………………………………7分解得x 1=59,x 2=56.……………………………………………………………8分为了让每位顾客得到更大的实惠,所以x=59舍去.…………………………9分答:每件商品的定价为56元,每个星期的利润能达到6080元,且顾客能够得到更大的实惠.…………………………………………………………………10分22.(1)FG=EG.………………………………………………………………1分证明:∵△ABF 是由△ADE 顺时针方向旋转90°得到的,∴△ABF≌△ADE,………………………………………………………………2分∴AF=AE.………………………………………………………………3分∵AG⊥EF,∴FG=EG.………………………………4分(2)连接CG.……………………………5分∵四边形ABCD 是正方形,∴AD=CD,∠FCE=90°.……………………6分由(1)可知,FG=EG,∴CG=EF.………………………………7分21∵∠EAF=90°,∴AG=EF.………………………………8分21∴AG=CG.∵DG=DG,∴△ADG≌△CDG,………………………………………………………………9分∴∠ADG=∠CDG,即DG 平分∠ADC.…………………………………………10分(3)196………………………………………………………………………12分23.解:(1)当y=0时,.032-2=-x x 解得x 1=-1,x 2=3.∴点A(-1,0),B(3,0).……………………………………………………2分当x=0时,y=-3,∴点C(0,-3)……………………………………………………………………3分(2)如图,过点D 作DE⊥x 轴,垂足为E,并且交直线BC 于点F.过点C 作CH⊥DE,垂足为H.……………………4分设BC 的解析式为y=kx+b.把点B(3,0),点C(0,-3)代入,得,⎩⎨⎧-==+33b b k 解得k=1,b=-3.∴直线BC 的解析式为y=x-3.……………………5分设点D(m,m ²-2m-3),则点F(m,m-3).则DF=m-3-(m ²-2m-3)=-m ²+3m.……………6分∵S △BCD =S △CDF +S △BDF =×DF×CH+×DF×BE=×DF(CH+BE)=21212121ACDEFG∴S △BCD =(-m ²+3m)×3=-m ²+m.………………………………7分212329=-(m-)²+.(0<m<3)…………………………………………8分2323827∵-<0,∴当m=时,S △BCD 有最大值,S △BCD 的最大值为.………9分2123827(3)∵点B(3,0),点C(0,-3).∴OB=OC.∵∠BOC=90°,∴∠OBC=∠OCB=45°.设点D(m,m ²-2m-3).如图,当点D 在x 轴下方时,过点D 作DP⊥OB,垂足为P.∵∠DAB=∠ABC=45°,∠APD=90°.∴∠PDA=∠PAD,∴PA=PD.∴m-(-1)=-(m ²-2m-3).……………………10分解得m=2或m=-1(舍去).当m=2时,m ²-2m-3=-3.∴点D 坐标为(2,-3).…………………………11分如图,当点D 在x 轴上方时,过点D 作DQ⊥OB,垂足为Q.∵∠DAB=∠ABC=45°,∠AQD=90°.∴∠QDA=∠QAD,∴QA=QD.∴m-(-1)=m ²-2m-3.…………………………………………………………12分解得m=4或m=-1(舍去).当m=4时,m ²-2m-3=5.∴点D 坐标为(4,5).∴当∠DAB=∠ABC 时,点D(2,-3)或(4,5) (13)分。
2022-2023学年度第一学期期末质量检测九年级数学试卷(考试时间:120分钟;满分:120分)友情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本次考试只交答题纸,请同学们务必将学校、班级、姓名写在答题纸的卷面上,务必在答题纸规定的位置上写答案,在其它位置写答案不得分!一、单选题(本题满分24分,共有8道小题,每小题3分) 请将1—8各小题所选答案涂在答题纸规定的位置.1.两个形状相同、大小相等的小木块放置于桌面上,则其左视图是( ) .A .B .C .D .2.如图,在Rt △ABC 中,∠C =90°,BC =3,AB =2,则下列结论正确的是( )A .23sin =B B .21tan =BC .23cos =A D .3tan =A 3.小丽和小强在阳光下行走,小丽身高1.6米,她的影长2.0米,小丽比小强矮10cm,此刻小强的影长是( )米.A .817 B .178 C .815 D .158 4.在一个不透明的袋子中有除颜色外均相同的6个白球和若干黑球,通过多次摸球试验后,发现摸到白球的频率约为30%,估计袋中黑球有( )个.A .8B .9C .14D .15ACB第2题图 第1题图5.方程22x -5x +m = 0没有实数根,则m 的取值范围是( )A.m >825 B.m <825 C.m ≤825 D.m ≥825 6.如图,□ABCD 中,O 是对角线AC 、BD 的交点,△ABO 是等边三角形,若AC =8cm ,则□ABCD 的面积是( )cm 2 . A .16 B .43C .83D .1637.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如图,点A 在反比例函数图象上,坐标是(8,30),当压强P (Pa )是4800Pa 时,木板面积为( )m 2A . 0.5B .2C .0.05D . 20第7题图8.如图,在□ABCD 中,AB =6,BC =9,∠ABC ,∠BCD 的角平分线分别交AD 于E 和F ,BE 与CF 交于点O ,则△EFO 与△BCO 面积之比是( )A .1:3B . 1:9C .2:3D . 9:1 二、填空题(本题满分24分,共有8道小题,每小题3分) 请将 9—16各小题的答案填写在答题纸规定的位置.9.