连续化生产生物柴油的反应器与工艺的研究进展
- 格式:doc
- 大小:50.00 KB
- 文档页数:6
微藻生物柴油的现状与进展一、本文概述随着全球能源需求的持续增长和环境保护意识的日益加强,寻找可再生、环保的替代能源已成为全球科研和工业领域的热点。
微藻生物柴油作为一种新兴的绿色能源,其独特的优势与潜力正逐渐受到人们的关注。
本文旨在全面概述微藻生物柴油的当前发展状况、技术进步、应用前景以及面临的挑战,以期对微藻生物柴油的研究与应用提供有益的参考和启示。
文章将首先介绍微藻生物柴油的基本概念、特点及其作为可再生能源的重要性,然后重点分析微藻生物柴油的生产技术、产业链构建、市场应用等方面的现状与进展,最后探讨其未来发展趋势和可能遇到的问题。
通过本文的阐述,读者可以对微藻生物柴油有一个全面而深入的了解,为相关研究和产业发展提供有益的参考。
二、微藻生物柴油的基础知识微藻生物柴油是一种由微藻经过特定培养和处理过程后提取出的可再生能源。
微藻,作为一类微小的水生植物,具有生长迅速、光合作用效率高、生物量产量大等特点,因此被视为生物柴油生产的理想原料。
微藻生物柴油的生产过程主要包括微藻的培养、收获、油脂提取和生物柴油的合成等步骤。
在微藻培养阶段,需要选择适合的培养基和光照条件,以促进微藻的生长和油脂的积累。
收获阶段则采用离心、过滤等方法将微藻从培养液中分离出来。
油脂提取则利用有机溶剂或物理方法将微藻细胞内的油脂提取出来。
通过酯化或酯交换反应,将提取出的油脂转化为生物柴油。
与传统的化石柴油相比,微藻生物柴油具有可再生、环保、可持续等优点。
微藻生物柴油的原料来源广泛,生长周期短,不受地域限制,因此具有巨大的生产潜力。
微藻生物柴油的燃烧产物主要是二氧化碳和水,对环境影响小,有利于减缓全球气候变化。
微藻生物柴油的燃烧效率高,动力性能良好,能够满足现代交通工具的需求。
然而,微藻生物柴油的生产也面临一些挑战和限制。
微藻生物柴油的生产成本较高,主要包括微藻培养的成本、油脂提取和生物柴油合成的成本等。
微藻生物柴油的生产过程中会产生一些废弃物和废水,需要进行有效的处理和处置。
利用生物发酵技术生产生物柴油的绿色制备与应用研究生物柴油是一种可再生燃料,以可生物降解物质为原料,经过生物发酵技术制备而成。
由于其可替代传统柴油,对环境友好且能够减少温室气体排放,受到了广泛的关注和研究。
本文将从绿色制备和应用两个方面对利用生物发酵技术生产生物柴油进行研究。
一、绿色制备1. 生物发酵技术的原理生物发酵技术是利用微生物的代谢活性,通过合成酶的作用将生物质转化为生物柴油的一种方法。
在发酵过程中,微生物通过分解多糖或脂肪等有机物质,将其转化为有机酸、醇和气体等产物,进而合成生物柴油。
2. 原料选择与预处理制备生物柴油的原料多为植物油或动物油。
优质的原料应具备较高的含油量和酸价,同时要选择可再生、廉价且易获取的原料。
为了提高生物柴油的产率和质量,还需要对原料进行预处理,包括去除不溶于醇的杂质、脂肪酸甲酯化、酯交换等步骤。
3. 微生物菌种的选择与培养在生物发酵过程中,微生物菌种起到至关重要的作用。
合适的菌种应具有较高的酯化活性、耐受性、产率和特异性。
常见的微生物菌种包括酵母菌、细菌、真菌等。
菌种的培养可采用传统的液态培养或固态培养等方法,以达到高效生长和活性的要求。
4. 加工工艺的优化优化加工工艺对提高生物柴油的产率和质量至关重要。
包括反应温度、反应时间、辅助剂、酶的用量等参数的调整。
同时,优化后的工艺能够减少废料的生成和能源的消耗,实现绿色制备。
二、应用研究1. 生物柴油的燃烧性能生物柴油的燃烧性能是评估其可替代性和环境友好性的重要指标之一。
研究发现,生物柴油在燃烧过程中能够减少氮氧化物、颗粒物和多环芳烃的排放,对改善空气质量具有积极作用。
2. 生物柴油的性质和稳定性研究生物柴油的性质和稳定性对其应用具有重要影响。
研究表明,生物柴油的密度、黏度、凝点和氧化稳定性等性质与传统柴油存在一定差异。
针对这些差异,可通过调节原料、添加剂和工艺等方式进行改进,提高生物柴油的使用性能。
3. 生物柴油的市场应用生物柴油作为一种可再生燃料,已经在汽车、重型运输、航空和农业等领域得到广泛应用。
生物柴油的生产与可持续性发展随着全球能源需求和环境问题的日益加剧,可再生能源逐渐成为解决方案之一。
作为其中的一种形式,生物柴油在最近几十年中得到了广泛的关注和应用。
生物柴油是通过将植物油脂或动物脂肪经过酯化等化学反应得到的一种可替代传统石油柴油的燃料。
与传统柴油相比,生物柴油具有较低的温室气体排放和更好的可再生性。
本文将探讨生物柴油的生产方法和其对可持续性发展的贡献。
一、生物柴油的生产方法生物柴油的生产主要通过两种方法:酯化法和氢化法。
酯化法是目前最常用的生产方法,它通过在植物油脂或动物脂肪中添加催化剂(如碱催化剂或酸催化剂),使其与醇(一般是甲醇或乙醇)反应生成酯。
这个过程中产生的副产物是甘油,而得到的酯即为生物柴油。
氢化法相对较少使用,它借助氢气和催化剂将植物油脂或动物脂肪中的脂肪酸还原为饱和脂肪酸,再经过精制处理即可得到生物柴油。
两种方法各有优劣,但酯化法由于工艺简单、成本低廉而被广泛采用。
二、生物柴油的可持续性发展1. 减少温室气体排放生物柴油的燃烧产生的二氧化碳排放量相对较低,其生命周期碳排放量甚至可以接近零。
因为生物柴油的原料来自于植物油脂或动物脂肪,这些植物或动物在生长或养殖过程中吸收的二氧化碳可以抵消燃烧释放的二氧化碳。
因此,与传统柴油相比,使用生物柴油有助于减少温室气体的排放,有利于缓解全球气候变化问题。
