指数对数函数关系
- 格式:ppt
- 大小:405.00 KB
- 文档页数:11
对数与指数的之间的关系理解和归纳知识点:对数与指数之间的关系理解和归纳一、对数与指数的定义和性质1.对数的定义:对数是幂的指数,用来表示幂的次数。
2.指数的定义:指数是基数的幂,用来表示幂的次数。
3.对数的基本性质:(1)对数的底数必须大于0且不等于1。
(2)对数的真数必须大于0。
(3)对数的值是实数。
4.指数的基本性质:(1)指数的底数必须大于0且不等于1。
(2)指数的值可以是正数、负数或0。
(3)指数的幂是实数。
二、对数与指数的互化关系1.对数与指数的互化公式:(1)如果y=log_a(x),则a^y=x。
(2)如果y=a^x,则log_a(y)=x。
2.对数与指数互化的意义:(1)对数可以用来求解指数方程。
(2)指数可以用来求解对数方程。
三、对数与指数的增长速度1.对数增长速度:对数函数的增长速度逐渐变慢。
2.指数增长速度:指数函数的增长速度逐渐变快。
四、对数与指数的应用1.对数与指数在科学计算中的应用:(1)天文学:计算星体距离。
(2)生物学:计算细菌繁殖。
(3)经济学:计算货币贬值。
2.对数与指数在实际生活中的应用:(1)通信:计算信号衰减。
(2)计算机科学:计算数据压缩率。
(3)物理学:计算放射性物质衰变。
五、对数与指数的图像和性质1.对数图像:对数函数的图像是一条斜率逐渐减小的曲线。
2.指数图像:指数函数的图像是一条斜率逐渐增大的曲线。
3.对数与指数的性质:(1)对数函数的定义域是(0,+∞),值域是R。
(2)指数函数的定义域是R,值域是(0,+∞)。
(3)对数函数和指数函数都是单调函数。
六、对数与指数的关系总结1.对数与指数是幂的两种表示形式,它们之间可以相互转化。
2.对数与指数具有不同的增长速度,对数增长速度逐渐变慢,指数增长速度逐渐变快。
3.对数与指数在科学研究和实际生活中有广泛的应用。
4.对数与指数的图像和性质反映了它们的单调性和变换规律。
通过以上对对数与指数之间关系的理解和归纳,我们可以更好地掌握对数与指数的知识,并在学习和生活中灵活运用。
指数函数与对数函数的基本概念数学中,指数函数与对数函数是两种重要的函数类型,广泛应用于各个领域,包括科学、工程、经济和金融等。
本文将介绍指数函数和对数函数的基本概念,包括定义、性质和应用等方面的内容。
一、指数函数的基本概念指数函数是一种形如f(x) = a^x的函数,其中a为底数,x为幂指数。
指数函数中,底数为正数且不等于1,幂指数可以是任意实数。
这样的函数在数学上被称为指数函数。
指数函数的定义域为实数集R,值域为正实数集(0,+∞)。
当底数a 大于1时,指数函数的图像在坐标系中呈现上升趋势;而当0<a<1时,图像则呈现下降趋势。
指数函数具有如下性质:1. 正指数:当a>1时,指数函数的值随着幂指数的增大而增大。
2. 负指数:当0<a<1时,指数函数的值随着幂指数的增大而减小。
3. 幂指数为0:指数函数中,当幂指数为0时,函数的值恒为1。
4. 幂指数为1:指数函数中,当幂指数为1时,函数的值恒为底数的值。
5. 幂指数为负无穷大:指数函数在幂指数为负无穷大时,函数的值趋近于0。
6. 幂指数为正无穷大:指数函数在幂指数为正无穷大时,函数的值趋近于正无穷大。
指数函数在实际应用中有许多重要的用途,如在经济学和金融学中,指数函数常用来描述复利增长和指数增长;在自然科学中,指数函数用来描述气体的压强和物质的放射性衰变等。
二、对数函数的基本概念对数函数是指数函数的逆运算,用来描述指数运算中的幂指数。
对数函数的一般形式为f(x) = logₐx,其中a为底数,x为真数。
对数函数中,底数a为正实数且不等于1,真数x为正实数。
对数函数的定义域为正实数集(0,+∞),值域为实数集R。
对数函数具有如下性质:1. 若a^c = b,则logₐb = c。
即,对数函数描述了指数运算中,幂指数和幂结果之间的关系。
2. 底数为正实数且不等于1时,对数函数的值随着真数的增大而增大。
3. 对数函数中,当真数为1时,函数的值恒为0。
对数与指数函数是数学中常见的两种特殊函数,它们在自然科学、工程学以及金融领域等各个方面都有广泛的应用。
本文将从定义、特点以及应用方面来探讨对数与指数函数。
首先,我们先来了解对数函数。
对数函数是指数函数的反函数。
设a是大于0且不等于1的实数,其中a称为底数。
对于任意实数x,如果a^x=y,那么x叫做以a为底y的对数,记作x=loga(y)。
例如,以10为底10000的对数为4,即log10(10000)=4。
对数函数也可以写作ln(x),其中ln表示自然对数,底数是e(自然常数)。
