氢能产生与存储关键材料简.
- 格式:ppt
- 大小:1.50 MB
- 文档页数:25
储氢材料摘要:作为一种新型的清洁能源,氢的廉价制取、安全高效储存与运输及其模型应用,将是今后研究的重点。
本文介绍了储氢材料的结构、性能、制备及应用;展望了储氢材料的发展趋势。
关键字:氢;储氢材料;清洁能源1引言随着传统能源的日渐枯竭,致使人类面临着能源、资源和环境危机的严峻挑战,同时人们环保意识的日益增强,开始大力寻找新的洁净能源己成为科研工作的焦点[l]。
在这些过程中,氢以其独有的优点逐渐得到人们的公认。
氢作为洁净能源具有以下优点:(l) 氢的燃烧产物是水,对环境不产生任何污染;(2) 氢可以通过太阳能、风能等分解水而再生,是可再生能源;(3) 燃烧1g氢放出的热量是等量汽油的3倍左右;(4) 氢资源丰富,可通过水、碳氢化合物等电解或分解生成。
由此可见,氢是一种清洁,高效的能源,在未来有着广阔的应用前景。
在氢能利用过程中,有两个重要的方面,即氢能的制备和储运。
在氢能的制备方面:人类通过利用太阳能光解海水可以制得大量的氢;故氢的储存和运输是其发展和应用中遇到的难点之一。
2 氢的存储标准与现状“储氢材料”顾名思义是一种能够储存氢的材料。
衡量储氢材料性能的标准主要有2个:体积储氢密度(kg/m3)和储氢质量分数(%)。
体积储氢密度为系统单位体积内储存氢气的质量,储氢质量分数为系统储存氢气的质量与系统质量的比值。
另外,充放氢的可逆性、充放气速率及可循环使用寿命等也是衡量储氢材料性能的重要参数[2]。
和其它物质一样,氢的存在状态也是固态、液态、气态。
气态时存储方式较为简单方便,也是目前储存压力低于17MPa氢气的常用方法。
但其密度较小,体积大;由于是易燃气体在运输和使用过程中存在安全隐患是该方法的不足之处。
液态储氢方法的体积密度高(70kg/m3),但氢气的液化需要冷却到20K的超低温下才能实现,此过程消耗的能量约占所储存氢能的25%~45%。
液态氢不仅储存成本高,而且使用条件苛刻,目前只限于在航天技术领域中应用。
储氢材料的研究进展一、本文概述随着全球能源结构的转型和可持续发展目标的日益紧迫,氢能作为一种清洁、高效的能源形式,正受到越来越多的关注。
而储氢材料作为氢能利用的关键环节,其性能的提升和技术的突破对于氢能的大规模应用具有决定性的影响。
本文旨在全面综述储氢材料的研究进展,通过对不同类型储氢材料的性能特点、应用领域以及发展趋势进行深入探讨,以期为氢能领域的科研人员和技术人员提供有益的参考和启示。
本文将首先介绍储氢材料的研究背景和重要意义,然后从物理储氢材料、化学储氢材料和复合储氢材料三个方面,分别阐述各类储氢材料的最新研究成果和进展。
在此基础上,本文将重点分析储氢材料的性能评价指标,如储氢密度、吸放氢动力学、循环稳定性等,并探讨影响这些性能指标的关键因素。
本文将展望储氢材料的发展趋势和未来研究方向,以期为推动氢能领域的技术创新和产业发展贡献一份力量。
二、储氢材料的分类储氢材料,作为能量储存和转换的重要媒介,在氢能源的应用中扮演着关键角色。
根据其储氢机制和材料特性,储氢材料大致可分为物理吸附储氢材料、化学氢化物储氢材料、金属有机骨架储氢材料以及纳米储氢材料等几大类。
物理吸附储氢材料:这类材料主要通过物理吸附作用储存氢气,如活性炭、碳纳米管、石墨烯等。
这些材料具有高的比表面积和良好的吸附性能,能够有效地吸附并储存氢气。
然而,其储氢密度相对较低,且受温度和压力影响较大。
化学氢化物储氢材料:这类材料通过化学反应将氢气转化为氢化物来储存氢,如金属氢化物(如NaAlHMgH2等)和氨硼烷等。
这类材料具有较高的储氢密度,但储氢和释氢过程通常需要较高的温度和压力,且可能伴随有副反应的发生。
金属有机骨架储氢材料:金属有机骨架(MOFs)是一种新型的多孔材料,具有高的比表面积和孔体积,以及可调的孔径和化学性质。
MOFs材料通过物理吸附或化学吸附的方式储存氢气,具有较高的储氢密度和良好的可逆性。
纳米储氢材料:纳米储氢材料主要包括纳米金属颗粒、纳米碳材料等。
天 然 气 工 业Natural Gas Industry 第41卷第4期2021年4月· 124 ·氢气的制取与固体储集研究进展王璐1,2 金之钧1,2,3 黄晓伟41.北京大学能源研究院2.北京大学地球与空间科学学院3. 中国石化石油勘探开发研究院4.中国地质大学(北京)能源学院摘要:氢气是一种优质燃料,也是一种清洁和可持续的能源。
目前全球氢能发展已迈入新的阶段,欧美日韩和我国都在加紧战略布局。
为了加快构建清洁低碳、安全高效的能源体系,通过文献调研的方式研究了氢气在地下的生成机制及分布、氢气的人工制取及储集尤其是固体储氢等若干问题。
