初二数学第二学期期中复习卷(一)
- 格式:doc
- 大小:192.50 KB
- 文档页数:4
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
八年级第二学期数学期中考试卷时间:90分钟 满分150分序号; 班级: 姓名: 座号: 评分:一. 填空题(每小题4分,共32分)1.在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A 、1:2:3:4B 、1:2:2:1C 、2:2:1:1D 、2:1:2:1 2.函数x k y =的图象经过点(-2,6),则下列各点中在xk y =图象上的是( ) A .(3,4) B .(3,-4) C .(-4,-3) D .(-2,-6) 3.下列方程不是分式方程的是( )A .12211=--+x x B .21=+x x C .163=+x x D .275-=x x 4. 已知函数xky =的图象经过点(2,3),下列说法正确的是( )A .y 随x 的增大而增大 B.函数的图象只在第一象限 C .当x <0时,必有y <0 D.点(-2,-3)不在此函数的图象上 5.下列各组数中能作为直角三角形的三边长的是( ) A .3,4,5B .5,7,12C .7,15,17D .8,12,15 6.下列运算正确的是( ) A .x 10÷x 5= x 2B .b a ab b ab a -=-+-222 C .x–4 ·x =x -3D .(2x -2 )-3= -8x 67. 下列三角形中是直角三角形的是( )A.三边之比为5∶6∶7B.三边满足关系a +b =cC.三边之长为9、40、41D.其中一边等于另一边的一半 8.在同一直角坐标系中,函数x y 5=与xy 1-=的图象大致是( )A B C D二.选择题(每题4分,共20分)9. 当x_______________时,分式13-x 有意义。
10.平行四边形ABCD 中,AB=5 ,BC=3 则它的周长 .11.若反比例函数xky =的图象经过点A (-6,1),则k =___________ 12. 如图所示,设A 为反比例函数xky =图象上一点,且矩形ABOC的面积为3,则这个反比例函数解析式为 . 13. 观察一下几组勾股数,并寻找规律:① 3, 4, 5; ② 5,12,13; ③ 7,24,25;④ 9,40,41;……请你写出有以上规律的第⑤组勾股数: . 三、解答题 (本大题共5小题,每小题7分,共35分) 14. 计算:(y x x - -y x y -2 )·y x xy 2- ÷(x1 +y 1 ).15.解分式方程:1222=--+x x x16.如图,一根旗杆在离地面5m 处折断,旗杆顶部落在离旗杆底部12m 处,则旗杆折断之前有多高?第12题图AB C 5m 12m17.若函数xm y 2008-=是y 关于x 的反比例函数,且图象的一支在第一象限。
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
一、选择题1.(0分)[ID :9931]下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形2.(0分)[ID :9914]下列函数中,是一次函数的是( )A .11y x =+B .y=﹣2xC .y=x 2+2D .y=kx+b (k 、b 是常数) 3.(0分)[ID :9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95 90 85 80 人数 4 6 8 2那么20名学生决赛成绩的众数和中位数分别是( )A .85,90B .85,87.5C .90,85D .95,904.(0分)[ID :9902]估计26的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(0分)[ID :9893]如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .36.(0分)[ID :9886]如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .437.(0分)[ID :9880]如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 8.(0分)[ID :9871]如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 9.(0分)[ID :9868]若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k <3B .k <0C .k >3D .0<k <310.(0分)[ID :9849]若x < 0,则2x x x-的结果是( ) A .0 B .-2 C .0或-2 D .211.(0分)[ID :9921]已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( )A .4cmB .43 cmC .6cmD .63 cm12.(0分)[ID :9916]如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .413.(0分)[ID :9834]下列运算正确的是( )A .532-=B .822-=C .114293=D .()22525-=-14.(0分)[ID :9910]小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米15.(0分)[ID :9885]如图,ABC 中,CD AB ⊥于,D E 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .10二、填空题16.(0分)[ID :10020]若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限.17.(0分)[ID :10019]当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.18.(0分)[ID :9989]若函数()12m y m x-=+是正比例函数,则m=__________. 19.(0分)[ID :9980]如图,已知正方形ABCD ,以BC 为边作等边△BCE ,则∠DAE 的度数是_____.20.(0分)[ID :9972]211a a a a--=,则a 的取值范围是________ 21.(0分)[ID :9969]已知实数m 、n 满足22112n n m -+-+=m +n =__. 22.(0分)[ID :9961]如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.23.(0分)[ID :9952]在△ABC 中,∠C=90°,AC=1,BC=2,则AB 边上的中线CD=______.24.(0分)[ID :9951]矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.25.(0分)[ID :9941]已知矩形ABCD 如图,AB =4,BC =43,点P 是矩形内一点,则ABP CDP S S ∆∆+=______________.三、解答题26.(0分)[ID :10106]如图,△ABC 中,D 、E 、F 分别在边BC 、AB 、AC 上,且 DE ∥AC ,DE=AF ,延长FD 到G ,使DG=DF ,求证:AG 和DE 互相平分.27.(0分)[ID :10065]下图是某汽车行驶的路程S ()km 与时间t (分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是 .(2)汽车在中途停了多长时间?(3)当1630t ≤≤时,求S 与t 的函数关系式28.(0分)[ID :10058]邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形,如图1,平行四边形ABCD 中,若1,2AB BC ==,则平行四边形ABCD 为1阶准菱形.(1)判断与推理:① 邻边长分别为2和3的平行四边形是__________阶准菱形;② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD 沿着BE 折叠(点E 在AD 上)使点A 落在BC 边上的点F ,得到四边形ABFE ,请证明四边形ABFE 是菱形.(2)操作、探究与计算:① 已知平行四边形ABCD 的邻边分别为1,(1)a a >裁剪线的示意图,并在图形下方写出a 的值;② 已知平行四边形ABCD 的邻边长分别为,()a b a b >,满足6,5a b r b r =+=,请写出平行四边形ABCD 是几阶准菱形.29.(0分)[ID :10045]某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案? (3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?30.(0分)[ID :10043]一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,回答下列问题:(1)李师傅修车用了多时间;(2)修车后李师傅骑车速度是修车前的几倍.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.B4.D5.C6.A7.C8.A9.D10.D11.C12.A13.B14.C15.C二、填空题16.