对数函数有以下特点:首先,底数小于1时,对数函数是递增的;底数大于1时,对数函数是递减的;底数等于1时,对数函数是常数函数。
其次,对数函数有一个重要的性质就是对数函数的定义域是正数集,值域是全体实数集。
接下来,我们来了解指数函数。
指数函数是以指定实数为底数的以e为底的指数函数。
指数函数的一般形式为f(x)=a^x,其中底数a大于0且不等于1。
例如,2^3=8,其中底数为2,指数为3,结果为8。
在指数函数中,底数a决定了函数的特征。
当底数a大于1时,指数函数具有递增特性;当底数a小于1时,指数函数具有递减特性;当底数a等于1时,指数函数为常数函数。
指数函数也有一些重要的特点:首先,指数函数的定义域是全体实数集,值域是正数集。
其次,指数函数具有平移、伸缩和反射的性质。
平移指的是在x轴上移动函数的位置;伸缩指的是函数的纵坐标上下伸缩;反射指的是函数与x轴之间的关系。
对数函数和指数函数在应用中有很多重要的作用。
在自然科学领域,指数函数可以用来描述物体的增长或衰减过程,例如放射性元素的衰变、细胞的增长等。
对数函数可以用来计算难以进行普通运算的乘法和除法,从而简化问题的解决。
在工程学领域,对数函数和指数函数可以用来描述复杂电路中的电流和电压等相关关系。
在金融领域,对数函数和指数函数被广泛应用于计算复利、利润等。
此外,对数函数和指数函数还在图像处理、信号处理、概率统计等领域中发挥着重要作用。
指数函数和对数函数是高中数学数学分析中较为重要的函数类型,它们不仅常见于数学领域,而且广泛应用于科学、工程等多个领域。
本文将引导读者了解的定义、性质、应用以及它们之间的联系。
一、指数函数指数函数可以被定义为具有形式$f(x)=a^x$的函数,其中a是正的常数,x可以是任何实数。
指数函数的图像通常表现出指数增长或指数衰减的特征,根据a的不同取值,可以分为指数增长和指数衰减两种情况。
例如,当a>1时,函数f(x)=a^x会不断增长,当0<a<1时,函数会不断衰减。
特别地,当a=1时,函数f(x)=1^x 恒等于1。
指数函数的常用性质有:1.当a>1时,指数函数在定义域上单调递增,并且在x=0处的值恒为1;当0<a<1时,指数函数在定义域上单调递减,且在x=0处的值恒为1.2.指数函数的导数也是指数函数,即[latex]\frac{d}{dx}a^x[latex]=a^x \times ln(a)3.指数函数f(x)=a^x是以a为底的幂函数f(x)=b^x的反函数,即f^{-1}(x)=log_a(x)指数函数与对数函数有着密切联系。
下面我们将介绍对数函数。
二、对数函数对数函数一般表示为g(x)=log_a (x),其中a是正实数,且a ≠ 1,x是正实数。
对数函数的图像表现为一条光滑曲线,通常在a>1的时候,曲线向上迅速爬升,而在a<1的时候,曲线向下迅速下降。
对数函数的常用性质有:1.定义域为(x,∞);值域为(-∞,∞)2.当x=a 时,g(x)=13.当x>1时,log_a (x) > 0;当0<x<1时,log_a (x) < 04.对数函数g(x)=log_a(x)是指数函数f(x)=a^x的反函数,即a^{g(x)} = x三、指数函数的应用指数函数在生态学、生物学、物理学、经济学、金融学等多个领域有广泛应用。
指数函数和对数函数的转换公式
指数函数和对数函数是数学中比较重要的函数类型,它们有一些相互转化的公式,下面是其中的一些:
1. 对数函数与指数函数的基数转换公式:
如果 a>0 且 a≠1,那么对于任意实数 x,有以下等式成立:
loga(x)=ln(x)/ln(a) (其中 ln 表示以 e 为底的自然对数)
a^x=e^(xlna)
2. 对数函数与指数函数的对称性:
指数函数和对数函数在 y=x 直线上对称,也就是说,如果将指
数函数 y=a^x 沿 y=x 直线翻折,那么就得到了对数函数 y=loga(x),反过来也一样。
3. 指数函数的性质:
指数函数 y=a^x (a>0 且 a≠1) 的性质包括:
a>1 时,函数图像上升且无上界;0<a<1 时,函数图像下降且无下界;a=1 时,函数为常函数 y=1。
指数函数的反函数是对数函数,也就是说,指数函数 y=a^x 与
对数函数 y=loga(x) 是互为反函数的。
4. 对数函数的性质:
对数函数 y=loga(x) (a>0 且 a≠1) 的性质包括:
a>1 时,函数图像上升且无上界;0<a<1 时,函数图像下降且无下界;a=1 时,函数无意义。
对数函数的反函数是指数函数,也就是说,对数函数 y=loga(x)
与指数函数 y=a^x 是互为反函数的。
以上就是指数函数和对数函数的一些转换公式和性质,它们在数学中有着广泛的应用。
指数函数与对数函数知识点总结指数函数与对数函数是高中数学中的重要内容,也是应用数学中常见的数学模型。
