2018年西南科技大学考研真题601 高等数学
- 格式:pdf
- 大小:1.13 MB
- 文档页数:3
2018年全国硕士研究生入学统一考试数学(一)试卷及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)下列函数中,在0x =处不可导的是()(A)()sin f x x x =(B)()f x x =(C)()cos f x x =(D)()f x =【答案】(D)【解析】根据导数的定义:(A)sin limlim0,x x x x x x x x→→== 可导;(B)0,x x →→==可导;(C)1cos 12limlim0,x x xx xx→→--==可导;(D)000122lim lim,x x x xx x→→→-==极限不存在,故选D。
(2)过点()()1,0,0,0,1,0,且与曲面22z x y =+相切的平面为()(A)01z x y z =+-=与(B)022z x y z =+-=与2(C)1x y x y z =+-=与(D)22x y x y z =+-=与2【答案】(B)【解析】()()221,0,0,0,1,0=0z z x y =+过的已知曲面的切平面只有两个,显然与曲面相切,排除C 、D22z x y =+曲面的法向量为(2x,2y,-1),111(1,1,1),,22x y z x y +-=-==对于A选项,的法向量为可得221.z x y x y z z A B =++-=代入和中不相等,排除,故选(3)()()23121!nn n n ∞=+-=+∑()(A)sin1cos1+(B)2sin1cos1+(C)2sin12cos1+(D)2sin13cos1+【答案】(B)【解析】00023212(1)(1)(1)(21)!(21)!(21)!nn nn n n n n n n n ∞∞∞===++-=-+-+++∑∑∑0012=(1)(1)cos 2sin1(2)!(21)!nn n n l n n ∞∞==-+-=++∑∑故选B.(4)设()(2222222211,,1,1x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰则()(A)M N K >>(B)M K N >>(C)K M N >>(D)K N M>>【答案】(C)【解析】22222222222(1)122=(1).111x x x x M dx dx dx x x x πππππππ---+++==+=+++⎰⎰⎰22222111(0)11xx xxx e x N dx dx Meeπππππ--+++<≠⇒<⇒=<=<⎰⎰2222=11K dx dx M πππππ--+>==⎰⎰(,K M N >>故应选C 。
2018考研数学一
2018年考研数学一真题及答案详解如下:
1. 首先,使用定义法计算出一条正规法线,对曲面进行求导,即得到切平面法线,然后代入一点进行计算。
2. 进行幂级数的展开。
3. 比较定积分的大小。
4. 考察相似的必要条件:两个矩阵的特征向量个数必须相同。
5. 若C=AB,则C的列向量可由A的列向量线性表示,即R(A,C) = R (A),即R(A,AB)=R(A)。
6. 考察自然对数的计算,这是送分题。
7. 分部积分与导数的几何意义相结合,这也是送分题。
8. 考察轮换对称性,例如计算表达式 xy+yz+xz / 3. (x+y+z)^2-
(x^2+y^2+z^2) 的值。
9. 考察行列式的计算,例如给定两个特征向量是1和-1,求行列式的值。
10. 考察条件概率的计算,代入具体数值进行计算。
11. 考察条件极值的计算,注意运算顺序和边界条件的考虑。
12. 常规题目,画图并使用高斯公式进行计算。
13. 应用拉格朗日中值定理解决数列极限问题。
14. 求二次型等于0的解,让各项都等于0,列出齐次方程组求解,并对a
进行分情况讨论。
以上就是2018年考研数学一的部分真题及解析,如需获取更多真题及解析,建议到相关学习网站查询或请教专业老师。