计算:tan45°+3sin60°=__________.10.由于手机市场的迅速成长,某品牌的手机为了赢得消费者,在一年之内连续两次降价,从5980元降到4698元,如果每次降低的百分率相同,求每次降低的百分率是 多少?设这个降低百分率为x ,则根据题意,可列方程: . 11.如图,△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC , 若AD = 6,DB = 8,AE =4,则AC = .12.在平面直角坐标系中,已知点A (﹣4,﹣4),B (﹣6,2),以原点O 为位似中心,ADE 第11题图B C A (8,30)AODCB第6题图AODCB第8题图F E位似比为2:1,将△ABO 缩小,则点B 的对应点B ′的坐标是 .13.如图所示,某小区想借助互相垂直的两面墙(墙体足够长),在墙角区域40m 长的篱笆围成一个面积为384m 2矩形花园.设宽AB =x m ,且AB <BC ,则x = m . 14.如图,在水平的地面BD 上有两根与地面垂直且长度相等的电线杆AB ,CD ,以点B 为坐标原点,直线BD 为x 轴建立平面直角坐标系.已知电线杆之间的电线可近似地看成抛物线62.38.02+-=x x y 则电线最低点离地面的距离是 米.15.已知二次函数c bx ax y ++=2的图象如图所示,它与x 轴的两个交点的坐标分别为 (﹣1,0)(2,0).下列结论:①0<abc ;②042>-ac b ;③当021<<x x 时,21y y <;④当﹣1<x <2时,y <0.正确的有 .(填正确结论的序号).16.如图,在菱形ABCD 中,对角线AC =8cm ,BD =4cm , AC ,BD 相交于点O ,过点A 作AE ⊥CD 交CD 的延长线于点E ,过点O 作OF ⊥AE 交AE 于点F ,下列结论: ①tan ∠FOA =21; ②GO FG =; ③558=FO cm ;④S 梯形ABCE =5104cm 2. 正确的有 . (填正确结论的序号).F D OCGBAE第15题图 -1Oxy2第14题图ABxy(米) DC第13题图ABDOC第16题图三、作图题(本题满分4分)(保留作图痕迹,不写做法) 17.已知:线段m .求作:正方形ABCD,使正方形ABCD 边长AB=m .四、解答题(本题满分68分)18.解方程:(本小题满分8分,每小题4分)(1)872=-x x (用配方法). (2)282-22+=+x x x (用适当方法).19.(本小题满分6分)在一个不透明的盒子里,装有四个分别标有数字3、-3、6、-6的小球,小球的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或树状图法表示出(x ,y )所有可能出现的结果; (2)求小明、小华各取一次小球所确定的数字和为0的概率.m如图,在矩形ABOC 中,AB =4,AC =6,点D 是边AB 的中点,反比例函数xky =1(x <0)的图象经过点D ,交AC 边于点E ,直线DE 的关系式为2y =m x +n (m ≠0).(1)求反比例函数的关系式和直线DE 的关系式;(2)在第二象限内,根据图象直接写出当x 时,21y y >.21.(本题满分8分)为全面实施乡村振兴战略,促进农业全面升级、农村全面进步、农民全面发展.如图,四边形ABCD 是某蔬菜大棚的侧面示意图,已知墙BC 与地面垂直,且长度为5米,现测得∠ABC =112°,∠D =67°,AB =4米,,求此蔬菜大棚的宽CD 的长度.(精确到0.1米)(参考数据:sin22°≈83,cos22°≈1615,tan22°≈53,sin67°≈1312, cos67°≈135,tan67°≈512)CB D ABDBOxy CDA E如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F .延长BF 至G ,使FG =BF ,连结DG .(1)求证:GF =DE .(2)当OF :BF =1 :2时,判断四边形DEFG 是什么特殊四边形?并说明理由.23.(本小题满分10分)“互联网+”时代,网上购物备受消费者青睐.越来越多的人可以足不出户就能进行网上购物,网上支付,中国电子商务的发展走在了世界的前列.某网店专售一种书包,其成本为每个40元,已知销售过程中,当售价为每个50元时,每月可销售500个.据市场调查发现,销售单价每涨2元,每月就少售20个.物价部门规定:销售单价不低于成本单价,且这种商品的利润率不得高于60%.设每个书包售x 元,每月销售量y 个.(1)求出y 与x 的函数关系式;(2)设该网店每月获得的利润为W 元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出100元资助贫困学生.为了保证捐款后每月获得的利润不低于6650元,且让消费者得到最大的实惠,如何确定该商品的销售单价?D A CBGOEF(1)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若1x <2x ,都有f (1x )<f (2x ),则称f (x )是增函数; (2)若1x <2x ,都有f (1x )>f (2x ),则称f (x )是减函数. 例题:证明函数f (x )=x5(x >0)是减函数. 证明:设0<1x <2x , f (1x )﹣f (2x )=2155x x -=211255x x x x -=21125x x x x )(-. ∵0<1x <2x ,∴2x ﹣1x >0,1x 2x >0. ∴21125x x x x )(->0.即f (1x )﹣f (2x )>0.∴f (1x )>f (2x ). ∴函数f (x )=x5(x >0)是减函数. (2)根据以上材料,解答下面的问题: 已知:函数f (x )=x x 31212++(x <0), ①计算:f (﹣1)= ,f (﹣2)= ; ②猜想:函数f (x )=x x 31212++(x <0)是 函数(填“增”或“减”); ③验证:请仿照例题证明你对②的猜想.