机械原理大作业18学号
- 格式:doc
- 大小:245.50 KB
- 文档页数:16
2006~2007学年第二学期《机械原理》试卷(A卷)班级:姓名:学号:一、填空题(共计20分,每空1分)1、机构具有确定运动的条件是:机构的原动件数等于机构的自由度数,若机构自由度F〉0,而原动件数<F,则构件间的运动是不确定的,若机构自由度F〉0,而原动件数〉F,则各构件之间不能运动或产生破坏。
2、瞬心是两个作平面相对运动刚体上瞬时相对速度为零的重合点.3、移动副的自锁条件是驱动力与接触面法线方向的夹角小于摩擦角;转动副的自锁条件是驱动力的作用线距轴心偏距h小于摩擦圆半径ρ。
4、在凸轮机构的各种常用从动件运动规律中,等速运动规律具有刚性冲击;等加速等减速运动规律具有柔性冲击。
5、内啮合斜齿圆柱齿轮传动的正确啮合条件是模数相等,压力角相等,螺旋角大小相等且旋向相同。
6、当原动件为整周转动时,使执行构件能作往复摆动的机构有曲柄摇杆机构;曲柄摇块机构;摆动从动件圆柱凸轮机构;摆动从动件空间凸轮机构或组合机构等.7、等效质量和等效转动惯量可根据等效原则:等效构件的等效质量或等效转动惯量所具有的动能等于机器所有运动构件的总动能之和来确定。
8、输出功和输入功的比值,通常称为机械效率。
9、为了减少飞轮的质量和尺寸,应将飞轮安装在高速轴上。
10、刚性转子静平衡条件是不平衡质量所产生的惯性力的矢量和等于零;而动平衡条件是不平衡质量所产生的惯性力和惯性力矩的矢量都等于零。
二、分析题(共计18分)1、(本题10分)如图所示,已知:BCDEGF,且分别相等,计算平面机构的自由度。
若存在复合铰链、局部自由度及虚约束,请指出。
如果以凸轮为原动件,机构是否具有确定的运动?1、(本题10分)解:n=61分P L= 8P H=1F=3n-2P L-P H=3×6-2×8-1 =1 B处存在局部自由度DE杆存在虚约束I、J之一为虚约束当以凸轮为原动件时,原动件数等于机构的自由度,故机构具有确定的运动。
班级XX学号机械原理平面机构的构造分析1、如图a所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以到达冲压的目的。
试绘出其机构运动简图〔各尺寸由图上量取〕,分析其是否能实现设计意图?并提出修改方案。
解1〕取比例尺l绘制其机构运动简图〔图b〕。
2〕分析其是否能实现设计意图。
图a〕由图b可知,n3,p4,p h1,p0,F0l故:F3n(2ppp)F33(2410)00lh因此,此简单冲床根本不能运动〔即由构件3、4与机架5和运动副B、C、D组成不能运动的刚性桁架〕,故需要增加机构的自由度。
图b〕3〕提出修改方案〔图c〕。
评语任课教师日期1班级XX学号机械原理为了使此机构能运动,应增加机构的自由度〔其方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c 给出了其中两种方案〕。
图c1〕图c2〕2、试画出图示平面机构的运动简图,并计算其自由度。
图a〕n3,4解:l图b〕解:n4,5p,p h1,F3n2p l p h1l评语任课教师日期2班级XX学号机械原理3、计算图示平面机构的自由度。
将其中的高副化为低副。
机构中的原动件用圆弧箭头表示。
3-1解3-1:n7,p l10,p h0,F3n2p l p h1,C、E复合铰链。
3-2解3-2:n8,11p,p h1,F3n2p l p h1,局部自由度l评语任课教师日期3班级XX学号机械原理3-3 解3-3:n9,12p,p h2,F3n2p l p h1l4、试计算图示精压机的自由度评语任课教师日期4班级XX学号机械原理n10,p15,p h0解:n11,p l17,p h0解:lp2p l p h3n250331p2p l p h3n210362F0F0F3n(2p l p h p)FF3n(2p l p h p)F310(21501)01311(21702)01〔其中E、D及H均为复合铰链〕〔其中C、F、K均为复合铰链〕5、图示为一内燃机的机构简图,试计算其自由度,并分析组成此机构的根本杆组。
机械原理大作业范文摘要:机械传动是机械学中的基础内容之一,广泛应用于各个行业和领域。
本文将对机械传动的原理、类型以及应用进行系统的介绍和探讨。
首先介绍了机械传动的定义和作用,然后详细介绍了各种常见的机械传动类型,包括齿轮传动、皮带传动、链传动等,并分别对其工作原理进行了分析。
最后列举了一些机械传动的应用案例,证明了机械传动在现实生活中的重要性和广泛性。
一、引言机械传动是将动力从一个地方传递到另一个地方的机械装置。
它作为机械工程学的基础内容,广泛应用于工业、农业、建筑等各个领域。
机械传动具有传递力量的功能,并能实现运动的改变、平衡、变速等目的。
本文将对机械传动的类型、原理以及应用进行详细介绍。
二、机械传动的类型机械传动可以分为多种类型,常见的有齿轮传动、皮带传动、链传动等。
齿轮传动是利用齿轮间的啮合来传递扭矩和运动的一种传动方式,具有传动效率高、传动比稳定等优点。
皮带传动则是通过绕在两个轮子上的带子来传递力量,常用于需要减速的场合。
链传动与皮带传动类似,但是链传动的传动效率更高,扭矩传递更稳定。
三、机械传动的工作原理1.齿轮传动:齿轮传动采用齿轮之间的啮合来实现传动的目的。
主要通过齿轮的大小、齿数来调整传递的速度和扭矩。
其中,齿轮的齿数比称为传动比,可以实现速度的改变。
齿轮传动通常包括齿轮轴、轴承、齿轮齿廓等组成部分。
2.皮带传动:皮带传动通过绕在轮子上的带子来传递力量。
常见的皮带传动有平行轴带传动和交叉轴带传动。
通过调整轮子的直径和材料来改变传递效果。
皮带传动具有传递动力平稳、减震效果好的特点。
3.链传动:链传动与皮带传动类似,也是通过绕在轮子上的链条来传递力量。
链传动具有噪音低、传动效率高等优点,广泛应用于自行车、摩托车等交通工具中。
四、机械传动的应用1.工业应用:机械传动在工业制造中有广泛的应用。
例如,齿轮传动被广泛应用于机床、起重机械、输送设备等,实现力量的传递和工作的协调。
皮带传动常用于风机、泵等需要平稳传递动力的设备中。
第二章机构的结构分析作业题:1.图示为一简易冲床的初拟方案。
设计思路是:动力由齿轮1输入,轴A连续转动,固联与轴A上的凸轮推动杠杆3使冲头4上下往复运动实现冲压工艺,试绘出其机构运动简图,分析能否实现上述构思,并提出两种修改意见(以机构运动简图表示)。
2.如图所示为一小型压力机。
图中齿轮1与偏心轮1ˊ为同一构件,绕固定轴心O连续转动。
在齿轮5上开有凸轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕轴C上下摆动;同时又通过偏心轮1ˊ、连杆2、滑槽3使C轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G使冲头8实现冲压运动。
试绘制其机构运动简图,计算其自由度。
3.图示是一为高位截肢的人所设计的一种假肢膝关节机构。
该机构能保持人行走的稳定性。
若以胫骨1为机架,试绘制其机构运动简图和计算其自由度,并作出大腿弯曲90°时的机构运动简图。
4.试绘出下列各机构的机构示意图,计算其自由度,并说明运动是否确定。
5.计算下列各机构的自由度,若存在复合铰链,局部自由度,虚约束请明确指出。
6.计算图示机构的自由度,并分析基本杆组,确定机构的级别。
第八章平面连杆机构及其设计作业题:1.图示四杆机构中各杆件长度已知:a=150mm,b=500mm,c=300mm,d=400mm。
试问:1)若取杆件d 为机架是否存在曲柄?如存在,哪一杆件为曲柄?2)若分别取其它杆件为机架,可得到什么类型的机构?2.图示铰链四杆机构ABCD中,各构件长度如图所示(μl=10mm/mm),AB主动,试求:1)两连架杆AB、CD为何类构件?2)该机构有无急回性质?若有,其行程速比系数K为多少?3)在图中作出最小传动角γmin对应的机构位置ABCD;4)若改为以CD杆为主动,该机构有无死点?若有,请用虚线画出死点位置。
3.图示铰链四杆机构作为加热炉炉门的启闭机构。
炉门上两铰链相距50cm(图中单位为:cm),炉门打开后成水平位置且要求外侧向上,固定铰链装在yy轴线上,相应位置尺寸如图。