2018考研数学一真题及解析一、选择题:1~8 小题,每小题4 分,共32 分.下列每题给出的四个选项中,只有一个是符合题目要求的,请将所选项前的字母填在答题纸...指定的位置上. (1) 下列函数中,在0x =处不可导的是( ) (A)()sin f x x x =(B)()f x x =(C)()cos f x x = (D)()f x =【答】选(D).【解】对于D:由定义得0112'(0)lim lim 2x x xf x +++→→-===-;112'(0)lim lim 2x x xf x ---→→-===,'(0)'(0)f f +-≠,所以不可导.(2) 过点()()1,0,0,0,1,0,且与曲面22z x y =+相切的平面为( )(A) 0z =与1x y z +-= (B) 0z =与22x y z +-=2(C) x y =与1x y z +-=(D) x y =与22x y z +-=2【答】应选(B).【解】法一:设平面与曲面的切点为000(,,)x y z ,则曲面在该点的法向量为00(2,2,1)n x y →=-,切平面方程为000002()2()()0x x x y y y z z -+---=切平面过点 (1,0,0),(0,1,0),故有000002(1)2(0)(0)0x x y y z -+---=,(1) 000002(0)2(1)(0)0x x y y z -+---=,(2) 又000(,,)x y z 是曲面上的点,故 22000z x y =+ ,(3)解方程 (1)(2)(3),可得切点坐标 (0,0,0)或(1,1,2).因此,切平面有两个0z =与222x y z +-=,故选(B).【解】法二:由于x y =不经过点(1,0,0) 和 (0,1,0),所以排除(C )(D )。
对于选项(A ),平面1x y z +-=的法向量为(1,1,1)-,曲面220x y z +-=的法向量为(2,2,1)x y -,如果所给平面是切平面,则切点坐标应为111(,,)222,而曲面在该点处的切平面为12x y z +-=,所以排除(A ).所以唯一正确的选项是(B).(3)()()023121!nn n n ∞=+-=+∑( )(A)sin1cos1+(B)2sin1cos1+ (C)2sin12cos1+(D)2sin13cos1+ 【答】应选(B). 【解】因为 2120(1)(1)sin ,cos ,(21)!(2)!nnn nn n x xx xn n ∞∞+==--==+∑∑而 00023212(1)(1)(1)(21)!(21)!(21)!nn n n n n n n n n n ∞∞∞===++-=-+-+++∑∑∑ 00(1)(1)cos12sin1(2)!(21)!2n nn n n n ∞∞==--=+=++∑∑,故选(B). (4) 设()22221d 1x M x x ππ-+=+⎰,221d x x N x e ππ-+=⎰,(221d K x ππ-=+⎰,则( ) (A)M N K >>(B)M K N >> (C)K M N >> (D)K N M >>【答】应选(C).【解】22222212d d 1x xM x x x πππππ--++===+⎰⎰; 112211221111d d d d x x x x x x x x N x x x x e e e e ππππ----++++==++⎰⎰⎰⎰, 2211111111121111d 0,d d d 1d 2x x x x xx x x x x x x e e e e π------+++<<=<=⎰⎰⎰⎰⎰,2221121d 1d ,1d 2x x x x N x M e πππππ-+<=∴<=⎰⎰⎰;22,K x K M N πππ-=>∴>>⎰.故选(C).(5) 下列矩阵中与矩阵110011001⎛⎫ ⎪⎪ ⎪⎝⎭相似的为( )(A) 111011001-⎛⎫⎪ ⎪ ⎪⎝⎭(B) 101011001-⎛⎫⎪ ⎪ ⎪⎝⎭(C) 111010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭(D) 101010001-⎛⎫ ⎪ ⎪⎪⎝⎭【答】选A.【解】~,~A B E A E B ∴--()()r E A r E B ∴-=-各选项中::()1;B r E B -=:()1;C r E B -=:()1D r E B -=选A.(6) 设A ,B 为n 阶矩阵,记()r X 为矩阵X 的秩, (,)X Y 表示分块矩阵,则( ) (A) ()(),r r =A AB A(B) ()(),r r =A BA A(C) ()()(){},max ,r r r =A B A B (D) ()()T T ,,r r =A B A B【答】应选(A).