小学六年奥数第4讲 简便运算
- 格式:doc
- 大小:34.50 KB
- 文档页数:3
- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数Array之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a -b×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p△q=4×q -(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p△q=4×q-(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p△q=p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学奥数举一反三(六年级)1-20第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级奥数《简便计算》一·夯实基础所谓简算,就是利用我们学过的运算法则和运算性质以及运算技巧,来解决一些用常规方法在短时间内无法实现的运算问题。
简便运算中常用的技巧有“拆”与“凑”,拆是指把一个数拆成的两部分中含有一个整十·整百·整千或者有利于简算的数,凑是指把几个数凑成整十·整百·整千……的数,或者把题目中的数进行适当的变化,运用运算定律或性质再进行简算。
让我们先回忆一下基本的运算法则和性质;乘法结合律;a×b×c=a×【b×c】=【a×c】×b乘法分配律;a×【b+c】=a×b+a×c a×【b-c】=a×b-a×c二·典型例题例1,【1】9999×7778+3333×6666 【2】765×64×0,5×2,5×0,125例2.399,6×9-1998×0,8例3.654321×123456-654322×123455三·熟能生巧1.【1】888×667+444×666 【2】9999×1222-3333×6662.【1】400,6×7-2003×0,4 【2】239×7,2+956×8,23.【1】1989×1999-1988×2000 【2】8642×2468-8644×2466四·拓展演练1.1234×4326+2468×28372.275×12+1650×23-3300×7,53.7654321×1234567-7654322×1234566六·星级挑战★1.31÷5+32÷5+33÷5+34÷5★★★2.3333×4+5555×5+7777×7★★★3.99+99×99+99×99×99★★★4, 48,67×67+3,2×486,7+973,4×0,05第4讲 简便运算【2】一·夯实基础在进行分数的运算时,可以利用约分法将分数形式中分子与分母同时扩大或缩小若干倍,从而简化计算过程;还可以运用分数拆分的方法使一些复杂的分数数列计算简便。
举一反三六年级小学奥数1--40讲一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如;*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为;a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1;1,将新运算“*”定义为;a*b=(a+b)×(a-b),。
求27*9。
2,设a*b=a2+2b ,那么求10*6和5*(2*8)。
3,设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定;p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2;1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