机械原理课程设计大作业菠萝削皮机专业:机械设计制造及其自动化摘要本设计产品提供一种手摇立式菠萝削皮机,主要包括托盘、刀架、顶针架、V 型刀片、手柄或小型发动机、以及机械系统,包括传动系统、装夹系统、切削系统。
其中传动系统由直齿圆锥齿轮(14)与进给螺纹套管(13)固连,通过摇动手柄(18)和变速齿轮机构(17)将动力经直齿圆锥齿轮(15)与进给螺纹管道(13)组成的传递机构将动力传给的刀具夹紧法兰盘(12)从而带动刀具旋转;装夹系统由上顶钉及对顶螺母(3),下顶钉(5)组成;切削系统由刀架和V型刀具(6、7)以及刀片(16)组成。
该削皮机使用方便,安全可靠,切削菠萝和皮根效率高。
目录一、题目复述二、设计方案及结构图三、机械系统四、主要结构件参数五、设计总结和补充六、参考书目一、题目复述菠萝是人们普遍喜爱的一种热带水果。
菠萝虽好吃,但皮难削。
由于菠萝的皮为花苞片状的硬皮,并呈现螺旋状的排列,而且每个花苞片上面都有一个较深的“果眼”或“黑芯”。
通常,人们手工削菠萝皮的做法:一种是用锋利的水果刀先削去菠萝上的全部花苞片硬皮,然后再逐个挖去菠萝上残留的全部“果眼”;另一种是利用特制的U 型刀沿着菠萝花苞片和“果眼”排列的螺旋方向挖出一条深“沟”,连皮带“眼”一块去掉,需逐条螺旋线方向挖“沟”才能完成。
所以手工削皮不仅费时费力,不安全,不卫生,而且对菠萝果肉的浪费也较大。
虽目前市面上有一些水果削皮机的产品,但都不适合于菠萝水果削皮的需要。
因此,为了满足家庭、酒店、水果店或果贩使用,现需设计一种手动式或电动菠萝削皮装置。
图8.1菠萝表面的花苞片及“果眼”的分布形状如图1所示。
菠萝通常呈现未对称性的左右螺旋线排列,左右螺旋线的螺旋线的螺旋升角均约为40,每条螺旋线上的果眼数为7-12个,每个菠萝的螺旋线数为8条,而菠萝的高度与其直径之比为1.5左右,其高度一般在170mm——280mm范围之内。
我们根据市场商场见菠萝的大小以及其表面特性将其归类:二、设计方案及结构图我们经讨论及实验以后采用“V”型刀具剔除果眼及外表皮,对于未长果眼的部分则采取普通刀片(双向)切削方法去除。
机械原理大作业
项目名称:直折伞机构分析
组员:
1、实物图
2、雨伞的使用功能及使用场合
提供阴凉环境或遮蔽雨、雪的工具。
也可作为装饰物,拐杖或兵器。
3、分析机构的运动,判断原动件的数目、画出机构运动简图,并计算其自由度
机构运动简图1为主动件,向上运动压缩弹簧可实现打开,向下
运动时通过拉伸弹带动2向下运动可实现收伞。
原动件数目:5
计算自由度:F=3(n-1)-2p4-p5,
该机构中6视为机架,共5个构件,7个低副,0个高副,即n=5,p4=7,p5=0。
F=3x5-2x7-0=1自由度为1。
4、大致测绘出构件尺寸,并进行高副低代。
数据测绘如下(mm):
AB=50,BC=80,AC=70,AD=225,DE=230
该机构不存在高副。
5、确定机构所含杆组的数目和级别(拆杆组),并判断机构的级别。
该机构可拆分为1个三级杆组,所以该机构等级为三级。
6、用图解法求出最小传动角值
最小传动角为图中
7、分析该机构有无急回特性和死点位置
无
8、机构运动分析
位移分析如图
速度分析如图
加速度分析如图
9、分析该机构的优缺点,如何改进其不足
优点:防风效果好,结实耐用,结构简单,制造方便,经济成本低。
缺点: 打开及收回时比较费力,携带不方便,闲置时占空间较大。
将伞柄处设计为自动按钮控制收缩,每次使用完毕按照伞布面的褶印进行整理装入指定的收纳袋里根据空间合理选择放置方式。
机械原理大作业(一)作业名称:连杆机构运动分析设计题目:(34)题院系:船舶学院班级: 1213101设计者:学号:哈尔滨工业大学机械设计一、运动分析题目如图所示机构,已知机构各构件的尺寸为BF=200mm,EF=1.25BF,DE=1.13BF,EH=0.85BF,HF=0.65BF,CH=0.81BF,GC=1.56BF,BD=0.58BF,BG=1.85BF,GD=1.6BF,构件1的角速度为W1=10rad/s,试求构件2上点H的轨迹及构件5的角位移,角速度,角加速度,并对计算结果进行分析。
机构结构分析:二、机构的结构分析及基本杆组划分机构各构件都在同一平面内运动,活动构件数n=5,=7,=0则机构的自由度为:F=3×n-2×-1×=3×5-2×7-0=12.基本杆组划分(1)去除虚约束和局部自由度本机构中无虚约束或局部自由度。
(2)拆杆组。
从远离原动件(即杆1)进行拆分,就可以得到由杆4,5 组成的RRRⅡ级杆组GCH,2,3 组成的RRRⅡ级杆组EDF,最后剩下Ⅰ级机构杆1。
(3)确定机构的级别 由(2)知,机构为Ⅱ级机构三、各基本杆组的运动分析数学模型1)Ⅰ级杆组BF (原动件)在Ⅰ级杆组BF 中,即已知构件上B 点的运动参数,求同一构件上F 点(回转副)的运动参数。
调用Ⅰ级机构子程序即可求解 ①位置分析 由图可得F 点的矢量方程F B BF r r l =+x,y 轴上的投影坐标方程为cos sin F B BF BF F B BF BF x x l y y l ϕϕ=+⋅⎫⎬=+⋅⎭(1)②速度和加速度分析 将式(1)对时间t 求导即可得出速度方程:cos sin BF BF BF BF FF B BF FF B BF dx x x l dtdy y x l dt ϕϕϕϕ⋅⋅⋅⋅⋅⋅⎫⎪==-⎪⎬⎪==+⎪⎭ (2)2222cos sin sin cos BF BF BF BF BF BF BF FF B BF BF BF F F B BFBF d x x x l l dtd y y y l l dt ϕϕϕϕϕϕϕϕ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎫⎪==--⎪⎬⎪==--⎪⎭(3)其中因为设B 为原点:B x =0;B y =0 ;B x ⋅=0 ;B y ⋅=0 ;B x ⋅⋅=0 ;B y ⋅⋅=0由上(1)(2)(3)方程可求出F 点的位移,速度,加速度2)RRR Ⅱ级杆组DEF 分析,求出F 点的角位移,角速度,角加速度上面1)中已求得F 点的位移,速度,加速度。
机械原理大作业 - 机械原理大作业
机械原理是研究物体运动、力学、力的作用及其变化规律的科学。
在本次大作业中,我们将介绍机械原理的基本概念、公式和应用。
一、机械原理的基本概念
1. 运动学:研究物体运动的速度、加速度、轨迹等运动规律;
2. 动力学:研究物体的受力与它产生的运动规律;
3. 热力学:研究物体的热现象及其规律;
4. 物理学:研究物理学的基本概念和公式。
二、机械原理的公式
1. 牛顿第一定律:物体静止或匀速直线运动,当且仅当它所受的合外力为零时,物体才保持静止或匀速直线运动;
2. 牛顿第二定律:物体所受的合外力等于其质量乘以加速度;
3. 牛顿第三定律:相互作用的两个物体之间的作用力和反作用力大小相等、方向相反、作用在同一直线上。
三、机械原理的应用
1. 机械振动:当物体受到外力作用时,它会出现振动;
2. 飞行器动力学:研究飞行器受到的空气力、重力力和推力等作用力的大小、方向和作用点,以及其导致的运动规律;
3. 摩擦力学:研究物体之间的摩擦力大小、方向和作用点。
以上是机械原理的基本概念、公式和应用,希望这些内容可以帮助大家更好地理解机械原理。
机械原理大作业课程名称:机械原理设计题目:连杆机构运动分析院系:机械工程院班级: xxxx学号: xxxxx设计者: xx设计时间:2016年6月一、题目1-12:所示的六连杆机构中,各构件尺寸分别为:lAB =200mm,lBC=500mm,lCD=800mm,xF=400mm,xD=350mm,yD=350mm,w1=100rad/s,求构件5上的F点的位移、速度和加速度。
二、数学模型1.建立直角坐标系以F点为直角坐标系的原点建立直角坐标系X-Y,如下图所示。
2.机构结构分析该机构由I级杆组RR(原动件AB)、II级杆组RRR(杆2、3)、II级杆组PRP(杆5、滑块4)组成。