指数函数与对数函数既有相似之处又有一些不同点,下面是对这两个函数的一些基本特点进行总结。
一、指数函数指数函数的定义形式为:y=a^x,其中a为底数,x为指数,a>0,且a≠1。
1. 基本性质:(1)当a>1时,指数函数是增函数;当0<a<1时,指数函数是减函数。
(2)当x>0时,指数函数是正值函数;当x<0时,指数函数是正值函数。
(3)当x=0时,指数函数的值为1。
(4)当x为无穷大时,指数函数可能趋于无穷大或者趋于0。
2. 反函数:指数函数的反函数称为对数函数,记作y=logₐx,其中a为底数,x为真数,a>0,且a≠1。
3. 基本性质:(1)对数函数y=logₐx是定义在(0,+∞)上的减函数。
(2)当x=1时,对数函数的值为0。
(3)当x>1时,对数函数是正值函数;当0<x<1时,对数函数是负值函数。
(4)当x趋近于0时,对数函数趋近于负无穷大;当x趋近于正无穷大时,对数函数趋近于无穷大。
4. 常用公式:(1)换底公式:logₐb=logₐc·log_cb,可用于将对数函数的底数换成我们熟悉的底数,如换底公式常用来求解以10为底和以e为底的对数函数。
(2)指数函数的复合函数性质:如果f(x)是指数函数y=a^x,g(x)是一个函数,那么(f°g)(x)=a^(g(x))。
二、对数函数对数函数是指数函数的反函数,对数函数的定义形式为:y=logₐx,其中a为底数,x为真数,a>0,且a≠1。
1. 基本性质:(1)对数函数y=logₐx是定义在(0,+∞)上的减函数。
(2)当x=1时,对数函数的值为0。
(3)当x>1时,对数函数是正值函数;当0<x<1时,对数函数是负值函数。
(4)当x趋近于0时,对数函数趋近于负无穷大;当x趋近于正无穷大时,对数函数趋近于无穷大。
指数对数公式指数对数公式是数学中的重要公式之一,广泛应用于科学、工程和经济等领域。
它们为我们解决各种问题提供了有效的工具和方法。
在本文中,我们将深入探讨指数对数公式的原理、应用和意义。
让我们来了解指数和对数的基本概念。
指数是一个数学运算符,表示对一个数进行连乘的运算。
例如,2的3次方表示将2连乘3次,即 2 × 2 × 2 = 8。
对数则是指数运算的逆运算,表示求解指数运算的过程中使用的指数是多少。
例如,以10为底的对数函数中,log10 100 = 2,表示10的2次方等于100。
指数对数公式是指数和对数之间的等式关系。
其中最常见的是指数函数和对数函数的互为反函数关系。
即指数函数y = a^x和对数函数y = loga x互为反函数,其中a为底数,x和y分别为指数和对数的运算数。
指数对数公式的应用非常广泛。
在科学领域,它们常用于描述物质的增长、衰减和变化规律。
例如,放射性衰变和细胞分裂等过程都可以用指数函数来描述。
在工程领域,指数对数公式被广泛应用于电路分析、信号处理和控制系统等方面。
在经济学中,指数对数公式可以用于计算复利和利率等问题。
指数对数公式的意义在于它们提供了一种简洁、直观的数学表示方法,能够有效地描述各种复杂的现象和问题。
通过指数对数公式,我们可以更好地理解和分析自然界和人类活动中的各种现象和规律。
然而,需要注意的是,指数对数公式并不是万能的,它们只能适用于特定的问题和情境。
在实际应用中,我们还需要结合具体问题的特点和要求,选择合适的数学工具和方法。
总结起来,指数对数公式是数学中重要的公式之一,具有广泛的应用领域和重要的意义。
通过深入理解和应用指数对数公式,我们可以更好地解决各种实际问题,推动科学技术的发展和社会的进步。
希望本文能够对读者在学习和应用指数对数公式方面有所帮助。
指数函数和对数函数的关系指数函数和对数函数是数学中非常重要的两类函数,它们有着密切的关系。
指数函数是具有形如f(x)=a^x的函数,其中a是一个常数且a>0且不等于1,x是自变量;而对数函数是具有形如f(x)=loga(x)的函数,其中a是一个常数且a>0且不等于1,x是自变量。
接下来,我们来详细探讨指数函数和对数函数的关系。
1.定义关系:f(g(x))=a^(loga(x))=xg(f(x))=loga(a^x)=x也就是说,对于指数函数f(x)和对数函数g(x),当它们的自变量和函数的定义域和值域匹配时,它们的函数值相互等于自变量。
2.特点对比:- 指数函数f(x)=a^x是增长的函数,也就是说随着x的增大,函数值也随之增大;而对数函数g(x)=loga(x)是上升的函数,它的函数值随着x的增大而增加。
- 当a>1时,指数函数f(x)=a^x的图像是上升的且没有上界;而对数函数g(x)=loga(x)的图像是上升的且有一个水平渐近线y=0。