2. 提高能源的可再生性生物柴油的生产材料来自植物油脂或动物脂肪,这些资源属于可再生能源的范畴。
与石油等非可再生能源相比,生物柴油的生产不会消耗有限的化石燃料储量,并且可以通过种植更多的植物或发展动物养殖业来不断补充原料。
这样的特点使得生物柴油在能源行业中具有更好的可再生性,有助于实现长期可持续的能源发展。
3. 促进农业和农村经济发展生物柴油的生产需要大量植物油脂或动物脂肪作为原料,这促进了植物种植业和动物养殖业的发展。
种植更多的植物为生产生物柴油提供原料不仅可以创造就业机会,也有助于提升农民的收入。
生物柴油的制备工艺研究生物柴油是一种很重要的替代燃料,在目前世界能源危机日益严重的情况下,它是解决能源瓶颈问题的重要手段。
生物柴油的制备工艺研究是生产和应用生物柴油的重要前提,本文将简单介绍相关的制备工艺。
生物柴油的来源生物柴油以植物油为原料,或以动物脂肪和油脂为原料,是一种环保、可再生的二代清洁能源。
与石油燃料相比,生物柴油的优点在于能够减少二氧化碳的排放,且在生物柴油燃烧完全后生成的气体中,含有的二氧化碳并不会对大气环境造成进一步的影响,因此是非常环保的。
生物柴油的制备工艺研究生物柴油的制备工艺可以分为两种,分别是碱催化和酸催化。
1.碱催化法碱催化法是将植物油或动物脂肪与醇反应生成酯,其中的催化剂是氢氧化钠或氢氧化钾等强碱。
此法制备生物柴油成本低廉,反应速度快,可以在室温下、常压下完成,但在反应过程中容易产生大量的碱酸催化剂残留,使得产品合格率不高,影响了产品的质量;此外,反应过多久会影响产率,所以需要控制反应时间。
2.酸催化法酸催化法是将醇和油脂按一定的摩尔比在酸催化剂作用下进行酯化反应,其中的催化剂是硫酸、苯甲酸、过磷酸等。
此法反应过程温和、产率高、反应后的催化剂残留量小,但需要较高的反应温度和压力,容易产生过多的酸性催化剂残留,同样影响产品的质量。
现阶段的研究目前,国内外的研究人员在生物柴油的制备工艺研究方面取得了很多成果。
比如,中科院化学所的一位研究员在碱催化制备生物柴油过程中,采用了超声波振荡反应器,以更快的速度去酯化油脂,取得了良好的效果;此外还有一些新型催化剂的研制,如杨凌农业高新技术产业示范区的研究人员,就成功地将粗甘油转化为生物柴油的高效催化剂部分还原氧化石墨烯(rGO)上。
这些新技术的出现,为生物柴油在生产和应用方面提供了新的思路和方法。
结论综上,生物柴油的制备工艺研究至关重要。
目前,生物柴油的研究仍处于初期阶段,需要加强各个环节的研究,以提高产品的质量和生产效率。
相信在科学家们的共同努力下,生物柴油将会越来越适用于人们的生产和生活,从而达到绿色低碳的目的。
生物柴油的应用现状及技术进展张 静1,唐恩凌2(11中国石油锦西石化公司研究院,辽宁葫芦岛 125001;21沈阳理工大学装备工程学院,辽宁沈阳 110168) 摘 要:介绍了生物柴油的主要特性、原料来源及生产工艺;评述了国际上现有的各种生物柴油生产方法;给出了国内外生物柴油应用现状及技术进展;对我国生物柴油发展应解决的技术问题进行了概述,展望了我国生物柴油的发展前景。
关键词:生物柴油;可再生能源;酯交换反应 中图分类号:TE626.24 文献标识码:A 文章编号:167129905(2008)0820023208 生物柴油是生物质能的一种形式,其主要成分为通过动植物油脂转化而来的高级脂肪酸的低碳烷基酯混合物,因其物化性能与石化柴油相近,并可以直接代替石化柴油或与普通石化柴油以任意比例互溶代替石化柴油使用而得名。
与来自于石油的石化柴油相比,生物柴油具有环境友好、在使用过程中可降低有害废弃物排放等多方面环保优点,加之占世界能源消耗量40%的石油因资源量极为有限,造成原油和燃料油市场价格巨幅波动,生物柴油作为一种优质生物质可再生能源,自20世纪90年代以来在世界范围内形成了研究开发热潮,并已经形成快速发展的产业。
我国是世界上经济发展最为迅速的国家之一,对能源的需求量长期持续高速增长,在现在的能源消耗构成中,除煤炭能够满足自给外,石油和天然气供给远远满足不了经济发展的需要,特别是石油。
我国2003年消耗石油215亿t,从国际市场上进口高达9100万t,国际依存度高达3614%,从各种渠道得到的数据表明,2004年我国石油进口量将突破亿t大关,达到112亿t,石油的国际依存度也将突破40%。
国际石油价格的高企,不仅增加了购买石油的外汇消耗,而且给我国经济的稳定发展造成不容忽视的负面影响。
与矿物柴油相比,生物柴油具有环境友好的特点,其柴油车尾气中有毒有机物排放量仅为1/10,颗粒物为20%,CO2和CO排放量仅为10%。
生物柴油生产技术的优化与创新柴油是一种重要的燃料,广泛应用于交通运输、农业机械和工业生产等领域。
然而,传统的石油柴油使用对环境造成了严重污染,如大气污染和温室气体排放。
因此,生物柴油作为一种可再生能源,逐渐受到人们的关注和重视。
本文将探讨生物柴油生产技术的优化与创新。
一、生物柴油的定义与发展生物柴油是以植物油或动物脂肪为原料制成的柴油替代燃料。
相比传统柴油,生物柴油具有较低的温室气体排放、生物降解性好以及资源可再生等优点。
随着环境保护意识的提高和清洁能源需求的增加,生物柴油的市场需求逐渐增加。
目前,生物柴油生产技术的优化和创新成为该领域研究的热点。
二、生物柴油生产技术的优化1.原料选择与优化生物柴油的制备原料包括动物脂肪、植物油和废弃食用油等。
不同的原料具有不同的特性,对生物柴油质量和产量有影响。
优化原料的选择是提高生物柴油生产效率的重要环节。