如图,矩形ABCD 中,AB =4cm ,AD =5cm ,E 是AD 上一点,DE =3cm ,连接BE 、CE .点P 从点C 出发,沿CE 方向向点E 匀速运动,运动速度2 cm/s ,同时点Q 从点B 出发,沿BC 方向匀速运动,运动速度均为1cm/s ,连接PQ . 设点P 、Q 的运动时间为t (s )(0<t <2.5).(1)当t 为何值时,△PQC 是等腰三角形?(2)设五边形ABQPE 的面积为y (cm 2),求y 与t 之间的函数关系式. (3)是否存在某一时刻t ,使得S五边形ABQPE:S矩形ABCD=23:50?若存在,求出t的值,并求出此时PQ 的长;若不存在,请说明理由.APD CBEQA DCBE备用图参考答案及评分标准一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分24分,共有8道小题,每小题3分 ) 9.25 10.5980(1-x )2=4698 11.328 12.(-3,1),(3,-1) 13.16 14. 2.8 15.①①① 16.①①① 三、作图题(本题满分4分)17.作图正确3分,结论1分 四、解答题(本题满分68分)18.(本题满分8分,每小题4分 )本题只给出最后结果,阅卷时注意分步得分. (1)1,821-==x x …………4分 (2) 313,13321-=+=x x ……………4分19.(本题满分6分)20. (本小题满分8分)解:(1)∵点D 是边AB 的中点,AB =4,∴B D =2,∵四边形ABOC 是矩形,AC =6, ∴D (-6,2), ∵反比例函数xky =1(x <0)的图象经过点D , ∴k =-12,∴反比例函数的关系式为xy 121-=(x <0),…….4分 当y =4时,x =-3, ∴E (-3,4),把D (-6,2)和E (-3,4)代入y 2=mx +n (m ≠0)得,⎩⎨⎧=+-=+-4326n m n m∴⎪⎩⎪⎨⎧==632n m 解得∴直线DE 的解析式为6322+=x y …….6分 (2)03-6<<-<x x 或或(03-69<<-<<-x x 或)(两个答案都可以)……8分BOxyCD AE21. (本小题满分8分)解:如图,过点A 作AE ⊥BC 于点E ,过点B 作BF ⊥AE 于点F ,…….1分 根据题意可知:AB =4,,CB=5,∠ABF =22°,分米。
上海市闵行区2024年数学九年级第一学期开学教学质量检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在ABC △中,4,6,60AB BC B ==∠=︒,将ABC △沿BC 方向平移2个单位后得到DEF ,连接DC ,则DC 的长为()A .3B .4C .5D .62、(4分)对于反比例函数2y x =-,下列说法中不正确的是()A .x >0时,y 随x 增大而增大B .图像分布在第二第四象限C .图像经过点(1.-2)D .若点A (11,x y )B (22,x y )在图像上,若12<x x ,则12<y y 3、(4分)已知直线y=mx+n (m ,n 为常数)经过点(0,﹣2)和(3,0),则关于x 的方程mx+n=0的解为()A .x=0B .x=1C .x=﹣2D .x=34、(4分)如图,数轴上的点A 所表示的数是()A .1-B .1C 1D .5、(4分)若kb 0>,则函数y kx b =+的图象可能是()A .B .C .D .6、(4分)将点(3,3)A 向左平移4个单位长度得点A ',则点A '的坐标是()A .(1,1)--B .(1,3)-C .(3,1)-D .(7,3)7、(4分)如图,在菱形ABCD 中,AC=6,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是()A .6B .C .D .4.58、(4分)如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若AC=2,∠ADC=30°,下列说法:①四边形ACED 是平行四边形,②△BCE 是等腰三角形,③四边形ACEB 的周长是,④四边形ACEB 的面积是16.正确的个数是()A .2个B .3个C .4个D .5个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为______或______.10、(4分)x 的取值范围是__________.11、(4分)如图,直线y =3x +1与坐标轴相交于A 、B 两点,在其图象上取一点A 1,以O 、A 1为顶点作第一个等边三角形OA 1B 1,再在直线上取一点A 2,以A 2、B 1为顶点作第二个等边三角形A 2B 1B 2,…,一直这样作下去,则第10个等边三角形的边长为_____.12、(4分)设直角三角形的两条直角边分别为a 和b,斜边为c,若a=6,c=10,则b=_____.13、(4分)正方形ABCD 的边长为2,点E 是对角线BD 上一点,EAD ∆和ECD ∆是直角三角形.则ED =______.三、解答题(本大题共5个小题,共48分)14、(12分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x 名学生去旅行,甲、乙旅行社的收费分别为y 甲,y 乙,(1)写出y 甲,y 乙与x 的函数关系式.