- 当0<a<1时,指数函数f(x)=a^x的图像是下降的且没有下界;而对数函数g(x)=loga(x)的图像是下降的且有一个水平渐近线y=0。
-指数函数的定义域为实数集R,值域为正实数集(0,+∞);而对数函数的定义域为正实数集(0,+∞),值域为实数集R。
3.换底公式:另一个重要的关系是指数函数和对数函数的换底公式。
对于任意两个正实数a和b,以及a不等于1,b不等于1,有以下换底公式:loga(b) = logc(b) / logc(a)其中,c是一个任意正实数且不等于1、换底公式的含义是,以任意底c取对数的结果都是等价的,只是在数值上有所差异。
4.解方程与求导关系:- 解指数方程通常需要利用对数函数,例如求解a^x=b的x时,可以取对数得到x=loga(b)。
- 解对数方程通常需要利用指数函数,例如求解loga(x)=b的x时,可以取指数得到x=a^b。
高中数学中的指数函数与对数函数指数函数和对数函数是高中数学中非常重要的概念。
指数函数是基于指数的函数关系,而对数函数则是指数函数的逆运算。
本文将从定义、性质和应用等方面综述高中数学中的指数函数与对数函数。
一、指数函数的定义与性质指数函数是以自然常数e为底的幂函数,其一般形式为 f(x) = a^x,其中a为常数且大于0且不等于1,x为自变量,f(x)为因变量。
指数函数的定义中,底数a决定了函数的增长速度。
当0<a<1时,指数函数呈现递减趋势;当a>1时,指数函数呈现递增趋势。
指数函数的性质包括:1. 任何指数函数f(x) = a^x都有f(0) = 1的性质,即对数轴上的横坐标为0处的函数值为1。
2. 指数函数的图像具有一定的对称性质,其对称轴为直线x = 0。
3. 当x1 < x2时,若指数函数f(x)的底数a > 1,则f(x1)<f(x2);若指数函数f(x)的底数0 < a < 1,则f(x1)>f(x2)。
二、对数函数的定义与性质对数函数是指数函数的逆运算。
设b是一个正实数且b ≠ 1,对数函数的一般形式为 f(x) = logb(x),其中x是正实数。
对数函数的定义中,底数b决定了函数的特性。
当0 < b < 1时,对数函数具有递增趋势;当b > 1时,对数函数具有递减趋势。
对数函数的性质包括:1. 任何对数函数f(x) = logb(x)都有f(1) = 0的性质,即对数轴上的横坐标为1处的函数值为0。
2. 对数函数的图像具有一定的对称性质,其对称轴为直线y = x。
3. 当x1 < x2时,若对数函数f(x)的底数b > 1,则f(x1) > f(x2);若对数函数f(x)的底数0 < b < 1,则f(x1) < f(x2)。
三、指数函数与对数函数的应用指数函数和对数函数在实际生活和科学研究中有着广泛的应用。
以下列举几个典型的应用场景:1. 经济增长模型:许多经济增长模型是基于指数函数的增长模式,例如Solow模型和经济增长中的人口增长模型。
指数函数与对数函数知识点总结一、指数函数的定义与性质1. 定义指数函数是以底数a(a>0且a≠1)为底的函数,一般表示为y=a^x,其中a是底数,x是指数,y是函数值。
2. 性质⑴当a>1时,指数函数是递增函数,图像上开;当0<a<1时,指数函数是递减函数,图像下降。
⑵当x=0时,a^0=1。
⑶当a>1时,随着x的增大,函数值y=a^x也会增大;当0<a<1时,随着x的增大,函数值y=a^x会减小。
3. 图像当底数a>1时,指数函数的图像是递增的曲线,图像上翘;当0<a<1时,指数函数的图像是递减的曲线,图像下降。
4. 应用指数函数在科学计算、生物增长、财经复利、工程技术等领域都有着重要的应用。
例如在计算机科学中,指数函数常用于指数衰减算法、指数增长算法等;在生物学中,指数函数常用于描述生物的增长规律;在金融领域中,指数函数用以描述利息的复利增长等。
二、对数函数的定义与性质1. 定义对数函数是指数函数的逆运算,一般表示为y=log_a(x),其中a是底数,x是真数,y是对数。
2. 性质⑴对数函数的定义域为x>0,值域为实数集。
⑵对数函数的图像是单调递增的曲线,在0处没有定义。
⑶特殊情况下,当底数a=10时,我们称为常用对数函数,一般表示为y=log(x);当底数a=e时,我们称为自然对数函数,一般表示为y=ln(x)。
3. 图像对数函数的图像是单调递增的曲线,图像在x轴的右侧。
4. 应用对数函数在科学计算、信息论、统计学、工程技术等领域都有着广泛应用。
例如在信息论中,对数函数用于计算信息量、信息熵等;在统计学中,对数函数用于描述正态分布、伯努利分布等;在工程技术中,对数函数用于解决指数增长问题、指数衰减问题等。
三、指数函数与对数函数的关系1. 反函数关系指数函数与对数函数是一对反函数,它们的定义域和值域互为对方的值域和定义域。
