厂用电接线及设计
- 格式:ppt
- 大小:4.93 MB
- 文档页数:69
浅谈工厂供配电设计的技术要点工厂供配电设计是指对工厂的电气系统进行规划、设计和建设的过程。
在设计过程中需要考虑到工厂的用电需求、电源选择、电网接入、电气设备布局、电缆敷设等方面的技术要点。
下面从几个方面来浅谈工厂供配电设计的技术要点。
一、用电需求分析在进行工厂供配电设计之前,首先需要对工厂的用电需求进行详细的分析和了解。
这包括对工厂各个用电设备的功率、电压、电流等参数进行测算,确定工厂的总用电负荷。
同时要结合工厂的生产工艺流程和用电设备的特点,合理规划电气系统的结构和布置,确保供电系统能够满足工厂的电力需求。
二、电源选择工厂供配电设计中,电源的选择是非常重要的。
电源的选择会影响到工厂的用电质量和可靠性,因此需要充分考虑电源的供电能力、稳定性和可靠性等因素。
一般工厂的电源选择有两种方式,即接入电网供电和独立供电。
接入电网供电是指将工厂接入公共电网,由公共电网供应电力。
独立供电是指独立建立发电设备,如发电机组,为工厂提供电力。
在选择电源时,需要根据工厂的用电需求、电网的可靠性以及经济投资等方面因素进行综合考虑。
三、电气设备布局电气设备布局是指根据工厂的用电需求和空间条件,合理规划和布置电气设备。
在电气设备布局时,需要考虑到电气设备的安全、可靠性和维护等因素。
一般来说,电气设备应尽量集中布置,避免电气设备之间的干扰和相互影响。
还需要考虑到电气设备的通风、散热和防护等要求,确保电气设备的正常运行。
四、电缆敷设与接线方式电缆敷设是指将电缆按照一定的规范和要求进行敷设和固定。
在电缆敷设时,需要考虑到电缆的走向、敷设方式、敷设深度等因素。
合理的电缆敷设能够提高电缆的使用寿命和线路的可靠性,降低故障的发生率。
在进行接线时,需要注意接线的质量和接线的可靠性,确保电气设备之间的连接稳固,以减少电路故障的发生。
工厂供配电设计中需要对用电需求进行分析,合理选择电源,科学规划电气设备布局,以及进行电缆敷设与接线。
只有在进行了全面的技术要点考虑和综合设计后,才能够确保供配电系统的安全、可靠和经济。
谈谈600MW火电厂厂用电电气一次线设计摘要:火电厂是目前众多发电模式中的一种,也是当前电力供送的主要形式。
对火电厂而言,厂用电一次接线是电气系统的重要组成部分,而接线的质量则对火电厂的发电效率与工作模式有着很大的联系。
因此,进行电气厂用电一次线的设计是非常关键的环节。
文章根据现行火电厂的相关设计规定,结合对火电厂厂用电电气一次线的设计进行总结性分析。
关键词:火电厂;600MW;电气一次线厂用电设计引言电气一次厂用电设计主要是指对600MW 火电厂内的所有厂用电器设备的主线路进行设置和规划的系列行为。
一次设计是对主线路进行设计,包括电厂的供电设计和配电设计等,它的电压等级比较高。
一般是对主回路进行设计,即开展用电负荷的分配、设备的型号初定等工作。
然而现代生活对高效和节能减排观念的日益加深,使得我们在进行电气设计的同时也要满足机组技术指标好、控投资、降能耗及良好的企业社会效益等要求。
因此,对整个一次电气设计进行优化就成为规范经济,运行可靠、便于管理的必要措施1 厂用电配电1.1 高压厂用电接线1.1.1 高压厂用电原接线方案(1)600 MW 机组的高压厂用电接线方案:每台机组设1 台25 MV A 双卷变压器及1 台40/25-25MV A 分裂变压器作为高压厂用变压器,2 台机组共设1 台25 MV A 双卷变压器及1 台40/25-25 MV A分裂变压器作为起动/ 备用变压器。
(2)6 kV 厂用段接线:每台机组6 kV 工作段分为A、B、C 三段,双套辅机及互为备用的低压厂用变压器分接在A、B 两段上,给水泵及其它公用负荷接在C 段上;A、B 段由40/25-25 MV A 分裂变压器供电,C 段由25 MV A 双卷变压器供电。
输煤系统设6kV 输煤段,由6 kV 工作C 段供电。
设计前的高压厂用电接线方案如图1 所示。
1.1.2 高压厂用电接线设计方案本工程高压厂用电接线设计方案:每台机组设1 台63/35-35 MV A 分裂变压器作为高压厂用变压器,2 台机设1 台63/35-35 MV A 起/ 备变压器。