第四讲 曲线形问题综合提高本讲知识点汇总:一、 基本曲线形计算1. 圆:2ππC r d =⨯⨯=⨯;222ππ44πd C S r =⨯==. 2. 扇形:2π360nl r =⨯⨯⨯; 2π3602n l r S r ⨯=⨯⨯=. 3. 圆柱体:V S h =⨯底.4. 圆锥体:13V S h =⨯⨯底.二、 曲线形计算技巧:1. 割补法2. 平移、旋转3. 重叠(容斥)例1. (1)如图1,有一个长是10、宽是6的长方形,那么两个阴影部分的面积之差为多少?(π取3.14)(2)如图2,三角形ABC 是直角三角形,AB 长40厘米,以AB 为直径做半圆,阴影部分①比阴影部分②的面积小28平方厘米.求AC 的长度.(π取3.14)「分析」(1)阴影是不规则图形,无法直接求出面积,需要进行割补整体法求解;(2)阴影分别加上空白部分均会变成规则图形直接求出面积.练习1、如图,扇形AOB 的圆心角是90度,半径是2,C 是弧AB 的中点.求两个阴影部分的面积差.(π取3.14)例2. (1)如下左图,两个相同的直角扇形放在一起,重叠部分恰好是一个长方形,且长和宽分别为15和5.那么阴影部分的面积是多少?(π取3.14)(2)如下右图,以直角三角形ABC 的三条边为直径做半圆,已知6AB =,8AC =,那么,图中阴影部分的面积是多少?(π取3.14)「分析」(1)正方形的对角线刚好是扇形的半径;(2)这道题目可能会用到勾股定理.BC图1图2练习2、(1)如下左图,三角形ABC 是等腰直角三角形,以AC 为直径画半圆,以BC 为半径画扇形.已知10ACBC ==,那么阴影部分的面积是多少?(π取3.14)(2)如下右图,由一个长方形与两个直角扇形构成,其中阴影部分的面积是多少?(π取3.14)例3. 如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为10米的正方形,绳长是20米,那么小狗的活动范围能有多少平方米?(建筑外墙不可逾越,小狗身长忽略不计,π取3)「分析」首先画出小狗活动范围的图形,然后根据每块扇形的半径求出面积.练习3、如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为2米的等边三角形,绳长是3米,那么小狗的活动范围是多少?(建筑外墙不可逾越,小狗身长忽略不计,π取3)狗A 狗例4.一个半径为1的圆绕着边长为4的正方形滚动一周又回到原来的位置,扫过的面积是多少?(π取3.14)「分析」注意拐角处扇形的半径.练习4、一个半径为1的圆绕着边长为4的正六边形滚动一周又回到原来的位置,扫过的面积是多少?(π取3.14)例5.面上有7个大小相同的圆,位置如图所示.如果每个圆的面积都是10,那么阴影部分的面积是多少?(π取3.14)「分析」这道题目较难,需要进行巧妙的割补求解.例6.(1)如下左图,将对角线长度为6的正方形,按照如图所示的方式旋转一周,那么得到的旋转体的体积是多少?(π取3.14)(2)如下右图,将上底是2,下底是4,高是4的梯形,按照图中所示的方式旋转一周,那么得到的旋转体的体积是多少?(π取3.14)「分析」求出必要数据,结合公式即可得出答案.作业1. 如下图所示,如果正方形的边长为2,那么阴影部分的面积为多少?(π取3.14)2. 在下图中大圆的面积为30,三个小圆完全相同,那么图中阴影部分的面积为多少?3. 如图,阴影部分的面积是多少?(π取3.14)4. 一个半径为1的圆绕着边长为4的等边三角形滚动一周又回到原来的位置时,扫过的面积是多少?(π取近似值3.14)5. 如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为4米的等边三角形,绳长是6米,那么小狗的活动范围是多少?(建筑外墙不可逾越,小狗身长忽略不计,π取3)4狗第四讲 曲线形问题综合提高例7. 答案:(1)18.5;(2)32.8.解答:(1)大块“阴影+空白”刚好构成直角扇形,小块“阴影+空白”刚好构成长方形,所以直角扇形与长方形的面积差即是两块阴影面积的差21106018.54π⨯⨯-=. (2)“阴影①+空白”刚好构成半圆,“阴影②+空白”刚好等于直角三角形,半圆面积为21206282π⨯⨯=,所以,直角三角形面积为62828656+=,另一条直角边32.8AC =.例8. 答案:242.5;24.解答:(1)两个直角扇形面积之和减去长方形面积即为阴影面积: ()221515752242.52π⨯⨯+-⨯=.例9. 答案:1050.解答:狗的活动范围如图,分为A 、B 、C 三部分, 求面积得:22312010350105042πππ⨯⨯+⨯⨯==平方米.例10. 答案:44.56.