具体而言,对数函数y=log_a(x)中,x=a^y。
指数函数与对数函数全面解析与总结随着数学的发展,指数函数与对数函数成为高中数学中重要的概念。
本文将全面解析和总结指数函数与对数函数的相关知识,并探讨其在数学和实际问题中的应用。
一、指数函数(Exponential Function)指数函数是以常数e为底数的幂函数,其一般公式为y = a * e^x,其中a为常数,e是自然对数的底数。
指数函数具有以下特点:1. 指数函数的导数等于函数本身的值,即f'(x) = f(x)。
这一性质使得指数函数在数学和科学领域中具有广泛的应用。
2. 指数函数具有不断增长的特性。
当x趋于正无穷时,指数函数的值也趋于正无穷;当x趋于负无穷时,指数函数的值趋于0。
3. 指数函数有严格的单调性,即当x1 < x2时,f(x1) < f(x2)。
这使得指数函数在比较大小和求解不等式方程时非常有用。
二、对数函数(Logarithmic Function)对数函数是指数函数的逆运算,其一般公式为y = log(a, x),其中a为底数,x为取对数的值。
对数函数具有以下特点:1. 对数函数的定义域为正实数,值域为实数。
对数函数的底数决定了其特定的性质和应用。
2. 对数函数与指数函数是互为逆运算的关系。
即y = log(a, b) 等价于 b = a^y。
这种关系在求解指数方程和应用中发挥重要作用。
3. 对数函数具有不断增长但增速趋缓的特性。
当x趋于正无穷时,对数函数的值趋于正无穷但增速变慢;当x趋于0+时,对数函数的值趋于负无穷但增速也变慢。
三、指数函数与对数函数的性质与运算1. 指数函数的性质指数函数具有指数之间的乘法性质,即a^m * a^n = a^(m+n)。
这一性质使得指数函数的计算更为便捷。
2. 对数函数的性质对数函数具有对数之间的加法性质,即log(a, m) + log(a, n) = log(a, m * n)。
这一性质在求解指数方程和简化计算中起着重要作用。
指数函数与对数函数知识点总结
指数函数知识点:
定义:对于任意实数x和正数a(a≠1),函数y=a^x称为指数函数。
性质:指数函数的图象总是通过点(0,1)。
指数函数在其定义域内是单调的。
当a>1时,函数是增函数;当0<a<1时,函数是减函数。
指数函数的值域是(0, +∞)。
指数函数的导数:如果y=a^x,则
y'=a^x * lna(a>0,a≠1)。
对数函数知识点:
定义:如果a^x=N(a>0,a≠1),则称x为以a为底N的对数,记作x=log_aN。
性质:对数的定义域是正数集,值域是实数集。
以a 为底的对数,a>0且a≠1。
对数的换底公式:log_bN = log_aN /
log_aA。
对数的运算性质:log_a(MN) = log_aM + log_aN;
log_a(M/N) = log_aM - log_aN;log_aM^n = n * log_aM。
对数函数的导数:如果y=log_ax,则y'=1/(x * lna)(a>0,a≠1)。
指数函数与对数函数之间的关系:
指数函数和对数函数是互为反函数的关系,即如果y=a^x,则
x=log_ay。
指数函数与对数函数之间可以通过换底公式相互转换。
这些是指数函数与对数函数的一些基本知识点,掌握这些知识点对于理解它们在数学中的应用非常有帮助。
指数函数与对数函数知识点:x比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:3. 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4. 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。
复合函数的单调性法则是:同增异减 步骤:(1)球定义域并分解复合函数(2)在定义与范围内分别讨论分解后的函数的单调性 (3)很据复合函数的单调性法则得出结论练习:1、(1))35lg(lg x x y -+=的定义域为_______;(2)312-=x y 的值域为_________;(3))lg(2x x y +-=的递增区间为___________,值域为___________2、(1)041log 212≤-x ,则________∈x 3、要使函数a y x x 421++=在(]1,∞-∈x 上0>y 恒成立。
求a 的取值范围。