发电厂电气主接线课程设计————————————————————————————————作者:————————————————————————————————日期:发电厂电气主接线课程设计题目:2*300MW火电厂主接线设计学生姓名:学号:专业:班级:指导教师:摘要随着我国经济发展,对电的需求也越来越大。
电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。
电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。
而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。
由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。
并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。
本文将针对某火力发电厂的设计,主要是对电气方面进行研究。
对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。
包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。
通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。
关键词:发电厂;火电厂;电气主接线;目录摘要 (2)发电厂课程设计任务书 (4)第一章引言 (5)1.1研究背景及意义 (5)1.2电气主接线的基本要求及形式 (6)第二章电气主接线设计 (8)2.1设计步骤 (8)2.2设计方案 (8)2.3方案分析 (8)第三章厂用电设计 (10)3.1厂用电 (10)3.2厂用电分类 (10)3.3厂用电设计原则 (11)3.4厂用电源选择 (11)3.5厂用电接线形式 (12)第四章电气设备的选择 (13)4.1电气设备选择的一般规则 (13)4.2按正常工作条件选择电器 (13)4.3按短路情况校验 (14)4.4断路器的选择 (15)4.5隔离开关的选择 (15)4.6电流互感器的选择 (15)4.7电缆的选择 (17)第五章设计感想 (18)发电厂课程设计任务书设计题目:2*300MW火电厂主接线设计设计原始资料:1、厂用电为总容量7%2、两台主变3、220KV 5回出线4、110KV 7回出线设计内容:1、对水电站电气主接线进行论述2、选择水电站电气主接线方式,并说明3、对主接线主要电气设备选型计算,校验计算4、主要点短路电流计算5、对主变保护进行论述设计要求:1、主接线论证,方案比较2、主接线设计正确3、设备选型科学并有依据4、图纸规范5、独立完成6、参阅相关资料设计时间安排:1、主接线初步设计1天2、短路电流计算1天3、设备选择2天4、汇制图纸书写说明书2天第一章引言1.1研究背景及意义电力工业是国民经济的重要部门之一,是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,作为国民经济的其他各部门的快速,稳定发展提供足够的动力,其发展水平是反映国家经济发达程度的重要标志,又和广大人民群众的日常生活有着密切的关系。
工厂供配电系统设计1高压供电线路设计配电室选址一、配电所的设计要求:1、供电可靠,技术先进,保证人身平安,经济合理,维修方便.2、根据工程特点,规模和开展规划,以近期为主,适当考虑开展,正确处理近期建设和原期开展的关系,进行远近结合.3、结合负荷性质,用电容量,工程特点,所址环境,地区供电条件和节约电能等因素,并征求建设单位的意见,综合考虑,合理确定设计方案.4、变配电所采用的设备和元件,应符合国家或行业的产品技术标准,并优先选用技术先进,经济适用和节能的成套设备及定型产品.5、地震根本强度为7度及以上的地区,变配电所的设计和电气设备的安装应采取必要的抗震举措.