通过对原料的分析评价,选择适合生物柴油生产的优质原料,可以减少废品率和能源消耗,提高生产效益。
2.催化剂的改进催化剂在生物柴油生产中起到重要作用。
优化催化剂的类型和性能,能够提高反应速率和转化效率。
目前常用的催化剂包括碱式催化剂和酸式催化剂。
研究人员通过改进催化剂的载体、添加助剂以及调控催化剂的微观结构等手段,提高催化剂的稳定性和活性,降低生产成本。
3.反应工艺的优化反应工艺的优化对于生物柴油生产的效率和质量具有重要影响。
通过改进反应温度、压力、反应时间等操作条件,可以提高收率和选择性。
一种常用的反应工艺是催化酯交换反应。
通过优化反应温度和催化剂用量,可提高柴油的产量和质量。
三、生物柴油生产技术的创新1.生物质废弃物利用生物质废弃物是生物柴油制备的潜在原料。
利用废弃农作物秸秆、木屑等生物质废弃物,可以减少资源浪费和环境污染。
当前,通过对生物质的预处理和催化裂解技术的创新,实现了废弃农作物废弃物高效转化为生物柴油的过程。
2.微生物发酵技术利用微生物发酵技术生产生物柴油是一种新型的技术路径。
生物柴油的工艺和研究现状摘要:能源短缺和环境污染是目前人类社会面临的巨大挑战,为了维持人类的可持续发展,生物柴油的应用和推广正是解决能源替代问题的最佳手段。
本文将对生物柴油进行概述,包括生物柴油的定义、来源、生产工艺、意义以及我国发展生物柴油的现状。
关键词:生物柴油;生产工艺;发展现状;意义一生物柴油概述生物柴油是清洁的可再生能源,它以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物以及动物油脂、废餐饮油等为原料通过酯交换工艺制成的甲酯或乙酯液体燃料,是优质的石油柴油代用品,是典型的“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。
生物柴油诞生于1988年,由德国聂尔公司发明,它是以菜籽油为原料,提炼而成的洁净燃油。
其突出的环保性和可再生性引起了世界发达国家尤其是资源贫乏国家的高度重视。
西方国家为了发展生物柴油,在行业规范和政策鼓励下采取了一系列的积极措施。
为了便于推广使用,美国、德国、意大利等国都制定了生物柴油技术标准,如美国权威机构ASTM 相继在1996和2000年发布标准,完善生物柴油的产业化条件,并且政府实行积极鼓励的方式,在生物柴油的价格上给与一定的补助。
欧洲和北美利用过剩的菜籽油和豆油生产生物柴油并获得推广应用。
目前,生物柴油主要用化学法生产,采用植物油与甲醇或乙醇在酸或碱的催化剂和230-250摄氏度下进行酯化反应,生成相应的脂肪酸甲酯或乙酯生物柴油。
现在还在研究生物酶法合成生物柴油技术。
与普通柴油相比较,生物柴油更有利于环保,是柴油车尾气中有毒有机物排放仅为原来的1/10,颗粒物为20%,二氧化碳和一氧化碳比矿物柴油要少约50%。
但是与常规柴油相比较,生物柴油价格要贵1倍以上。
二生物柴油的优势与常规柴油相比较,生物柴油具有下列性能:1 具有良好的环保性能。
生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时可减少约70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而产生的废气对人体的损害低于柴油。
生物柴油的制备方法及其发展前景摘要:综述了生物柴油的特性,重点介绍了生物柴油的制备方法,并讨论了生物柴油国内外的研究进展,最后展望了生物柴油在我国发展的前景。
柴油作为一种重要的石油产品,在各国燃料结构中占有较高的份额,已成为重要的动力燃料。
随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大。
而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是20世纪90年代,生物柴油以其优越的环保性能受到各国的重视。
生物柴油是清洁的可再生能源,是以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料,是优质的石油柴油代用品。
生物柴油是典型“绿色能源”,大力发展生物柴油对经济可持续发展、推进能源替代减轻环境压力,控制城市大气污染具有重要的战略意义。
1生物柴油的主要特性(1)优良的环保特性。
生物柴油中硫含量低,二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境造成污染的芳香族烷烃,因而废气对人体损害低于柴油。
(2)较好的润滑性。
使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。
(3)较好的安全性。
生物柴油闪点高,不属于危险品,运输、储存、使用安全。
(4)良好的燃料性。
十六烷值高使生物柴油的燃烧性好于柴油。
燃烧残留物呈微酸性,使催化剂和发动机机油的使用寿命加长。
(5)可再生。
作为可再生能源,与石油一定的储量不同,供应量不会枯竭。
(6)无须改造柴油机,可直接添加使用,同时无需另添设加油设备、储存设备及人员的特殊技术训练。
(7)生物柴油以一定比例与石化柴油调和使用,可以降低油耗、提高动力性,并降低尾气污染。
2生物柴油的制备方法2.1催化合成法制备生物柴油目前生物柴油主要是用化学法生产,即用动物和植物油脂与甲醇或乙醇等低碳醇在酸或者碱性催化剂和高温(230~250℃)下进行转酯化反应,生成相应的脂肪酸甲酯或乙酯,再经洗涤干燥即得生物柴油。