解答:四个半径为2的直角扇形+四个相同的长方形 即为该圆扫过的面积,212424444.564π⨯⨯⨯+⨯⨯=.例11. 答案:20.解答:阴影包括中间的一个圆和周围六个花瓣状的小小图形.这个图形可以割补成一个顶角60°的扇形,因此六个这样的图形面积和正好等于一个圆;阴影部分的面积等于两个圆的面积,为20.例12. 答案:56.52;879275. 解答:(1)可以把得到的立体图形看做两个锥体,体积为2133256.523π⨯⨯⨯⨯=;可以把得到的立体图形看做两个锥体体积之差,体积为: 2211879248243375ππ⨯⨯⨯-⨯⨯⨯=. 练习:练习1、答案:0.简答:两个阴影分别加上下部的空白部分可得到扇形和半圆,而扇形和半圆面积相等,所以,面积之差是0.练习2、答案:28.5;12.765.简答:(1)半圆+圆心角是45度的扇形面积之和减去直角三角形面积:22111510101028.5282ππ⨯⨯+⨯⨯-⨯⨯=;(2)阴影面积为两个直角扇形面积之和减去长方形面积,2211521012.76544ππ⨯⨯+⨯⨯-=.练习3、答案:24.5.简答:解法同例3,首先画出小狗活动的范围图,然后把活动范围分成几个扇形来求解,2230024031=24.5360360ππ⨯⨯+⨯⨯.练习4、答案:60.56.简答:圆所扫过的面积可以分成6个长方形和6个扇形,面积之和为24262=60.56π⨯⨯+⨯.作业1.答案:0.86.简答:正方形的面积是4,圆的面积是3.14,所以,阴影的面积是0.86.2.答案:20.简答:大圆的半径是小圆的三倍,所以,大圆的面积是小圆面积的9倍,那么,阴影面积是整个面积的三分之二,即阴影面积为20.3.答案:4.56.简答:阴影面积为两个半圆的面积之和减去直角形的面积,两个半圆的面积之和为12.56,直角三角形的面积是8,所以,阴影面积为4.56.4.答案:36.56.简答:扫过的面积为三个相同的长方形,加三个相同的圆心角为120度的扇形,长方形总面积2×4×3=24,扇形总面积为12.56,所以,扫过的整个面积是36.56.5.答案:98.简答:活动范围由三个扇形构成,最大的扇形面积为半径是6的圆的四分之三,即90,两个小扇形的面积之和为18,总面积为98.。
1 / 148第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学奥数举一反三(六年级)1-20第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
[键入文字][键入文字] 六年级拔尖数学目录第1讲定义新运算第2讲简单的二元一次不定方程第3讲分数乘除法计算第4讲分数四则混合运算第5讲估算第6讲分数乘除法的计算技巧第7讲简单的分数应用题(1)第8讲较复杂的分数应用题(2)第9讲阶段复习与测试(略)第10讲简单的工程问题第11讲圆和扇形第12讲简单的百分数应用题第13讲分数应用题复习第14讲综合复习(略)第15讲测试(略)第16讲复杂的利润问题(2)第一讲定义新运算在加.减。
乘。
除四则运算之外,还有其它许多种法则的运算。
在这一讲里,我们学习的新运算就是用“#”“*”“Δ”等多种符号按照一定的关系“临时”规定的一种运算法则进行的运算。
例1:如果A*B=3A+2B,那么7*5的值是多少?例2:如果A#B表示照这样的规定,6#(8#5)的结果是多少?例3:规定求2Δ10Δ10的值。
例4:设M*N表示M的3倍减去N的2倍,即M*N=3M-2N(1)计算(14 *10)*6(2)计算(*)*(1 *)例5:如果任何数A和B有A¤B=A×B-(A+B)求(1)10¤7(2)(5¤3)¤4(3)假设2¤X=1求X例6:设P∞Q=5P+4Q,当X∞9=91时,1/5∞(X∞ 1/4)的值是多少?例7:规定X*Y=,且5*6=6*5则(3*2)*(1*10)的值是多少?例8:▽表示一种运算符号,它的意义是已知那么20088▽2009=?巩固练习1、已知2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规则类推(1)3▽2 (2)5▽3(3)1▽X=123,求X的值2、已知1△4=1×2×3×4;5△3=5×6×7计算(1)(4△2)+(5△3)(2)(3△5)÷(4△4)3、如果A*B=3A+2B,那么(1)7*5的值是多少?(2)(4*5)*6 (3)(1*5)*(2*4)4、如果A〉B,那么{A,B}=A;如果A〈B,那么{A,B}=B;试求(1){8,0.8}(2){{1。