指数函数与对数函数同步训练一、选择题(本大题共10小题,每小题3分,共30分) 1.已知2lg(x -2y )=lg x +lg y ,则yx的值为( )A.1 B.4 C.1或4 D.41或42.函数y =log 21(x 2-6x +17)的值域是( )A.R B.[8,+)∞C.(-∞,-]3D.[-3,+∞)3.若a >1,b >1,且lg(a +b )=lg a +lg b ,则lg(a -1)+lg(b -1)的值等于( ) A.0 B.lg2 C.1 D.-14.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则( ) A.a ≥1 B.a >1 C.0<a ≤1 D.a <15.设有两个命题①关于x 的不等式x 2+2ax +4>0对于一切x ∈R 恒成立,②函数f (x )=-(5-2a )x是减函数,若此二命题有且只有一个为真命题,则实数a 的范围是( ) A.(-2,2) B.(-∞,2) C.(-∞,-2) D.(-∞,-2] 6.设函数f (x )=f (x1)lg x +1,则f (10)值为( )A.1B.-1C.10D.101 7.已知函数y =f (x )的反函数为f -1(x )=2x +1,则f (1)等于( )A.0 B.1 C.-1 D.4 8.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是( ) A.(0,21)B.(0,⎥⎦⎤21C.(21,+∞)D.(0,+∞)9.已知函数y =f (2x )定义域为[1,2],则y =f (log 2x )的定义域为( )A.[1,2]B.[4,16]C.[0,1]D.(-∞,0] 10.已知f (x )=x 2-bx +c ,且f (0)=3,f (1+x )=f (1-x ),则有( ) A.f (b x )≥f (c x ) B.f (b x )≤f (c x ) C.f (b x )<f (c x ) D.f (b x )、f (c x )大小不确定 二、填空题(本大题共4小题,每小题4分,共16分) 11.方程log 2(2-2x )+x +99=0的两个解的和是______.12.当x ∈(1,2),不等式(x -1)2<log a x ,则a 的取值范围是_____________. 13.若不等式3axx22->(31)x +1对一切实数x 恒成立,则实数a 的取值范围为______.14.f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为______.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(8分)已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.16.(10分)已知f (x )=lg xx+-11.(1)求函数定义域.(2)求f -1(lg2).17.(12分)已知函数f (x )=22-a a (a x -a -x)(a >0且a ≠1)是R 上的增函数,求a 的取值范围.18.(12分)设函数f (x )=|lg x |,若0<a <b ,且f (a )>f (b ),证明:ab <1.19.(12分)某种细菌每隔两小时分裂一次,(每一个细菌分裂成两个,分裂所须时间忽略不计),研究开始时有两个细菌,在研究过程中不断进行分裂,细菌总数y 是研究时间t 的函数,记作y =f (t ).(1)写出函数y =f (t )的定义域和值域.(2)在所给坐标系中画出y =f (t )(0≤t <6)的图象.(3)写出研究进行到n 小时(n ≥0,n ∈Z )时,细菌的总数有多少个(用关于n 的式子表示)?指数函数与对数函数同步训练一、选择题(本大题共10小题,每小题3分,共30分)1.已知2lg(x -2y )=lg x +lg y ,则yx的值为( )A.1 B.4 C.1或4 D.41或4考查对数函数及对数函数定义域.【解析】 原命题等价⇒⎩⎨⎧>>=-02y x )2(2xy y x x =4y ∴y x=4【答案】 B 2.函数y =log 21(x 2-6x +17)的值域是( )A.R B.[8,+)∞ C.(-∞,-]3 D.[-3,+∞)考查对数函数单调性、定义域、值域.【解析】 y =log 21[(x -3)2+8]≤log 218=-3 【答案】 C3.若a >1,b >1,且lg(a +b )=lg a +lg b ,则lg(a -1)+lg(b -1)的值等于( )A.0 B.lg2 C.1 D.-1 考查对数运算.【解析】 由lg(a +b )=lg a +lg b ⇒a +b =ab 即(a -1)(b -1)=1, ∴lg(a -1)+lg(b -1)=0 【答案】 A4.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则( )A.a ≥1 B.a >1 C.0<a ≤1 D.a <1 考查对数函数性质及绝对值不等式.