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一17.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直18.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键19.15°【解析】【分析】由正方形的性质和等边三角形的性质可得∠DAB=∠ABC=90°AB=BC=BE∠EBC=60°可求∠BAE=75°即可得∠DAE的度数【详解】∵四边形ABCD是正方形∴∠DAB20.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数21.2【解析】【分析】直接利用二次根式有意义的条件得出n的值进而求出m的值然后代入求解即可得【详解】∵∴解得将代入得:则故答案为:2【点睛】本题考查了二次根式有意义的条件利用二次根式有意义的条件求出参数22.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE分别是BCCDAD的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=23.【解析】【分析】先运用勾股定理求出斜边AB然后再利用直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:由勾股定理得AB∵∠C=90°CD为AB边上的中线∴CD=AB=故答案为【点睛】本题考查的24.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB25.【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积相加即可得出答案【详解】过点P作MN∥AD交AB于点N交CD于点M如图∴AB∥CDAD∥BCAD=BC=AB=CD=4∴S△APB+S三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可.详解:A选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.2.B解析:B【解析】A、y=1x+1不是一次函数,故错误;B、y=-2x是一次函数,故正确;C、y=x2+2是二次函数,故错误;D、y=kx+b(k、b是常数),当k=0时不是一次函数,故本选项错误,故选B.3.B解析:B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B .考点:1.众数;2.中位数4.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.5.C解析:C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则=;∴AC+BC=(m.答:树高为(故选C.6.A解析:A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC ≌'D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==,∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒,∴ABC 为直角三角形,∴5AC ===,根据折叠可得:DEC ≌'D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC ,∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,在'Rt AD E 中,由勾股定理得:222''+=AD D E AE ,即2222(4)x x +=-, 解得:32x =, 故选:A .【点睛】此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.C解析:C【解析】【详解】如图,作MG ⊥BC 于G ,MH ⊥CD 于H ,则BG=GC ,AB ∥MG ∥CD ,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,CH=32a , ∴DH=a 3, ∴CN=CH ﹣3﹣(a 3)=3﹣1)a , ∴△MNC 的面积=12×2a ×3﹣1)31-a 2. 故选C. 8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,∴{k−3<0−k<0,解得:0<k<3,故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.10.D解析:D【解析】∵x < 0,则2x=x x=-,∴2x xx-=()22x x x x xx x x---===.故选D.11.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:,故选C.12.A解析:A【解析】【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选A.【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.13.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;C.=,故C错误;D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.15.C解析:C【解析】【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【详解】⊥于D,解:∵ABC中,CD AB∴∠ADC=90°,则ADC为直角三角形,∵E是AC的中点,DE=5,∴AC=2DE=10,在Rt ADC中,AD=6,AC=10,∴8CD=,故选:C.【点睛】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.二、填空题16.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一解析:一【解析】∵一元二次方程x2-2x-m=0无实数根,∴△=4+4m<0,解得m<-1,∴m+1<0,m-1<0,∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.故答案是:一.17.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b 过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x ﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b 过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b 的一元一次方程,解方程即可求出b 值,即可求y=kx+b .【详解】解:∵直线y=kx+b 与直线y=2x-2平行,∴k=2.又∵直线y=kx+b 过点(3,2),∴2=2×3+b ,解得:b=-4. ∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k 和b 的值.18.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键解析:2【解析】【分析】根据正比例函数的定义可得|m|-1=1,m+2≠0.【详解】因为函数()12m y m x-=+是正比例函数,所以|m|-1=1,m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义.理解定义是关键. 19.15°【解析】【分析】由正方形的性质和等边三角形的性质可得∠DAB=∠A BC=90°AB=BC=BE ∠EBC=60°可求∠BAE=75°即可得∠DAE 的度数【详解】∵四边形ABCD 是正方形∴∠DAB解析:15°【解析】【分析】由正方形的性质和等边三角形的性质可得,∠DAB=∠ABC=90°,AB=BC=BE ,∠EBC=60°,可求∠BAE=75°,即可得∠DAE 的度数.【详解】∵四边形ABCD 是正方形∴∠DAB =∠ABC =90°,AB =BC ,∵△BEC 是等边三角形∴BC =BE ,∠EBC =60°∴AB =BE =BC ,∠ABE =∠ABC ﹣∠EBC =30°∴∠BAE =75°∴∠DAE =∠BAD ﹣∠BAE =15°故答案为15°. 【点睛】本题考查了正方形的性质,等边三角形的性质,熟记各性质并准确识图是解题的关键.20.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数解析:01a <≤【解析】【分析】根据二次根式得非负性求解即可.【详解】=成立, 则有:10a ->,0a ≠ , 10aa ,即:0a >,∴01a <≤,故答案为:01a <≤.【点睛】本题考查的是二次根式的取值范围,在二次根式里被开方数,必须是非负数.21.2【解析】【分析】直接利用二次根式有意义的条件得出n 的值进而求出m 的值然后代入求解即可得【详解】∵∴解得将代入得:则故答案为:2【点睛】本题考查了二次根式有意义的条件利用二次根式有意义的条件求出参数 解析:2【解析】【分析】直接利用二次根式有意义的条件得出n 的值,进而求出m 的值,然后代入求解即可得.