3.各基本杆组运动分析 1.I级杆组RR(原动件AB)已知原动件AB的转角φ=0-2Π原动件AB的角速度w=10rad/s原动件AB的角加速度α=0运动副A的位置xA=-400,yA=0运动副A的速度vA=0,vA=0运动副A的加速度aA=0,aA=0可得:xB=xA+lAB*cos(φ)yB=yA+lAB*sin(φ)速度和加速度分析:vxB=vxA-wl*AB*sin(Φ)vyB=vyA+w*lAB*sin(φ)axB=axA-w2*lAB*cos(φ)-e*lAB*sin(φ)ayB=ayA-w2*lAB*sin(φ)+e*lAB*cos(φ) 2.II级杆组RRR(杆2、3)杆2的角位置、角速度、角加速度lBC=500mm,lCD=800mm,xD=350mm,yD=350mm,ψ2=arctan﹛[Bo+﹙Ao²+Bo²-Co²﹚½]/﹙Ao+Bo﹚﹜ψ3=arctan[﹙yC-yD)/(xC-xD)]Ao=2*LBC(xD-xB) Bo=2*LBC(yD-yB)lBD²=(xD-xB)²+(yD-yB)²Co=lBC²+lBD²-lCD²xC=xB+lBC*cos(ψ2)yC=xB+lBC*sin(ψ2)求导可得C点的角速度和角加速度。
机械原理大作业集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]编程Option ExplicitDim xA As DoubleDim yA As DoubleDim vxA As DoubleDim vyA As DoubleDim axA As DoubleDim ayA As DoubleDim xB As DoubleDim yB As DoubleDim vxB As DoubleDim vyB As DoubleDim axB As DoubleDim ayB As DoubleDim xC As DoubleDim yC As DoubleDim vxC As DoubleDim vyC As DoubleDim axC As DoubleDim ayC As DoubleDim xD As DoubleDim yD As DoubleDim vxD As DoubleDim vyD As DoubleDim axD As DoubleDim ayD As DoubleDim xE As DoubleDim yE As DoubleDim vxE As DoubleDim vyE As DoubleDim axE As DoubleDim ayE As DoubleDim xF As DoubleDim yF As DoubleDim vxF As DoubleDim vyF As DoubleDim axF As DoubleDim ayF As DoubleDim xG As DoubleDim yG As DoubleDim vxG As DoubleDim vyG As DoubleDim ayG As DoubleDim delt As Double Dim lab As DoubleDim lbc As DoubleDim lcd As DoubleDim lce As DoubleDim lef As DoubleDim lfg As DoubleDim leb As DoubleDim f As DoubleDim fbc As DoubleDim fcd As DoubleDim fce As DoubleDim fef As DoubleDim ffg As DoubleDim fge As DoubleDim w As DoubleDim wbc As DoubleDim wcd As DoubleDim wce As DoubleDim wef As DoubleDim wfg As DoubleDim e As DoubleDim ebc As DoubleDim ecd As DoubleDim ece As DoubleDim eef As DoubleDim efg As DoubleDim lbd As Double 'rrr Dim leg As DoubleDim jcbd As Double Dim jfeg As Double Dim fbd As DoubleDim feg As DoubleDim val As DoubleDim Ci As DoubleDim Cj As DoubleDim Si As DoubleDim Sj As DoubleDim G1 As DoubleDim G2 As DoubleDim G3 As Double 'rrr Dim i As DoubleDim pi As DoubleDim febc As DoubleDim fj1 As DoublePrivate Sub Command1_Click()Picture1.Scale (-450, 200)-(-150, -15)Picture1.Line (-300, 0)-(10, 0) 'XPicture1.Line (0, 400)-(0, -15) 'YFor i = -500 To -150 Step 25 'X轴坐标Picture1.DrawStyle = 2Picture1.Line (i, 400)-(i, 0)Picture1.CurrentX = i - 10: Picture1.CurrentY = 0 Picture1.Print iNext iFor i = 0 To 350 Step 25 'Y轴坐标Picture1.DrawStyle = 2Picture1.Line (0, i)-(-500, i)Picture1.CurrentX = -170: Picture1.CurrentY = i + 7 Picture1.Print iNext iFor fj1 = 0 To 360 Step 0.005f = fj1 * paCall RR1Call RRR1Call RR2Picture1.PSet (xE, yE)Next fj1End SubPrivate Sub Command2_Click()Picture2.Scale (-20, 2)-(380, -0.1)Picture2.Line (-20, 0)-(380, 0) 'XPicture2.Line (0, 3)-(0, -0.5) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture2.DrawStyle = 2Picture2.Line (i, 3)-(i, -2)Picture2.CurrentX = i - 10: Picture2.CurrentY = 0 Picture2.Print iNext iFor i = -2 To 3 Step 0.25 'Y轴坐标Picture2.Line (0, i)-(380, i)Picture2.CurrentX = -25: Picture2.CurrentY = iPicture2.