研究结果表明:①氢气在地下的生成机制目前尚未明确,被认为主要与超镁铁质岩的蛇纹石化有关,此外也与水的辐射分解、断层机械摩擦等有关,氢气浓度高的气田主要分布在大陆裂谷系、火山岩广泛分布的沉积盆地等;②目前工业制氢主要采用甲烷气制氢和电解水制氢,而最理想的方法则应为太阳能制氢和生物制氢,但在目前的技术条件下还难以达成,实验室在一定的温度、压力条件下可以通过橄榄岩的蛇纹石化得到氢气;③固体储氢是通过吸附氢气或使氢气与材料反应来达到储氢目的的方式,然后通过加热或减压方式来释放氢气;④固态储氢密度可达相同温度、压力条件下气态储氢的1 000倍左右,能很好地解决传统储氢密度低的问题且吸放氢速度适宜,具有安全性高的优点,目前的固态储氢材料主要有碳质储氢材料、合金储氢材料和络合物储氢材料等。
结论认为,氢能产业目前在我国尚处于起步阶段,技术和成本是决定制氢和储氢的关键因素;基于现状,应将氢能与可再生能源技术有机结合,以实现“灰氢”到“绿氢”的转化。
关键词:氢能;蛇纹石化;天然氢气;制氢;固体储氢;合金储氢;络合物储氢;储氢密度DOI: 10.3787/j.issn.1000-0976.2021.04.014Research progress on hydrogen production and solid hydrogen storageWANG Lu1, 2,JIN Zhijun1,2,3, HUANG Xiaowei4(1. Institute of Energy, Peking University, Beijing 100871, China;2. School of Earth and Space Sciences, Peking University, Beijing 100871, China;3. Sinopec Exploration & Production Research Institute, Beijing 100083, China;4. School of Energy Resources, China University of Geosciences, Beijing 100083, China)Natural Gas Industry, Vol.41, No.4, p.124-136, 4/25/2021. (ISSN 1000-0976; In Chinese)Abstract: Hydrogen is a kind of high-quality fuel, as well as a kind of clean and sustainable energy. At present, global hydrogen energy development has entered a new stage, and Europe, America, Japan, South Korea and China are stepping up their strategic layout. In or-der to establish a low-carbon, clean, safe and efficient energy system as soon as possible, this paper studied the generation mechanisms and distribution of hydrogen underground, the artificial hydrogen production and storage (especially solid hydrogen storage) and other problems by means of literature research. And the following research results were obtained. First, the generation mechanism of hydrogen underground is not clarified yet, but it is deemed to be mainly related to the serpentinization of ultramafic rocks, as well as the radiation decomposition of water and the mechanical friction of faults. The gas fields with high hydrogen concentration are mainly distributed in continental rift