二、变配电所选址:变配电所地址选择应根据以下要求综合考虑确定:1、接近负荷中央;2、接近电源侧;3、进出线方便;4、运输设备方便;5、不应设在有剧烈震动或高温的地方;,6、不宜设在多尘或有腐蚀性气体的场所;7、不应设在厕所,浴室或其他经常积水场所的正下方,也不宜与上述场所相贴邻;8、不应设在地势低洼和可能积水的场所;9、不应设在有爆炸危险的区域里;10、不宜设在有火灾危险区域的正上方或正下方.负荷等级的划分I一、符合以下情况之一时,应为一级负荷:1、中断供电将造成人身伤亡时.2、中断供电将在政治、经济上造成重大损失时.例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等.3、中断供电将影响有重大政治、经济意义的用电单位的正常工作.例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷.在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷.二、符合以下情况之一时,应为二级负荷:1、中断供电将在政治、经济上造成较大损失时.例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等.2、中断供电将影响重要用电单位的正常工作.例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱.③不属于一级和二级负荷者应为三级负荷.根据工厂的生产特性,并考虑中断供电对其所产生的影响情况,故将本厂的用电负荷划分为二级负荷.对接线方案的选择一、主接线方案设计原那么与要求变电所的主接线,应根据变电所在供电系统中的地位、进出线回路数、设备特点及负荷性质等条件确定,并应满足平安、可靠、灵活和经济等要求.1、平安应符合有关国家标准和技术标准的要求,能充分保证人身和设备的平安.2、可靠应满足电力负荷特别是其中一、二级负荷对供电可靠性的要求.3、灵活应能必要的各种运行方式,便于切换操作和检修,且适应负荷的发展.〔4、经济在满足上述要求的前提下,尽量使主接线简单,投资少,运行费用低,并节约电能和有色金属消耗量.二、常见主接线方案1、只装有一台主变压器的变电所主接线方案只装有一台主变压器的变电所,其高压侧一般采用无母线的接线,根据高压侧采用的开关电器不同,有三种比拟典型的主接线方案:〔1〕高压侧采用隔离开关-熔断器或户外跌开式熔断器的主接线方案;〔2〕高压侧采用负荷开关-熔断器或负荷型跌开式熔断器的主接线方案;〔3〕高压侧采用隔离开关-断路器的主接线方案.2、装有两台主变压器的变电所主接线方案[装有两台主变压器的变电所的典型主接线方案有:〔1〕高压无母线、低压单母线分段的主接线方案;〔2〕高压采用单母线、低压单母线分段的主接线方案;〔3〕上下压侧均为单母线分段的主接线方案.三、主接线方案确定1、10kV侧主接线方案的拟定由工厂负荷计算表〔见附录三〕可知,高压侧进线有一条10kV的公用电源干线,为满足工厂二级负荷的要求,又采用与附近单位连接高压联络线的方式取得备用电源,因此,变电所高压侧有两条电源进线,一条工作,一条备用,同时为保证供电的可靠性和对扩建的适应性所以10kV侧可采用单母线或单母线分段的方案.2、380V侧主接线方案的拟定由原始资料可知,工厂用电部门较多,为保证供电的可靠性和灵活性可采用单母线或单母线分段接线的方案,对电能进行聚集,使每一个用电部门都可以方便地获得电能.3、方案确定根据前面章节的计算,假设主变采用一台S11型变压器时,总进线为两路.为提升供电系统的可靠性,高压侧采用单母线分段形式,低压侧采用单母线形式, 其系统图见图lo假设主变采用两台S11型变压器时,总进线为两路,为提升供电系统的可靠性, 高压侧采用单母线分段形式,两台变压器在正常情况下分裂运行,当其中任意一台出现故障时另一台作为备用,当总进线中的任一回路出现故障时两台变压器并列运行.低压侧采用也单母线分段形式,其系统图见图2.