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture2.PSet (fj1, ffg)Next fj1End SubPrivate Sub Command3_Click()Picture3.Scale (-20, 12)-(380, -9)Picture3.Line (-20, 0)-(380, 0) 'XPicture3.Line (0, 10)-(0, -10) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture3.DrawStyle = 2Picture3.Line (i, 12)-(i, -10)Picture3.CurrentX = i - 10: Picture3.CurrentY = 0 Picture3.Print iNext iFor i = -12 To 12 Step 2 'Y轴坐标Picture3.Line (0, i)-(380, i)Picture3.CurrentX = -20: Picture3.CurrentY = iPicture3.Print iNext iFor fj1 = 0 To 360 Step 0.005f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture3.PSet (fj1, wfg)Next fj1End SubPrivate Sub Command4_Click()Picture4.Scale (-20, 250)-(380, -400)Picture4.Line (-20, 0)-(380, 0) 'XPicture4.Line (0, 250)-(0, -500) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture4.DrawStyle = 2Picture4.Line (i, 250)-(i, -500)Picture4.CurrentX = i - 10: Picture4.CurrentY = 0 Picture4.Print iNext iFor i = -500 To 250 Step 60 'Y轴坐标Picture4.Line (0, i)-(500, i)Picture4.CurrentX = -25: Picture4.CurrentY = i + 5 Picture4.Print iNext iFor fj1 = 0 To 360 Step 0.01 f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture4.PSet (fj1, efg)Next fj1End SubPrivate Sub Form_Load()lab = 61lce = 200lbc = 200lcd = 200lef = 132lfg = 160w = 10e = 0delt = 0xA = 0yA = 0vxA = 0vyA = 0axA = 0ayA = 0xD = -143.71186yD = -49.5065655vxD = 0vyD = 0axD = 0ayD = 0xG = -472yG = 0vxG = 0vyG = 0axG = 0ayG = 0pipa = pi / 180febc = pa * 33End SubPrivate Sub RR1()xB = xA + lab * Cos(f + delt)yB = yA + lab * Sin(f + delt)vxB = vxA - w * lab * Sin(f + delt)vyB = vyA + w * lab * Cos(f + delt)axB = axA - w ^ 2 * lab * Cos(f + delt) - e * lab * Sin(f + delt)ayB = ayA - w ^ 2 * lab * Sin(f + delt) + e * lab * Cos(f + delt)End SubPrivate Sub RR2()leb = 2 * lbc * Cos(febc)xE = xB + leb * Cos(fbc + febc)yE = yB + leb * Sin(fbc + febc)vxE = vxB - wbc * leb * Sin(fbc + febc)vyE = vyB + wbc * leb * Cos(fbc + febc)axE = axB - wbc ^ 2 * leb * Cos(fbc + febc) - ebc * leb * Sin(fbc + febc) ayE = ayB - wbc ^ 2 * leb * Sin(fbc + febc) + ebc * leb * Cos(fbc + febc) End SubPrivate Sub RRR1()fbd = pi + Atn((yD - yB) / (xD - xB))lbd = Sqr((xD - xB) ^ 2 + (yD - yB) ^ 2)val = ((lbc ^ 2 + lbd ^ 2 - lcd ^ 2) / (2 * lbc * lbd))jcbd = Atn(-val / Sqr(-val * val + 1)) + 2 * Atn(1)fbc = fbd - jcbdxC = xB + lbc * Cos(fbc)yC = yB + lbc * Sin(fbc)If xC > xD And yC >= yD Then '第一象限fcd = Atn((yC - yD) / (xC - xD))ElseEnd IfIf xC < xD And yC >= yD Then '第二象限fcd = pi + Atn((yC - yD) / (xC - xD))ElseEnd IfCi = lbc * Cos(fbc)Si = lbc * Sin(fbc)Cj = lcd * Cos(fcd)Sj = lcd * Sin(fcd)G1 = Ci * Sj - Cj * Siwbc = (Cj * (vxD - vxB) + Sj * (vyD - vyB)) / G1wcd = (Ci * (vxD - vxB) + Si * (vyD - vyB)) / G1vxC = vxB - wbc * lbc * Sin(fbc)vyC = vyB + wbc * lbc * Cos(fbc)G2 = axD - axB + wbc ^ 2 * Ci - wcd ^ 2 * CjG3 = ayD - ayB + wbc ^ 2 * Si - wcd ^ 2 * Sjebc = (G2 * Cj + G3 * Sj) / G1ecd = (G2 * Ci + G3 * Si) / G1axC = axB - ebc * lbc * Sin(fbc) - wbc ^ 2 * lbc * Cos(fbc)ayC = ayB - ebc * lbc * Cos(fbc) - wbc ^ 2 * lbc * Sin(fbc)End SubPrivate Sub RRR2()feg = pi + Atn((yG - yE) / (xG - xE))leg = Sqr((xG - xE) ^ 2 + (yG - yE) ^ 2)val = ((lef ^ 2 + leg ^ 2 - lfg ^ 2) / (2 * lef * leg))jfeg = Atn(-val / Sqr(-val * val + 1)) + 2 * Atn(1)fef = feg - jfegxF = xE + lef * Cos(fef)yF = yE + lef * Sin(fef)If xF > xG And yF >= yG Then '第一象限ffg = Atn((yF - yG) / (xF - xG))ElseEnd IfIf xF < xG And yF >= yG Then '第二象限ffg = pi + Atn((yF - yG) / (xF - xG))ElseEnd IfCi = lef * Cos(fef)Si = lef * Sin(fef)Cj = lfg * Cos(ffg)Sj = lfg * Sin(ffg)G1 = Ci * Sj - Cj * Siwef = (Cj * (vxG - vxE) + Sj * (vyG - vyE)) / G1wfg = (Ci * (vxG - vxE) + Si * (vyG - vyE)) / G1vxF = vxE - wef * lef * Sin(fef)vyF = vyE + wef * lef * Cos(fef)G2 = axG - axE + wef ^ 2 * Ci - wfg ^ 2 * CjG3 = ayG - ayE + wef ^ 2 * Si - wfg ^ 2 * Sjeef = (G2 * Cj + G3 * Sj) / G1efg = (G2 * Ci + G3 * Si) / G1axF = axE - eef * lef * Sin(fef) - wef ^ 2 * lef * Cos(fef) ayF = ayE - eef * lef * Cos(fef) - wef ^ 2 * lef * Sin(fef) End Sub在此处键入公式。
