湘教初中数学八上word全册教案 (44)
- 格式:doc
- 大小:290.00 KB
- 文档页数:4
八年级上册数学教案湘教版教案即教学方案,是教育者引领学生分析、探究、处理、整合知识信息的指导和组织方案。
它与整体的教育教学思想、环境条件紧密相关,与教师个体素质条件直接相联。
下面是小编为大家精心整理的xx,仅供参考。
八年级上册数学教案湘教版(一)1.2分式的乘法和除法1.2.1分式的乘除法(第3课时)教学目标1 通过类比得出分式的乘除法则,并会进行分式乘除运算。
2 了解约分、最简分式的概念,会对分式的结果约分。
重点、难点重点:分式乘除法则及运用分式乘除法则进行计算难点:分式乘除法的计算八年级上册数学教案湘教版(二)教学过程一创设情境,导入新课1 分数的乘除法复习2924计算:(1)⨯;(2÷分数乘法、除法运算的法则是什么? 310392 类比:把上面的分数改为分式:(1)fufu⨯,(2)÷(u≠0)怎样计算呢? gvgv这节课我们来学习----分式的乘除法(板书课题)二合作交流,探究新知1 分式的乘除法则(1)fuf⋅ufufvf⋅v⨯=,(2)÷=⋅=(u≠0) gvg⋅vgvgug⋅u你能用语言表达分式的乘除法则吗?分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子、分母的公因式。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
2 分式乘除法则的初步应用及分式的约分和最简分式的概念2x2y23x22x例 1 计算:(1)学生独立完成,教师点评⋅3;(2)÷5yxx-1x-1点评:(1)分式的乘法,可以先把分子、分母分别相乘再约去分子、分母的公因式,这叫约分。
分子、分母没有公因式的分式叫最简分式。
(2)分式的除法运算实际上是转化为分式的乘法运算,这里体现了“转化”的思想。
三应用迁移,巩固提高1 需要分解因式才能约分的分式乘除法x+14x28x26x⋅2;(22÷例2 计算:(1) 2xx-1x+2x+1x+1点评:如果分子、分母含有多项式因式,因先分解因式,然后按法则计算。
第1章分式1.1 分式第1课时分式的概念【知识与技能】1.了解分式的概念,明确分式和整式的区别.2.使学生能够求出分式有意义的条件.【过程与方法】让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.【情感态度】培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.【教学重点】理解分式有意义的条件,分式的值为零的条件.【教学难点】能熟练地求出分式有意义的条件,分式的值为零的条件.一、情景导入,初步认知下列式子中哪些是整式?【教学说明】因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得的,所以必须熟练掌握整式的概念.二、思考探究,获取新知1.思考:(1)某长方形画的面积为Sm2,长为8m,则它的宽为____m.(2)某长方形画的面积为Sm2,长为xm,则它的宽为____m.(3)如果两块面积为x公顷,y公顷的稻田,分别产稻谷akg,bkg,那么这两块稻田平均每公顷产稻谷_____kg.【教学说明】要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况,教师可以给予适当的提示和引导.2.讨论内容:前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?【教学说明】让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.【归纳结论】一般地,一个整式f除以一个非零整式g(g中含有字母)所得的商记作fg,那么代数式fg叫做分式.3.当x取什么值时,分式223xx--的值满足下列条件:(1)不存在;(2)等于0.解:(1)当分母2x-3=0时,即x=32时,分子的值为32-2≠0,因此x=32时,分式223xx--的值不存在.(2)当x -2=0,即x=2时,分式223xx--的值等于0.【教学说明】让学生通过观察,归纳、总结出整式与分式的异同,从而得到分式的概念.三、运用新知,深化理解1.下列各式中,哪些是整式?哪些是分式?解:(2)、(4)是整式,(1)、(3)是分式.2.若分式13x-有意义,则x的取值范围是()A.x≠3B.x≠-3C.x>3D.x>-3解:当分母x-3≠0,即x≠3时,分式有意义,故选A.3.x取什么值时,下列分式无意义?解:(1)因为当分母的值为零时,分式没有意义.由2x-3=0,得x =32, 所以当x=32时,分式无意义.(2)因为当分母的值为零时,分式没有意义.由5x+10=0,得x=-2,所以当x=-2 时,分式无意义.4.