高压母线高压母线低压母线图1采用一台主变时的系统图高压母线 高压母线图2采用两台主变时的系统图比拟工程装设一台主变的方案 装设两台主变的方案 技 术 指标供电平安性 满足要求 满足要求 供电可靠性根本满足要求满足要求供电质量由于一台主变,电压损耗略大由于两台主变并列,电压损耗 略小灵活方便性只有一台主变,灵活性不好由于有两台主变,灵活性较好扩建适应性差一些更好经电力变压器的 综合投资额按单台万元计,综合投资 为2X=万元按单台万元计,综合投资 为4X 二万元上表1是两种主接线方案的比拟,从上表可以看出,按技术指标,装设两台 主变的主接线方案优于装设一台主变的方案.从经济指标来看,装设一台主变 的方案优于装设两台主变的方案.由于集中负荷较大,已经大1250kVA,低压侧 出线回路数较多,且有一定量的二级负荷,考虑今后增容扩建的适应性,从技 术指标考虑,采用于装设两台主变的方案.配电柜选择对于配电柜选择的选择,应满足以下要求:一、高压开关柜的结构应保证工作人员的平安和便于运行、维护、检查、检 修和试验. (二、高压开关柜的结构应有足够的机械强度,以保证在操作一次设备时,二 次设备济 指 标)高压开关柜(含 计量柜)的综合 投资额按每台万元计,综合投资约为5X X 二万元6台GGTA(F)型柜综合投资约为6X X 二万元电力变压器和 高压开关柜的主变和高压开关柜的折旧和维修主变和高压开关柜的折旧和维修年运行费治理费约7万元治理费约10万元交供电部门的按800元/kYA 计,贴费为一次性供电贴 1600贴费为2X1000X=160万元费 X 万元=128万元表1不会产生永久性变形和影响性能的弹性变形.三、开关柜内必须有工作位置、试验位置、以保证手车处于以上位置时,不能随意移动.四、开关柜内手车的推进与拉出应灵活方便,不产生冲击力,相同规格的手车应具有互换性.五、沿所有开关柜整个长度延伸方向应设有专用的接地导体.六、“五防〞联锁要求:・断路器手车只能在试验或工作位置时,断路器才能进行合、分阐操作.•当接地开关处于分闸状态时,手车才能从试验或断开位置移到工作位置.・手车处于工作位置时,接地开关操作轴被锁定,接地开关不能合闸.•当断路器处于合闸状态时,丝杆被锁定,不能移动手车.・只有当接地开关合上,电缆室门才能翻开检修电缆.・断路器在工作位置,二次插头不能拨下.七、二次回路导线应有足够的截面,从而不致影响互感器准确度,应使用铜导线,其截面电流回路采用不小于2.5mm2、电压回路不小于1. 5 mn?.八、开关柜电缆室门要求做成带绞链,并与断路器联锁,满足五防功能.九、电流互感器的安装要求便于拆装和做试验.十、高压开关柜的结构必须是中置式开关柜,断路器室下部必须是一个独立小室,中间加隔板完全分开.对于原有系统,采用的是固定式开关柜,柜内继电保护主要是电磁式继电器, 操作复杂,稳定性差,制约生产因素多,属于落后产品,且防护等级已经达不到现有要求,不能满足现有生产的需要.综合比拟现有的多种配电柜,研究其各自的特点,最终采用了KYN系列开关柜,此柜采用中置式结构,节约了断路器室约50%的空间,更有利于电缆的安装,且技术含量高,容量大,结构设计合理,牢固,外型美观,平安可靠,防护等级高,维修量小等特点,还可以与微机接口, 实现配电站的自动化.2无功补偿工厂供配电系统中,功率因数的上下是衡量一个工厂电能质量的重要指标, 功率因数偏低就意味着系统中无功电源缺乏,会导致系统电压降低而造成电能损耗增加,用电效率降低,限制了供电线路的送电水平.供电部门一般要求工厂的月平均功率因素到达以上,当企业的自然总平均功率因数较低,单靠提升用电设备的自然功率达不到要求时,应采用必要的无功功率补偿设备进一步提升工厂的功率因数.本工厂中,采用电力电容器进行无功功率补偿.补偿方式有两类:一、高压集中补偿高压集中补偿是将并联电容器集中装设在高压配电所的高压母线上,这种补偿方式只能补偿高压母线前边所有线路上的无功功率,而高压母线后面的无功功率得不到补偿,这种补偿方式只适合于大中型企业.二、低压集中补偿低压集中补偿将并联电容器装设在变电所的低压母线上,一般负荷较集中的小型企业用此补偿方式比拟经济.并联电容器量.〞确实定如下公式所示:匕axJl/〔COS® — 1〕 - Jl/〔COSj〕-l < Q, < %axJl/〔COS叩一1〕 - J1/〔COS仍一I〕〔1〕公式中:Kax一总平均最大功率kW;COS% —最大使用时平均功率因数;cos^>2 , COS.