【解】设AB C =,则矩阵A 的列向量组可以表示C 的列向量组,所以()()→A AB A O ,即()()()r A AB r A O r A ==,故答案选A. (7) 设随机变量X 的概率密度()f x 满足()()11f x f x +=-,且()2d 0.6f x x =⎰,则{}0P X <=( )(A) 0.2 (B)0.3 (C)0.4 (D)0.5 【答案】A已知(1)(1)f x f x +=-可得()f x 图像关于1x =对称,2()d 0.6f x x =⎰从而(0)0.2P x ≤=(8) 设总体X 服从正态分布()2,N μσ.12,,,n X X X 是来自总体X 的简单随机样本,据此样本检验假设: 00:=H μμ,10:H μμ≠,则( )(A) 如果在检验水平=0.05α下拒绝0H ,那么在检验水平=0.01α下必拒绝0H(B) 如果在检验水平=0.05α下拒绝0H ,那么在检验水平=0.01α下必接受0H (C) 如果在检验水平=0.05α下接受0H ,那么在检验水平=0.01α下必拒绝0H(D) 如果在检验水平=0.05α下接受0H ,那么在检验水平=0.01α下必接受0H【答】应选(D)【解】正确解答该题,应深刻理解“检验水平”的含义。
( )2018 年全国硕士研究生入学统一考试数学(一)试卷及答案解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项是符合题目要求的 (1)下列函数中,在 x = 0 处不可导的是( )(A) f ( x ) = x sin x(B) f ( x ) = x sin(C) f ( x ) = cos x(D) f ( x ) = cos【答案】(D )【解析】根据导数的定义:lim(A )x →0x= limx →0x xx = 0, 可导lim(B ) x →0x= limx →0x- 1 x= 0, 可导lim = lim 2 = 0, 可导(C ) x →0 xlim(D )x →0 x x →0 x- 1 x 2 = lim 2 x →0 x- 1x = lim 2 x →0 x, 极限不存在故选 D 。
(2)过点(1, 0, 0), (0,1, 0) ,且与曲面 z = x 2 + y 2 相切的平面为( )(A) z = 0与x + y - z = 1(B) z = 0与2x + 2 y - z = 2(C) x = y 与x + y - z = 1(D) x = y 与2x + 2 y - z = 2【答案】(B )过(1, 0, 0), (0,1, 0 )的已知曲面的切平面只有两个,显然z =0 与曲面z = x 2 + y 2相切,排除C 、D【解析】曲面z = x 2 + y 2的法向量为(2x,2y,-1),对于A选项,x + y - z = 1的法向量为(1,1, -1), 可得x = 1 , y = 1,2 2 代入z = x 2 + y 2和x + y - z = 1中z 不相等,排除A ,故选B .∞-n 2n +3(3) ∑( n =0 1) = ( ) 2n +1 ! cos x -1cos x -1 x x x sin x x sin x xx⎝ ⎭n =0 n =0 ⎰ π2⎰ ⎰ π n =0 π⎰π ⎰ π ⎰ π ⎪ ⎝ ⎭ ⎪ ⎝ ⎭ ⎪ ⎝ ⎭ ⎪ ⎝ ⎭⎪ (A) sin1 + cos1(B) 2sin1+ cos1(C) 2 sin1+ 2 cos1(D) 2sin1+ 3cos1【答案】(B )∞n2n + 3∞n2n +1∞n2∑(-1)【解析】 n =0(2n +1)! =∑(-1) (2n +1)! +∑(-1)(2n +1)!∞n1∞n2故选 B.=∑(-1)n =0(2n )! + ∑(-1) =cos l + 2 sin1 (2n +1)!π(1+ x )2π 1+ x π(4) 设 M =2 dx , N =2dx , K = 2(1cos x )dx , 则( )⎰-π 1+ x2⎰-πex⎰-π222(A) M > N > K(B) M > K > N(C) K > M > N(D) K > N > M【答案】(C )π(1+ x )2π 1+ x 2+ 2xπ2xM = 【解析】2 -1+ x dx = 2-1+ x 2dx = 2(1 + -1+ x 2 )dx = π.2221+ x π1+ x π1+ x < e x (x ≠ 0) ⇒ < 1 ⇒ N = e 2 2 -π e x dx < 2 1dx = π< M - 2 2π πK = 2(1 -dx > 21dx = π= M - 22故K > M > N , 应选C 。