若分式||11xx-+的值为零,则x的值为 1 .【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解:要使||11xx-+的值为0,则|x|-1=0,即x=±1,且x+1≠0,即x≠-1.故x=1.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第1、2题.在学习分式的概念时,借助整式的概念,用类比的思想进行教学,学生掌握的较好,能够紧抓概念,很容易的区分整式与分式.而在分式的值等于0的教学中,一部分学生都只考虑分式的分子等于0,而没有考虑分式的分母.因此,在后面的教学中对这方面的教学有待加强.第2课时分式的基本性质和约分【知识与技能】使学生理解并掌握分式的基本性质,并能运用这些性质进行分式约分.【过程与方法】通过对分式的基本性质的归纳,培养学生观察、类比、推理的能力.【情感态度】让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【教学重点】 掌握分式的基本性质. 【教学难点】运用分式的基本性质来化简分式.一、情景导入,初步认知 1.分数的基本性质是什么?2.31=62的依据是什么? 【教学说明】通过分数的约分,复习分数的基本性质,通过类比来学习分式的基本性质.二、思考探究,获取新知1.填空,并说一说下列等式从左到右变形的依据是什么?2.思考:34与分式34a a 相等吗?分式22a b ab 与分式ab相等吗?【归纳结论】分式的分子与分母同乘以或除以一个非零整式,所得分式与原分式相等.即:f f gg g h⋅=⋅(h ≠0). 【教学说明】通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.3.想一想:下列等式成立吗?为什么?;f f f fg g g g--==-- 【教学说明】先让学生讨论,待学生回答后,教师引导学生得出结论:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.4.根据分式的基本性质填空:【教学说明】有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式,有的学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底,所以教师适当引导.【归纳结论】把一个分式的分子和分母的公因式约去,叫作分式的约分.分子和分母没有公因式的分式叫作最简分式.三、运用新知,深化理解【教学说明】在教学中让学生将约分的步骤分为这样几步,首先找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式,最后看看结果是否为最简分式或整式.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第5、6题.学生对分式的基本性质,能说能背.从表面上来看,掌握的比较好.但从练习中可以发现很多问题.如:不会找分式的分子、分母的公因式;分子、分母不同时乘或除;约分不彻底等.所以在这些方面要多练习.1.2分式的乘法和除法第1课时分式的乘除法【知识与技能】理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.【过程与方法】经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.【情感态度】通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.第2课时分式的乘方【知识与技能】1.使学生牢记分式乘方的运算法则,并能根据此法则进行熟练无误的运算.2.学生能够熟练进行简单的分式乘除与乘方的混合运算.【过程与方法】经历分式乘方法则的探究过程,采用自主探索与合作交流的方式,亲历“做数学”的过程,培养探究数学问题的能力.【情感态度】体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲.【教学重点】准确熟练地进行分式的乘方运算.【教学难点】准确熟练地进行简单的分式乘除与乘方的混合运算.一、情景导入,初步认知1.分式乘除法则是什么?2.什么叫最简分式?3.分数的乘方法则是什么?让学生举例.【教学说明】复习旧知,为本节新知打基础.二、思考探究,获取新知1.计算:由乘方的意义和分数乘法的法则,可得根据上面的规律,请总结分式乘方的运算法则.【归纳结论】分式的乘方就是把分子、分母各自乘方.即:【教学说明】通过类比分数的乘方运算方法,总结出分式的乘方运算法则.2.做一做:取一条长度为1个单位的线段AB,如图:第一步:把线段AB三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由___条长度相等的线段组成的折线,每一段等于_____,总长度等于_____.