一目标功率因数,取、.三、低压分散补偿低压分散补偿是将并联电容器分散地装设在各个用电负荷的附近.这种补偿范围大,不仅能减少高压线路上的无功功率同时也减少了低压线路中的无功功率, 减少了电气设备的容量和各导线的截面,降低了电能的损耗.这种方式用在负荷比拟分散,补偿容量小的企业比拟适宜.补偿容量.〞计算如下公式所示:Qcc= %〔吆% -吆/〕=*〔小内-吆.2〕= %上〔2〕%=依例一依外公式中:依例一补偿前企业自然平均功率角的正切值;依外一补偿后企业功率因数角的正切值;.一年平均有功负荷系数,一般取~;%一无功功率补偿率,kvar/kW «根据实际情况,考虑到本工厂负荷多为高压供电,故采用高压集中补偿的方式进行补偿.由于本厂配备的用电设备大多属于电动机,故需要补偿的容量比拟小,采用的是电容器自动投补的方式.3高压侧短路电流,短路容量确实定进行短路电流计算,首先要绘制计算电路图.在计算电路图上,将短路计算所考虑的各元件的额定参数都表示出来,并将各元件依次编号,然后确定短路计算点.短路计算点要选择得使需要进行短路校验的电气元件有最大可能的短路电流通过.接着,按所选择的短路计算点绘出等效电路图,并计算出电路中各主要元件的阻抗.在等效电路图上,只需将被计算的短路电流所流经的一些主要元件表示出来,并标明其序号和阻抗值,然后将等效电路化简.对于工厂供电系统来说, 由于将电力系统当作无限大容量电源,而且短路电路也比拟简单,因此一般只需采用阻抗串、并联的方法即可将电路化简,求出其等效总阻抗.最后计算短路电流和短路容量.短路电流计算的方法,常用的有欧姆法〔又称有名单位制法,因其短路计算中的阻抗都采用有名单位“欧姆〞而得名〕和标幺制法〔又称相对单位制法,因其短路计算中的有关物理量采用标幺值即相对单位而得名〕.本设计采用标幺制法计算一、标幺制法计算步骤和方法1、绘计算电路图,选择短路计算点.计算电路图上应将短路计算中需计入的所以电路元件的额定参数都表示出来,并将各个元件依次编号.2、设定基准容量S,和基准电压U〞,计算短路点基准电流〃.一般设S d=100MVA,设^二上〔短路计算电压〕.短路基准电流按下式计算:「西⑶3、计算短路回路中各主要元件的阻抗标幺值.一般只计算电抗.电力系统的电抗标幺值X:旦〔4〕式中:一一电力系统出口断路器的断流容量〔单位为MVA〕.电力线路的电抗标幺值X WL = X.1 -75-⑸式中U f——线路所在电网的短路计算电压〔单位为kV〕.>电力变压器的电抗标幺值丫・,%一100 S N⑹式中:U*%——变压器的短路电压〔阻抗电压〕百分值;S jV——变压器的额定容量〔单位为kVA,计算时化为与Sd同单位〕.4、绘短路回路等效电路,并计算总阻抗.用标幺制法进行短路计算时,无论有几个短路计算点,其短路等效电路只有一个.5、计算短路电流.分别对短路计算点计算其各种短路电流:三相短路电流周期分量4⑶、短路次暂态短路电流/*⑶、短路稳态电流上⑶、短路冲击电流",⑶及短路后第一个周期的短路全电流有效值〔又称短路冲击电流有效值〕〔⑶.八3〕_ hkF在无限大容量系统中,存在以下关系:*(3)= / ⑶=/ (3)高压电路的短路冲击电流及其有效值按以下公式近似计算:图3并列运行时短路计算电路二、两台变压器并列运行计算〔由以上公式进行计算,计算过程此处略〕(8)*<3)(9) (10)低压电路的短路冲击电流及其有效值按以下公式近似计算: 6、计算短路容量(1)P-8系统(11)(3)_//(3) sh 一/(12)(3-13)500MVA (八 kl ,LGJ-150,8km10.5kV9(3) S9-1000 (4)0.4kV三、两台变压器分裂运行计算〔由以上公式进行计算,计算过程此处略〕四、短路电流计算结果短路电流计算结果见表1、表2:短路计算点三相短路电流/kA三相短路容量/MVA (1 k/ ,(3)y (3 )K1—K217 K317列运行时短路电流计算结果短路计算点三相短路电流/kA三相短路容量/MVA • ••/ < ' >1 k/(3)/( 3) 0D* y (3 )4 k电气设备短路情况进行校验,就是要按最大可能的短路故障〔通常为三相短路故障〕时的动,热稳定度进行校验.