(2)学生人数在什么情况下,选择哪个旅行社合算?15、(8分)已知方程组713x y a x y a +=--⎧⎨-=+⎩的解中,x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简|a ﹣3|+|a +2|.16、(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表:本数(本)人数(人数)百分比5a 0.26180.36714b 880.16合计c 1根据以上提供的信息,解答下列问题:(1)a =_____,b =_____,c =______;(2)补全上面的条形统计图;(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名?17、(10分)先化简,再求值:(x+2+342x x +-)÷2692x x x ++-,其中318、(10分)甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.根据以上信息,整理分析数据如下:队员平均/环中位数/环众数/环甲7b 7乙a 7.5c (1)写出表格中的a 、b 、c 的值;(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)直线y 2x 1=-沿y 轴平移3个单位,则平移后直线与y 轴的交点坐标为.20、(4分)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B 、C 、D 的面积依次为4、3、9,则正方形A 的面积为_______.21、(4分)过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是________.22、(4分)若m 的小数部分,则221m m ++的值是______.23、(4分)化简:222222105x y ab a b x y +∙-的结果是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图1.点D ,E 在△ABC 的边BC 上.连接AD .AE .①AB=AC :②AD=AE :③BD=CE .以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②⇒③;①③⇒②,②③⇒①.(1)以上三个命题是真命题的为(直接作答)__________________;(2)选择一个真命题进行证明(先写出所选命题.然后证明).25、(10分)如图,△ABC 中,CD 平分∠ACB ,CD 的垂直平分线分别交AC 、DC 、BC 于点E 、F 、G ,连接DE 、DG .(1)求证:四边形DGCE 是菱形;(2)若∠ACB=30°,∠B=45°,CG=10,求BG 的长.26、(12分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣4,0),C (﹣1,1),请在图上画出△ABC ,并画出与△ABC 关于原点O 对称的图形.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据平移的性质可得DE=AB=4,BC-BE=6-2=4,然后根据等边三角形的定义列式计算即可得解.【详解】解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=4,BC-BE=6-2=4,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=4,故选:B.本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.2、D【解析】根据反比例函数图象上点的坐标特征及反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】A.把点(1,-2)代入2yx=-得:-2=-2,故该选项正确,不符合题意,B.∵k=-2<0,∴函数图像分布在第二第四象限,故该选项正确,不符合题意,C.∵k=-2<0,∴x>0时,y随x增大而增大,故该选项正确,不符合题意,D.∵反比例函数2yx=-的图象在二、四象限,∴x<0时,y>0,x>0时,y<0,∴x1<0<x2时,y1>y2,故该选项错误,符合题意,故选D.本题考查反比例函数图象上点的坐标特征及反比例函数的性质,对于反比例函数k y x =,当k>0时,图象在一、三象限,在各象限内,y 随x 的增大而减小;当k<0时,图象在二、四象限,在各象限内,y 随x 的增大而增大;熟练掌握反比例函数的性质是解题关键.3、D 【解析】方程mx+n=0就是函数y=mx+n 的函数值等于0,所以直线y=mx+n 与x 轴的交点的横坐标就是方程mx+n=0的解.【详解】解:∵直线y=mx+n (m,n 为常数)经过点(1,0),∴当y=0时,x=1,∴关于x 的方程mx+n =0的解为x=1.故选D.本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b =0(a,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.4、A 【解析】由题意,利用勾股定理求出点A 到−1的距离,即可确定出点A 表示的数.【详解】根据题意得:数轴上的点A −11-,故选:A .此题考查了实数与数轴,弄清点A 表示的数的意义是解本题的关键.5、A【解析】根据kb>0,可知k>0,b>0或k<0,b<0,然后分情况讨论直线的位置关系.【详解】由题意可知:可知k>0,b>0或k<0,b<0,当k>0,b>0时,直线经过一、二、三象限,当k<0,b<0直线经过二、三、四象限,故选(A)本题考查一次函数的图像,解题的关键是清楚kb 大小和图像的关系.6、B 【解析】将点A 的横坐标减4,纵坐标不变,即可得出点A′的坐标.【详解】解:将点A (3,3)向左平移4个单位长度得点A′,则点A′的坐标是(3-4,3),即(-1,3),故选:B .