【详解】∵m =∴22101010n n n ⎧-≥⎪-≥⎨⎪+≠⎩解得1n =将1n =代入得:2211111121m -+-+==+ 则112m n +=+=故答案为:2.【点睛】本题考查了二次根式有意义的条件,利用二次根式有意义的条件求出参数的值是常考知识点,需重点掌握.22.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE 分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC ⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC ⊥BD .【详解】解:∵G 、H 、E 分别是BC 、CD 、AD 的中点, ∴HG ∥BD ,EH ∥AC ,∴∠EHG=∠1,∠1=∠2, ∴∠2=∠EHG ,∵四边形EFGH 是矩形, ∴∠EHG=90°, ∴∠2=90°, ∴AC ⊥BD .故还要添加AC ⊥BD ,才能保证四边形EFGH 是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.23.【解析】【分析】先运用勾股定理求出斜边AB 然后再利用直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:由勾股定理得AB∵∠C=90°CD 为AB 边上的中线∴CD=AB=故答案为【点睛】本题考查的5 【解析】【分析】先运用勾股定理求出斜边AB,然后再利用直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:由勾股定理得,AB22125+=∵∠C=90°,CD为AB边上的中线,∴CD=12AB=52,故答案为52.【点睛】本题考查的是勾股定理和直角三角形的性质,掌握直角三角形斜边上的中线是斜边的一半是解答本题的关键.24.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD∴OA=OB,∵∠A0B=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.25.【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积相加即可得出答案【详解】过点P作MN∥AD交AB于点N交CD于点M如图∴AB∥CDAD∥BCAD=BC=AB=CD=4∴S△APB+S解析:83【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积,相加即可得出答案.【详解】过点P作MN∥AD,交AB于点N,交CD于点M.如图,∴AB∥CD,AD∥BC,AD=BC=3AB=CD=4,∴S△APB+S△DPC=12×AB×PN+12CD×PM=12×4×PN +12×4×PM =12×4×(PM+PN)=12×4×4383.故答案为:3【点睛】本题考查了矩形的性质和三角形的面积公式,主要考查学生的计算能力和观察图象的能力.三、解答题26.证明过程见解析.【解析】【分析】由一组对边平行且相等求解四边形AEGD是平行四边形,即可得出结论.【详解】证明:∵DE∥AC,DE=AF∴四边形AEDF是平行四边形∴AE=DF,AE∥DF∵DG=DF∴AE=DG∴四边形AEGD是平行四边形∴AG和DE互相平分【点睛】本题主要考查了平行四边形的判定. 应熟练掌握平行四边形的判定定理.27.(1) 80/km h ;(2)7分钟;(3)220=-S t .【解析】【分析】(1)根据函数图象中的数据可以求得汽车在前9分钟内的平均速度;(2)根据函数图象中的数据可以求得汽车在中途停了多长时间;(3)根据函数图象中的数据可以求得当16≤t ≤30时,S 与t 的函数关系式.【详解】解:(1)由图可得,汽车在前9分钟内的平均速度是:12÷9=43km/min ; (2)由图可得,汽车在中途停了:16-9=7min ,即汽车在中途停了7min ;(3)设当16≤t ≤30时,S 与t 的函数关系式是S=at+b ,把(16,12)和(30,40)代入得 16123040a b a b +=⎧⎨+=⎩, 解得220a b =⎧⎨=-⎩, 即当16≤t ≤30时,S 与t 的函数关系式是S=2t-20.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.(1)① 2,②证明见解析;(2)①见解析,②▱ABCD 是10阶准菱形.【解析】【分析】(1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE ∥BF ,进而得出AE=BF ,即可得出答案;(2)①利用3阶准菱形的定义,即可得出答案;②根据a=6b+r ,b=5r ,用r 表示出各边长,进而利用图形得出▱ABCD 是几阶准菱形.【详解】解:(1)①利用邻边长分别为2和3的平行四边形经过两次操作,所剩四边形是边长为1的菱形,故邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)①如图所示:,②答:10阶菱形,∵a=6b+r,b=5r,∴a=6×5r+r=31r;如图所示:故▱ABCD是10阶准菱形.【点睛】此题主要考查了图形的剪拼以及菱形的判定,根据已知n阶准菱形定义正确将平行四边形分割是解题关键.29.(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答. 30.(1)5分钟;(2)2倍【解析】【分析】(1)观察图象可得李师傅离家10分钟时开始修车、离家15分钟修完车,两数相减即可得解;(2)观察图象可得李师傅修车前后行驶的路程和时间,即可求得相应的行驶速度,两速度相除即可得解.【详解】解:(1)由图可得,李师傅修车用了15105-=(分钟);(2)∵修车后李师傅骑车速度是200010002002015-=-(米/分钟),修车前速度为100010010=(米/分钟) ∴2001002÷=∴修车后李师傅骑车速度是修车前的2倍.【点睛】本题考查了从图象中读取信息的数形结合的能力,需要注意分析其中的“关键点”,还要善于分析各部分图象的变化趋势.。
初二第二学期期中考试(数学)(考试总分:100 分)一、单选题(本题共计10小题,总分30分)1.(3分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)2.已知x>y,则下列不等式成立的是()A.x﹣6<y﹣6 B.3x<3y C.﹣2x<﹣2y D.2x+1<2y+1 3.(3分)3.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x=(x+)(x﹣) D.10x2﹣5x=5x(2x﹣1)4.(3分)4. 在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(﹣1,1)B.(3,1)C.(4,﹣4)D.(4,0)5.(3分)5.不等式组的解集,在数轴上表示正确的是()A. B.C.D.6.(3分)6.下列语句正确的有()个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在△ABC中,∠C=90°,那么∠A、∠B中至少有一个角不大于45°时,应假设∠A>45°,∠B>45°.⑤如果一个等腰三角形的两边长分别是2cm和5m,则周长是9cm或12cm.A.4 B.3 C.2 D.17.(3分)7. 如图,在△ABC中,AB=AC,直线EF是AB的垂直平分线,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.52B.3 C.4 D.5 第7题8.(3分)8.如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则解集为()A.x<﹣2 B.x>3 C.x<﹣2或x>3 D.﹣2<x<3 9.(3分)9.如图,已知△ABC中,CD⊥AB,垂足为D,CE平分∠ACD交AD于E,若CD=12,BC=13,且△BCE的面积为48,则点E到AC的距离为()A.5 B.3 C.4 D.110.(3分)10. 在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.AD=6,BD=3,则阴影部分的面积(即△ADE和△DFB的面积和)等于()A.6 B.3 C. D.9二、填空题(本题共计6小题,总分18分)11.(3分)11.分解因式:﹣2ax2+2ay2=.12.(3分)12. 不等式x+≥x其解集为.13.(3分)13.代数式y2+4y+8的最小值为14.(3分)14.空气炸锅利用高速空气循环技术煎炸各种美味食物既安全又经济.某品牌空气炸锅进价为800元,标价为1200元.店庆期间商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则至多打折时销售最优惠.15.(3分)15.在△ABC中,BO平分∠ABC,CO平分∠ACB,OD∥AB,OE∥AC,BC=16 则△ODE的周长为第15题16.(3分)16.如图,四边形ABCD是一张长方形纸片,AD=4,沿过点D的折痕将A角翻折,使得点A落在BC上(如图中的点A′),折痕交AB于点E.此时测得∠ADE=15°.则BE=.三、解答题(本题共计7小题,总分52分)17.(6分)17.(6分)分解因式① mn(m﹣n)﹣m(n﹣m)②(a2+4)2﹣16a218.(8分)18(8分)解不等式组①②﹣2<1﹣x<.19.(6分)19.(5分)如图,已知△ABC,求作:BC边上的高.20.(6分)20.(6分)如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求DE的长。
