非线性控制系统分析
- 格式:pdf
- 大小:786.24 KB
- 文档页数:112
第8章非线性控制系统的分析自测题1. 变增益控制系统结构图及其非线性元件G N的输入输出特性分别如T图8-1和8-2所示,该系统开始处于零初始状态,若输入信号r(t)=R⨯1(t),且R>e0,kK<1/4T<K,试绘出系统相平面图,并分析变增益放大器对系统的影响。
T图 8-1 T图 8-22. 设非线性系统如T图8-3所示,输入为单位斜坡函数,试在ee-平面上作出相轨迹。
T图 8-33.具有非线性阻尼的控制系统结构图如T图8-4所示,假设系统开始处于静止状态,系统常数为K=4,K0=1,e0=0.2。
试分析在速度输入函数r(t)=0.5+0.1t作用下的根轨迹。
·43··44·yT 图 8-44. 非线性系统结构图如T 图8-5所示,a =0.5,K =8,T =0.5s ,K 1=0.5,要求:(1)当开关打开时,e (0)=2,0)0( e的相轨迹; (2)当开关闭合时,绘制相同初始条件的相轨迹,并说明测速反馈的作用。
T 图 8-55. 将T 图8-6和8-7所示非线性系统简化成典型结构形式,并写出线性部分的传递函数。
T 图 8-6T 图 8-76. 根据已知的非线性描述函数,求T 图8-8所示各种非线性的描述函数。
·45·(a) (b)T 图8-87. 已知系统的结构图如T 图8-9所示,K =4,M =1,k =1,r (t )=1(t ),c(0)=0,0)0(=c。
在e e - 平面上画出相轨迹,并画出c (t )的曲线,且说明运动情况(若有稳态误差,则计算其值,若有振荡,则计算振荡周期)。
T 图 8-98. 系统结构图如T 图8-10所示,试将其归化为一个非线性环节和一个线性部分串联的典型结构。
T 图 8-109. 在T 图8-11所示系统中,(1)确定使系统稳定的开环放大倍数K ; (2)分析滞环宽度h 对极限环工作周期的影响;·46·(3)试提出一个可实现的设计方案,使K 为确定数值(如K =10)时系统能稳定工作。
第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。
本质非线性和非本质非线性。
典型非线性特性。
非线性系统的特点。
两种分析非线性系统的方法——描述函数法和相平面法。
(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。
谐波线性化的概念。
描述函数定义和求取方法。
描述函数法的适用条件。
(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。
借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。
(5)相平面法的基本概念非线性系统的数学模型。
相平面法的概念和内容。
相轨迹的定义。
(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。
(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。
(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。
用相平面法分析非线性系统,非线性系统相轨迹的组成。
改变非线性特性的参量及线性部分的参量对系统稳定性的影响。
2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。
8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。
应用线性系统控制理论,能够方便地分析和设计线性控制系统。
如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。
线性系统控制理论不能很好地分析非线性系统。
因非线性特性千差万别,无统一普遍使用的处理方法。
非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。
非线性系统:含有非线性环节的系统。
非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。
第8章 非线性控制系统的分析重点与难点一、基本概念1. 线性与非线性系统的联系与区别控制系统在不同程度上都存在着非线性。
有些系统可以在工作点附近把它线性化,然后按线性系统来处理(如三级管放大器电路),但当系统含有本征非线性特性(如死区特性、继电器特性等)时,就不能用线性化的方法处理。
死区特性将使系统出现较大的稳态误差。
饱和特性将降低系统的超调量,有时还会引起稳定振荡。
间隙特性可使系统的振荡加剧,静差也会增大,有时会使系统不稳定。
继电器特性会出现低速爬行、蠕动及响应不平滑等现象。
与线性系统相比,非线性系统与线性系统的本质差别可以概括为以下三点: (1)线性系统可以使用叠加原理,而非线性系统不能使用叠加原理;(2)线性系统的稳定性与初值、输入无关,而非线性系统的稳定性与初值、输入有关; (3)线性系统可以写出通解形式,而非线性系统无法写出通解形式。
2. 相平面分析法以x ,x为坐标的平面就叫相平面,系统的某一状态对应于相平面上的一点。
相平面上的点随时间变化的轨迹叫相轨迹。
对应于二阶线性定常系统的相轨迹,可以对非线性系统进行分析,这种分析方法称为相平面分析法。
二阶线性定常系统的相轨迹如表8-1所示。
3. 极限环非线性系统存在着稳定的振荡状态,在相平面图上可表示为一个孤立的封闭相轨迹。
所有附近的相轨迹都渐近地趋向这个封闭的相轨迹,或离开该封闭的相轨迹,该相轨迹称为极限环。
极限环分为稳定和不稳定等四种形式,如表8-2所示。
非线性系统可能没有极限环,也可能存在多个极限环。
在相平面图形上,一个稳定的极限环就对应于一个自振状态。
4. 相平面做图法I —等倾线法令dx xd a / =,即),(x x f a =。
对于a 的不同取值,由),(x x f a =可得到x 与x 的不同关系式,而且在曲线),(xx f a =上,均具有相同的斜率a 。
给出一组a ,就可近似描绘出相平面图形。
表8-1 二阶线性系统022的相轨迹表8-2 极限环基本形式5. 相平面做图法II —δ方法给),(x x f x=两边同加x 2ω,得令 x x x f x x22),(ωω+=+ 22),(),(ωωδx x xf xx +=得 22),(ωδωx x x x=+ 因此 21212)(d x x=-+⎪⎭⎫ ⎝⎛δω式中 21122121111)( ),(δωδδ-+==x x d xx 利用上式就可得点],[11xx 邻域内的相平面图形。