2018年全国硕士研究生入学统一考试《数学》真题三(总分150, 考试时间180分钟)一、单项选择题(每题 4 分,共 32 分)1. 下列函数不可导的是A f (x) = |x| sin |x|BC f (x) = cos |x|D该问题分值: 4答案:DA, B, C 可导, D 根据导数的定义可得2. 设函数 f(x) 在 [0, 1] 上二阶可导, 且该问题分值: 4答案:D3.A M > N > KB M > K > NC K > M > ND .N > M > K该问题分值: 4答案:C4. 设某产品的成本函数 C(Q) 可导, 其中 Q 为产量, 若产量为 Q0 时平均成本最小, 则A C ′ (Q0) = 0B C ′ (Q0) = C(Q0)C C ′ (Q0) = Q0C(Q0)D Q0C ′ (Q0) = C(Q0)该问题分值: 4答案:D5. 下列矩阵中, 与矩阵相似的为D该问题分值: 4答案:A易知题中矩阵均为 3 重特征值 1. 若矩阵相似, 则不同特征值对应矩阵λ E ? A 的秩相等, 即 E ?A 秩相等. 显然为 A6. 设 A, B 为 n 阶矩阵, 记 r(X) 为矩阵 X 的秩, (X Y) 表示分块矩阵, 则A r(A AB) = r(A)B r(A BA) = r(A)C r(A B) = max{r(A), r(B)}D r(A B) = r(A T B T )该问题分值: 4答案:A7. 设随机变量X 的概率密度f(x) 满足f(1 + x) = f(1 ? x), 且A 0.2B 0.3C 0.4D 0.6该问题分值: 4答案:A8. 设 X1, X2, ··· , Xn (n ? 2) 为来自总体 X ~ N ( μ, σ 2 ) (σ > 0) 的简单随机样本, 令则。
2018年数学一考研真题答案2018年数学一考研真题答案近年来,考研成为了许多大学毕业生继续深造的重要途径。
而其中,数学一科目一直备受考生关注。
2018年数学一考研真题的答案也成为了广大考生热议的话题。
在本文中,我们将对2018年数学一考研真题的答案进行一定的分析和探讨。
首先,我们来看看2018年数学一考研真题的整体难度如何。
根据考生的反馈和专业人士的评价,2018年数学一考研真题整体难度适中。
题目涵盖了数学的各个领域,包括高等代数、数学分析、概率统计等。
这也符合考研数学一科目的特点,要求考生具备扎实的数学基础和广泛的知识面。
接下来,我们来具体分析一些考题的答案。
首先是高等代数部分的题目。
其中一道题目是求一个线性变换的特征值和特征向量。
解答这道题目需要考生熟悉线性代数的基本概念和定理,通过计算特征多项式和解方程组来求解。
另外一道题目是关于矩阵的秩和行列式的计算。
这道题目考察了考生对矩阵性质的理解和计算能力。
接下来是数学分析部分的题目。
其中一道题目是关于函数极限的计算。
这道题目考察了考生对函数极限的定义和计算方法的掌握。
另外一道题目是求一元函数的极值点和最大值。
这道题目需要考生熟悉函数的导数和极值点的判定条件,通过求导和解方程来求解。
最后是概率统计部分的题目。
其中一道题目是关于随机变量的期望和方差的计算。
这道题目考察了考生对随机变量的概念和性质的理解,通过计算期望和方差的定义式来求解。
另外一道题目是关于正态分布的性质和应用。
这道题目需要考生熟悉正态分布的概率密度函数和累积分布函数的性质,通过计算和应用正态分布的公式来求解。
综上所述,2018年数学一考研真题的答案涵盖了数学的各个领域,考察了考生的数学基础和解题能力。
对于备考考研的同学来说,熟悉和掌握这些题目的答案是非常重要的。
通过分析真题的答案,可以帮助考生更好地理解和掌握数学的知识和方法,提高解题的准确性和效率。
然而,我们也要注意,在备考过程中,单纯追求答案的正确性是不够的。
2018全国研究生入学考试考研数学一试题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的.1. 下列函数不可导的是: A.x x y sin =B.x x y sin =C.xy cos =D.x y cos=2.过点(1,0,0)与(0,1,0)且与22y x z +=相切的平面方程为 A.10=-+=z y x z 与 B.2220=-+=z y x z 与 C.1=-+=z y x x y 与 D.222=-+=z y c x y 与 3.)!12(32)1(0n ++-∑∞=n n n=A.1cos 1sin +B.1cos 1sin 2+C.1cos 1sin +D.1cos 21sin 3+4.dx xx M ⎰-++=22221)1(ππ, dx e x N x ⎰+=22-1ππ, dx x K ⎰+=22-cos 1ππ)(,则M,N,K 的大小关系为:A.K N M >>B.N K M >>C.N M K >>D.K M N >>5. 