但熔断器和有熔断保护的电器和导体〔如电压互感器等〕,以及架空线路,一般不必考虑动稳定度,热稳定度的校验,对电缆,也不必进行动稳定度的校验.在供配电系统中尽管各种电气设备的作用不一样,但选择的要求和条件有诸多是相同的.为保证设备平安,可靠的运行,各种设备均应按正常工作条件下的额定电压和额定电流选择,并按短路故障条件校验其动稳定度和热稳定度.一次设备选择与校验的条件为了保证一次设备平安可靠地运行,必须按以下条件选择和校验:一、按正常工作条件,包括电压、电流、频率、开断电流等选择.二、按短路条件,包括动稳定和热稳定来校验.三、考虑电气设备运行的环境条件和温度、湿度、海拔以及有无防尘、防腐、防火、防爆等要求.按正常工作条件选择一、按工作电压选择设备的额定电压U M不应小于所在线路的额定电压U,、,,即二、按工作电流选择设备的额定电流几不应小于所在电路的计算电流Ao,即1&之仆〔15〕三、按断流水平选择设备的额定开断电流I 〞,或断流容量S 〞不应小于设备分断瞬间的短路电流 有效值I4或短路容量即晨之"〔16〕或S 仇NSg〔17〕按短路条件校验短路条件校验,就是校验电器和导体在短路时的动稳定和热稳定. 一、隔离开关、负荷开关和断路器的短路稳定度校验1、动稳定校验条件小?端〔18〕或〔19〕开关的极限通过电流〔动稳定电流〕峰值和有效值〔单位为UJU N(14):'max 、/max瑶〕、一—开关所在处的三相短路冲击电流瞬时值和有效值〔单位为2、热稳定校验条件式中:L——开关的热稳定电流有效值〔单位为kA〕;</——开关的热稳定试验时间〔单位为S〕;一一开关所在处的三相短路稳态电流〔单位为kA〕;短路发热假想时间〔单位为S〕o二、电流互感器的短路稳定度校验1、动稳定校验条件式中:一一电流互感器的动稳定电流〔单位为kA〕;K ex——电流互感器的动稳定倍数〔对/垃〕;电流互感器的额定一次电流〔单位为A〕.2、热稳定校验条件(23)KJ\N > P 产、/ 〔24〕式中:I,——电流互感器的热稳定电流〔单位为kA〕;S/——电流互感器的热稳定试验时间,一般取1S;K,——电流互感器的热稳定倍数〔对/.〕.上下压母线的选择根据最大负荷计算高压母线上的最大电流为///max=115. 5A,低压母线上的最大电流/“max=3039A.根据计算电流和?GB50053—94 10kV及以下变电所设计规范?中的规定,高压母线选择TMY-3X〔60X6〕型母线,相母线尺寸均为60mmX 6mm,其载流量为2240A;低压母线选择TMY-3义〔80X 10〕+ 60X6型母线,即相母线尺寸为80mmX 10mm,中性母线尺寸为60mmX6nun,其载流量为3232A.高压侧断路器的选择与校验 .对于高压侧断路器,以前使用的是II型少油断路器.经过多年的使用发现, 10kV 少油断路器运行中存在检修次数频繁、检修工作量大,渗漏问题较难处理问题,在一定的条件下会产生高压可燃的气体,乃至发生爆炸,所以在电力开展过种中,这种断路器越来越不能满足社会开展的需要.由于放置在室内,且其开断水平较大,故使用真空断路器.研究发现,真空断路器与少油断路器相比拟有着明显的优势:一、真空断路器维护简单,无爆炸危险,无污染,噪音低,检修费用低,故障率低.二、灭弧室开断后介质恢复快,不需要冷却和更换,熄弧水平底,无损耗, 触头压力小.三、开断电流大,主回路接触电阻小,并适合于频繁操作等比拟苛刻的工作条件.四、真空断路器使用寿命长,一般可达20年左右,可靠性高.相比各种真空断路器,VS1的机械传动设计的比拟好,可靠性高,选择型号为VS1T2的真空断路器,且与配电柜为成套产品.对于高压侧断路器的校验,只需其开断水平大于短路电流即可.由于其为成套产品,查产品样本,断路器的选择均满足要求.而断路器的速断保护、过电流保护、零序保护、高温报警等,均与二次回路有关.互感器的选择与校验互感器是电流互感器和电压互感器的统称.他们实质上是一种特殊的变压器, 可称为仪用变压器或测量互感器.互感器是根据变压器的变压,变流原理将一次电量〔电压,电流〕转变成同类型的二次电量的电器,该二次电量可作为二次回路中测量仪表,保护继电器等设备的电源或信号源.