此题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7、C 【解析】【分析】如图,作点E 关于AC 的对称点E′,过点E′作E′M ⊥AB 于点M ,交AC 于点P ,由PE+PM=PE′+PM=E′M 知点P 、M 即为使PE+PM 取得最小值的点,利用S 菱形ABCD =12AC•BD=AB•E′M 求得E′M 的长即可得答案.【详解】如图,作点E 关于AC 的对称点E′,过点E′作E′M ⊥AB 于点M ,交AC 于点P ,则点P 、M 即为使PE+PM 取得最小值的点,则有PE+PM=PE′+PM=E′M ,∵四边形ABCD 是菱形,∴点E′在CD 上,∵AC=6,BD=6,∴=,由S 菱形ABCD =12AC•BD=AB•E′M 得12×6=3•E′M ,解得:,即PE+PM 的最小值是2,故选C .【点睛】本题考查了轴对称——最短路径问题,涉及到菱形的性质、勾股定理等,确定出点P 的位置是解题的关键.8、B 【解析】证明AC ∥DE ,再由条件CE ∥AD 可证明四边形ACED 是平行四边形;根据线段的垂直平分线证明AE=EB 可得△BCE 是等腰三角形;首先利用三角函数计算出AD=4,,再算出AB 长可得四边形ACEB 的周长是△ACB 和△CBE 的面积和可得四边形ACEB 的面积.【详解】①∵∠ACB=90°,DE ⊥BC ,∴∠ACD=∠CDE=90°,∴AC ∥DE ,∵CE ∥AD ,∴四边形ACED 是平行四边形,所以①正确;②∵D 是BC 的中点,DE ⊥BC ,∴EC=EB ,∴△BCE 是等腰三角形,所以②正确;③∵AC=2,∠ADC=30°,∴AD=4,,∵四边形ACED 是平行四边形,∴CE=AD=4,∵CE=EB ,∴EB=4,∴,∴=,∴四边形ACEB 的周长是10+2所以③正确;④四边形ACEB 的面积:1212,所以④错误,故选:C .考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法和等腰三角形的判定方法.二、填空题(本大题共5个小题,每小题4分,共20分)9、30°60︒【解析】根据翻折变换的性质及菱形的判定进行分析从而得到最后答案.【详解】解:一张长方形纸片对折两次后,剪下一个角,折痕为对角线,因为折痕相互垂直平分,所以四边形是菱形,而菱形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕角α成30°时,其中有内角为2×30°=60°,可以得到一个锐角为60︒的菱形.或角α等于60°,内角分别为120°、60°、120°、60°,也可以得到一个锐角为60︒的菱形.故答案为:30°或60°.本题考查了折叠问题,同时考查了菱形的判定及性质,以及学生的动手操作能力.10、4x ≥【解析】根据二次根式有意义的条件可得x-4≥0,再解即可.【详解】由题意得:x−4⩾0,解得:x ⩾4,故答案为:x ⩾4此题考查二次根式有意义的条件,解题关键在于二次根式有意义的条件得到x-4≥011、92⋅【解析】作A 1D ⊥x 轴于D ,A 2E ⊥x 轴于E ,根据等边三角形的性质得OD =B 1D ,B 1E =B 2E ,∠OA 1D =30°,∠B 1A 2E =30°,设OD =t ,B 1E =a ,则A 1D ,A 2E =,则A 1点坐标为(t t ),把A 1的坐标代入y =3x +1,可解得t =2,于是得到B 1点的坐标为,0),OB 1=,则A 2+a a ),然后把A 2的坐标代入y =3x +1可解得a ,B 1B 2=B 2B 3=B 9B 10=29.【详解】解:作A 1D ⊥x 轴于D ,A 2E ⊥x 轴于E ,如图,∵△OA 1B 1、△B 1A 2B 2均为等边三角形,∴OD =B 1D ,B 1E =B 2E ,∠OA 1D =30°,∠B 1A 2E =30°,设OD =t ,B 1E =a ,则A 1D t ,A 2E a ,∴A 1点坐标为(t t ),把A 1(t t )代入y =3x +1=3t +1,解得t =2,∴OB 1,∴A 2a ,a ),把A 2a a )代入y =3x +1a =3+a )+1,解得a ,∴B 1B 2=,同理得到B 2B 3=22…,按照此规律得到B 9B 10=29.故选答案为29.本题考查了一次函数图象上点的坐标特征:一次函数y =kx +b ,(k ≠0,且k ,b 为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y =kx +b .也考查了等边三角形的性质.12、8【解析】根据题意,已知直角三角形的一条直角边和斜边长,求另一直角边时直接利用勾股定理求斜边长即可.据此解答即可.【详解】解:由勾股定理的变形公式可得b =8,故答案为:8.本题考查了勾股定理的运用,属于基础题.本题比较简单,解答此类题的关键是灵活运用勾股定理,可以根据直角三角形中两条边求出另一条边的长度.或【解析】根据勾股定理得到BD =AC =,根据已知条件得到当点E 是对角线的交点时,△EAD 、△ECD 是等腰直角三角形,求得DE =12BD ,当点E 与点B 重合时,△EAD 、△ECD 是等腰直角三角形,得到DE =BD =.【详解】解:∵正方形ABCD 的边长为2,∴BD =AC =∵点E 是对角线BD 上一点,△EAD 、△ECD 是直角三角形,∴当点E 是对角线的交点时,△EAD 、△ECD 是等腰直角三角形,∴DE =12BD ,当点E 与点B 重合时,△EAD 、△ECD 是等腰直角三角形,∴DE =BD =或本题考查了正方形的性质,等腰直角三角形的判定和性质,分类讨论是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y 甲、y 乙与x 的函数关系式分别为:y 甲=700x+2000,y 乙=800x+1600;(2)当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社相等.