systems and sedimentary basins where volcanic rocks are widely distributed. Second, at present, the industrial hydrogen production is mainly based on methane gas and electrolysis water, but the most ideal methods should be solar hydrogen production and biological hydrogen production, which can be hardly achieved under the current technical conditions. Hydrogen can be produced by the serpentinization of peridotite under certain temperature and pressure in the laboratory. Third, solid hydrogen storage is realized by ab-sorbing hydrogen or making hydrogen react with materials and then releasing it through heating or depressurization. Fourth, the density of solid hydrogen storage is about 1 000 times that of gas hydrogen storage under the same temperature and pressure, so solid hydrogen storage can well solve the problem of low density of traditional hydrogen storage. Moreover, it has the advantages of appropriate hydro-gen absorption and desorption rate and high safety. The current solid hydrogen storage materials mainly include carbon hydrogen storage materials, alloy hydrogen storage materials and complex hydrogen storage materials. In conclusion, hydrogen energy industry is currently in the beginning stage in China, and technology and cost are the key factors of hydrogen production and storage. In view of current situa-tions, it is necessary to combine hydrogen energy with renewable energy technologies, so as to realize the transformation of "grey hydro-gen" into "green hydrogen".Keywords: Hydrogen energy; Serpentinization; Natural hydrogen; Hydrogen production; Solid hydrogen storage; Alloy hydrogen stor-age; Complex hydrides; Hydrogen storage density基金项目:国家重点研发计划变革性技术关键科学问题重点专项项目“俯冲带深部过程与非生物成气”(编号:2019YFA0708500)。
氢能关键材料-概述说明以及解释1.引言1.1 概述概述在全球能源危机以及环境问题的背景下,氢能作为一种清洁、可再生的能源被广泛关注和研究。
而氢能关键材料作为实现氢能技术应用和发展的重要基础,其研究与发展显得尤为重要。
本文旨在探讨氢能关键材料在未来氢能产业中的重要性、分类以及其发展前景,并对其对氢能产业的影响进行分析,最后对未来的研究方向进行展望。
为了更好地理解氢能关键材料的重要性和意义,我们首先将介绍氢能的基本概念和特点。
氢能作为一种高能量密度、清洁无污染的能源,被广泛应用于交通运输、能源储存以及工业制造等领域。