分析说明一、题目二、基本杆组分析由图知,该平面机构由一个Ⅰ级机构和三个Ⅱ级机构组成,因而为Ⅱ级机构。
三、解题代码%clc;%clear all;%机架xA=0;yA=0; %A 点位置xD=348;yD=-138; %D 点位置yh1=100; %固定端高度yh2=0; %固定端高度%主动件L=120; %主动杆杆长c%从动件尺寸LBC=170;LCF=300;LCD=350;LFG=340; LBE=400;%运动分析vxA=0;vyA=0;axA=0;ayA=0; %A 点的速度、加速度vxD=0;vyD=0;axD=0;ayD=0; %D 点的速度、加速度w=10;aa=0; %主动杆的角速度、角加速度A=(15.57:3:251.44)*pi/180; %曲柄转角(每隔3°计算一次)T=(15.57:3:251.44)*pi/180;[xB,yB] = RR_xy(xA,yA,A,L); %B 点轨迹位置[vxB,vyB] = RR_v(vxA,vyA,A,w,L); %B 点分速度VB=sqrt(vxB.^2+vyB.^2); %B 点速度[axB,ayB] = RR_a(axA,ayA,A,w,aa,L); %B 点加速度[xC,yC,A1,A2]=RRR_xyA(xB,yB,xD,yD,LBC,LCD); %C 点轨迹位置[vxC,vyC,wbc,wcd]=RRR_vw(vxB,vyB,vxD,vyD,A1,A2,LBC,LCD);%C 点分速度VC=sqrt(vxC.^2+vyC.^2); %C 点速度[axC,ayC,aa1,aa2 ] =RRR_a( axB,ayB,axD,ayD,A1,A2,wbc,wcd,LBC,LCD); %C 点加速度[xF,yF] = RR_xy(xB,yB,A1,LCF-LBC); %F 点轨迹位置[vxF,vyF] = RR_v(vxB,vyB,A1,wbc,LCF-LBC); %F 点分速度VF=sqrt(vxF.^2+vyF.^2); %F 点速度[axF,ayF] = RR_a(axB,ayB,A1,wbc,aa1,LCF-LBC); %F 点加速度[xG]=RP_xy( xF,yF,yh1,LFG);for i=(1:1:79)yG(i)=yh1; end; %G 点轨迹位置[vxG]=RP_v(vxF,vyF,yF,yh1,LCF-LBC);for j=(1:1:79)vyG(j)=0; end ;%G 点速度[axG]=RP_a(axF,ayF,vyF,yF,yh1,LCF-LBC);for k=(1:1:79)ayG(k)=0; end; %G 点加速度[xE]=RP_xy( xB,yB, yh2,LBE); for i=(1:1:79)yE(i)=0; end; %E 点轨迹位置[vxE]=RP_v(vxB,vyB,yB,yh2,LBC);for j=(1:1:79)vyE(j)=0; end ;%E 点速度[axE]=RP_a(axB,ayB,vyB,yB,yh2,LBC);for k=(1:1:79)ayE(k)=0; end; %E 点加速度%图像显示subplot(2,3,1);plot(xG,yG ,'r');grid minor;xlabel('G 点横坐标(/mm)');ylabel('G 点纵坐标(/mm)');title('G 点位移图像');subplot(2,3,2);plot(T,vxG,'r'); %G 点合速度图像grid minor;xlabel('时间T(s)');ylabel('速度V(mm/s)');title('G 点速度图像');subplot(2,3,3);plot(T,axG,'r'); %G 点加速度图像grid minor;xlabel('时间T(s)');ylabel('aG(mm/s2)');title('G 点加速度图像');subplot(2,3,4);plot(xE,yE ,'b');grid minor;xlabel('E 点横坐标(/mm)');ylabel('E 点纵坐标(/mm)');title('E 点位移图像');subplot(2,3,5);plot(T,vxE,'b'); %E 点合速度图像grid minor;xlabel('时间T(s)');ylabel('速度V(mm/s)');title('E 点速度图像');subplot(2,3,6);plot(T,axE,'b'); %E 点加速度图像grid minor;xlabel('时间T(s)');ylabel('aE(mm/s2)');title('E 点加速度图像');四、结果分析四、结果分析该机构为摇杆驱动的摇杆滑块机构,存在急回机构。
机械原理大作业三课程名称:机械原理设计题目:齿轮传动设计院系:班级:设计者:学号:指导教师:设计时间:1、设计题目1.1机构运动简图1.2机械传动系统原始参数序号 电机转速(r/min )输出轴转速(r/min )带传动最大传动比滑移齿轮传动定轴齿轮传动最大传动比模数 圆柱齿轮圆锥齿轮一对齿轮最大传动比模数一对齿轮最大传动比 模数574512 17 235.2≤4≤ 24≤ 34≤32、传动比的分配计算电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =,min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。
根据传动系统的原始参数可知,传动系统的总传动比为: 08.6212745011===n n i 82.4317745022===n n i 39.3223745033===n n i 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。
设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比f v p i i i i 1max 1= f v p i i i i 2max 2= f v p i i i i 3max 3= 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 21.64*5.208.62max max 1===v p f i i i i滑移齿轮传动的传动比为82.221.6*5.282.43max 22===fp v i i i i09.221.6*5.239.32max 32===fp v i i i i设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 484.121.6max 33=≤===d f d i i i 3、齿轮齿数的确定根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数:35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=*a h ,径向间隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。
Harbin Institute of Technology连杆机构设计说明书课程名称:机械原理设计题目:连杆机构设计院系:班级:设计者:学号:指导教师:设计时间:6月28日哈尔滨工业大学1.运动分析题目如图所示机构,已知机构各构件的尺寸为AB=108mm,EF=320mm,BC=CE=CD=200mm,FG=162mm,AD=258mm,AG=514mm,DG=384mm,β=80º,构件1的角速度为ω1=10rad/s,试求构件2上点E的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。