【解析】(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y 1与x 的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y 2与x 的函数关系式;(2)根据题意知:y 甲<y 乙时,可以确定学生人数,选择甲旅行社更省钱.【详解】试题解析:(1)由题意得:y 甲=2000+1000×0.7x=700x+2000,y 乙=2000×0.8+1000×0.8x =800x+1600;(2)当y 甲<y 甲时,即:700x+2000<800x+1600解得:x >4,当y 甲>y 甲时,即:700x+2000>800x+1600解得:x <4,当y 甲=y 甲时,即:700x+2000=800x+1600解得:x =4,答:当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社一样.考点:一次函数的应用.15、(1)﹣2<a ≤3;(2)1【解析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据a 的取值范围去掉绝对值符号,把代数式化简即可;【详解】解:(1)方程组解得:342x ay a =-+⎧⎨=--⎩,∵x 为非正数,y 为负数;∴30420a a -+≤⎧⎨--<⎩,解得:﹣2<a ≤3;(2)∵﹣2<a ≤3,即a ﹣3≤0,a +2>0,∴原式=3﹣a +a +2=1.本题考查的是解二元一次方程组、解一元一次不等式组、代数式的化简求值,熟练掌握并准确计算是解题的关键.16、(1)10,0.28,50;(2)补图见解析;(3)该校八年级学生课外阅读7本及以上的有528名.【解析】(1)根据统计图和表格中的数据可以得到a 、b 、c 的值;(2)根据(1)中a 的值,可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该校八年级学生课外阅读7本及以上的有多少名.【详解】解:(1)本次调查的学生有:18÷0.36=50(人),a =50×0.2=10,b =14÷50=0.28,c =50,故答案为:10、0.28、50;(2)由(1)知,a =10,补全的条形统计图如图所示;(3)∵1200×(0.28+0.16)=528(名),∴该校八年级学生课外阅读7本及以上的有528名.本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.17、3x x ,【解析】首先计算括号里面的加减,然后再计算除法,化简后再代入x 的值即可.【详解】解:原式=24342x x x -++-×22(3)x x -+,=()32x x x +-•22(3)x x -+=3x x +.当-3时,原式=.此题主要考查了分式的化简求值,关键是掌握分式加减和除法的计算法则.18、(1)a =7,b =7,c =8;(2)甲队员的射击成绩较稳定【解析】(1)利用加权平均数的计算公式、中位数、众数的概念解答;(2)利用方差的计算公式求出S 甲2,根据方差的性质判断即可.【详解】解:(1)a =110(3+6+4+8+7+8+7+8+10+9)=7,b =7,c =8;(2)S 甲2=110×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,则S 甲2<S 乙2,∴甲队员的射击成绩较稳定.故答案为(1)a =7,b =7,c =8;(2)甲队员的射击成绩较稳定.本题考查的是加权平均数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、(0,2)或(0,4-)【解析】试题分析:∵直线y 2x 1=-沿y 轴平移3个单位,包括向上和向下,∵平移后的解析式为y 2x 2=+或y 2x 4=-.∵y 2x 2=+与y 轴的交点坐标为(0,2);y 2x 4=-与y 轴的交点坐标为(0,4-).20、1【解析】根据勾股定理的几何意义:得到S 正方形A +S 正方形B =S 正方形E ,S 正方形D ﹣S 正方形C =S 正方形E ,求解即可.【详解】由题意:S 正方形A +S 正方形B =S 正方形E ,S 正方形D ﹣S 正方形C =S 正方形E ,∴S 正方形A +S 正方形B =S 正方形D ﹣S 正方形C .∵正方形B ,C ,D 的面积依次为4,3,9,∴S 正方形A +4=9﹣3,∴S 正方形A =1.故答案为1.本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.21、9【解析】根据n 边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n 的值.【详解】解:设这个多边形是n 边形,由题意得,n-2=7,解得:n=9,故答案为:9.本题考查了多边形的对角线,求对角线条数时,直接代入边数n 的值计算,而计算边数时,需利用方程思想,解方程求n.22、1【解析】根据题意知1m ,而()2221=1m m m +++,将m 代入,即可求解.【详解】解:∵m 1.414...≈,∴1m ,∴())222221=1=11==2m m m ++++.故答案为1.本题目是二次根式的变型题,难度不大,正确理解题干并表示出来,是顺利解题的关键.23、4.(()b a x y -【解析】原式=2220()45()()()ab x y b a b x y x y a x y +=+--,故答案为4()b a x y -.二、解答题(本大题共3个小题,共30分)24、(1)①②③;①③②;②③①.(2)见解析【解析】(1)根据真命题的定义即可得出结论,(2)根据全等三角形的判定方法及全等三角形的性质即可证明.【详解】解:(1)①②③;①③②;②③①.