生物柴油的生产方法与技术生物柴油是一种以生物质为原料制成的、与传统石油柴油具有相似化学性质的燃料。
相比于石油柴油,生物柴油具有绿色环保、可再生资源等优点,而且它的使用无需改变现有的发动机设计,最大程度地保证了汽车的使用便利性。
本文将探讨一下生物柴油的生产方法与技术。
1. 原料的选择制备生物柴油需要选取适合的原料,常见的原料有油菜籽、大豆、棉籽、花生等高油量作物。
此外,生物柴油的原料也可以是动物脂肪、油脂废弃物等,这些原料的使用可以做到废物利用的效果。
不过,值得注意的是,原料的选择需要考虑到能源效益和环境效益等多方面的因素。
2. 原料的处理原料的处理对生物柴油的质量和产量都有着极大的影响。
在处理原料时,需要进行去杂、去水、脱臭等工序。
同时,还需要进行磨碎、压榨等处理,以便将原料的油分离出来。
这些处理工序中,关键的环节是脱水,一般选择机械脱水法、热氧化法等方法脱除原料中的水分。
3. 酯化反应原材料处理好之后,就需要进行酯化反应。
酯化反应是将生物原料中的油脂或脂肪酸甲酯与甲醇反应生成生物柴油的一个过程。
在酯化反应中,需要添加催化剂,常见的有硫酸、盐酸等。
此外,反应物质的比例、反应温度和反应时间等也需要严格控制以保证反应的效果。
4. 精炼和加工酯化反应完成后,得到的生物柴油仍然含有一定的杂质和水分,需要进行精炼和加工。
精炼过程的主要工序有脱水、脱酸、脱色、脱臭等。
其中,脱水是最重要的环节之一,如果未能彻底脱除生物柴油中的水分,会导致产量下降、设备损坏等问题。
在加工的过程中,还需要进行掺配等操作,以使生物柴油的性能符合国家标准和客户需求。
5. 生产流程的自动化生物柴油的生产是一个比较复杂的过程,需要进行多个环节的控制和管理。
为了提高生产效率和生产质量,生产流程的自动化是非常必要的。
在自动化系统中,可以通过各种传感器来实时监测温度、压力、流量等参数,从而实现对生产过程的自动控制。
此外,还可以通过物联网、云计算等技术实现远程监控和管理。
生物柴油制备工艺技术进展来源:中国化工信息周刊中国化工信息中心教授级高级工程师朱曾惠近年来,生物质制柴油(Biodiesel)引起了广泛的关注。
2006年9月在德国德累斯顿召开的第一届IUPAC绿色——可连续化学国际会议上发表的一篇报告综合评判了当前生物柴油工业生产工艺进展,本文特摘录以飨读者。
一、第一代生物柴油生产工艺早在1983年,就有人提出应用植物油的甲基酯生产生物柴油。
1992年法国石油研究所(IFP)设计建立了第一套工业装置。
甲基酯是由植物油通过酯交换,将三甘油酯加甲醇转换成脂肪酸甲酯(FAME),反应式如下:该反应为催化反应,为提高转换率,甲醇需要过量。
常用的工业生物柴油工艺采纳均相催化,以NaOH或甲醇钠为催化剂。
从反应器出来的双相物料进入静置器中分离。
富酯相必须进行中和、清洗,以清除少量的催化剂(按要求,Na+K的含量要低于5ppm)。
酯交换后的余外催化剂在甘油相中以乙醇酸钠、甲醇钠和钠皂形式显现,需进行回收。
中和时加入盐酸进行,最终甘油纯度一样为80%~95%。
催化反应副产物钠皂可溶于甘油相中,要在中和后进行沉降作为脂肪酸分离,反应造成的缺失达生物柴油生成量的1%。
FAME收率(重量%)取决于原料质量和催化剂的种类,一样在98.5%~99.4%。
中小型企业可采纳间歇式工业化装置,假如产能大于10万t/a,则用连续式较为经济。
Ballestra、Connemann CD,以及鲁奇公司的PSI装置都采纳了连续工艺,这些工艺由2~3台反应釜串连,每一步催化反应后,甘油都要通过分离去除。
由于产品酯要符合冷性能和稳固性等相关指标,因此对原料植物油的选择有专门大的限制。
迄今为此,只有食用植物油符合要求,因此存在与食品争原料的问题。
此外,该工艺产生大量的副产物粗甘油。
二、第一代生产工艺改进1. 采纳非均相催化解决副产品甘油纯化问题最简便的途径是采纳非均相催化。
IFP 差不多开发出此工艺并于2006年在法国南部建成第一套工业装置。
生物柴油制备方法及国内外发展现状(3)生物柴油制备方法及国内外发展现状2.4.1.2 有机碱催化酯交换过程传统的酸碱催化酯交换,由于油脂中水和游离脂肪酸易产生大量副产物,分离比较难。
含氮类的有机碱作为催化剂进行酯交换,分离简单清洁,不易产生皂化物和乳状液。
2.4.1.3 多相碱催化酯交换过程在传统的酸碱催化酯交换过程中,催化剂分离比较难。
因此,多相催化酯交换过程逐渐受到人们的关注。
Peterson等首先将多相催化引入油菜籽油的酯交换过程中。
由于多相催化剂的存在,反应混合物形成油-甲醇-催化剂三相,因而反应速率相对较慢,但大大简化了反应产物与催化剂的分离。
Wenlei Xie等人报道了以NaX沸石催化剂负载KOH作为异均相催化剂,通过酯交换法制备大豆油甲基酯的情况。
多相催化虽解决了分离的问题,但反应时间太长,且有些催化剂如分子筛和固体碱制备成本比较高。
此外,催化剂易中毒,需解决其寿命问题[12]。
2.4.2 酸催化酯交换反应碱催化法在低温下可获得较高产率,但对原料中游离脂肪酸(FFA)和水含量有严格限制。
因为在反应过程中,FFA与碱反应产生皂类会在反应体系中起到乳化作用,使产物甘油与脂肪酸甲酯产生乳化而无法分离;所含的水则能引起酯水解,从而进一步引起皂化反应,最终减弱催化剂活性。
因此,碱催化法在实际应用中受到很大限制。
许多研究者开始把目标转向酸催化法,酸催化法虽然反应温度较高,但FFA和少量水的存在对酸催化剂催化能力影响不大。