2.机构的结构分析,组成机构的基本杆组划分3.各基本杆组的运动分析数学模型(1)RR基本杆组:delt=0xB = xA + AB * Cos(f + delt)yB = yA + AB* Sin(f + delt)vxB = vxA - w * AB * Sin(f + delt)vyB = vyA + w * AB* Cos(f + delt)axB = axA - w ^ 2 * AB * Cos(f + delt):ayB = ayA - w ^ 2 * AB* Sin(f + delt)(2)RRR基本杆组Ci = lbc * Cos(fbc)Si = lbc * Sin(fbc)Cj = lcd * Cos(fcd)Sj = lcd * Sin(fcd)G1 = Ci * Sj - Cj * Siwbc = (Cj * (vxD - vxB) + Sj * (vyD - vyB)) / G1wcd = (Ci * (vxD - vxB) + Si * (vyD - vyB)) / G1vxC = vxB - wbc * lbc * Sin(fbc)vyC = vyB + wbc * lbc * Cos(fbc)G2 = axD - axB + wbc ^ 2 * Ci - wcd ^ 2 * CjG3 = ayD - ayB + wbc ^ 2 * Si - wcd ^ 2 * Sjebc = (G2 * Cj + G3 * Sj) / G1ecd = (G2 * Ci + G3 * Si) / G1axC = axB - ebc * lbc * Sin(fbc) - wbc ^ 2 * lbc * Cos(fbc)ayC = ayB + ebc * lbc * Cos(fbc) - wbc ^ 2 * lbc * Sin(fbc)EB = 2 * BC * Cos(febc)xE = xB + EB* Cos(fbc + febc)yE = yB + EB * Sin(fbc + febc)vxE = vxB – wbc * EB* Sin(fbc + febc)vyE = vyB + wbc * EB* Cos(fbc + febc)axE = axB - wbc ^ 2 * EB * Cos(fbc + delt) - ebc * EB * Sin(fbc + febc)ayE = ayB - wbc ^ 2 * leb * Sin(fbc + delt) + ebc * leb * Sin(fbc + febc) Ci = lef * Cos(fef)Si = lef * Sin(fef)Cj = lfg * Cos(ffg)Sj = lfg * Sin(ffg)G1 = Ci * Sj - Cj * Siwef = (Cj * (vxG - vxE) + Sj * (vyG - vyE)) / G1wfg = (Ci * (vxG - vxE) + Si * (vyG - vyE)) / G1vxF = vxE - wef * lef * Sin(fef)vyF = vyE + wef * lef * Cos(fef)G2 = axG - axE + wef ^ 2 * Ci - wfg ^ 2 * CjG3 = ayG - ayE + wef ^ 2 * Si - wfg ^ 2 * Sjeef = (G2 * Cj + G3 * Sj) / G1efg = (G2 * Ci + G3 * Si) / G1axF = axE - eef * lef * Sin(fef) - wef ^ 2 * lef * Cos(fef)ayF = ayE + eef * lef * Cos(fef) - wef ^ 2 * lef * Sin(fef)4.计算编程Dim xA As DoubleDim yA As DoubleDim vxA As DoubleDim vyA As DoubleDim axA As Double 'A '点加速度x轴分量Dim ayA As Double 'A '点加速度y轴分量Dim xB As Double 'B'点'x轴坐标Dim yB As Double 'B点y轴坐标Dim vxB As Double 'B点速度x轴分量Dim vyB As Double 'B点速度y轴分量Dim axB As Double 'B点加速度x轴分量Dim ayB As Double 'B点加速度y轴分量Dim xC As Double 'C点x轴坐标Dim yC As Double C'点y轴坐标Dim vxC As Double 'C点速度x轴分量Dim vyC As Double 'C点速度y轴分量Dim axC As Double 'C点加速度x轴分量Dim ayC As Double 'C点加速度y轴分量Dim xD As Double 'D点x轴坐标Dim yD As Double 'D点y轴坐标Dim vxD As Double 'D点速度x轴分量Dim vyD As Double 'D点速度y轴分量Dim axD As Double 'D点加速度x轴分量Dim ayD As Double 'D点加速度y轴分量Dim xE As Double 'E点x轴坐标Dim yE As Double 'E点y轴坐标Dim vxE As Double 'E点速度x轴分量Dim vyE As Double 'E点速度y轴分量Dim axE As Double 'E点加速度x轴分量Dim ayE As Double 'E点加速度y轴分量Dim xF As Double 'F点x轴坐标Dim yF As Double 'F点y轴坐标Dim vxF As Double 'F点速度x轴分量Dim vyF As Double 'F点速度y轴分量Dim axF As Double 'F点加速度x轴分量Dim ayF As Double 'F点加速度y轴分量Dim xG As Double 'G点x轴坐标Dim yG As Double 'G点y轴坐标Dim vxG As Double 'G点速度x轴分量Dim vyG As Double 'G点速度y轴分量Dim axG As Double 'G点加速度x轴分量Dim ayG As Double 'G点加速度y轴分量Dim delt As Double ' AB杆初始转角Dim lab As Double 'AB杆长Dim lbc As Double 'BC杆长Dim lcd As Double ' CD杆长Dim lce As Double 'CE杆长Dim lef As Double 'EF杆长Dim lfg As Double 'FG杆长Dim leb As Double 'ED杆长Dim f As Double 'AB杆转角Dim fbc As Double 'BC杆转角Dim fcd As Double 'CD杆转角Dim fce As Double 'CE杆转角Dim fef As Double 'EF杆转角Dim ffg As Double 'FG杆转角Dim fge As Double 'ge杆转角Dim w As Double 'AB杆角速度Dim wbc As Double ' BC角速度Dim wcd As Double 'CD角速度Dim wce As Double 'CE角速度Dim wef As Double 'EF角速度Dim wfg As Double 'FG角速度Dim e As Double 'AB杆角加速度Dim ebc As Double ' BC杆角加速度Dim ecd As Double 'CD杆角加速度Dim ece As Double 'CE杆角加速度Dim eef As Double 'EF杆角加速度Dim efg As Double 'FG杆角加速度Dim LBD As Double 'BD距离Dim leg As Double 'EG距离Dim JCBD As Double '角CBDDim jfeg As Double '角FEGDim fBD As Double 'BD转角Dim feg As Double 'EG转角Dim Ci As DoubleDim Cj As DoubleDim Si As DoubleDim Sj As DoubleDim G1 As DoubleDim G2 As DoubleDim G3 As DoubleDim val As DoubleDim pi As DoubleDim pa As DoubleDim febc As Double '角EBCDim i As DoubleDim fj1 As DoublePrivate Sub Command1_Click() '求点E的轨迹Picture1.Scale (-300, 400)-(10, -15)Picture1.Line (-300, 0)-(10, 0) 'XPicture1.Line (0, 400)-(0, -15) 'YFor i = -300 To 0 Step 50 'X轴坐标Picture1.DrawStyle = 2Picture1.Line (i, 400)-(i, 0)Picture1.CurrentX = i - 10: Picture1.CurrentY = 0 Picture1.Print iNext iFor i = 0 To 350 Step 50 'Y轴坐标Picture1.DrawStyle = 2Picture1.Line (0, i)-(-400, i)Picture1.CurrentX = -20: Picture1.CurrentY = i + 7 Picture1.