【解析】 令t =|x -3|+|x +7|,∴x ∈R ,∴t min =10 y =lg t ≥lg10=1,故a <1 【答案】 D 5.设有两个命题①关于x 的不等式x 2+2ax +4>0对于一切x ∈R 恒成立,②函数f (x )=-(5-2a )x 是减函数,若此二命题有且只有一个为真命题,则实数a 的范围是( ) A.(-2,2) B.(-∞,2) C.(-∞,-2) D.(-∞,-2]考查二次函数性质及逻辑推理能力.【解析】 ①等价于Δ=(2a )2-16<0⇒-2<a <2 ②等价于5-2a >1⇒a <2 ① ②有且只有一个为真,∴a ∈(-∞,-2] 【答案】 D 6.设函数f (x )=f (x1)lg x +1,则f (10)值为( )A.1B.-1C.10D.101 考查对数性质及函数对应法则理解.【解析】 ∵f (x )=f (x1)lg x +1,∴f (x1)=f (x )lg x1+1 ∴f (10)=f (101)lg10+1,且f (101)=f (10)lg 101+1 解得f (10)=1. 【答案】 A 7.已知函数y =f (x )的反函数为f -1(x )=2x +1,则f (1)等于( )A.0 B.1 C.-1 D.4考查反函数意义.【解析】 令f (1)=x ,则f -1(x )=1,令2x +1=1,∴x =-1 【答案】 C8.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是( ) A.(0,21)B.(0,⎥⎦⎤21C.(21,+∞)D.(0,+∞)考查对数函数的单调性.【解析】 f (x )=log 2a (x +1)>0=log 2a 1 ∵x ∈(-1,0),∴x +1<1, ∴0<2a <1,即0<a <21 【答案】 A9.已知函数y =f (2x )定义域为[1,2],则y =f (log 2x )的定义域为( )A.[1,2]B.[4,16]C.[0,1]D.(-∞,0] 考查函数定义域的理解. 【答案】 B【解析】 由1≤x ≤2⇒2≤2x ≤4, ∴y =f (x )定义域为[2,4] 由2≤log 2x ≤4,得4≤x ≤16 10.已知f (x )=x 2-bx +c ,且f (0)=3,f (1+x )=f (1-x ),则有( ) A.f (b x )≥f (c x ) B.f (b x )≤f (c x ) C.f (b x )<f (c x ) D.f (b x )、f (c x )大小不确定 考查二次函数及函数单调性.【解析】 由f (0)=3⇒c =3, 由f (1+x )=f (1-x )知对称轴为x =1,∴b =2①x =0,2x =3x ,∴f (2x )=f (3x )②x >0,1<2x <3x ,∴f (2x )<f (3x )③x <0,1>2x >3x ,∴f (2x )<f (3x ) 【答案】 B 二、填空题(本大题共4小题,每小题4分,共16分)11.方程log 2(2-2x )+x +99=0的两个解的和是______.【答案】 -99 考查对数运算.【解析】 由原式变形得2-2x =99221⋅x 设2x =y ,变形得:299y 2-2100y +1=0⇒y 1y 2=2-99=221x x + ∴x 1+x 2=-9912.当x ∈(1,2),不等式(x -1)2<log a x ,则a 的取值范围是_____________.【答案】 (1,2]考查对数函数图象及数形结合思想.【解析】 考查两函数y =(x -1)2及y =log a x 图象可知a ∈(1,2] 13.若不等式3axx22->(31)x +1对一切实数x 恒成立,则实数a 的取值范围为______.【答案】 -21<a <23考查指数函数单调性及化归能力.【解析】 由题意:x 2-2ax >-x -1恒成立 即x 2-(2a -1)x +1>0恒成立 故Δ=(2a -1)2-4<0⇒-21<a <2314.f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为______.【答案】 (-2,-1] 考查分段函数值域.【解析】 x ∈(-∞,1]时,x -1≤0,0<3x -1≤1, ∴-2<f (x )≤-1x ∈(1,+∞)时,1-x <0,0<31-x <1,∴-2<f (x )<-1 ∴f (x )值域为(-2,-1]三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.考查函数最值及对数函数性质.