它不仅可以替代传统石油能源,减少二氧化碳等温室气体的排放,还能解决能源供应的稳定性和可再生能源的波动性问题。
因此,氢能被视为实现低碳经济和可持续发展的重要路径之一。
然而,要实现氢能的广泛应用和发展,离不开关键的材料支撑。
氢能关键材料即指在氢能技术中起到关键作用并具备特定性能要求的材料。
这些材料主要涉及氢气的储存、输送、分离和转化等方面,包括储氢材料、催化剂、膜材料等。
这些材料的性能和稳定性对于氢能技术的可行性和经济性起着决定性的作用。
根据材料的功能和应用,氢能关键材料可以被细分为不同的类别。
常见的分类包括储氢材料、催化剂、膜材料、吸附材料等。
每种类别的材料在氢能技术中都有着不可替代的作用。
储氢材料用于实现氢气的高效储存和释放,催化剂用于加速氢气的反应速率,膜材料则用于氢气的分离和纯化,吸附材料则可用于氢气的吸附和运载。
展望未来,氢能关键材料的发展前景令人振奋。
随着对清洁能源和可持续发展的追求不断增强,氢能作为一种绿色能源将会得到更多的关注和投资。
而氢能关键材料作为氢能技术的基础和支撑,其需求量和应用领域也将进一步扩大。
因此,未来将需要加大对氢能关键材料的研发力度,并进一步提高其性能和稳定性,以满足氢能产业的发展需求。
综上所述,本文将重点探讨氢能关键材料的重要性、定义和分类,并对其发展前景、对氢能产业的影响以及未来的研究方向进行深入思考和分析。
储氢合金材料何洋 材料科学与工程一班 200911102016摘要:由于石油等资源有限以及保护环境的要求,改变能源的构成已成为迫切的问题。
作为绿色能源的氢能登上历史舞台,本文介绍了金属储氢的相关原理,以及储氢材料的应用范围。
关键词:储氢合金;原理;应用氢是一种非常重要的二次能源。
它的资源丰富;发热值高,燃烧1kg 氢可产生142120kJ 的热量,比任何一种化学燃料的发热值都高;氢燃烧后生成水,不污染环境。
因此,氢能是未来能源最佳选择之一。
氢气是可再生和最清洁的气体能源,这使关于氢能的研究更具重要性。
氢的利用主要包括氢的生产、储存和运输、应用三个方面。
而氢的储存是其中的关键。
氢气储存技术的滞后,限制了氢的大规模应用,特别是交通工具上的应用。
而后者要求系统储氢能力必须达到6.5wt%(重量能量密度)。
据报道,美国能源部所有氢能研究经费中有50%用于氢气的储存。
氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。
储存技术是氢能利用的关键。
储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体那么什么是储氢合金呢?储氢合金——一种新型合金,一定条件下能吸收氢气,一定条件能放出氢气。
虽然可将氢气存贮于钢瓶中,但这种方法有一定危险,而且贮氢量小(15MPa ,氢气重量尚不到钢瓶重量的1/100),使用也不方便。
液态氢比气态氢的密度高许多倍,固然少占容器空间,但是氢气的液化温度是-253℃,为了使氢保持液态,还必须有极好的绝热保护,绝热层的体积和重量往往与贮箱相当。
大型运载火箭使用液氢作为燃料,液氧作为氧化剂,其存贮装置占去整个火箭一半以上的空间。
自20世纪60年代中期发现LaNi5和FeTi 等金属间化合物的可逆储氢作用以来,储氢合金及其应用研究得到迅速发展。
储氢合金能以金属氢化物的形式吸收氢,是一种安全、经济而有效的储氢方法。
金属氢化物不仅具有储氢特性,而且具有将化学能与热能或机械能相互转化的机能,从而能利用反应过程中的焓变开发热能的化学储存与输送,有效利月各种废热形式的低质热源。
固态储氢氢能系统及关键材料制备技术
固态储氢氢能系统是指利用固态材料来储存和释放氢气的一种氢能储存技术。
相比于传统的氢气储存方式,如压缩氢气和液态氢气储存,固态储氢系统具有更高的储氢密度、更安全的储存和更方便的携带等优势。
关键材料是构成固态储氢氢能系统的重要组成部分,主要包括储氢材料和储氢容器材料。
1. 储氢材料:固态储氢材料用于吸附和存储氢气。
目前常用的固态储氢材料有金属氢化物、碳基材料、金属有机框架材料等。
金属氢化物可以通过吸附氢气来储存氢气,其吸附量和释放量取决于金属与氢气之间的反应性。
碳基材料可以通过物理吸附和化学吸附的方式储存氢气,其储氢密度较低。
金属有机框架材料是一种新型的储氢材料,通过特定的结构可以实现较高的储氢密度。
2. 储氢容器材料:固态储氢容器用于保护和固定储氢材料,并提供氢气的输入和输出通道。
常见的储氢容器材料有金属材料和聚合物材料。
金属材料如钛合金和铝合金具有较高的强度和刚性,可以承受较高的压力。