初二数学第二学期期中考试试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------初二数学第二学期期中考试试卷(考试时间:120分钟;满分:150分)成绩_______一、填空题(每空2分,共40分)1. 5的平方根为____________,的算术平方根为____________.2. 若一个n边形的外角和等于它的内角和的,则n=_____,此n边形的对角线有_______条。
3. ,当ab<0时,化简=____________.4. ABCD中,∠A-∠B=80º,则∠C=_______,∠D=_______.5. 当a<2时,化简=________,计算=________.6. 比较大小:-4_______-,_______.7. 梯形的上底长为6cm,中位线长为9cm,则它的下底长为_______,两条对角线的中点的距离为___________。
8. 若代数式有意义,则x的取值范围是__________.9. 方程的根为____________.10. 矩形的两条对角线夹角为60º,一条对角线与短边的和为15,则长边的长为______.11. 在∠ABC中,AD∠BC于D,AB、AC的中点分别为E、F,若AEDF为菱形,则∠ABC需满足条件_______________________(填写一个你认为适当的条件)12. 已知关于x的方程没有实数根,则k的取值范围是_____________.13. 在四边形ABCD中,给出下列条件:① AB∠DC②AD=BC③ ∠B=∠D,以其中两个条件作为题设,另一个作为结论,写出一个真命题是:_____________ ___________________________________________________.二、选择题(每题3分,共24分)14. 下列根式:;;;;;中最简二次根式的个数是()A. 2B.3 C.4 D.515. 在① 圆② 等腰梯形③ 正三角形④正方形⑤平行四边形中既是轴对称又是中心对称的图形是()A.① ② B.③ ④ C.① ④ D.① ⑤16. 下列说法正确的是()A.2是-4的算术平方根 B.对角线相等的四边形是矩形C.8的立方根是±2 D.对角线互相平分的四边形是平行四边形17. 四边形ABCD中,∠A、∠B、∠C、∠D的度数比为1∠2∠6∠3,则∠D等于()A.60º B.75º C.90º D.120º18. 顺次连接四边形ABCD各边中点得四边形EFGH,要使EFGH为菱形,应添加的条件是()A. AB∠CDB.AC=BD C.AB=CD D. AC∠BD19. 已知xy=,x-y=,则(x+1)(y-1)的值为()A.B. C.D.20. 矩形纸片ABCD沿DF折叠后,点C恰好落在AB边上的E点,若∠ADE=30º,AB=6,则梯形ABFD的中位线长为()A. B.C.D.不能确定21. 若,则的值等于()A.0 B.-1 C.-2002 D. -2001三、解答题22.(本题10分)① 计算:② 解方程:23. 化简求值(本题12分)① 已知,求代数式的值。
初二数学第二学期期中考试试卷 第一部分 掌握基础才能继续发展 一、人生的道路上有许多抉择,现在来看一下,自己是否具有慧眼识真的能力(注意只有一个是对的,将正确答案相对应的序号填在括号里)!(每题3分) 1.下列计算正确的是( ) A2(2)2-=- B 233255+= C 242121a a a ++=+ D 2( 3.14) 3.14∏-=-∏2.下面四组二次根式中,同类二次根式是( ) A163-和181 B 35b a 和()a cb 419+ C y x xy +与()y x +625 D ()31125+c 与175+c 3.下列结论正确的是( )A 如 —211a a =- 则a<0 B 如43a b b a b ++与 是同类二次根式,则a=1,b=1 C 已知12213123y x x =-+-+, 则 x=1,y=1 D 若0〈a 〈1,且16a a +=,则2a a-= 4.已知 (0)b c a c a b k a b c a b c+++===++≠ 则函数y=kx+k 图像一定不经过 ( )A 第一象限B 第二象限C 第三象限D 第四象限5.当00><b ,a 时,函数y=ax+b 与a bx y +=在同一坐标系中的图象大致是( )A B C D6.小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )A B C D7.在下列条件中,①∠A=45 º,AB=24,AC=30,A`B`=32,A`C`=40②AB=6,BC=7.5,AC=12,A`B`=10,B`C`=12.5,A`C`=20③∠A=47 º,AB=1.5,AC=2,∠A`=47 º,A`B`=2.8,B`C`=2.1能识别相似和'''C B A ABC ∆∆的有( )A 0个B 1个C 2个D 3个8.在直角三角形ABC 的直角边AC 上有一点定P (点P 与点A ,C 不重合),过点P 作直线截ΔABC ,使截得的三角形与ΔABC 相似,满足条件的直线共有( )条A 1B 2C 3D 4二、选择题,相信自己一定能把最准确的答案填在空白处!(每空3分)9.的平方根是4925 10.当x 满足______的条件时,x 1-在实数范围内有意义; 11.用计算器计算8.260(精确到0.01)12.已知某数的平方根为3a+1, 2a-6,则某数为13.双曲线()00>>=x ,k xk y 的图象上两点A 、B 作AC ⊥x 轴于C ,BD ⊥x 轴于D ,那么AOC S ∆和BOD S ∆的关系为14.函数y=2―x ,则y 随x 的增大而__________.15.如图中的直线ABC 为甲地向乙地打长途电话所需付的电话费y (元)与通话时间x (分钟)之间的函数关系的图象。
八年级数学下册期中测试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8或10D .63.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .124.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2109.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm=,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x=,则x=__________2.计算1273-=___________.3.使x2-有意义的x的取值范围是________.4.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________.5.如图,在ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,ABCD的周长为40,则S ABCD 四边形为________.6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知13(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.5.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、B7、D8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、8333、x 2≥4、67°.5、486、120三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、-33a +,;12-.3、﹣1≤x <2.4、(1)(0,3);(2)112y x =-. 5、(1)略(2)菱形6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 2答案:C2. 已知a<0,b<0,则下列各式中正确的是()A. ab>0B. a+b>0C. a-b>0D. a×b>0答案:D3. 下列各数中,有理数是()A. πB. √2C. 3.14D. √-1答案:C4. 下列各数中,无理数是()A. √4B. √-1C. √9D. √0答案:B5. 下列各数中,负数是()A. -2.5B. 0C. 2.5D. -2答案:A6. 下列各数中,正数是()A. -2B. 0C. 2D. -2.5答案:C7. 已知x²=4,则x的值是()A. ±2B. ±1C. ±4D. ±3答案:A8. 下列各数中,质数是()A. 1B. 4C. 6D. 7答案:D9. 下列各数中,合数是()A. 2B. 3C. 4D. 5答案:C10. 下列各数中,偶数是()A. 1B. 2C. 3D. 4答案:B二、填空题(每题5分,共25分)11. 有理数a的相反数是__________。
答案:-a12. 绝对值等于3的数是__________。
答案:±313. 有理数0的倒数是__________。
答案:不存在14. 有理数a与b的乘积为0,则a、b中至少有一个数是__________。
答案:015. 下列各数中,-5的平方根是__________。
答案:±√5三、解答题(每题10分,共40分)16. 计算下列各式的值:(1)(-2)³×(-3)²(2)(4/5)×(3/2)÷(2/3)答案:(1)-2³×(-3)²= -8×9 = -72(2)(4/5)×(3/2)÷(2/3) = (4×3×3)÷(5×2×2) = 36÷20 = 9/517. 已知x²+4x+4=0,求x的值。