下列矩阵中,与矩阵⎪⎪⎪⎭⎫ ⎝⎛100110011相似的为________.A.⎪⎪⎪⎭⎫ ⎝⎛1001101-11B.⎪⎪⎪⎭⎫⎝⎛-100110101C.⎪⎪⎪⎭⎫ ⎝⎛-100010111D.⎪⎪⎪⎭⎫ ⎝⎛-1000101016.设A,B 为n 阶矩阵,记)(r X 为矩阵X 的秩,)(Y X 表示分块矩阵,则A.)A ()AB A (r r =B.)A ()BA A (r r =C.)}B (),A ({max )B A (r r r =D.)B A (r )B A (r TT= 7.设随机变量X 的概率密度)(x f 满足6.0)(),1()1(2=-=+⎰dx x f x f x f ,则}0{p <x = 。
2018 考研数学一真题及答案3.函数 f(x,y,z) x 2y z 2在点 (1,2,0)处沿向量 n (1,2,2) 的方向导数为的速度曲线 v v 1(t ) (单位:米 /秒),虚线表示乙的速度曲线 v v 2 (t ) (单位:米 / 秒), 三块阴影部分的面积分别为 10,20,3 ,计时开始后乙 追上甲的时刻为 t 0 ,则( ) (A ) t 0 10(B )15 t 0 20、选择题 1 — 8小题.每小题 4 分,共 32分.1 cos x1.若函数 f (x)ax b,,x 0在 x 0处连续,则x0A )1 ab2B ) ab1( C )ab 0 D ) ab 2详解 】lim x 0 处连续,cos x ax1必须满足 b ab2af (x)lim 1 x01x lim 2 x 0ax 1 .所以应该选( A )21 2a, lim f(x) b f (0) ,要使函数在 x02.设函数 f (x) 是可导函数,且满足 f (x) f (x) 0 ,则A )f (1)f ( 1) (B )f (1)f( 1) (C )f (1) f ( 1) D )f (1) f ( 1)详解 】设 g(x) 2(f(x))2,则g (x) 2f(x)f (x) 0,也就是 f (x)22是单调增加函就得到 f(1) 22f ( 1) 2f (1) f ( 1) ,所以应该选( C )A )12 (B ) 6(C ) 4D ) 2详解 】x2xy, f y x 2, f 2z ,所以函数在点 (1,2,0) 处的梯度为 gradf 4,1,0 , z所以f (x,y,z)2xy 2 z 2在点 (1,2,0) 处沿向量 n (1,2,2) 的方向导数为 uur f r gradf n 0 n4,1,0 1 (1,2, 2) 2 应该选( D )34.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,如图中,实线表示甲(C ) t 0 25 (D ) t 0 25T2【详解 】由定积分的物理意义: 当曲线表示变速直线运动的速度函数时, S(t)2v(t)dt 表T1示 时 刻 T 1,T 2 内 所 走 的 路 程 . 本 题 中的 阴 影 面 积 S 1, S 2,S 3 分 别 表 示在 时间 段0,10 , 10,25 , 25,30 内甲、乙两人所走路程之差,显然应该在 t 25 时乙追上甲,应该C ).设 为 n 单位列向量, E 为 n 阶单位矩阵,则特征值为情况.000017.设 A,B 是两个随机事件,若 0 P(A) 1,0 P(B) 1,则 P(A/ B) P(A/ B)的充选 5.A ) ET不可逆B ) E T不可逆C ) E 2 T 不可逆D )E 2T不可逆T,ET,E 2 T ,E 2T的 特 征 值 分 别 为 0,1,1,L 1 ; 2,1,1,L ,1 ;1,1,1,L ,1 ; 3,1,1,L ,1.显然只有 存在零特征值,所以不可逆, 应该选(A ).2 6.已知矩阵 A 000 10 1000 2 0 ,则 0101002A ) A,C 相似, B,C 相似B ) A,C 相似, B,C 不相似 C ) A,C 不相似, B,C 相似D ) A,C 不相似, B,C 不相似详解 】矩阵 A,B 的特征值都是22, 31.是否可对解化,只需要关心 2的00对于矩阵 A , 2E A 0 0,秩等于 1 ,也就是矩阵 A 属于特征值 2存在两个线性无关的特征向量, 也就是可以对角化,也就是A~C .对于矩阵 B , 2E B0 1 00 0 0 ,秩等于 2 ,也就是矩阵 A 属于特征值2只有个线性无关的特征向量, 也就是不可以对角化,当然B,C 不相似故选择( B ).