【解】 令t =log 41x ,∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412,∴t ∈[-1,-21] ∴f (t )=t 2-t +5=(t -21)2+419,t ∈[-1,-21]∴当t =-21时,f (x )取最小值423当t =-1时,f (x )取最大值7. 16.(本小题满分10分)已知f (x )=lg xx+-11.(1)求函数定义域.(2)求f -1(lg2).考查函数性质,互为反函数的函数间关系.【解】 (1)由xx+-11>0,得-1<x <1 ∴函数f (x )的定义域为{x |-1<x <1} (2)由lg x x +-11=lg2⇒xx +-11=2⇒x =-31 ∴f -1(lg2)=-3117.(12分)已知函数f (x )=22-a a(a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.考查指数函数性质.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2 则f (x 2)-f (x 1)=22-a a (a 2x -a 2x --a 1x +a 1x -)=22-a a (a 2x -a 1x )(1+211x x a a ⋅)由于a >0,且a ≠1,∴1+211x x aa >0 ∵f (x )为增函数,则(a 2-2)( a 2x -a 1x )>0 于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-02002121222x xx x a a a a a a 或, 解得a >2或0<a <1 18.(本小题满分12分)设函数f (x )=|lg x |,若0<a <b ,且f (a )>f (b ),证明:ab <1.考查对数函数性质、分类讨论思想.【解】 由题设,显然a 、b 不能同在(1,+∞) 否则,f (x )=lg x ,且a <b 时,f (a )<f (b )与已知矛盾由0<a <b 可知,必有0<a <1 ①当0<b <1时,∵0<a <1,0<b <1,∴0<ab <1 ②当b >1时,∵0<a <1 ∴f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b 由f (a )>f (b ),得-lg a >lg b ,即a1>b ,∴ab <1 由①②可知ab <1 19.考查函数应用及分析解决问题能力.【解】 (1)y =f (t )定义域为t ∈[0,+∞),值域为{y |y =2n ,n ∈N *}(2)0≤t <6时,为一分段函数y =⎪⎩⎪⎨⎧<≤<≤<≤)6(4 8)4(2 4)2(0 2x x x 图象如图(3)n 为偶数时,y =212+nn 为奇数时,y =2121+-n ∴y =⎪⎩⎪⎨⎧+-+为奇数为偶数n n n n 2212112。
指数函数对数函数公式
指数函数和对数函数是数学中非常重要的两类函数,它们之间存在着一些特殊的关系和公式。
其中最常见的就是指数函数对数函数公式,即:
loga(b) = c ac = b
其中,a和b为正数,a≠1,c为实数。
这个公式表明,如果我们知道一个数的底数为a的对数是c,那么这个数就可以表示为a的c次幂,即ac=b。
这个公式的应用非常广泛,比如在解指数方程、求复利、计算指数函数的值等方面都有重要的作用。
在实际生活中,我们经常需要用到这个公式来进行计算,例如计算银行定期存款的复利利率、计算化学反应中的物质质量变化等。
除了指数函数对数函数公式外,指数函数和对数函数还有许多其他的性质和公式。
例如,指数函数的图像是一个递增的曲线,而对数函数的图像是一个递减的曲线;指数函数和对数函数是互反的函数,即它们的复合函数等于自变量x;指数函数和对数函数的导数和积分公式等等。
总之,指数函数和对数函数是数学中非常重要的两类函数,它们的公式和性质在数学和实际生活中都有广泛的应用。
- 1 -。
对数函数与指数函数的转换
我们要了解如何将指数函数转换为对数函数,以及如何将对数函数转换为指数函数。
首先,我们需要知道对数和指数的基本定义和关系。
假设 a 是一个正实数且a ≠ 1,b 是一个实数。
指数函数的一般形式是:a^b
对数函数的一般形式是:log_a(b)
根据对数的定义,我们有以下关系:
a^log_a(b) = b
log_a(a^b) = b
这意味着我们可以使用上述关系将指数函数转换为对数函数,反之亦然。
例如,如果我们有指数函数 2^x,我们可以将其转换为对数函数:
log_2(2^x) = x
同样地,如果我们有对数函数 log_2(x),我们可以将其转换为指数函数:2^log_2(x) = x。