聚合物材料如聚丙烯和聚酯具有较好的塑性和韧性,可以制成较复杂的形状。
关键材料制备技术包括合成、改性和成型等过程。
储氢材料的合成技术包括物理法、化学法和物化法等,通过控制合成条件和添加适当的催化剂可以调控储氢材料的结构和性能。
储氢容器材料的制备技术主要包括注塑成型、压力成型和复合成型等,
通过选择合适的成型方法和添加增强剂可以提高储氢容器的强度和密封性能。
总之,固态储氢氢能系统及关键材料制备技术是氢能储存领域的重要研究方向,通过优化储氢材料和储氢容器的性能可以实现更安全和高效的氢能储存和利用。
储运氢技术的发展与关键技术摘要:针对国内利用可再生能源进行制氢是氢能规模化应用的必然选择,储运氢是枢纽环节,文中比较和论述了储运氢技术的基本原理、优缺点和发展趋势,同时论述了目前国内储运氢产业应用面临的挑战,对加快国内氢能经济的可持续发展、储运氢技术应用发展提出展望。
关键词:氢能、储运、可再生能源、碳排放引言利用可再生能源进行电解水制取氢气的技术,具有较低的碳排放强度,产氢纯度高等技术优势,可实现全生命周期清洁绿色,所得的氢气被行业内认为是“绿氢”,被认为实现氢脱碳的最佳途径。
根据中国光伏行业协会(CPIA)对绿氢成本的拆解预测,在2030年光伏度电成本可降低至0.1~0.15元/KWh,相应的绿氢成本可降低到16.9元/kg,与天然气制氢成本平价。
2020年我国二氧化碳的总排放量达到113.5亿吨,其中100.3亿吨与能源排放相关,13.2亿吨与工业过程排放相关。
在碳中和目标下,绿氢必须在工业、建筑、交通等碳排重点领域担任重要深度脱碳角色。
根据中国氢能联盟在在各个脱碳应用领域的绿氢成本竞争力分析,氢解决方案可在22个关键应用领域与其他清洁技术替代方案实现竞争,其中在9个应用案例中,完全不逊于传统化石能源。
我国的能源供应上存在“西富东贫、北多南少”,风能资源80%以上分布在“三北”地区,太阳能资源分布呈“高原大于平原、西部大于东部”的特点。
我国的氢能需求上则相反,集中在中部、东部、南部地区,未来氢能供应和需求逆向分布的特点必须依靠完善的氢储运供应链。
由于氢气物理化学性质特点,即在原子半径小易穿透、常温常压下密度极低(0.089千克每立方米,0℃,1巴条件下)、单位体积的储能密度低、液化温度极低(常压下-253℃)、易燃易爆等,导致氢能不容易储存和安全高效输送。
一、储运氢技术目前,储运氢方式主要有四种,分别是高压气态储运氢(长管拖车、管道)、液态储运氢、氢载体储运和和固体储运氢等方式。
1.高压气态储运氢高压气态储氢技术是指氢气通过高压压缩注入注入相应的高压容器中,以高压气态进行储运。
储氢材料研究现状与发展趋势xxx摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。
储存技术是氢能利用的关键。
储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。
本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。
关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。
1.引言氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。
氢是宇宙中含量最丰富的元素之一。
氢气燃烧后只产生水和热,是一种理想的清洁能源。
氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。
由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。
氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。
氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。
氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。
氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。
当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。
储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。
当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。
对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。