类似,由 P(AB) P(A)P(B/ A), P( AB) P(A)P(B/ A) 可得所以可知选择( A ).列结论中 不正确 的是( )是正确的;Xn X 11 22n2 1 ~ N (0,1) 2(X n X 1)2 ~ 2(1),所以( B )结论是错误的,应该选择( B )二、填空题(本题共 6 小题,每小题 4 分,满分 24分. 把答案填在题中横线上)1 9.已知函数 f (x) 12 ,则 f (3)(0) .1 x 2(A ) P(B/ A) P(B/ A) (B )P(B/ A) P(B/ A)(C )P(B/ A)P(B/ A)(D ) P(B/ A)P(B/ A)详解】由乘法公式: P(AB)P(B)P(A/ B), P( AB ) P(B)(P(A/ B) 可得下面结论分必要条件是P(A/B) P(A/ B) P P ((A B B )) P P ((A B B )) P(1A) P P (B (A )B)P(AB) P(A)P(B)P(B/ A) P(B/ A)P(AB) P(AB) P(B) P(AB)1 P(A)P(A) P(A)P(AB)P(A)P(B)8.设 X 1,X 2,L ,X n (n2) 为来自正态总体 N( ,1)的简单随机样本, 若X nX i ,则i1 nA )(X ii1)2服从 2分布B ) 2 X n2X 1 服从2分布nC ) (X ii1X)2 服从 2 分布D ) n(X22)2 服从 2 分布解 :( 1 ) 显 然 (X i)~ N (0,1) (X i22)2~ 2(1),i1,2,L n 且相互独立,所 以n(X ii1)2 服从 2(n) 分布,也就是( A )结论是正确的;2)2(X i X)2(n i11)S 2 (n 1)S22(n 1) ,所以( C )结论也是正确的;3)1注意 X ~ N( , )nn(X )~ N(0,1) n(X )2 ~ 2(1),所以( D )结论也4)对于选项( B ):(X nX 1)~ N (0, 2)解:由函数的马克劳林级数公式: f (x) f (0) x n ,知 f (n)(0) n!a n ,其中 a n 为展 n 0 n! 开式中 x n 的系数.12 4 n 2n (3)由于 f(x) 2 1 x 2 x 4 L ( 1)n x 2n L ,x 1,1 ,所以 f (3) (0) 0.1x10.微分方程 y 2y 3y 0 的通解为 .【详解 】这是一个二阶常系数线性齐次微分方程,特征方程 r 2 2r 3 0有一对共共轭的 根 r 1 2i ,所以通解为 y e x (C 1 cos 2x C 2 sin 2x)具有连续的偏导数,由于与路径无关,所以有11 . 若 曲 线 积 分L xdx aydyx 2在区域1(x, y)|x 2 y 21 内与 路径无 关, 则详解 】设 P(x,y)x 22 xy1,Q(x,y)ay2y,显然 1P(x, y),Q(x,y)在区域内12.幂级数( 1)n 1 nx在区间 ( 1,1) 内的和函数为n1详解 】n1) n1nx(n1n 1 n1) (x )n 1 n( 1) x n11x(11x)2所以 s(x)2,x(1 x)21,1)13.设矩阵 A13为线性无关的三维列向量, 则向量组 A 1,A 2 ,A 3的秩为详解 】对矩阵进行初等变换11 ,知矩阵 A 的秩为 2,由于123为线性无关,所以向量组 A 1,A2,A3的秩为 2.x414.设随机变量 X 的分布函数 F(x) 0.5 (x) 0.5 ,其中 (x) 为标准正态分 2布函数,则 EX(t) dt 2三、解答题15.(本题满分 10 分)y f ( e x ,cos x ) ,求dy| dxsin xe x f 21 (e x ,cos x)sin 2xf 22(e x ,cos x)16.(本题满分 10 分)求 limk2 lnnk 1 n 2详解 】由定积分的定义17.(本题满分 10 分)详解 】在方程两边同时对 x 求导,得在( 1)两边同时对 x 求导,得nk k 1nk klim 2 ln 1 lim ln 1 nk 1 n nnn k 1 n n 11 2 10 ln(1 x)dx 2204 1x ln(1 x)dx详解 】随机变量 X 的概率密度为 f (x) F ( x) 0.5 (x) E(X) xf ( x)dx 0.5 x ( x)dx 0.25 x40.25 ( ) ,所以24)dxx (x 2 0.25x ( x 4) dx2 0.25 2 (2t 4) (t) dtd2y|x0.2 x 0dx详解 】dy dxf 1 (e x ,cos x)e x f 2 ( e x ,cos x)( sin x) , dy |x 0 dx(1,1);d 2y dx 2e xf 1(e x ,cosx) e x ( f 11(e x ,cos x)e x sinxf 12(e x ,cos x)) cos xf 2 ( e x ,cos x)设函数 f (u,v) 具有二阶连续偏导数,d 2ydx2 |x 0 f 1 (1,1) f 11(1,1)f 2 (1,1).