27%糖水中糖的质量是(250-22%x)克。
我们还有哪个已知量没有利用呢?(引导学生发现用总质量列出等式)师:22%糖水的质量是x克,27%糖水中糖的质量是(250-22%x)克。
把27%糖水溶液,当作单位“1”,通过除法我们就可以算出27%糖水的质量了,列等式求解。
板书:解:设22%糖水为x克,1000×25%=250(克)x+(250-22%x)÷27%=1000x=4001000-400=600(克)答:22%的糖水需要400克,27%的糖水需要600克。
师:老师这还有一种快速求解该类型的方法,它也是我们以后要学习的知识点的思想结晶。
老师简单讲下方法,有兴趣的同学不懂可以课后再问老师。
(看学生的水平情况决定是否讲授)师:我们把这种方法叫做十字交叉法,它是解决混合浓度问题非常高效的方法。
师:我们把2种溶液的溶度记作a,b,(b>a),混合后的浓度为c。
列式:为了使得a、b两种浓度混合后为浓度c,则a浓度的溶液:b浓度的溶液为(b-c):(c-a)。
师:那么以本题为例,a是22%,b是27%,c是25%。
两个溶液的质量比是多少?(引导基础好的同学对该知识点的了解)生:……师:不错,22%的溶液:27%溶液=(27%-25%):(25%-22%)=2:3。
总质量是1000 克,所以运用比的知识就能快速求解了。
练习5:甲、乙两种酒各含酒精75%和55%,要配制含酒精65%的酒3000克。
应当从这两种酒中各取多少克?分析:抓住两2个已知量,混合后的溶质、溶液,转换成同一个未知量,列出等式求解。
板书:解:设75%的酒精x克,3000×65%=1950(克)x+(1950-75%x)÷55%=3000。
六年级拔尖数学目录第1讲定义新运算第2讲简单的二元一次不定方程第3讲分数乘除法计算第4讲分数四则混合运算第5讲估算第6讲分数乘除法的计算技巧第7讲简单的分数应用题(1)第8讲较复杂的分数应用题(2)第9讲阶段复习与测试(略)第10讲简单的工程问题第11讲圆和扇形第12讲简单的百分数应用题第13讲分数应用题复习第14讲综合复习(略)第15讲测试(略)第16讲复杂的利润问题(2)第一讲定义新运算在加.减.乘.除四则运算之外,还有其它许多种法则的运算。
在这一讲里,我们学习的新运算就是用“#”“*”“Δ”等多种符号按照一定的关系“临时”规定的一种运算法则进行的运算。
例1:如果A*B=3A+2B,那么7*5的值是多少?例2例3例4例5:如果任何数A和B有A¤B=A×B-(A+B)求(1)10¤7(2)(5¤3)¤4(3)假设2¤X=1求X例6:设P∞Q=5P+4Q,当X∞9=91时,1/5∞(X∞ 1/4)的值是多少?例7:规定X*Y=XY YAX+,且5*6=6*5则(3*2)*(1*10)的值是多少?例81(3)1▽X=123,求X的值2、已知1△4=1×2×3×4;5△3=5×6×7计算(1)(4△2)+(5△3)(2)(3△5)÷(4△4)3、如果A*B=3A+2B,那么(1)7*5的值是多少?(2)(4*5)*6 (3)(1*5)*(2*4)4、如果A>B,那么{A,B}=A;如果A<B,那么{A,B}=B;试求(1){8,0.8}(2){{1.9,1.901}1.19}5、N为自然数,规定F(N)=3N-2 例如F(4)=3×4-2=10试求:F(1)+F(2)+F(3)+F(4)+F(5)+……+F(100)的值6、如果1=1!1×2=2!1×2×3=3!……1×2×3×4×……×100=100!那么1!+2!+3!+……+100!的个位数字是几?(第四届小学生“迎春杯”数学决赛试题)7、若“+、-、×、÷、=、()”的意义是通常情况,而式子中的“5”却相当于“4”。
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