储氢材料简介范文引言:随着能源消耗的不断增加和环境污染的加剧,寻找一种高效、环保的能源储存技术变得越来越重要。
氢能作为一种清洁、可再生的能源,正在受到广泛的关注。
然而,氢气的储存一直是一个技术难题。
寻找一种合适的储氢材料是实现氢能利用的关键之一、本文将介绍几种常见的储氢材料,并对其特点和应用进行分析。
一、金属储氢材料金属储氢材料是最传统的一种储氢材料。
常见的金属储氢材料包括钛合金、镁合金、锆合金等。
这些材料具有储氢容量高、反应速率快等特点。
但是,金属储氢材料存在工艺复杂、储氢温度较高等问题,限制了其在实际应用中的推广。
二、吸附材料吸附材料是一种将氢气物理吸附在材料表面的方法。
常见的吸附材料包括活性炭、金属有机骨架、多孔有机聚合物等。
这些材料具有表面积大、容易制备等特点,但是吸附材料的储氢容量和吸附/释放速率较低,对性能的要求较高。
三、化学储氢材料化学储氢材料是将氢气以化学形式储存在材料中,并通过化学反应进行储氢和释放氢的过程。
常见的化学储氢材料包括氢化物、金属氢化物、有机液体等。
这些材料具有储氢容量高、储氢密度大等优点,但是存在反应速率慢、反应温度高等问题,对材料的选择和设计提出了挑战。
四、固态氢储存体系固态氢储存体系是一种结合了吸附和化学储氢方法的新型储氢技术。
其基本原理是将金属氢化物储氢剂与载体进行结合,通过吸附和化学反应双重方式来储存和释放氢气。
常见的固态氢储存体系包括氢化物储氢剂/多孔材料、氢化物储氢剂/焊接材料等。
这些储氢体系克服了传统储氢材料的缺点,具有储氢性能稳定、循环寿命长等优点。
结尾:综上所述,储氢材料是实现氢能利用的关键之一、金属储氢材料、吸附材料、化学储氢材料和固态氢储存体系都是常见的储氢材料。
每种材料都有其独特的优点和局限性。
未来的研究应该注重提高储氢容量、改善储氢速率、降低储氢温度等方面的性能。
随着技术的不断发展,相信储氢材料的性能将得到显著的改善,为氢能的广泛应用提供更加可靠的支持。
氢燃料电池原料-概述说明以及解释1.引言1.1 概述概述氢燃料电池是一种新型的清洁能源技术,它可以通过氢气和氧气的反应产生电能,并同时释放出水蒸气。
与传统燃烧燃料的方式相比,氢燃料电池无污染、高效能并且相对环保,被广泛认为是可持续能源的未来发展方向之一。
氢燃料电池的核心是电化学反应,即将氢气和氧气通过催化剂催化产生电子流和离子流,从而产生电能。
为了实现这一过程,氢燃料电池需要一系列特定的原料和材料。
首先,氢气作为燃料,需要储存在特殊的氢气储存装置中,常见的储氢材料有压缩氢气储罐和液态氢气储罐。
其次,氧气作为氢燃料电池的氧化剂,通常从空气中获取,需要进行净化处理以去除杂质。
此外,氢燃料电池还需要电解质膜、催化剂和双极板等关键材料,以及电堆和燃料电池系统等组成部分。
随着氢燃料电池技术的不断发展和成熟,研究人员对原料和材料的选择和改良也变得越来越重要。
为了提高氢燃料电池的效率和稳定性,减少成本和环境影响,专家们正在不断探索新的原料和材料,并进行系统的研究和优化。
本文将重点探讨氢燃料电池的原料问题,包括氢气的储存方式、氧气的净化方法,以及关键材料的选择和优化等。
通过深入研究这些问题,我们可以更好地理解氢燃料电池技术的发展趋势和挑战,并为未来的研究和应用提供参考和借鉴。
1.2文章结构文章结构部分的内容可以描述文章的整体框架和组织结构。
以下是一个示例:1.2 文章结构本文将按照以下结构来进行讨论和分析:第2节正文第2节将详细介绍氢燃料电池原料的相关内容。
其中,2.1节将重点讨论氢燃料电池原料的要点1,包括其特点、来源以及应用领域等方面的内容。
2.2节将进一步探讨氢燃料电池原料的要点2,包括其生产过程、运输方式以及成本等方面的内容。
通过对这些要点的详细研究和讨论,读者可以更好地了解氢燃料电池原料的重要性和未来发展趋势。
第3节结论第3节将对前文进行总结,并对氢燃料电池原料的发展前景进行展望。
在总结部分,将回顾讨论过的要点,并对其重要性进行强调。
固态储氢概念一、引言固态储氢是指将氢气以物理或化学的方式储存在固体材料中。
固态储氢技术具有储存密度高、安全性好、操作简便等优点,被广泛研究和应用于氢能源领域。
本文将深入探讨固态储氢的概念、原理、应用以及未来发展趋势。
二、固态储氢原理固态储氢是通过物理吸附、化学反应或物理化学结合等方式将氢气储存在固体材料中。
其主要原理可以分为三种:2.1 物理吸附储氢物理吸附储氢是指氢气通过分子间作用力在固体表面吸附的过程。
吸附材料通常是多孔材料,如活性炭、金属有机骨架材料等。
这种储氢方式可以实现供氢和放氢的快速反应,并且不会引起剧烈的化学反应。