初二数学第二学期期中考试复习(1)一 . 选择题(每题 3 分,共 45 分)1、点( -2, 3)对于 x 轴的对称点坐标是()A.(2,3) B .(2, -3) C.( 3, -2) D .( -2, -3)2、已知 A (4, -5),则点 A 所在的象限是()(A)第一象限(B)第二象限(C)第三象限(D)第四象限3、 2007 年某省全面实行义务教育经费保障体制,全面免去乡村约2320000 名学生的学杂费,2320000 用科学记数法表示为().A. 232 106B. 2 106C. 0.232 107D. 1064、以下计算正确的选项是( )(A) a2 a3 a6 (B) b4 b4 2b4 (C) x5 x5 x10 (D) y3 y y45、若一个多边形的内角和等于它的外角和的 3 倍,则这个多边形的边数是()A . 7 B. 8 C. 9 D. 106、已知 y1=2x-5 , y2 =-2x+3 ,假如 y1 <y2,则 x 的取值范围是 ( )(A) x>2 (B) x<2 (C) x> - 2 (D) x< -27、 y= 1 的定义域是() A、x 1 B、x 1 C、x≤1 D、 x ≥11 2x2 2 2 28、在一次函数 y= kx + 3 中,当 x=2 时, y 的值为 5,则 k 的值为()A. - 1B. 1C. -5D. 59、以下各点必定在直线y 2x 1上的是()A.(- 2, -3 ) B .( 3, 5)C.( -1 , 3) D .(4, 2)10、直线 y= 2x- 4 与两坐标轴组成三角形的面积是()A. 8B. 7C. 6D. 411、已知一次函数y (m 2) x 3 的函数值跟着x 的增大而增大,且一次函数y ( m 1) x 2 的函数值跟着 x 的增大而减小,则同时知足上述条件的m 的取值范围是()A. m2B. m 1C. 2 m 1D. m112、若将直线 y=kx+3 ( k≠ 0)的图象向下平移 2 个单位后与 x 轴交于( 1, 0),平移后直线的分析式为.()初二数学第二学期期中考试复习(1)A . y=2x -2B .y= -x+1C. y= -x-2 D . y=2x+213、如图,在矩形ABCD 中, AB 2,BC 1 ,动点 P从点 BO 出发,沿路线 B C D 作匀速运动,那么△ ABP 的面积S 与点 P 运动的行程x之间的函数图象大概是() AS S S S13 题图3 321 1 1O 3 x O 1 3 x O 3 x O 1 3 xA .B.C.D.14、函数y kx b (k 0 )的图像如图 1 所示,则对于x 的不等式kx b 0 的解集是(A 、x 1B、x1C、x 1D、x 12 215、联合一次函数y 1 x 1的图像,如图 2 所示,回答当x 2 时, y 的取值范围是(21A 、y 2 B、0 C、1 y 2 D、y 0y2二 . 填空题仔细填一填,自信属于你。
初二数学第二学期期中练习试卷一、选择题(本题共36分,每小题3分) 1.下列式子:,,,,,其中是分式的有()A .1个B .2个C .3个D .4个 2.下列四个式子中,正确的是() A . B .C .D .3.下列等式不成立的是() A .B .C .D .4.下列说法不一定正确的是()A .平行四边形的对边相等B .矩形的四个角都相等C .菱形的四条边都相等D .等腰梯形同一边上的两个角相等5.已知一个矩形的面积为,其长为,宽为,则与之间的函数关系的图象大致为()A .B .C .D .1x 23a a b -3x y+42πa-2x x x-a b a b c c---=-a b a b cc--+=--a b a b c c---=-a b a b cc--+=-50.000016 1.610-=⨯4453m n mn m n⨯=()2139--=()239--=212cm cm y cm x yx6.如图,正比例函数与反比例函数的图象相交于、两点,轴,垂足为,若的面积为4,则此反比例函数解析式为() A .B .C .D .7.文文借了一本书共280页,要在两周借期内读完.当她读了一半时,发现平均每天要多读21页才能在借期内读完.她在读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下列方程中,正确的是() A .B .C .D .8.在同一直角坐标系中,函数与的图象大致可能为()A .B .C .D . 9.下列命题中,正确的有()①两组邻角分别互补的四边形是平行四边形. ②有一条对角线平分一个内角的平行四边形是菱形. ③直角三角形中,中位线的长必等于斜边上的中线的长. ④三个角都相等的四边形是矩形.y kx =m y x=A B AC y ⊥C ABC △4y x=4y x=-2y x=2y x=-x 2802801421x x +=-2802801421x x +=+1401401421x x +=-1401401421x x +=+()1y k x =+k y x=⑤对角线互相垂直平分的四边形是正方形. ⑥等腰梯形两条对角线相等.A .1个B .2个C .3个D .4个 10.如图,中,平行于边的两条线段,把分成四部分,分别记这四部分的面积为,,和,则下列等式一定成立的是().A .B .C .D .11.如图,正方形中,,下列说法中,正确的有().①;①;①;①.A .1个B .2个C .3个D .4个12.如图,矩形的面积为4,对角线交于点,以,为两邻边作,的对角线交于点,同样以,为两邻边作……依此类推,则的面积为()A .B .C .D .二、填空题:(本题共30分,每空3分) 13.当时,分式的值为零. 14.如图,四边形中,,,,,且,则四边形的面积是.ABCD EF CH ABCD 1S 2S 3S 4S 13SS =1324SS S S +=+3124SS S S -=-1324S SS S ⨯=⨯ABCD AE BF =AF DE =AF DE ⊥AO OF =AODBEOF SS =△四边形ABCD 1O AB 1AO 11ABC O 11ABC O 2O AB 2AO 22ABC O n n ABC O 12n112n -212n -212n +x =242x x --ABCD 15AB =12BC =16CD =25DA =90C ∠=°ABCD S 4S 3S 2S 1H G F E D CBAOF EDC BAO 3O 2O 1C 3C 2C 1D CBADCBA15.在反比例函数的图象上有两点,,若而,则的取值范围是.16.若一次函数与反比例函数的图象如图所示,则不等式的解集为.17.如图,在直角梯形中,,,、分别为、的中点,,,,则的长为,的长为.18.如图,中,,若于,于,、分别为、的中点,若,则的长为.19.若,,则式子的值为. 3k y x+=()11x y ,()22xy ,120x x <<12y y >k y ax b =+k y x=k ax b x +>ABCD 90BCD ∠=°AD BC ∥M N BD AC 4AB =2AD =60ABC ∠=°CD MNABC △18BC =BD AC ⊥D CE AB ⊥E F G BC DE 10ED =FG 4x y +=-3xy =-1111x y +++GFE D CBA NMDC BA20.如图,为线段上一点,正方形和正方形的面积分别为和,则的面积为.21.如图,边长为6的菱形中,,、分别为、边上的动点,则的最小值为.三、解答下列各题:(本题共24分) 22.(每小题3分)计算: (1)(2)23.(每小题4分)解下列分式方程: (1) (2)C AB ADEF BCDG 210cm25cm EDG △2cm ABCD 60ABC ∠=°E F BD BC CE EF +22142x x x ---221642816282a a a a a a a ---÷⨯++++2212525x x x -=-+252331x xx x x ++=++GFEDCBAF EDC BA24.(5分)先化简,再求值:,其中.25.(5分)如图,中,、是对角线上的两个点且,试猜想与有何数量关系及位置关系并加以证明. 猜想: 证明:四、解答下列各题:(本题共17分)22243411211x x x x x x x---÷--++-5x =ABCD E F BD DF BE =AE CF FEDCBA26.(5分)已知反比例函数与一次函数的图象交于点,,求这两个函数的解析式.27.(5分)如图,为线段上一动点,过作且,过作且,连结、,若,设.(1)的长为(用含的式子表示,不必化简); (2)当点的位置满足时,的长最小,最小值是; (3)根据以上结论,的最小值吗?请画出你的示意图,适当加以说明并求出此最小值.()1M m -,322N ⎛⎫- ⎪⎝⎭,C AB A AD AB ⊥3AD =B BE AB ⊥1BE =DC EC 5AB =AC x =DC EC +x C DC EC +E DCBA28.(7分)(1)如图,已知与的面积相等,试判断直线与的位置关系并加以证明. 判断:;(2)如图,点、在反比例函数的图象上,过点作轴于,过点作轴于,连结.利用(1)中的结论,证明:.(3)若(2)中的其他条件不变,只改变、的位置如图所示,请画出示意图,判断与是否平行,并加以证明.五、解答下列各题:(本题共13分)ABC △DBC △AD BC A B ()0k y k x=>A AC y ⊥C B BD x ⊥D CD AB CD ∥A B ABCD DCBA29.(6分)已知四边形的对角线、相交于点,给出下列5个条件:①;①;①;①;①;(1)从以上5个条件中任意选取2个条件,能推出四边形是平行四边形的,除“①与①”外,还有哪几种?(请用序号表示)(2)除“①与①”外,选择你写的其中的一种,画出示意图,写出已知,求证和证明.解:(1)答:除“①与①”外,还有. (2)30.(7分)如图,在梯形中,,,,,.点是边上任意一点,点在边的延长线上,并且,连结,与边相交于点.设,. (1)直接写出边的长;(2)求关于的函数关系式,并直接写出自变量的取值范围;ABCD AC BD O AD BC ∥AB CD ∥ABC ADC ∠=∠AB CD =OB OD =ABCD ABCD AB DC ∥90D ∠=°3AB =6DC =5CB =E DC F AB AE AF =EF BC G BF x =DE y =AD y x x(3)当点在边上移动时,能否成为以为腰的等腰三角形?如果能,请求出线段的长;如果不能,请说明理由. 解:(1)边的长为;E DC BFG △BG BF AD 备用图ABCDGF EDCBA。