已知函数 y(x) 是由方程 x 33 y 33x 3y 2 0 .223x 3 y y 3 3 y 01)222x 2y(y )2 y 2y y 0也就是y2(x y(y ) )21 y令y0 ,得x1 .当x 11时, y 1 1 ;当 x 2 1时, y 2 0当x 11时, y0 ,y 1 0 ,函数y y(x) 取极大值 y 1 1; 当x21时,y 0 , y 1 0 函数 y y(x) 取极小值 y 2 0. 18.(本题满分 10 分)设函数 f(x)在区间 0,1 上具有二阶导数,且 f(1) 0, lim f(x)0,证明: x 0 x(1)方程 f (x) 0 在区间 0,1 至少存在一个实根;22)方程 f(x)f (x) (f (x))2 0在区间 0,1 内至少存在两个不同实根.实根;(0, ) ,使得 f ( )19.(本题满分 10 分)设薄片型 S 是圆锥面 z x 2 y 2 被柱面 z 2 2x 所割下的有限部分, 其上任一点的密度为9 x 2 y 2 z 2 ,记圆锥面与柱面的交线为 C .证明:( 1)根据的局部保号性的结论,由条件lim f (x) x 0x0 可知,存在 0 1,及x 1 (0, ),使得 f (x 1)0 ,由于 f ( x) 在 x 1,1 上连续, 且f (x 1) f (1) 0 ,由零点定理, 存在(x 1,1) (0,1) ,使得 f ( ) 0 ,也就是方程 f (x)0 在区间 0,1 至少存在一个2)由条件 lim f (x)x 0x0 可知 f (0) 0 ,由 1 )可知 f ( ) 0,由洛尔定理,存在 设 F(x) f(x) f (x)条件可知F ( x) 在 区 间0,1 上可导,且F(0) 0,F( ) 0, F(0, 分别在区间 0, 上对函数 F (x) 使用尔定理,则存在1(0, ) (0,1), 2 (,) (0,1), 使 得12, F ( 1) F( 2) 0,也 就是方 程2f(x)f (x) ( f (x))20 在区间 0,1 内至少存在两个不同实根.1)求 C 在 xOy 布上的投影曲线的方程; 2)求 S 的质量 M . 详解 】(1)交线 C 的方程为 z x z 22 x 2 y 2,消去变量 z ,得到 x 2 y 2 2x 所以 C 在xOy 布上的投影曲线的方程为 y 2 2x0 2)利用第一类曲面积分,(x, y, z)dS得 9 x 2 y 2 z 2 dS x 2 9 x 2 y 2 x 2 y 2 2 x y 2 1 2 x 2x2y 2 2 dxdy x 2y 220.(本题满分 11 分) 设三阶矩阵 A 18 x2 y 2 2 x x 2 y 2dxdy 64 2 , 3 有三个不同的特征值,且 1)证明: r( A) 2; 2)若 123 ,求方程组 Ax 的通解. 详解 】( 1)证明:因为矩阵有三个不同的特征值,所以 A 是非零矩阵,也就是假若 r( A) 1时,则 r 0是矩阵的二重特征值,与条件不符合,所以有r( A)r( A) 1. 2,又因为12 2 0 ,也就是123线性相关, r(A) 3 ,也就只有 r (A) 22) 因为 r ( A) 2 ,所以 Ax 0 的基础解系中只有一个线性无关的解向量.12 0 ,所以基础解系为 x2; 1又由 3,得非齐次方程组Ax 的特解可取为 1 ;1方程组 Ax的通解为 x k 211 ,其中 k 为任意常数.21.(本题满分 11 分)2 2 2设二次型f(x 1,x 2,x 3) 2x 1 x 2 ax 3 2x 1x 2 8x 1x 3 2x 2 x 3在正交变换 x Qy 下的标22准形为 1y 1 2y 2 ,求 a 的值及一个正交矩阵 Q .2 1 4 详解 】二次型矩阵 A1 1 1 41 a1y 12 2y 22 .也就说明矩阵 A 有零特征值,所以 A 0,故 a 2.141 1 ( 3)( 6) 12令 E A 0得矩阵的特征值为 1 3, 2 6, 3 0.