第二步:把上述折线中的每一条重复第一步的做法,得到______.继续下去.情况怎么样呢?(1)把结果填入下表:(2)进行到第n步时得到的线段总长度是多少呢?【教学说明】引导学生寻找并总结规律.三、运用新知,深化理解1.教材P10例3、例4.6.计算:【教学说明】培养运用新知识解决问题的能力.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第2 题.在分式的乘方运算这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘方的运算方法,提示学生分式的乘方法则与分数的乘方法法则类似,要求他们用语言描述分式的乘方法则.学生反应较好,能基本上完整地讲出分式的乘方法则.本节课存在的不足:学生主动性还不够强,教师对学生自学能力估计不足,舍不得放手,抑制部分学生的思维发展.1.3整数指数幂1.3.1同底数幂的除法【知识与技能】了解同底数幂的除法的运算性质,并能解决一些实际问题.【过程与方法】经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义.【情感态度】发展推理能力和有条理的表达能力.【教学重点】同底数幂的除法法则以及利用该法则进行计算.【教学难点】同底数幂的除法法则的应用.一、情景导入,初步认知【教学说明】复习分式的约分,为本节课的学习作铺垫.二、思考探究,获取新知1.计算机硬盘的容量最小单位为字节(B),千字节记作(KB),兆字节(MB),吉字节(GB)它们的换算单位如下:1GB=210MB=1024MB;1MB=210KB;1KB=210B .一张普通的CD光盘的存储容量约为640MB,请问一个320GB的移动硬盘的存储容量相当于多少张光盘容量?因为320GB=320×210MB因此一个320GB的移动硬盘的存储容量相当于512张光盘容量.2、如果把数字改为字母:一般地,设a≠0,m,n是正整数,且m>n,则mnaa等于多少?这是什么运算呢?通过上面的计算,归纳同底数幂除法的法则.【归纳结论】同底数幂相除,底数不变,指数相减.即:·m n m nm n n na a aaa a--==【教学说明】让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则,再运用幂的意义加以说明.在此过程中,发展学生类比、归纳、符号演算、推理能力和有条理的表达能力.三、运用新知,深化理解1.教材P15例1、例2.4.已知a x=2,a y=3,求a3x-2y的值.5.计算:6.计算机硬盘的容量单位KB,MB,GB的换算关系,近视地表示成:1KB≈1000B,1MB≈1000KB,1GB≈1000MB(1)硬盘总容量为40GB的计算机,大约能容纳多少字节?(2)1个汉字占2个字节,一本10万字的书占多少字节?(3)硬盘总容量为40GB的计算机,能容纳多少本10万字的书?一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高?解:略.【教学说明】让学生通过上述题的训练,以达到巩固提高的效果.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第1 题.在同底数幂的除法这节教学活动中,通过让学生从特殊到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好地完善新的教学模式.1.3.2零次幂和负整数指数幂【知识与技能】1.通过探索掌握零次幂和负整数指数幂的意义.2.会熟练进行零次幂和负整数指数幂的运算.3.会用科学记数法表示绝对值较少的数.【过程与方法】通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.【情感态度】通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.【教学重点】零次幂和负整数指数幂的公式推导和应用,科学记数法表示绝对值较小的数.【教学难点】零次幂和负整数指数幂的理解.一、情景导入,初步认知1.同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?a m÷a n=m na (a≠0,m、n是正整数,且m>n)2.这个公式中,要求m>n,如果m=n,m<n,就会出现零次幂和负指数幂,如:有没有意义?这节课我们来学习这个问题.【教学说明】通过复习让学生更好的用旧知识迁移推导出新的知识:零指数幂、负整数指数幂的计算.二、思考探究,获取新知1.探究:mmaa等于多少?【分析】根据分式的基本性质.可以得到mmaa=11·mmaa=11=1.