可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。
这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。
答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。
答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。
答案:24. 若一个数的3/5是80,那个数是_______。
答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。
答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。
答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。
第二学期八年级期中考试数学试题及答案第二学期八年级期中考试数学试题及答案时间:2017-09-19 11:24:00本文内容及图片来源于读者投稿,如有侵权请联系xuexila888@ 礎鸿我要投稿随着数学期末考试的到来,八年级数学的考试试题你都练习了吗?以下是为你整理的第二学期八年级期中考试数学试题,希望对大家有帮助!第二学期八年级期中考试数学试题一、选择题(每题3分,共30分)1.在式子中,分式的个数有( )A、2个B、3个C、4个D、5个2.已知在□ABCD中,AD=3cm,AB=2 cm,则□ABCD的周长等于( )A.10cmB.6cmC.5cmD.4cm3. 函数的自变量的取值范围是( )A. -2B. 2C. 2D. -2。
4. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )A .B .C . D.5. 反比例函数的图象经过点( ,3),则它还经过点( )A. (6,)B. ( ,)C. (3,2)D.(2,3)6.下面正确的命题中,其逆命题不成立的是( )A.旁内角互补,两直线平行B.三角形的对应边相等C.对顶角相等D.角平分线上的点到这个角的两边的距离相等7.如图所示:数轴上点A所表示的数为a,则a的值是( )A. +1B.- +1C. -1D.8. 某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个。
设B型包装箱每个可以装x件文具,根据题意列方程为( )A.1080x=1080x-15+12B.1080x=1080x-15-12C.1080x=1080x+15-12D.1080x=1080x+15+129.如图,点P(3a,a)是反比例函y= k x(k 0)与⊙O的一个交点,图中阴影部分的面积为10 ,则反比例函数的解析式为( )A.y=3xB.y=5xC.y=10xD.y=12x10. 如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN AC于点N,则MN等于( )A. B. C. D.二、细心填一填:(每题3分,共30分)11. 根据里氏震级的定义,地震所释放出的相对能量E与震级n的关系为:E=10n,那么5级地震所释放出的相对能量相当于9级地震所释放出的相对能量的 .(用科学记数法表示)12. 解方程:的结果是。
一、选择题1.(0分)[ID :9900]如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2√3C .3√3D .6 2.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++3.(0分)[ID :9890]把式子1a a -号外面的因式移到根号内,结果是( ) A .a B .a - C .a - D .a --4.(0分)[ID :9879]如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得4AO =米.若梯子的顶端沿墙下滑1米,这时梯子的底端也恰好外移1米,则梯子AB 的长度为 ( )A .5米B .6米C .3米D .7米5.(0分)[ID :9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米6.(0分)[ID :9856]如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④7.(0分)[ID:9854]如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm8.(0分)[ID:9848]星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家9.(0分)[ID:9845]下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.3,4,5 10.(0分)[ID:9926]如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A.0点时气温达到最低B.最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃11.(0分)[ID :9921]已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( ) A .4cm B .43 cm C .6cm D .63 cm12.(0分)[ID :9836]下列各式不成立的是( )A .8718293-=B .222233+= C .8184952+=+= D .13232=-+ 13.(0分)[ID :9909]下列二次根式中,最简二次根式是( )A .10B .12C .12D .814.(0分)[ID :9872]下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 2 15.(0分)[ID :9863]如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .3二、填空题16.(0分)[ID :10023]如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.17.(0分)[ID :9992]计算:662)=________.18.(0分)[ID :9989]若函数()12m y m x -=+是正比例函数,则m=__________.19.(0分)[ID :9987]在矩形ABCD 中,点E 为AD 的中点,点F 是BC 上的一点,连接EF 和DF ,若AB=4,BC=8,5DF 的长为___________.20.(0分)[ID :9984]如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.21.(0分)[ID :9974]小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m ,当它把绳子的下端拉开旗杆4m 后,发现下端刚好接触地面,则旗杆的高为________22.(0分)[ID :9968]化简()213-=_____________;23.(0分)[ID :9949]如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.24.(0分)[ID :9940]如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .25.(0分)[ID :10026](124= ,20.8 = ,2(3)-= ,223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(32( 3.15)π- 三、解答题26.(0分)[ID :10130]已知长方形的长1322a =1183b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.27.(0分)[ID :10123]如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON上,AB =13,OB =5,E 为AC 上一点,且∠EBC =∠CBN ,直线DE 与ON 交于点F . (1)求证BE =DE ;(2)判断DF 与ON 的位置关系,并说明理由;(3)△BEF 的周长为 .28.(0分)[ID :10107]如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点O 关于直线CD 的对称点为E ,连接DE ,CE .