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Picture1.PSet (xE, yE)Next fj1End SubPrivate Sub Command2_Click() '求构件5的角位移Picture2.Scale (-20, 5)-(380, -0.5)Picture2.Line (-20, 0)-(380, 0) 'XPicture2.Line (0, 3)-(0, -0.5) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture2.DrawStyle = 2Picture2.Line (i, 3)-(i, 0)Picture2.CurrentX = i - 10: Picture2.CurrentY = 0 Picture2.Print iNext iFor i = -0.5 To 3 Step 0.5 'Y轴坐标Picture2.Line (0, i)-(380, i)Picture2.CurrentX = -25: Picture2.CurrentY = i Picture2.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture2.PSet (fj1, ffg)Next fj1End SubPrivate Sub Command3_Click() '求构件5的角速度Picture3.Scale (-20, 10)-(380, -10)Picture3.Line (-20, 0)-(380, 0) 'XPicture3.Line (0, 10)-(0, -10) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture3.DrawStyle = 2Picture3.Line (i, 10)-(i, -10)Picture3.CurrentX = i - 10: Picture3.CurrentY = 0 Picture3.Print iNext iFor i = -8 To 8 Step 2 'Y轴坐标Picture3.Line (0, i)-(380, i)Picture3.CurrentX = -20: Picture3.CurrentY = i Picture3.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture3.PSet (fj1, wfg)Next fj1End SubPrivate Sub Command4_Click() '求构件5的角加速度Picture4.Scale (-20, 300)-(380, -200)Picture4.Line (-20, 0)-(380, 0) 'XPicture4.Line (0, 300)-(0, -200) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture4.DrawStyle = 2Picture4.Line (i, 300)-(i, -200)Picture4.CurrentX = i - 10: Picture4.CurrentY = 0 Picture4.Print iNext iFor i = -200 To 300 Step 50 'Y轴坐标Picture4.Line (0, i)-(380, i)Picture4.CurrentX = -25: Picture4.CurrentY = i + 5 Picture4.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture4.PSet (fj1, efgNext fj1End SubPrivate Sub Form_Load() '赋初值lab = 108lce = 200lbc = 200lcd = 200lef = 320lfg = 162w = 10e = 0delt = 0xA = 0yA = 0vyA = 0axA = 0ayA = 0xD = -178.311284yD = 186.464704vxD = 0vyD = 0axD = 0ayD = 0xG = -514yG = 0vxG = 0vyG = 0axG = 0ayG = 0pi = 3.1415926pa = pi / 180febc = pa * 50End SubPrivate Sub RR1() 'RR基本杆组xB = xA + lab * Cos(f + delt)yB = yA + lab * Sin(f + delt)vxB = vxA - w * lab * Sin(f + delt)vyB = vyA + w * lab * Cos(f + delt)axB = axA - w ^ 2 * lab * Cos(f + delt) - e * lab * Sin(f + delt)ayB = ayA - w ^ 2 * lab * Sin(f + delt) + e * lab * Sin(f + delt)End SubPrivate Sub RR2() 'RR基本杆组leb = 2 * lbc * Cos(febc)xE = xB + leb * Cos(fbc + febc)yE = yB + leb * Sin(fbc + febc)vxE = vxB - wbc * leb * Sin(fbc + febc)vyE = vyB + wbc * leb * Cos(fbc + febc)axE = axB - wbc ^ 2 * leb * Cos(fbc + delt) - ebc * leb * Sin(fbc + febc) ayE = ayB - wbc ^ 2 * leb * Sin(fbc + delt) + ebc * leb * Sin(fbc + febc) End SubPrivate Sub RRR1() 'RRR基本杆组LBD = Sqr((xD - xB) ^ 2 + (yD - yB) ^ 2)If LBD > lbc + lcd And LBD < Abs(lbc - lcd) ThenIf MsgBox("RRR杆组杆长不符合要求", vbOKOnly, "提示") = 1 Then EndEnd IfElseEnd IfIf LBD < lbc + lcd And LBD > Abs(lbc - lcd) Then val = (lbc ^ 2 + LBD ^ 2 - lcd ^ 2) / (2 * lbc * LBD) JCBD = Atn(-val / Sqr(-val * val + 1)) + 2 * Atn(1) ElseEnd IfIf LBD = lbc + lcd ThenJCBD = 0ElseEnd IfIf LBD = Abs(lbc - lcd) ThenIf lbc > lcd ThenJCBD = 0ElseEnd