另外,FFA会在该条件下发生酯化反应,且其速率远大于酯交换速率,这时可采用成本较低废餐饮油(FFA占油重2.0%左右)为原料制备生物柴油,从而降低生产成本,使生物柴油较石化柴油更具竞争力。
2.4.2.1 均相酸催化酯交换反应过程该法常用催化剂有硫酸、盐酸、苯磺酸和磷酸等,多数都是Brpbnsted酸。
硫酸价格便宜,资源丰富,是最常用一种均相酸 5讲座论文催化剂。
用酸催化时,耗用甲醇量要比碱催化时多,反应时间更长,通常要求含水量小于0.5%。
生物柴油的研究与发展生物柴油是近年来备受关注的一种替代石油柴油的新型燃料。
它是通过将油料作物、纤维作物、废弃油脂、城市垃圾等生物质资源加工制成的一种能够代替传统石油柴油的清洁燃料。
生物柴油不仅是一种环保的能源,而且还具备一些其他的不可替代的特性,包括减少温室气体排放、改善空气质量、优化发动机性能等。
一、生物柴油的研究背景生物柴油是近年来关注度较高的一种可再生能源。
原因在于,传统的石油柴油是从化石燃料中提取而来,而全球石油储量却是有限的。
随着全球经济的不断发展、人口的不断增长,石油资源的需求将越来越大,再加上气候变化日渐加剧,急需减少温室气体排放,红外线辐射增大,全球气候变暖、环境污染日益严重,生物能源成为了当今世界上发展可再生性能源、减少化石能源渐渐被耗尽的有效途径。
生物柴油是一种优秀的能源替代品,研究和开发生物柴油具有重大的战略意义,也是可持续发展的重要组成部分。
二、生物柴油的制作方法1、生物柴油生产原材料生物柴油生产原材料可以是任何含有脂肪酸的生物油,如植物油、废弃油脂、动物油、种子、油籽等,而在现代生产中,油菜籽、大豆、棕榈油等植物油占据了主导地位。
2、制备生物柴油的方法生物柴油的制备方法有多种,包括酶法、微生物发酵法、超声波乳化法、超临界流体法等。
其中常用的方法是碱催化法、酸催化法和超临界催化法。
三、生物柴油的特性1、生物柴油较传统柴油更环保相同的燃烧能量下,生物柴油比乙醇或石油柴油具有更低的烟气排放、气味弱、残留污染物少等优点。
因此,生产生物柴油成为了缓解空气污染的有效途径,也可以用来满足全球减少温室气体排放的要求。
2、生物柴油是可再生能源,对环境友好。
生物柴油是可再生能源,使用生物柴油不会对环境产生大的影响,不会像石油柴油一样对地球环境造成巨大影响。
生物柴油的排放不会造成环境负荷,且可以有效缩小生物循环的时间,减少环境负担。
3、生物柴油可提高发动机性能和效率。
生物柴油具有一定的润滑性能和清洁能力,在加入到发动机中燃烧的过程中可以减少摩擦和受损,延长发动机的使用寿命。
生物柴油生产及性质研究进展一、本文概述Overview of this article随着全球能源需求的日益增长以及环境保护意识的日益加强,生物柴油作为一种清洁、可再生的替代能源,正受到越来越多的关注。
生物柴油是由可再生生物质资源(如动植物油脂、废弃餐饮油等)通过酯交换或酯化反应得到的脂肪酸甲酯或乙酯,具有良好的环保性、可再生性和生物降解性。
本文将对生物柴油的生产方法、性质及其研究进展进行概述,旨在探讨生物柴油的应用前景及面临的挑战。
With the increasing global energy demand and the increasing awareness of environmental protection, biodiesel, as a clean and renewable alternative energy, is receiving more and more attention. Biodiesel is a fatty acid methyl ester or ethyl ester obtained through ester exchange or esterification reactions from renewable biomass resources (such as animal and plant fats, waste cooking oil, etc.), which has good environmental friendliness, renewability, and biodegradability. Thisarticle will provide an overview of the production methods,properties, and research progress of biodiesel, aiming to explore the application prospects and challenges faced by biodiesel.本文首先介绍了生物柴油的生产方法,包括酯交换法和酯化法,并详细阐述了各种方法的原理、优缺点及适用范围。
生物柴油的生产及应用新技术生物柴油是指利用植物油、动物油或油脂等可再生资源制成的一种油品,与石油柴油具有相同的能量密度和燃烧性能,但由于其来源于可再生资源,其二氧化碳排放量较少,所以被视为一种环保的能源。
该技术的目标是实现可持续发展,减少对环境和气候的负面影响。
生物柴油生产的技术正在不断改进,下文将重点介绍生物柴油的生产及应用新技术。
生物柴油的生产技术生物柴油生产技术包括化学法、生物反应器法、超声波法、微波法等。
其中,酶法是近年来备受研究的一种生产技术,该技术的特点在于,它利用了一种名为酯酶的生物催化剂,能够将植物油或油脂与甲醇反应生成生物柴油。
与传统的酯化反应相比,使用酶催化的反应具有反应速度快、反应条件温和、产率高等优点。