(2)如①③②AB =AC ∴B Ð=C ∠BD =CE ∴△ABD ≌△ACE ∴AD=AE25、(1)证明见解析;(2)BG=【解析】(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC ,可得CE ∥DG ,DE ∥GC ,DE=EC ,可证四边形DGCE 是菱形;(2)过点D 作DH ⊥BC ,由锐角三角函数可求DH 的长,GH 的长,BH 的长,即可求BG 的长.【详解】(1)∵CD 平分∠ACB ,∴∠ACD=∠DCG ∵EG 垂直平分CD ,∴DG=CC ,DE=EC ∴∠DCG=∠GDC ,∠ACD=∠EDC ∴∠EDC=∠DCG=∠ACD=∠GDC ∴CE ∥DG ,DE ∥GC ∴四边形DECG 是平行四边形又∵DE=EC ∴四边形DGCE 是菱形(2)如图,过点D 作DH ⊥BC ,∵四边形DGCE 是菱形,∴DE=DG=GC=10,DG ∥EC ∴∠ACB=∠DGB=30°,且DH ⊥BC ∴DH=5,∵∠B=45°,DH ⊥BC ∴∠B=∠BDH=45°∴BH=DH=5∴本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.26、见解析【解析】根据坐标分别在坐标系中描出各点,再顺次连接各点组成的图形即为所求;根据中心对称的第21页,共21页特点,找到对应点坐标,再连线即可【详解】如图所示:△A ′B ′C ′与△ABC 关于原点O 对称.此题主要考查了作关于原点成中心对称的图形,得出对应点的位置是解题关键.。
2023-2024学年第一学期九年级教学质量检测考试(10月月考)数学(北师)注意事项:1.本试卷考查范围:第1、2章完。
本试卷共8页,满分120分,考试时间为120分钟。
2.本试卷采用网阅形式阅卷,请将答题信息与答题过程在配套的答题卡上完成。
试卷上答题无效。
3.答卷前,考生务必将自己的姓名、准考证号等相关信息填写在本试卷配套答题卡的相应的位置里.4.考试结束后,将本试卷和答题卡一并交回.第I 卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题的四个选项中,只有一项最符合题意,请选出并在答题卡上将该项涂黑。
)1.下列方程中,属于一元二次方程的是( )A .B .C .D .2.一元二次方程配方后可变形为( )A .B .C .D .3.方程的解是( )A .B .C .D .4.用求根公式解一元二次方程时a ,b ,c 的值是( )A .B .C .D .5.如图,在中,,D 是AB 的中点,,则CD 的长为()A .4B .5C .6D .86.如图,两张等宽的纸条交叉叠放在一起,重合部分构成四边形ABCD .测得A 、B 的距离为6,A 、C 的距离为4,则B 、D 的距离是()21x y -=223x x+=2240x y -+=2210x x -+=2810x x --=2(4)17x +=2(4)15x +=2(4)17x -=2(4)15x -=25x x =5x =0x =125;0x x =-=125;0x x ==2324x x -=3,2,4a b c ==-=3,4,2a b c ==-=3,4,2a b c ==-=-3,4,2a b c ===-Rt ABC △90ACB ∠=︒8AB =A .B .8C .D .7.电影《满江红》于2023年1月22日在中国大陆上映,某地第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达7亿元,若把增长率记作x ,则方程可以列为()A .B .C .D .8.若关于x 的一元二次方程有实数根,则k 的取值范围是( )A .B .C .且D .且9.如图,中,,点D 是AB 边上的动点,过点D 作边AC ,BC 的垂线,垂足分别为E 、F 连接EF ,则EF 的最小值为()A .3B .2.4C .4D .2.510.如图、正方形ABCD 的边长为4,G 是对角线BD 上一动点,于点E ,于点F ,连接EF ,给出四种情况:①若G 为BD 的中点,则四边形CEGF 是正方形;②若G 为BD 上任意一点,则;2(1)7x +=22(1)7x +=222(1)7x ++=222(1)2(1)7x x ++++=2690kx x -+=1k <1k ≤1k <0k≠1k ≤0k ≠Rt ABC △9034ACB AC BC ∠=︒==,,GE CD ⊥GF BC ⊥AG EF =③点G 在运动过程中,的值为定值4;④点G 在运动过程中,线段EF 的最小值为正确的有( )A ①②③④B .①②③C .①②④D .①③④第Ⅱ卷 非选择题(共90分)二、填空题(本题共5个小题,每小题3分,共15分。
2024-2025学年四川省成都七中育才学校数学九年级第一学期开学教学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)将点P (2,1)沿x 轴方向向左平移3个单位,再沿y 轴方向向上平移2个单位,所得的点的坐标是()A .(1,1)B .(-1,3)C .(5,1)D .(5,3)2、(4分)如图,已知四边形ABCD 是平行四边形,下列结论中不正确...的是().A .当AB =BC 时,它是菱形B .当AC =BD 时,它是正方形C .当∠ABC =90º时,它是矩形D .当AC ⊥BD 时,它是菱形3、(4分)若化简1x --25x -,则x 的取值范围是()A .一切实数B .14x ≤≤C .1x ≤D .4x ≥4、(4分)用反证法证明:“ABC ∆中,若AB AC ≠.则B C ∠≠∠”时,第一步应假设()A .B C ∠≠∠B .B C ∠=∠C .A B ∠=∠D .A C∠=∠5、(4分)已知关于x 的一元二次方程230x x a ++=有一个根是2-,那么a 的值是()A .2-B .1-C .2D .106、(4分)如图,在ABC ∆中,8AB =,6BC =,10AC =,D 为边AC 上一动点,DE AB ⊥于点E ,DF BC ⊥于点F ,则EF 的最小值为()A .2.4B .3C .4.8D .57、(4分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角8、(4分)下列命题中是真命题的有()个.