IfIf lbc < lcd ThenJCBD = piElseEnd IfElseEnd IfIf xD > xB And yD >= yB Then '第一象限fBD = Atn((yD - yB) / (xD - xB))ElseEnd IfIf xD = xB And yD > yB ThenfBD = pi / 2ElseEnd IfIf xD < xB And yD >= yB Then '第二象限fBD = pi + Atn((yD - yB) / (xD - xB))ElseEnd IfIf xD < xB And yD < yB Then '第三象限fBD = pi + Atn((yD - yB) / (xD - xB))ElseEnd IfIf xD = xB And yD < yB ThenfBD = 3 * pi / 2ElseEnd IfIf xD > xB And yD <= yB Then '第四象限fBD = 2 * pi + Atn((yD - yB) / (xD - xB))ElseEnd Iffbc = fBD - JCBDxC = xB + lbc * Cos(fbc)yC = yB + lbc * Sin(fbc)If xC > xD And yC >= yD Then '第一象限fcd = Atn((yC - yD) / (xC - xD))ElseEnd IfIf xC = xD And yC >= yD Thenfcd = pi / 2ElseEnd IfIf xC < xD And yC >= yD Then '第二象限fcd = pi + Atn((yC - yD) / (xC - xD))ElseEnd IfIf xC < xD And yC < yD Then '第三象限fcd = pi + Atn((yC - yD) / (xC - xD))ElseEnd IfIf xC = xD And yC < yD Thenfcd = 3 * pi / 2ElseEnd IfIf xC > xD And yC <= yD Then '第四象限fcd = 2 * pi + Atn((yC - yD) / (xC - xD))ElseEnd IfCi = lbc * Cos(fbc)Si = lbc * Sin(fbc)Cj = lcd * Cos(fcd)Sj = lcd * Sin(fcd)G1 = Ci * Sj - Cj * Siwbc = (Cj * (vxD - vxB) + Sj * (vyD - vyB)) / G1 wcd = (Ci * (vxD - vxB) + Si * (vyD - vyB)) / G1 vxC = vxB - wbc * lbc * Sin(fbc)vyC = vyB + wbc * lbc * Cos(fbc)G2 = axD - axB + wbc ^ 2 * Ci - wcd ^ 2 * CjG3 = ayD - ayB + wbc ^ 2 * Si - wcd ^ 2 * Sj ebc = (G2 * Cj + G3 * Sj) / G1ecd = (G2 * Ci + G3 * Si) / G1axC = axB - ebc * lbc * Sin(fbc) - wbc ^ 2 * lbc * Cos(fbc)ayC = ayB + ebc * lbc * Cos(fbc) - wbc ^ 2 * lbc * Sin(fbc)End SubPrivate Sub RRR2() 'RRR基本杆组leg = Sqr((xG - xE) ^ 2 + (yG - yE) ^ 2)If leg > lef + lfg And leg < Abs(lef - lfg) ThenIf MsgBox("RRR杆组杆长不符合要求", vbOKOnly, "提示") = 1 Then EndElseEnd IfElseEnd IfIf leg < lef + lfg And leg > Abs(lef - lfg) Thenval = (lef ^ 2 + leg ^ 2 - lfg ^ 2) / (2 * lef * leg)jfeg = Atn(-val / Sqr(-val * val + 1)) + 2 * Atn(1)ElseEnd IfIf leg = lef + lfg Thenjfeg = 0ElseEnd IfIf leg = Abs(lef - lfg) ThenIf lef > lfg Thenjfeg = 0ElseEnd IfIf lef < lfg Thenjfeg = piElseEnd IfElseEnd IfIf xG > xE And yG >= yE Then '第一象限feg = Atn((yG - yE) / (xG - xE))ElseEnd IfIf xG = xE And yG > yE Thenfeg = pi / 2ElseEnd IfIf xG < xE And yG >= yE Then '第二象限feg = pi + Atn((yG - yE) / (xG - xE))ElseEnd IfIf xG < xE And yG < yE Then '第三象限feg = pi + Atn((yG - yE) / (xG - xE)) ElseEnd IfIf xG = xE And yG < yE Thenfeg = 3 * pi / 2ElseEnd IfIf xG > xE And yG <= yE Then '第四象限feg = 2 * pi + Atn((yG - yE) / (xG - xE)) ElseEnd Iffef = feg - jfegxF = xE + lef * Cos(fef)yF = yE + lef * Sin(fef)If xF > xG And yF >= yG Then '第一象限ffg = Atn((yF - yG) / (xF - xG))ElseEnd IfIf xF = xG And yF >= yG Thenffg = pi / 2ElseEnd IfIf xF < xG And yF >= yG Then '第二象限ffg = pi + Atn((yF - yG) / (xF - xG)) ElseEnd IfIf xF < xG And yF < yG Then '第三象限ffg = pi + Atn((yF - yG) / (xF - xG)) ElseEnd IfIf xF = xG And yF < yG Thenffg = 3 * pi / 2ElseEnd IfIf xF > xG And yF <= yG Then '第四象限ffg = 2 * pi + Atn((yF - yG) / (xF - xG)) ElseEnd IfCi = lef * Cos(fef)Si = lef * Sin(fef)Cj = lfg * Cos(ffg)Sj = lfg * Sin(ffg)G1 = Ci * Sj - Cj * Siwef = (Cj * (vxG - vxE) + Sj * (vyG - vyE)) / G1wfg = (Ci * (vxG - vxE) + Si * (vyG - vyE)) / G1vxF = vxE - wef * lef * Sin(fef)vyF = vyE + wef * lef * Cos(fef)G2 = axG - axE + wef ^ 2 * Ci - wfg ^ 2 * CjG3 = ayG - ayE + wef ^ 2 * Si - wfg ^ 2 * Sjeef = (G2 * Cj + G3 * Sj) / G1efg = (G2 * Ci + G3 * Si) / G1axF = axE - eef * lef * Sin(fef) - wef ^ 2 * lef * Cos(fef)ayF = ayE + eef * lef * Cos(fef) - wef ^ 2 * lef * Sin(fef)End Sub5.结果及分析图1 E点的运动轨迹(1)由图1所示,E点的运动轨迹呈稍倾斜“8字形”。