同时,由于酶催化反应不会导致分子间的不可逆化学键破裂,因此生产出的生物柴油的氧化安定性得到了极大的提升。
酶法生产生物柴油的原理是,首先将植物油或油脂与酯化反应的催化剂一起加入反应器中,再加入少量的甲醇,使催化剂能够引起酯化反应。
随着反应的进行,酯化产物会在反应器中积累,同时甲醇也会随着反应的进行不断地添加。
反应器中的温度、反应物的比例和反应时间是关键的参数,控制好这些参数,可以得到高产率、高纯度和高品质的生物柴油。
生物柴油的应用技术由于生物柴油的独特性质和环保性,生物柴油在交通运输、工业生产等领域的应用越来越广泛。
在交通运输领域,生物柴油可以作为柴油发动机的一种替代燃料,不仅能够降低排放物的排放量,还可以提高柴油发动机的震动性和可靠性。
同时,生物柴油还可以作为船舶、飞机等非道路车辆的燃料,用于减少其对大气的污染。
在工业生产领域,生物柴油也可以作为燃料用于各种加热设备中。
同时,生物柴油还可以用作溶剂和高品质的润滑剂,被广泛应用于食品、药品等领域。
生物柴油的应用领域日渐扩大,也提升了生物柴油生产技术的发展和创新。
结论总的来说,生物柴油的生产技术正在向着更加高效、智能、低碳的方向发展。
生物酶法制备生物柴油技术的研究现状生物柴油,是指利用油脂类、植物油等生物资源进行提炼而得到的一种绿色环保型燃料,具有卓越的环保优势,成为现代化石燃料的重要替代品。
相比传统柴油,生物柴油具有较高的氧化稳定性,能够较好地保护发动机,同时在碳排放和颗粒物排放等环保方面也具有显著优势。
目前,生物柴油技术正逐渐发展成为绿色低碳能源领域的热点之一。
生物酶法制备生物柴油,是指利用生物酶(即酶类催化剂)帮助烃类油脂在温和条件下发生脱水酯化反应,从而得到生物柴油的一种工艺。
生物酶催化制备生物柴油相对于传统钠催化技术具有制备条件温和、制备工艺简单、反应速度快、催化剂易于回收等优势,因此被视为未来生物柴油工业化生产的有前景的技术路线之一。
随着研究的不断深入,目前生物酶法制备生物柴油技术正朝着更加高效、绿色可持续的方向不断发展。
下面,我们就来分别探讨当前该领域的研究现状,以及生物酶法制备生物柴油技术所面临的挑战和前景。
一、生物酶法制备生物柴油技术研究现状1.研究框架在研究生物酶法制备生物柴油技术过程中,相关领域的专家学者采用了多种不同的研究框架,包括传统酶学研究、反应工程学研究、反应动力学研究等方面。
近年来,包括多酯化合物合成过程、催化酶种类以及反应底物配比等在内的多个研究热点已被逐渐认识和发掘。
2.生物酶种类目前已开展的生物酶催化反应类型研究涉及到了多种不同的催化酶种,包括酶esterase以及酯水解酶等。
其中,酶esterase类催化制备生物柴油是目前具有较为广泛应用的一类技术之一。
除此之外,利用了脂肪酸生物酶进行合成反应也具有广泛的应用前景。
3. 反应底物生物柴油的制备过程中需要选择合适的反应底物,例如酯化反应涉及到甲酸甲酯等多种底物,脂肪酸的合成反应涉及到脂肪酸、油酸苯甲酸酯、油酸甲酯等底物。
合适的反应底物和反应配比能够加速生物酶催化制备生物柴油的效率。
二、生物酶法制备生物柴油技术所面临的挑战1. 酶催化稳定性的需求在酶催化合成生物柴油的过程中,催化酶的稳定性极为重要。
收稿日期:2005-03-28基金项目:广东省科技攻关重点引导项目(2004B33401007)作者简介:汪 勇(1977-),讲师/硕士;主要从事油脂产品综合利用方面的研究与教学工作。
文章编号:1003-7969(2006)01-0065-04 中图分类号:TQ645 文献标识码:A酶法催化合成生物柴油的研究进展汪 勇1,欧仕益1,温 勇2,刘鹏展1,薛 枫1(1.暨南大学食品科学与工程系,510632广州市黄埔大道西601号;2.华南环境科学研究所,510655广州市员村西街七号大院)摘要:生物柴油是一种可再生、可生物降解、无毒的清洁能源,可以部分替代石油柴油。
酶法合成生物柴油和传统碱法、酸法催化相比,具有反应条件温和、不产生废水、反应产物容易分离等优点。
对脂肪酶的种类、特性和酶法催化酯交换合成生物柴油的主要工艺进行了介绍,同时展望了酶法催化合成生物柴油的前景。
关键词:生物柴油;酶催化;脂肪酶;酯交换生物柴油就是长碳链脂肪酸单酰酯类物质,主要是甲醇或者乙醇等短碳链醇和脂肪酸或者甘油三酯经过酯化或者酯交换来生产,商品化的生物柴油最主要的成分是脂肪酸甲酯。
生物柴油和石油柴油相比,具有可再生、易生物降解、无毒、不污染环境等特点。
它可以作为一个重要的新能源取代或者部分替代石油柴油[1]。
工业化生产生物柴油的方法一般是化学催化法。
主要用碱或者酸催化甲醇和甘油三酯酯交换生产脂肪酸甲酯。
碱催化法由于转化率高,反应速度快等特点,在工业上已经成功应用。
但是碱催化法对甘油三酯原料的品质要求较高,如果甘油三酯中存在一定量的游离脂肪酸和水就会影响反应的速度和转化率,同时增加产物分离的难度。
酸催化可以用来催化成本低廉的但酸值很高的餐饮废油脂转化成脂肪酸甲酯,但是反应速度相对较慢,设备要求较高。
化学催化法存在耗能高、甘油回收困难以及产生较多废水等问题[2,3]。
酶法催化合成生物柴油,对原料品质没有特别要求。
酶法不仅可以催化精炼的动植物油,同时也可以催化酸值较高且有一定水分含量的餐饮废油转化成生物柴油。
连续化生产生物柴油的反应器与工艺的研究进展摘要生物柴油作为一种可再生、对环境友好的可替代能源,将成为解决能源危机的主要选择。
本文综述了连续化生产生物柴油的原料、催化剂、合成方法和工艺等相关研究进展,具体对相关反应器进行了对比。