因此,他们在供配电系统中具有重要的作用,其主要功能为:变换功能:将一次回路的大电压和大电流变换成适合仪表,继电器工作的小电压和小电流.隔离和保护功能:互感器作为一,二次电路之间的中间元件,不仅使仪表, 继电器等二次设备与一次主电路隔离,提升了电路工作的平安性和可靠性,而且有利于人身平安.扩大仪表、继电器等二次设备的应用范围:由于互感器的二次侧的电流或电压额定值统一规定为5A (1A)及100V,通过改变互感器的变比,可以反映任意大小的主电路电压和电流值,而且便于二次设备制造规格统一和批量生产.一、电流互感器的选择与校验1、电流互感器的选择电流互感器应能做到系统正常时长期运行,并取得准确等度级要求的电流传变值.同时尚应能承受短时短路电流的作用.(1)满足工作电压要求,即:%=U NUm N U w式中:4.为电流互感器最高工作电压;为电流互感器最装设处的最高工作电压;%U,为电流互感器额定电压;U〞为系统的标称电压.(2)满足工作电流要求应对一,二次侧分别考虑.1〕一次侧额定电流乙:心之4式中,为线路计算短路电流.2〕二次额定电流/“:j=5A〕3〕准确度等级电流互感器的准确度与一次侧电流大小和二次侧负荷大小有关.2、电流互感器的校验因线路短路时,短路电流会流过电流互感器的一次绕组,所以应做动,热稳定校验.以高压侧任一电流互感器为例:查出其动稳定倍数为215,热稳定倍数为120〔1〕动稳定性校验由公式:、历K/WX IO-3 2骁〔25〕计算:四k,\N X 1.7 =金x215xlOOxlO_3 = 30.4M>Z A/I = 30.3M 满足动稳定要求.式中为电流互感器的动稳定倍数〔对/小〕;〔2〕热稳定性校验由公式:元小=120 x 100 x 10-3 = 12M> Z J 3) • INI K 满足热稳定要求.式中:K,为电流互感器的热稳定倍数〔对小〕;,为电流互感器的热稳定试验时间,一般取1s .为短度发热假想时间,高速断路器取.可知,电流互感器的选择满足要求.其他电流互感器的选择类似.二、电压互感器的选择1、对一次侧电压要求:U.=U N34式中:为电压互感器最高工作电压;为电压互感器装设处的最高工作电压U 〞为电压互感器额定电压S ,v 为系统的标称电压2、二次侧电压U,2:电压互感器二次侧额定电压应满足仪表额定电压为100V 的要求.计算: (26)K/N N 严-= 11.72xV0J =3.71M此题采用完全星型接法.此题中用在高压侧的电压互感器,考虑以上条件,选择型号均为JDZT010/KV的电压互感器.避雷器的选择避雷器是一种能释放雷电或兼能释放电力系统操作过电压能量,保护电工设备免受瞬时过电压危害,又能截断续流,不致引起系统接地短路的电器装置.避雷器通常接于带电导线与地之间,与被保护设备并联.当过电压值到达规定的动作电压时,避雷器立即动作,流过电荷,限制过电压幅值,保护设备绝缘;电压值正常后,避雷器又迅速恢复原状,以保证系统正常供电.避雷器有管式和阀式两大类.阀式避雷器分为碳化硅避雷器和金属氧化物避雷器〔又称氧化锌避雷器〕.管式避雷器主要用于变电所、发电厂的进线保护和线路绝缘弱点的保护.碳化硅避雷器广泛应用于交、直流系统,保护发电、变电设备的绝缘.氧化锌避雷器由于保护性能优于碳化硅避雷器,正在逐步取代后者, 广泛应用于交、直流系统,保护发电、变电设备的绝缘,尤其适用于中性点有效接地的110千伏及以上电网.这里,我们选用ZnO避雷器,是由于:氧化锌阀片具有很理想的非线性伏安特性.普通的阀型避雷器的阀片是金刚砂SiC,试验中发现ZnO、SiC电阻阀片在10KA电流下的残压相同,但在额定电压下ZnO对应的电流一般在10-5A以下, 可近似的认为其续流为零,而SiC的续流却是100A左右.也就是说在工作电压下,氧化锌阀片实际上相当一绝缘体.。
1前言1.1 工厂供电的意义和要求工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。
众所周知,电能是现代工业生产的主要能源和动力。
电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。