但是物理吸附的容量相对较低,需要提高材料孔隙度和增加吸附表面积来提高储氢效率。
2.2 化学反应储氢化学反应储氢是指通过与氢气发生化学反应来储存氢气的过程。
常见的化学反应储氢方式有氢化物储氢和氨基化物储氢。
这种储氢方式储氢容量高,但是放氢反应相对较慢,需要加热或加压来促进放氢反应的进行。
2.3 物理化学结合储氢物理化学结合储氢是指通过物理和化学结合的方式储存氢气。
这种储氢方式结合了物理吸附和化学反应的优点,既可以实现快速的供氢和放氢,又可以提高储氢容量。
常见的物理化学结合储氢材料有金属有机骨架材料、杂化材料等。
三、固态储氢材料固态储氢材料是实现固态储氢的关键。
目前已经发现了许多固态储氢材料,包括吸附材料、氢化物和氨基化物等。
3.1 吸附材料吸附材料是一类具有丰富孔结构和高比表面积的材料,能够通过物理吸附方式储存氢气。
常见的吸附材料有活性炭、金属有机骨架材料、硅胶等。
这些材料具有良好的吸附性能和储氢容量,但是吸附热较低,需要高压来储存氢气。
3.2 氢化物氢化物是一类以金属和非金属元素为主要成分,通过化学反应方式储存氢气的材料。
常见的氢化物有金属氢化物和化合物氢化物。
金属氢化物具有较高的储氢容量,但是放氢反应较慢;化合物氢化物放氢反应相对较快,但是储氢容量较低。
3.3 氨基化物氨基化物是一类以金属和氨基基团为主要成分,通过化学反应方式储存氢气的材料。
氢能源与新型纳米储氢材料摘要:本文介绍了新能源战略下储氢材料的发展,其中单壁碳纳米管和碱金属掺杂的碳富勒烯具有特别好的应用前景。
关键词:单壁碳纳米管;储氢材料;;化学吸附单壁碳纳米管(Single-Walled Carbon Nanotubes,简称为SWCNs)和富勒烯(其分子是由60 个碳原子形成的像足球样的结构,所以也称足球烯)仅在十几年前才问世,由于其特有的机械学、电学及化学性质,从一出现就吸引了众多纳米材料科学家的眼球。
在结构上,SWCNs 可看作是由单层的石墨片卷成的具有纳米尺度直径的微小圆管。
在力学上,它具有100 倍的钢铁的比强度。
因而已被设想作为未来去太空旅游使用的提升缆绳。
在电学上,它具有类似金属或半导体的电导特性。
由此可衍生出大量的微电子学器件。
在化学上,能以其外表面作为化学合成的基质,催化合成许多的超分子化合物;也能以其管腔为基础合成多种单晶纳米线。
然而,近几年SWCNs 在储氢材料方面的应用研究已是异军突起,独树一帜。
氢能源是各国未来能源战略的重点。
最近,Nikitin 等和Chandrakumar等的研究,已经发现SWCNs 和碱金属原子掺杂的富勒烯具有特别高的重量比储氢容量。
这一成果已经为氢燃料汽车走向实用而打下了坚实的基础。
1.新的氢能源战略煤炭、石油、天然气等都属于不可再生性的化石类能源。
科学家们预言这些主要化石类能源资源将在未来数十年至数百年内枯竭。
除了面临化石能源的枯竭威胁外,来自环境保护方面的压力也超来超大。
现在人类每年消耗的化石类燃料所排放的大量二氧化碳等气体,严重地影响了人类生存的星球环境。
值得庆幸的是,经过多年研究科学家们已经发现最清洁的可再生性能源——氢能源。
近10 多年来发达国家高度重视,我国近年来也投入巨资进行相关技术开发研究。
氢有望成为化石类燃料的最好替代能源,其具有许多优点:其一,氢是自然界中最普遍的元素,来源非常丰富,若能利用太阳能从水中制取氢,资源取之不尽,用之不竭。
新型材料储氢合金的研究与发展状况摘要:储氢材料是伴随着氢能利用在最近三十多年才发展起来的新型功能材料。
它在氢能系统中作为氢的存储与输送的载体是一种重要的候选材料。
20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金。
这些合金材料具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物,外在表现为大量“吸收”氢气,同时放出大量热量。
而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。
采用储氢合金来储氢,不仅具有储氢量大、能耗低,工作压力低、使用方便的特点,而且可免去庞大的钢制容器,从而使存储和运输方便而且安全。
氢与储氢材料的组合,将是21世纪新能源—氢能的开发与利用的最佳搭档。
关键词:镁基储氢合金; 机械合金化; 储氢性能; 复合材料前言:纵观历史长河,从最早的化石能源——煤炭、石油、天然气,到后来的蒸汽能、电能,乃至近代的太阳能、风能、水能、潮汐能和热能、生物能、核能等均为人类文明发展做出了不可估量的贡献。