(1)求证:四边形ODEC 为菱形;(2)连接OE ,若BC =2,求OE 的长.29.(0分)[ID :10050]观察下列各式及验证过程:11122323-=211121223232323-===⨯⨯ 1111323438⎛⎫-= ⎪⎝⎭2111131323423423438⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭ 11114345415⎛⎫-= ⎪⎝⎭21111414345345345415⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭ (1111456⎛⎫- ⎪⎝⎭验证.(2)针对上述各式反映的规律,写出用n (n 为自然数,且n ≥2)表示的等式,不需要证明.30.(0分)[ID :10045]某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.D4.A5.C6.B7.A8.D9.A10.D11.C12.C13.A14.D15.C二、填空题16.10【解析】【分析】分别令x=0y=0可得AB坐标即可求出OAOB的长利用三角形面积公式即可得答案【详解】∵直线交x轴于点A交y轴于点B∴令则;令则;∴∴∴的面积故答案为10【点睛】本题考查一次函数17.2【解析】试题解析:原式=()2-22=6-4=218.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键19.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F作FG⊥AD 于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG⊥AD于G则GF=4Rt△EFG中又∵E是AD的20.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m故答案为24m【点睛】本题考查勾股定理掌握21.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练22.【解析】23.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+1224.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB25.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,AD=3,CM⊥AD,∴DM=12∴CM=√CD2−DM2=3√3,∴PA+PM=PC+PM=CM=3√3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键.2.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】. 3.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】要使 10a∴-≥ 0a ∴<∴==故选D .【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.4.A解析:A【解析】【分析】设BO xm =,利用勾股定理依据AB 和CD 的长相等列方程,进而求出x 的值,即可求出AB 的长度.【详解】解:设BO xm =,依题意,得1AC =,1BD =,4AO =.在Rt AOB 中,根据勾股定理得222224AB AO OB x =+=+,在Rt COD 中,根据勾股定理22222(41)(1)CD CO OD x =+=-++,22224(41)(1)x x ∴+=-++,解得3x =,5AB ∴==,答:梯子AB 的长为5m .故选:A .【点睛】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =利用勾股定理列方程是解题的关键.5.C解析:C【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .6.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【详解】解:如图,因为l 是四边形ABCD 的对称轴,AB ∥CD ,则AD =AB ,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.7.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,圆柱底面的周长为4dm,圆柱高为2dm,BC BC dm,AB dm,22222AC,2244822AC dm,∴这圈金属丝的周长最小为242AC dm.故选:A.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.9.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A.32+42=52,是勾股数;B.1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C.(32)2+(42)2≠(52)2,不是勾股数;D2+22故选A.【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.10.D解析:D【分析】根据气温T 如何随时间t 的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A 错误;B.最低气温为零下3℃,故B 错误;C. 0点到14点之间气温先下降后上升,故C 错误;D 描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键.11.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm ,由勾股定理得:22AB AC -,故选C . 12.C解析:C【解析】【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】822721829==A 选项成立,不符合题意; 28222333+==B 选项成立,不符合题意; 81822325222+==,C 选项不成立,符合题意; 323232(32)(32)-==++-D 选项成立,不符合题意; 故选C .【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解13.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A是最简二次根式,本选项正确.B==C2A=不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.14.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.15.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.【详解】如图所示:22125BE +=故选:C .【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.二、填空题16.10【解析】【分析】分别令x=0y=0可得AB 坐标即可求出OAOB 的长利用三角形面积公式即可得答案【详解】∵直线交x 轴于点A 交y 轴于点B∴令则;令则;∴∴∴的面积故答案为10【点睛】本题考查一次函数解析:10【解析】【分析】分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.【详解】∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10【点睛】本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积. 17.2【解析】试题解析:原式=()2-22=6-4=2解析:2【解析】试题解析:原式=6)2-22=6-4=2.18.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键解析:2【解析】【分析】根据正比例函数的定义可得|m|-1=1,m+2≠0.【详解】因为函数()12m y m x -=+是正比例函数,所以|m|-1=1,m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义.理解定义是关键. 19.或【解析】【分析】分两种情况考虑①当BF >CF 时②当BF <CF 时然后过F 作FG ⊥AD 于G 根据勾股定理进行求解【详解】①如图所示当BF >CF 时过F 作FG ⊥AD 于G 则GF =4Rt △EFG 中又∵E 是AD 的解析:25或213【解析】【分析】分两种情况考虑,①当BF >CF 时,②当BF <CF 时,然后过F 作FG ⊥AD 于G ,根据勾股定理进行求解.【详解】①如图所示,当BF >CF 时,过F 作FG ⊥AD 于G ,则GF =4,Rt △EFG 中,()222542EG =-=,又∵E 是AD 的中点,AD =BC =8,∴DE =4,∴DG =4﹣2=2,∴Rt △DFG 中,224225DF =+=;②如图所示,当BF <CF 时,过F 作FG ⊥AD 于G ,则GF =4,Rt △EFG 中,()222542EG =-=,又∵E 是AD 的中点,AD =BC =8,∴DE =4,∴DG=4+2=6,∴Rt△DFG中,2246213DF=+=,故答案为:25或213.