通过分别解方程组 ( i E A )x 0 得矩阵的属于特征值 11)求概率 P ( Y EY );2)求 Z X Y 的概率密度.12 2 详解 】(1) EY yf Y ( y )dy 2y 2dy . 03因为二次型的标准形为3 的特征向量 1属于特征值特征值26 的特征向量 20113 0 的特征向量 3 2611 1 132 6 1 所以Q 1 , 2 , 30 2 2为所求正交矩阵 6 1 1 1 32622.(本题满分 11 分)P{ X 2}1, Y 的概率密度2为 f (y)2 y,0 y 1 0,其他 1设随机变量 X ,Y 相互独立,且 X 的概率分布为 P X 02所以 P Y EY P Y 232) Z X Y 的分布函数为F Z (z) P Zz P X Yz PX Y z,X 0 P X Y z, X 2 PX 0,Y zPX 2,Y z21P{Yz} 12 P Y z 22 21 1F Y (z) F Y ( z 2)2 故 Z X Y 的概率密度为1f Z (z) F Z (z) f (z) f(z 2)2z, 0 z 1 z 2, 2 z 30, 其他23.(本题满分 11 分)某工程师为了解一台天平的精度, 用该天平对一物体的质量做了 n 次测量,该物体的质量2是已知的,设 n 次测量结果 X 1,X 2,L ,X n 相互独立且均服从正态分布 N( , 2).该工程师 记录的是 n 次测量的绝对误差 Z i X i,(i 1,2,L , n) ,利用 Z 1,Z 2,L ,Z n 估计参数1)求 Z i 的概率密度;2) 利用一阶矩求 的矩估计量; 3) 求参数 最大似然估计量.详解 】( 1)先求 Z i 的分布函数为当 z 0时,显然 F Z (z) 0; 当 z 0时, F Z ( z)P Z i zPX i zPX iz2 z 1 ;2 2 z22.所以 Z i 的概率密度为f Z (z) F Z (z)2e , z0, z0032 ydyF Z (z) P Z i z P X iX i2)数学期望EZ i2 2z 2 2z f (z)dz ze 2dz0 02令EZ Z 1 Z i ,解得的矩估计量n i122 Z 2 n.Z i.2n i 1 i3)设Z1,Z2,L , Z n的观测值为z1,z2,L ,z n .当z i 0,i 1,2,L n时似然函数为L( ) f (z i ,2n) ( 2 )n e2 2 i 1zi取对数得:ln L ( nln2 2n ln(2 ) nln22 n2zi i1令d ln L( d )n 1n3i1z i2 0 ,得参数最大似然估计量为1n2 z i .n i1。
18年考研数学一真题数学一是考研数学科目中的一门重要科目,其题目内容涵盖了数学的多个分支和领域。
2018年考研数学一的真题难度适中,既有基础题目,也有一定的难度。
本文将就2018年考研数学一真题进行解析和详细讲解,以帮助考生更好地理解和应对该科目的考试。
一、选择题部分1.选择题部分是考研数学一的必答题目,共有15道选择题,每题4分,满分60分。
该部分题目涵盖了数学的多个分支,包括代数、几何、数论等。
题目难度适中,但需要对数学的基础知识有一定的了解和掌握。
2.解答该部分题目时,应注意理解题意,理清思路,合理运用相关知识和方法解题。
在解答过程中,可以通过列方程、画图等方式进行求解,以帮助理解和解决问题。
3.解答选择题时,可以根据选项进行排除法,尽可能减少解题时间。
但需注意排除法需要有一定的基础和准确性,以避免误判答案。
二、填空题部分1.填空题部分是考研数学一的必答题目,共有10道填空题,每题4分,满分40分。
该部分题目涵盖了代数、几何、概率等多个分支和领域。
2.解答该部分题目时,应注意理解题意,合理运用相关知识和方法解题。
在解答过程中,可以通过代入法、化简等方式进行求解,以帮助理解和解决问题。
3.填空题的题目较为简短,但需要对数学的基本概念和公式有一定的了解和记忆。
在解答过程中,应注意计算准确、步骤清晰,以避免答案错误。
三、解答题部分1.解答题部分是考研数学一的开放题目,共有5道解答题,每题10分,满分50分。
该部分题目涵盖了代数、几何、微积分等多个分支和领域。
2.解答该部分题目时,应注意理清思路,运用相关的知识和方法解题。
在解答过程中,可以通过列方程、画图等方式进行求解,以帮助理解和解决问题。
3.解答题的题目通常较长,需要对问题的理解和分析能力有一定的要求。
在解答过程中,应注意逻辑严谨、计算准确,以避免答案错误。
四、注意事项1.考生在答题过程中应注意时间分配,合理安排解答每道题目的时间。
可以根据题目的难度和自己的掌握程度进行判断和决策,以保证每道题目都能得到合理的解答。