介绍了国内生物柴油技术的应用及产业发展概况,并对生物柴油在中国的应用前景进行了展望。
关键词生物柴油;连续化生产;反应器Progress in reactors for continuous biodiesel productionprocessesAbstract Biodiesel as a kind of renewable and environmentally friendly alternative energy, will become the main choice to solve the energy crisis. In this paper, the continuous production of biodiesel raw materials, catalyst, synthesis method and process related research progress, and on specific related reactor were compared. Introduced the domestic biological diesel technology application and industry, and the general situation of the development of biodiesel in China's application prospect.Key words biodiesel;continuous production;reactor随着人们生活水平的提高,世界的汽车保有量正逐渐上升,而不可再生石油资源供应紧张趋势日益凸显出来,国际油价不断攀升就是最好的证明。
现如今,石油资源短缺已成为全球共同面临的巨大挑战, 与此同时, 化石燃油的消耗量逐年递增并带来严重的环境问题。
绿色的、可再生替代能源的研发已成为许多国家共同的选择, 作为生物质能源的生物柴油无疑是其中一个重要热点[ 1]。
所谓生物柴油是由动植物油脂与甲醇通过酯交换反应生成的长链脂肪酸甲酯类物质, 是理想的石化柴油替代品[ 2]。
因此作为可再生、绿色环保的替代燃油, 生物柴油受到世界各国的普遍重视。
我国生物柴油的发展尚处在初期阶段,生物柴油主要用于农用动力机械及公路、水路及铁路运输动力机械方面。
我国于2002年开始研发和生产生物柴油,同年9月,福建省龙岩市建成了2万吨/年生物柴油装置,标志着我国生物柴油生产实现了产业化[3]。
2006年国内掀起一股生物柴油建设的浪潮。
但是,目前国内生物柴油发展面临一些瓶颈问题,包括生物质资源品质不佳、收集困难;催化与转化效率低下,过程能耗和水耗高;生物转化工艺难以低成本规模化放大以及产品品质不佳。
要实现生物柴油大规模连续高效、稳定的生产,考察生物柴油的反应器与生产工艺十分重要[4]。
生物柴油的制备方法主要有4种:直接混合法、微乳液法、高温热裂解法和酯交换法,前两种属于物理法,后两种属于化学法。
目前工业生产生物柴油主要是应用酯交换法,以各种天然的植物油和动物脂肪以及食品工业的废油为原料,加入低碳醇和酸、碱或酶催化剂[4]。
为了生物柴油的产业化和可持续发展,生物柴油使用连续化生产。
下面从以下几方面对连续化生产生物柴油的反应器与工艺作介绍。
1生物柴油的原料与工艺生物柴油生产成本高,其中原料成本占75%以上。
原料油的高价格导致生物柴油的价格居高不下,与柴油相比没有竞争优势[5]。
因此可以从采用连续化工艺与使用价格低廉的原料两方面来降低成本。
1.1 能用于生物柴油生产的原料极其丰富,包括植物油(草本植物油、木本植物油、水生植物油)、动物油(猪油、牛油、羊油、鱼油等)和工业、餐饮废油(动植物油或脂肪酸)等。
而废油脂是最经济的生物柴油原料。
每年来自食品加工和动植物加工的废油脂几百万吨,植物油加工的油脚通过硫酸酸化处理回收的酸化油,主要以游离脂肪酸为主,酸价高达150~190mgKOH/g。
而从动物油脂加工厂来的脂肪,主要以甘油三酯为主,动物油脂的特点是含饱和脂肪酸较高。
而从餐饮业来的废油脂,主要是动植物油脂的混合物,根据我国食用油消耗量估算,每年有100万吨左右。
政府在废油脂回收中已经有很多措施保证废油脂不被误用,回收的废油脂作为生物柴油原料有环保、卫生及食品安全上的意义。
目前,我国生物柴油的主要原料是这些废油脂[6]。
1.2 采用连续化工艺可以大大增加原料转化率,而高转化率对生物柴油生产至关重要,不仅影响生产效率,还可避免残留的甘油酯与甘油对柴油发动机造成严重的污染问题。
采用连续化反应器可明显提高生产效率,降低成本,是生物柴油大规模工业化生产的趋势。
2连续搅拌釜式反应器连续搅拌釜式反应器提高了过程的连续性、操作弹性大、产品质量稳定,已广泛应用于工业生产,但是该生产过程能耗高,产生大量的废碱液或酸液,污染环境[4]。
3.1 活塞流反应器刘伟伟等[7]设计了活塞流反应器(φ15mm ×60000mm)来制取生物柴油,反应温度65℃,n(甲醇)∶n(油)=6∶1,催化剂KOH用量为0.012 g/g油,停留时间约为17min,得到粗产品中甲酯含量96.3%,纯化后提高到98.6%,产品的其它燃料特性与德国现行生物柴油标准相符。
活塞流反应器的长径比太大,操作要求高,难以达到稳态,设备投资与泵输送成本高,这些问题限制了其在生物柴油大规模工业生产上的应用。
3.2 振荡流反应器振荡流反应器是一种新型的连续反应器,该反应器底部腔室设置产生振荡的活塞,依靠调节振荡频率来改变物料间混合程度可以克服活塞流反应器的不足。