①当x =2时,分式242x x --的值为零②每一个命题都有逆命题③如果a >b ,那么ac >bc ④顺次连接任意四边形各边中点得到的四边形是平行四边形⑤一组对边平行,另一组对边相等的四边形是平行四边形.A .0B .1C .2D .3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若n 边形的每个内角都等于150°,则n =_____.10、(4分)在平面直角坐标系中,函数y kx b =+(0k ≠)与m y x =(0m ≠)的图象相交于点M (3,4),N (-4,-3),则不等式m kx b x +>的解集为__________.11、(4分)如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,使点D 恰好落在BC 边上的F 点处.已知折痕,且,那么该矩形的周长为______cm .12、(4分)如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…分别在x 轴上,点B 1,B 2,B 3,…分别在直线y=x 上,△OA 1B 1,△B 1A 1A 2,△B 1B 2A 2,△B 2A 2A 3,△B 2B 3A 3…,都是等腰直角三角形,如果OA 1=1,则点A 2019的坐标为_____.13、(4分)若点和点都在一次函数的图象上,则___选择“>”、“<”、“=”填空).三、解答题(本大题共5个小题,共48分)14、(12分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y (度)是镜片焦距x (厘米)(0x )的反比例函数,调查数据如下表:眼镜片度数y (度)40062580010001250…镜片焦距x (厘米)251612.5108…(1)求y 与x 的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.15、(8分)甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表,甲10423乙32122请根据上述数据判断,在这5天中,哪台机床出次品的波动较小?并说明理由.16、(8分)在四个互不相等的正整数中,最大的数是8,中位数是4,求这四个数(按从小到大的顺序排列)17、(10分)如图,在矩形ABCD 中,AB =8,BC =6,点P 、点E 分别是边AB 、BC 上的动点,连结DP 、PE .将△ADP 与△BPE 分别沿DP 与PE 折叠,点A 与点B 分别落在点A ′,B ′处.(1)当点P 运动到边AB 的中点处时,点A′与点B′重合于点F 处,过点C 作CK ⊥EF 于K ,求CK 的长;(2)当点P 运动到某一时刻,若P ,A ',B '三点恰好在同一直线上,且A 'B '=4,试求此时AP 的长.18、(10分)已知:等腰三角形ABC 的一个角B α∠=,求其余两角A ∠与C ∠的度数.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)请观察一列分式:﹣235x x y y ,,﹣3479x x y y ,,…则第11个分式为_____.20、(4分)若1-,,则代数式(x-1)(y+1)的值等于_____.21、(4分)已知0=,则20172018a b +=__________.22、(4分)如图,在△ABC 中,AC =BC =9,∠C =120°,D 为AC 边上一点,且AD =6,E 是AB 边上一动点,连接DE ,将线段DE 绕点D 逆时针旋转30°得到DF ,若F 恰好在BC 边上,则AE 的长为_____.23、(4分)如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点()1,0作x 轴的垂线交1l 于点1A ,过1A 点作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点9A 的坐标为______,点2019A 的坐标为______.二、解答题(本大题共3个小题,共30分)24、(8分)解方程:(1)2x 1+;(2)x 1x 1+--1=24x 1-.25、(10分)已知y 与2x -成正比例,且当3x =时,4y =,则当5x =时,求y 的值.26、(12分)已知,在平行四边形ABCD 中,E 为AD 上一点,且AB=AE ,连接BE 交AC 于点H ,过点A 作AF ⊥BC 于F ,交BE 于点G.(1)若∠D=50°,求∠EBC 的度数;(2)若AC ⊥CD,过点G 作GM ∥BC 交AC 于点M ,求证:AH=MC .一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据平移的方法:横坐标,右移加,左移减;纵坐标,上移加,下移减,即可得结论.【详解】解:将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(-1,3).故选:B.本题考查了坐标与图形变化-平移,解决本题的关键是,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)2、B【解析】分析:A、根据菱形的判定方法判断,B、根据正方形的判定方法判断,C、根据矩形的判定方法判断,D、根据菱形的判定方法判断.详解:A、菱形的判定定理,“一组邻边相等的平行四边形是菱形”,故A项正确;B、由正方形的判定定理,“对角线互相垂直且相等的平行四边形是正方形”可知,对角线仅相等的平行四边形是矩形,故B项错误;C、矩形的判定定理,“一个角是直角的平行四边形是矩形”,故C项正确;D、菱形的判定定理,“对角线互相垂直的平行四边形是菱形”,故D项正确。