2020年暑假六年级奥数第四讲:分数乘除法11、运算定律(复习)1.1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示: a+b=b+a1.2、加法结合律:先把前面两个数相加,或者先把后面两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c=a+(b+c)1.3、乘法交换律:交换两个因数的位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a1.4、乘法结合律:先乘前两个数,或先乘后两个数,积不变。
这叫做乘法结合律。
用字母表示:a×b×c= a×(b×c )1.5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b) ×c= a×c+ b×c1.6、减法的运算性质: a-(b+c)=a-b-c a-b-c= a-(b+c)1.7、除法的运算性质:a÷(b×c)= a÷b÷c a÷b÷c= a÷(b×c)2、小数(复习)2.1、一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2.2、有限小数:小数部分的数位是有限的小数,叫做有限小数。
2.3、无限小数:小数部分的数位是无限的小数,叫做无限小数。
2.4、小数的性质小数的末尾添上0或者去掉0,小数的大小不变. 2.5、小数点数位移动引起小数大小的变化小数点向右移动一位、两位、三位……原来的数就扩大10倍、100倍、1000倍……小数点向左移动一位、两位、三位……原来的数就缩小10倍、100倍、1000倍……如果要把一个数扩大或缩小10倍、100倍……只需要移动小数点,数位不够时用0补足.2.6、循环小数 一个小数的小数部分,从某一位起,有一个或几个数字依次不断重复出现,这样的数叫做循环小数。
第4讲简便运算(三)
一、知识要点
在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算。
二、精讲精练
【例题1】
计算:(1)44
45
×37 (2) 27×
15
26
(1)原式=(1-
1
45
)×37
=1×37-
1
45
×37
=37-37 45
=36
8 45
练习1
用简便方法计算下面各题:
1. 14
15
×8 2.
2
25
×126 3. 35×
11
36
4. 73×74
75
5.
1997
1998
×1999
【例题2】
计算:73
1
15
×
1
8
原式=(72+16
15
)×
1
8
=72×1
8
+
16
15
×
1
8
=9+
2 15
=9
2
15
(2)原式=(26+1)×
15
26
=26×
15
26
+
15
26
=15+
15
26
=15
15
26
练习2
计算下面各题:
1. 64
1
17
×
1
9
2. 22
1
20
×
1
21
3. 1
7
×57
1
6
4. 41
1
3
×
3
4
+51
1
4
×
4
5
【例题3】
计算:1
5
×27+
3
5
×41
原式=3
5
×9+
3
5
×41
=3
5
×(9+41)
=3
5
×50
=30
练习3
计算下面各题:
1. 1
4
×39+
3
4
×27 2.
1
6
×35+
5
6
×17 3.
1
8
×5+
5
8
×5+
1
8
×10
【例题4】
计算:5
6
×
1
13
+
5
9
×
2
13
+
5
18
×
6
13
原式=1
6
×
5
13
+
2
9
×
5
13
+
6
18
×
5
13
=(1
6
+
2
9
+
6
18
)×
5
13
=13
18
×
5
13
=
5 18
练习4
计算下面各题: 1. 117 ×49 +517 ×19 2. 17 ×34 +37 ×16 +67
×112
3.59
×791617 +50×19 +19 ×517 4. 517 ×38 +115 ×716 +115
×312
【例题5】 计算:(1)166
120 ÷41 (2) 1998÷19981998
1999
解: (1)原式=(164+21
20
)÷41 =164÷41+41
20
÷41 =4+
120
=4120
练习5
计算下面各题:
1. 5425 ÷17
2. 238÷238238239
3. 163113 ÷411
39
(2)原式=1998÷1998×1999+1998
1999
=1998÷1998×2000
1999
=1998×1999
1998×2000
=19992000。