因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。
在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小(除电化工业外)。
电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。
从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。
因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。
由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。
工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求:(1)安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。
(2)可靠应满足电能用户对供电可靠性的要求。
(3)优质应满足电能用户对电压和频率等质量的要求(4)经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属的消耗量。
此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既要照顾局部的当前的利益,又要有全局观点,能顾全大局,适应发展。
1.2 工厂供电设计的一般原则按照国家标准GB50052-95 《供配电系统设计规范》、GB50053-94 《10kv 及以下设计规范》、GB50054-95 《低压配电设计规范》等的规定,进行工厂供电设计必须遵循以下原则:(1)遵守规程、执行政策;必须遵守国家的有关规定及标准,执行国家的有关方针政策,包括节约能源,节约有色金属等技术经济政策。
大中型火力发电厂的主接线设计大中型火力发电厂包括机组单台容量为125MW及以上的火力发电厂。
1大中型电厂的电气主接线特点与接线方式(1)主接线特点:1)发电机一变压器采用简单可靠的单元接线方式。
有发电机一变压器单元接线、扩大单元接线、联合单元接线和发电机一变压器一线路单元接线等,直接接入高压或超高压配电装置。
2)大中型电厂的所有发电机一变压器单元有部分接入超高压配电装置、部分接入220kV配电装置;也有全部接入超高压配电装置的。
3)接入系统的电压等级宜符合下列规定:a.接入系统的电压不宜超过两种;b.根据火力发电厂在系统中的地位和作用,不同规模的火力发电厂应分别接入相应电压等级的电网;c.为满足地方负荷所建的电厂,单机容量在600MW以下的机组宜接入330kV及以下电网;d.在受端系统内建设的较大容量的主力电厂宜直接接入高一级电压等级的电网;e.对于向区外送电的电厂,单机容量在600MW及以上的机组宜直接接入高一级电压等级的电网。
(2)接线方式。
1)发电机一变压器单元接线。
一台机组接一台主变压器(双绕组、三绕组或自耦变压器)125MW发电机与变压器单元连接。
当发电厂具有两种升高的电压等级时,应符合下列规定:a.125MW级机组的主变压器宜采用三绕组变压器,每个绕组的通过功率应达到该变压器额定容量的15%以上;站进行联络;b.200MW及以上机组不宜采用三绕组变压器,如高压和中压间需要联系时,宜在变电c连接两种升高电压的三绕组变压器不宜超过2台;d.若两种升高电压均系中性点直接接地,且技术经济合理时,可选用自耦变压器,主要潮流方向应为低压和中压向高压送电。
一台主变压器。
2)发电机一变压器扩大单元接线(分裂变压器或双卷变压器)。
两台或两台以上机组接这种接线适用范围较广,扩大单元的主变压器容量要与电力系统的总容量和备用容量相要求。
适应,一般不大于系统总装机容量的10%,并要满足主变压器故障或检修时系统稳定运行的当发电机的容量与升高电压等级所能传输容量相比,发电机容量较小而不配合时可采用两台发电机接一台主变压器的扩大单元接线,以减少主变压器、高压断路器和高压配电装置间隔。