【点睛】本题考查矩形的性质,勾股定理,学会运用分类讨论的思想与巧作辅助线构造直角三角形是解题的关键.20.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m 故答案为24m【点睛】本题考查勾股定理掌握解析:4【解析】【分析】在Rt ABC中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.【详解】解:Rt ABC中,AC=4m,BC=3m225AC BC+=m∵1122ABCS AC BC AB CD =⋅=⋅∴125AC BCCDAB⋅==m=2.4m故答案为2.4 m【点睛】本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.21.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x 米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x ,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 22.【解析】 31【解析】2(13)1331-=-=23.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+12 解析:169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可.【详解】解:S 1=9,S 2=16,S 3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S =52+122=169.故答案为169.【点睛】本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.24.【解析】【分析】根据作法判定出四边形OACB 是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC =BC =OA∵OA=OB∴OA=OB =BC =AC∴四边形OACB 是菱形∵AB解析:【解析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC =BC =OA ,∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2, ∴12AB •OC =12×2×OC =4, 解得OC =4cm .故答案为:4.【点睛】 本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.25.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a ;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为解析:(1)4, 0.8,3,23 ;(2a ;(3)3.15﹣π. 【解析】【分析】(1)依据被开方数即可计算得到结果;(2a ;(3)原式利用得出规律计算即可得到结果.【详解】解:(124,3====; 故答案为:4,0.8,3,23;(2a ,|a|;(3=|π﹣3.15|=3.15﹣π.【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.26.(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.27.(1)见解析;(2)DF ⊥ON ,理由见解析;(3)24【解析】【分析】(1)根据正方形的性质证明△BCE ≌△DCE 即可;(2)由第一题所得条件和已知条件可推出∠EDC =∠CBN ,再利用90°的代换即可证明;(3)过D 点作DG 垂直于OM ,交点为G ,结合已知条件推出DF 和BF 的长,再根据第一题结论得出△BEF 的周长等于DF 加BF 即可得出答案.【详解】解:(1)证明:∵四边形ABCD 正方形,∴CA 平分∠BCD ,BC =DC ,∴∠BCE =∠DCE =45°,∵CE =CE ,∴△BCE ≌△DCE (SAS );∴BE =DE ;(2)DF ⊥ON ,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.28.(1)详见解析;(2)22【解析】【分析】(1)利用矩形性质可得OD=OC,再借助对称性可得OD=DE=EC=CO,从而证明了四边形ODEC为菱形;(2)证明四边形OBCE为平行四边形,即可得到OE=BC=22.【详解】(1)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OB=OD=12BD,∴OD=OC.∵点O关于直线CD的对称点为E,∴OD=ED,OC=EC.∴OD=DE=EC=CO.∴四边形ODEC为菱形;(2)连接OE.如图,由(1)知四边形ODEC为菱形,∴CE∥OD且CE=OD.又∵OB=OD,∴CE∥BO且CE=BO.∴四边形OBCE为平行四边形.∴22OE BC==【点睛】本题主要考查了矩形的性质,菱形的判定和性质、平行四边形的判定和性质,熟知特殊四边形的判定和性质是解题的关键.29.(1)见解析;(2)见解析.【解析】【分析】(1)类比题目中所给的运算方法即可解答;(2)观察题目所给的算式,根据算式总结出一般规律即可求解.【详解】(1====; (2=n 为自然数,且n ≥2) . 【点睛】本题是阅读理解题,能够从所给的案例中找出相应的规律是解决该类题型的关键. 30.(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。
初二数学第二学期期中复习卷(一) 学号 姓名
一. 填空题(每题2分,共24分)
1. 函数132
y x =-+中,函数值y 随x 的增大而____________. 2. 直线21y x =-不经过第___________象限.
3. 直线113
y x =+与x 轴的交点的坐标是____________. 4. 已知直线2y x m =-+经过点(1,2)P ,则m =__________.
5. 方程32
20x x x --=的解是_____________. 6. 当x =__________时,分式221x x -与分式221
x x +-的值相等. 7. 用换元法解方程222(1)11x x x x --=-时,设21
x y x =-,则原方程可化为关于y 的整式方程是_____________________.
8.
x =-的根是____________.
9. 已知x 轴上有一点P 与点(1,4)A -的距离是5,则点p 的坐标是____________.
10. 已知一个多边形的内角和是外角和的3倍,这个多边形是_________边形.
11. 已知平行四边形的周长是24cm,相邻两边的长的比是1︰2,则较短的边长是__________.
12. 平行四边形的一组对角的和2600,则平行四边形的相邻两个角的度数分别是__________.
二. 选择题(每题3分,共12分)
13.直线(1)y k x =- (0)k ≠的大致图像是 ( )
A B C 14.下列方程中有实数根的是 ( )
A.
20= B. 111x x x =-- C. 3x y += D. 0=
15.在平行四边形ABCD 中,AC 与BD 相交于点O,AC=6,BD=8,则AB 的长可能是( )
A.6
B.8
C.10
D.7
16.点A 、B 、C 、D 在同一平面内,若从①CD AB //②CD AB =③AD BC //④AD BC = 这四个条件中选两个,但不能推导出四边形ABCD 是平行四边形的选项是 ( )
A. ①②
B. ①④
C. ②④
D. ①③
三.解下列各题(每题8分,共64分)
17. 已知一次函数4-=kx y ,当2=x 时,3-=y
(1)求一次函数的解析式
(2)将该函数的图像向上平移6个单位,求平移后的图像与x 轴交点的坐标
18.已知一次函数的图像与直线112y x =
+相交于x 轴上的同一点,且经过点(3,5),求这个一次函数的解析式.
19.解方程:
282142x x =+-- 20. 解方程:x x =+-32
21. 解方程组⎪⎩⎪⎨⎧=+=++0
06522y x y xy x
22. 如图,点O 是平行四边形ABCD 的对角线AC 与BD 的交点,四边形OCDE 是平行四边形.求证:OE 与AD 互相平分.
证明:
23. 如图平行四边形ABCD 中,ο60=∠ABC ,点F E 、分别在BC CD 、的延长线上,BD AE //,BF EF ⊥,垂足为点F ,2=DF )1(求证:D 是EC 中点)2(求FC 的长
A B C D
O E
C E F
24.某公司承担了600个上海世博会道路交通指引标志的任务,原计划在一定时间内完成,实际加工时平均每天比原计划多制作10个,因此比原计划提前5天完成任务,问原计划每天制作多少个道路指引标志?
25.如图,在平面直角坐标系中,直线AB 与直线BC 相交于点)22(,-B ,直线AB 与y 轴相交于点)40(,A ,直线BC 与x 轴、y 轴分别相交于点)01(,-D 、点C.
(1)求直线AB 的解析式;
(2)过点A 作BC 的平行线交x 轴于点E ,求点E 的坐标;
(3)在(2)的条件下,点P 是直线AB 上一动点且在x 轴的上方,如果以点D 、E 、P 、Q 为顶点的平行四边形的面积等于ABC ∆面积,请求出点P 的坐标,并直接写出点Q 的坐标。