根据同底数幂的除法,可以得到a m÷a m=11·mmaa=0a(a≠0)由此,你能得到什么结论?【归纳结论】任何不等于零的数的零次幂等于1.即:0a=1(a≠0)【教学说明】通过引导学生进行计算,合理推导出零指数幂等于1.2.试试看:填空:3.探究:负整数指数幂的意义.(1)填空:(2)思考:2333与23÷33的意义相同吗?因此他们的结果应该有什么关系呢?【归纳结论】n a -=1n a(a ≠0) 【教学说明】通过计算让学生推导出负指数幂计算公式(法则). 3.做一做:(1)用小数表示下列各数:110-,210-,310-,410-.你发现了什么?(10n -= )(2)用小数表示下列各数:1.08×210-,2.4×310-,3.6×410-思考:1.08×10-2,2.4×10-3,3.6×10-4这些数的表示形式有什么特点?(a ×10n (a 是只有一位整数,n 是整数))叫什么记数法?(科学记数法)当一个数的绝对值很小的时候,如:0.00036怎样用科学记数法表示呢?你能从上面问题中找到规律吗?【归纳结论】我们可以用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤|a|≤10,其公式为00.0001n ⋯个=10n -.三、运用新知,深化理解 1.教材P17例3 ,P18例4、例6. 2.-2.040×510表示的原数为(A ) A .-204000 B .-0.000204 C .-204.000D .-20400 3.用科学记数法表示下列各数. (1)30920000(2)0.00003092(3)-309200(4)-0.000003092【分析】用科学记数法表示数时,关键是确定a和n的值.解:(1)30920000=3.092×710(2)0.00003092=3.092×510-(3)-309200=-3.092×510(4)-0.000003092=-3.092×610-6.已知9m÷223m+=1 3n(),求n的值8.把下列各式写成分式形式:2x-,32xy-解:2x -=21x;32xy -=32x y . 9.(1)原子弹的原料——铀,每克含有2.56×2110个原子核,一个原子核裂变时能放出3.2×1110-J 的热量,那么每克铀全部裂变时能放出多少热量?(2)1块900mm 2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm 2?约多少m 2?(用科学计数法表示)【分析】第(1)题直接列式计算;第(2)题要弄清m 2和mm 2之间的换算关系,即1m=1000mm=103mm ,1m 2=106mm 2,再根据题意计算.解:(1)由题意得2.56×2110×3.2×1110-=8.192×1010(J)答:每克铀全部裂变时能放出的热量8.192×1010J.答:每一个这样的元件约占9×10-7平方毫米;约9×1310-平方米. 【教学说明】通过练习,牢固掌握本节课所学知识,并能运用知识计算. 四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第2、3、4 题.1.进行有关0次幂和负整数幂的运算要注意底数一定不能为0,特别是当底数是代数式时,要使底数的整体不能为0;2.在正整数幂的基础上,我们又学习了零次幂和负整数幂的概念,使指数概念推广到整数的范围;3.对0指数幂、负整数指数幂的规定的合理性有充分理解,才能明了正整数指数幂的运算性质对整数指数幂都是适用的.1.3.3整数指数幂的运算法则【知识与技能】会用整数指数幂的运算法则熟练进行计算. 【过程与方法】通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则. 【情感态度】发展推理能力和计算能力. 【教学重点】用整数指数幂的运算法则进行计算. 【教学难点】整数指数幂的运算法则的理解.一、情景导入,初步认知 正整数指数幂有哪些运算法则? (1)a m ·a n =m n a +(m 、n 都是正整数) (2)()nm mn aa =(m 、n 都是正整数)(3))··(n n n a b a b =(n 是正整数) (4)a m a n =m n a -(m 、n 都是正整数,a ≠0且m>n )(5)(nn n a a b b=)(b ≠0,n 是正整数)这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.【教学说明】复习正整数指数幂的运算法则,为本节课的教学作准备. 二、思考探究,获取新知1.幂的指数从正整数推广到了整数.可以说明:当a≠0、b≠0时,正整数指数幂的上述运算法则对于整数指数幂也成立,即:(1)a m·a n=m na+(a≠0,m、n都是正整数)(2)()n m mna a=(a≠0,m、n都是正整数)(3))a b a b=(a≠0,n是整数)··(n n n2.