但是,一方面化石燃料的储量有限,据估计[1],现有的石油资源按现在的开采速度到2050年将告耗尽,人类将面临着“世界能源危机”;另一方面,化石燃料作为能源材料造成全球生态环境污染日益严重;温室效应使气候变暖;风、涝、干旱等灾害频频发生,严重影响了人类生存和工、农、林、牧、渔业的发展,而且有愈演愈烈的趋势。
因此,能源和环境问题引起了世界各国的关注,纷纷采取切实措施,保护环境,开发新能源。
氢能正是一种在常规能源危机的出现后,人们期待的一种新的二次能源,而储氢合金材料正是装载氢能的最佳材料。
主题:一、氢能简介氢位于元素周期表之首,它的原子序数为1,在常温常压下为气态,在超低温高压下又可成为液态。
作为能源,氢有以下特点:(1)所有元素中,氢重量最轻。
金属有机骨架化合物作为储氢材料的研究进展一、本文概述随着全球能源需求的持续增长和环境保护意识的日益增强,清洁、高效的能源存储技术成为了当前科技研究的热点。
其中,氢能源因其高能量密度、零污染排放和可再生性等优点,被认为是最具潜力的未来能源之一。
然而,氢气的安全存储和高效运输是实现其广泛应用的关键。
金属有机骨架化合物(Metal-Organic Frameworks,简称MOFs)作为一种新型的多孔材料,因其高比表面积、可调孔径和丰富的功能基团等特性,在储氢材料领域展现出巨大的应用潜力。
本文旨在综述MOFs作为储氢材料的研究进展,从MOFs的结构特点、储氢性能、影响因素以及未来发展方向等方面进行深入探讨,以期为氢能源的安全高效存储提供理论支持和技术指导。
二、金属有机骨架化合物概述金属有机骨架化合物(Metal-Organic Frameworks,简称MOFs)是一类由金属离子或金属团簇与有机配体通过配位键自组装形成的具有高度有序多孔结构的晶体材料。
由于其独特的结构和性质,MOFs 在储氢、催化、分离、传感、药物输送等多个领域展现出巨大的应用潜力。
MOFs的结构多样性是其最突出的特点之一。
通过选择不同的金属离子、有机配体以及合成条件,可以制备出具有不同孔径、形状和功能的MOFs。
这种高度的可设计性和可调性使得MOFs能够针对特定的应用需求进行定制合成。
在储氢领域,MOFs因其高比表面积、低密度和可调的孔结构而备受关注。
其开放的金属位点和可功能化的有机配体为氢气的吸附和存储提供了有利条件。
MOFs还可以通过合成后修饰等方法引入特定的官能团,进一步提高其对氢气的吸附能力和选择性。
然而,MOFs作为储氢材料在实际应用中也面临一些挑战,如稳定性、循环性能以及成本等问题。
因此,如何在保持MOFs高储氢性能的同时提高其稳定性和降低成本是当前研究的热点和难点。
总体而言,金属有机骨架化合物作为一种新型的储氢材料,其独特的结构和性质使其在储氢领域具有广阔的应用前景。
我国氢储运技术现状及发展趋势氢能是能源转型升级的重要载体,是实现碳达峰碳中和的重要解决方案。
氢气储运是连接氢气生产端和需求端的关键桥梁,低成本高效的氢气储运技术是实现氢气大规模应用的必要保障。
01.氢气储存技术根据氢气的存储状态可将氢气储存方式分为常温高压气态储氢、低温液态储氢、有机液态储氢和固态储氢等。
目前,常温高压气态储氢是当前我国最成熟的储氢技术,占绝对主导地位。
低温液态储氢尚处起步阶段,是未来大规模用氢的良好解决方案。
有机液态储氢处于技术研发阶段,是未来有发展潜力的氢气低价储运技术之一。
固态储氢尚处示范阶段,具有实用化前景的是金属氢化物基储氢合金。
•常温高压气态储氢是指将氢气压缩在储氢容器中,通过增压来提高氢气的容量,满足日常使用。
这是一种应用广泛、灌装和使用操作简单的储氢方式,具有成本低、能耗低、充放速度快的特点。
缺点是储氢密度低,安全性较差,只能适用于小规模、短距离的运输场景。
•低温液态储氢属于物理储存,是一种深冷氢气存储技术。
氢气经过压缩后,深冷到21K(约-253°C)以下,使之变为液氢,然后储存在专用的低温绝热液氢罐中,密度可达70.78kg/cm3,是标准情况下氢气密度的850倍左右,体积比容量大,适用于大规模、远距离的氢能储运。
缺点是对储氢容器的绝热要求很高,液化和运输过程中能耗大。
•有机液态储氢属于化学储存,利用有机液体(环己烷、甲基环己烷等)与氢气进行可逆加氢和脱氢反应,能够实现常温常压下氢气储运。
这种储氢方式的优势在于储氢密度比较高、安全性高。
缺点是需要配备相应的加氢脱氢装置,流程繁琐,效率较低,增加储氢成本,影响氢气纯度。
•固态储氢是以金属氢化物、化学氢化物或纳米材料等作为储氢载体,通过化学吸附和物理吸附的方式实现储氢,具有储氢密度高、储氢压力低、安全性好、放氢纯度高等优势。
缺点是成本高,放氢需要较高温度下进行。
02.氢气输送技术根据储氢状态氢气输送分为气态输送、液态输送和固态输送,气态和液态为目前的主流方式。