1989年剑桥大学经过10余年的基础研究,与企业合作将该类型反应器用于甲醇的工业生产。
与现有的连续反应器相比,该反应器最大的特点是适用于反应时间较长的反应物系。
过去,这类反应只能采用分批反应器生产工艺。
与传统的管式连续反应器相比,这类反应器的比度会显著缩短,泵功率明显降低[8]。
振荡流反应器虽极大地降低甲醇用量,但对设备要求高。
3.3 旋转管反应器旋转管反应器的设计是利用离心力而形成一层高强度混合的液层薄膜,该薄膜传质传热效率高。
这是靠高剪切力诱导反应器内流体的波动涟漪效应,从而形成更高比表面积来实现的,同时有利于反应器出口处自发相间分离,极大缩短了停留时间[4]。
4固定床反应器固定床反应器是装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。
固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。
床层静止不动,流体通过床层进行反应。
它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。
固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。
用于气固相或液固相非催化反应时,床层则填装固体反应物[9]。
使用固体催化剂可避免采用均相催化剂所需的中和、洗涤步骤,不会产生废物流,为生物柴油绿色生产提供参考。
5.1 连续气液塔式反应器连续气液塔式反应器,在实现较高转化率前提下,提升反应温度,使其不受甲醇沸点限制,极大加快反应速率,这是液-液反应所不能达到的。
但是,反应器体积大,设备投资高[4]。
5.2 反应精馏酯交换反应制取生物柴油由一连串的可逆反应组成的。
这种可逆的连串反应采用反应精馏能够取得较好的效果。
反应精馏就是在进行反应的同时用精馏方法分离出产物的过程。
原理是:对于可逆反应,当某一产物的挥发度大于反应物时,如果将该产物从液相中蒸出,则可破坏原有的平衡,使反应继续向生成物的方向进行,因而可提高单程转化率,在一定程度上变可逆反应为不可逆反应[10]。
反应精馏制备生物柴油,不仅实现过程连续化,更能提高转化率,增加反应的选择性,加快反应速率,减少甲醇的用量。
反应与分离相耦合,节省设备投资[4]。
6超临界法超临界法是用处于超临界状态的甲醇、乙醇、丙醇、丁醇等与三酰甘油进行转酯反应制备生物柴油。
与传统的生物柴油生产方法相比,超临界法具有快速、高效、易连续操作、无需使用催化剂、受水分和游离脂肪酸的影响小等优点。
因此超临界法对于未来大规模生物燃料的生产,特别是从废弃油脂中生产生物柴油,拥有光明的前景。
但是超临界法对环境的苛刻要求(如高温高压) 、对原料的需求以及相关成本是限制其广泛应用的主要障碍[11]。
7 生物酶法生物酶法是利用脂肪酶的酯化和转酯反应活性, 催化油脂和醇反应生成生物柴油。
与物理法和化学法相比,用脂肪酶作催化剂制备生物柴油,具有原料选择性较低、反应条件温和、醇用量少、后处理简单、无污染物排放、副产物甘油较易分离等优点。
目前,天然的脂肪酶作为催化剂来生产生物柴油存在着一定的局限性,主要有:(1) 脂肪酶对低链醇的转化率较低,致使脂肪酶用量过大、反应周期过长,脂肪酶的转酯反应活性有待进一步提高;(2) 短链醇特别是甲醇对脂肪酶有一定的毒性,酶的使用寿命缩短,生产成本过高,脂肪酶的甲醇耐受性也必须进一步改善。
正是这些因素制约着酶法生产生物柴油的大规模应用。
研究表明,脂肪酶能很高效率地催化醇与脂肪酸甘油酯的酯交换反应,该过程具有生物可降解、对环境友好等特点而日益受到关注。
而固定化酶催化剂能解决酶催化能耗过大与难分离等问题更具应用前景。
与其它催化剂相比而言,固定酶催化剂寿命长,催化效率高,无需经常更换,易于分离,无腐蚀性[11]。
8结语生物柴油是一种清洁、优质的可再生性能源,在世界石油储量持续减少的今天,开发生物柴油具有极其重大的意义。
一百多年以来,生物柴油生产技术日趋成熟。
从最初的稀释混合法等到后来的酯交换法,再到生物酶催化法和超临界法,越来越先进的技术被开发出来,生物柴油得率不断提高,反应时间不断缩短。
随着生物柴油生产技术的不断发展,将涌现出更为优良的生产技术和工艺,并大规模应用于实际生产。
参考文献[1] 杨颖,田从学.我国生物柴油产业现状及发展对策[J],中国粮油学报,2010,25(2)[2] 靳福全, 牛宇岚, 李晓红.固体酸催化蓖麻油制备生物柴油[J],中国油脂,2011,36(1)[3] 朱建芳,钱伯章. 生物柴油生产现状及技术进展[J]. 天然气与石油,2007,25(3):49-52.[4] 王宝琴,范慧,何爱山,云志.连续化生产生物柴油的反应器与工艺的研究进展[J],化工进展,2010,29 (4 )[5] 徐桂转,张百良.生物柴油的研究与使用[J],农业工程技术(新能源产业),2007,(5):46-48[6] 鲁厚芳,史国强,刘颖颖,梁斌. 生物柴油生产及性质研究进展[J]. 化工进展,2011,30(2):126[7] 刘伟伟,吕鹏,李连华,活塞流反应器制备生物柴油[J]. 化学工程,2008,36(8):62-65.[8] /showxmzr.jsp?id=20100529000263[9] /view/951578.htm[10] /view/2698955.htm[11] 赖红星,万霞,江木兰.生物柴油生产技术的研究进展[J].化学与生物工程,2010,27(25):11。