思考:(1)同底数幂的除法法则可以转换成什么运算法则?(2)分式的乘方法则可以转换成什么运算法则?【归纳结论】幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算.【教学说明】鼓励学生相互交流讨论.三、运用新知,深化理解1.教材P20例7、例8.3.计算:5.计算下列各式,并把结果化为只含有正整数指数幂的形式:6.当x=14,y=8时,求式子2522?x yx y----的值.解:2522?x yx y----=-2x33y当x=14,y=8时,上式=-16.7.计算下列各式,并把结果化为只含有正整数指数幂的形式.【分析】正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算.【教学说明】通过练习,巩固本节课所学内容.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.作以补充.布置作业:教材“习题1.3”中第6、7 题.课堂的有效性是当下教学的瞩目点,一堂高效的课,不仅仅是要让学生获得知识与技能,更多的是学习动机被唤醒、学习习惯的养成和思维方式的提升.本节课不足之处是学生容易把原有的5条性质混淆,导致指数幂范围扩大,就更混了,单独做做还可以过关,一旦混合运算,就基本上搞不清楚是哪一条了.总之,课堂还是要放手让给学生.1.4分式的加法和减法第1课时同分母分式的加减【知识与技能】理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算.【过程与方法】类比同分母分数加减法的法则归纳出同分母分式的加减法法则.【情感态度】通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想.【教学重点】同分母的分式加减法的运算.【教学难点】同分母的分式加减法的运算.一、情景导入,初步认知做一做:【教学说明】通过“做一做”的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性.从而抛出同分母分式加减法的运算法则,点明本节课的主要内容.二、思考探究,获取新知1.你能根据分数的加减法运算法则,总结出当分母相同时,分式的加减法运算法则吗?【归纳结论】同分母的分式相加减,分母不变,把分子相加减.【教学说明】类比时注意引导学生正确猜想,使法则的提出顺理成章,也为后面的学习做好铺垫.三、运用新知,深化理解1.教材P23例1、P24例2.计算:4.计算:【教学说明】通过演练巩固,让学生对同分母分式的加减法有更好的认识与掌握.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1题.本节课的关键是法则的探究,重点是法则的应用.易错点是分母互为相反数,要化为同分母.在这个过程中要注意变号,学生先独立自学,完成不了的再小组内讨论交流.充分发挥学生自主、合作的意识.第2课时通分、最简公分母的概念【知识与技能】会找最简公分母,能进行分式的通分.【过程与方法】认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.【情感态度】通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富教学情感与思想.【教学重点】 分式的通分. 【教学难点】 找最简公分母.一、创设情境,导入新课 分式2214a b 与36xab c的最简公分母是_________,通分后的结果分别是_________.二、思考探究,获取新知 1.什么是分式的通分呢?【归纳结论】根据分式的基本性质,把几个异分母的分式化成同分母的分式的过程,叫作分式的通分.2.如何把分式12x 、13y通分呢? 【归纳结论】通分时,关键是确定公分母.一般取各分母的所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.上面的两个分式的分母中,有哪些因式呢?所有因式的最高次幂的积是多少?最简公分母是什么?三、示例讲解,掌握新知 1.见教材P26例3、例4. 2.把下列各式通分.3.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.4”中第1 、2 题.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,确保能达到一定的练习量.第3课时异分母分式的加减【知识与技能】理解并掌握异分母分式加减法的法则.【过程与方法】经历异分母分式的加减运算的探讨过程,训练学生的分式运算能力.【情感态度】培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识.【教学重点】异分母分式加减法的计算.【教学难点】异分母分式加减法的计算.一、创设情境,导入新课1.同分母分式是怎样进行加减运算的?2.异分母分数又是如何进行加减?3.那么314a a+=?你是怎么做的?【教学说明】通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时对问题3运用类比的思想方法,使进入新知识的学习顺理成章.二、思考探究,获取新知1.类比异分母的分数相加减的法则,异分母的分式如何进行加减呢?【归纳结论】异分母的分式相加减,先通分,化为同分母的分式,然后再按。
1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点)3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x2y,x2x中的分式有( ) A .1个 B .2个 C .3个 D .4个解析:a +2a -1,3x 2y ,x 2x 中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式. 探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x |x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数 解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C.方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12. 错误!探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1 解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式错误! 在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.1.1 分式第1课时 分式的概念教学目标一、知识与技能1.理解分式的含义,能区分整式与分式。
湘教版初中数学八年级上册教案一、教学目标1. 熟悉八年级上册数学教材的内容框架和知识点。
2. 培养学生的数学思维能力和解决实际问题的能力。
3. 培养学生的合作研究和实践操作能力。
二、教学重点1. 掌握八年级上册数学教材中的重要知识点。
2. 培养学生的数学思维能力,提高解决问题的能力。
三、教学内容本教案分为以下章节:第一章数与代数1. 数的认识2. 自然数的加减法3. 常见乘法口诀4. 等式和不等式第二章几何1. 几何图形的认识2. 平行线与三角形3. 相交线与平行线第三章数据与图表1. 统计调查2. 统计图表的制作和分析3. 平均数的计算第四章方程与函数1. 等式的解2. 函数的概念3. 一元一次方程第五章研究生活中的现象1. 比例与相似2. 棱柱和棱锥的计算3. 利润与利率的计算第六章三角函数1. 角的概念和性质2. 正弦、余弦和正切的计算四、教学方法本教案采用多种教学方法,包括讲授、实践操作、小组合作研究和讨论等。
通过多样化的教学活动,激发学生的研究兴趣,提高研究效果。
五、教学评价教师将根据学生的课堂表现、小组活动成果和个人作业完成情况等多方面进行评价,并及时给予反馈。
评价旨在帮助学生发现自身的优点和不足,进一步提高研究成绩。
六、教学资源教师将准备充足的教学资源,包括课本、教辅资料、实验器材等,以支持学生的研究和实践操作。
七、教学安排本教案将按照教学进度详细安排每一个章节的教学内容和相应的教学活动,确保教学顺利进行。
八、教学效果通过本教案的实施,教师将帮助学生全面掌握数学知识和思维方法,培养学生的数学能力和解决问题的能力,提高学生的学习兴趣和学习成绩。
数学教案——八年级上册姓名:王德良班次:122012 年9 月第一章实数本章重点:体会到无理数是显示世界的客观存在,理解平方根、算术平方根的概念,能利用科学计算器求平方根和立方根,会用有理数估计无理数的范围,知道实数和数轴上的点一一对应、有序实数对与平面上的点一一对应的结论。
理念:力 数学不能丢掉数学的实际应用,应教给学生充满联系的数学,应当在数学与现实的接触点之间找联系。
应鼓励与提倡学生思维的多样性,尊重学生在解决问题过程中所表现出来的不同水平,注意因材施教。
平方根(一)目的要求:初步了解学习数的开方的意义,了解一个数的平方根的意义,会用根号表示一个数的平方根。
教学重点:平方根与算术平方根的概念。
教学难点:弄清平方根与算术平方根的意义。
教学方法:启发式教学过程:情境引入:我们已经学过那些数的运算?加法与减法这两种运算之间有什么关系? 乘法与除法之间呢?那么乘方是不是有逆运算呢? 我们来看下面的问题。
如:一个面积为 10.8 平方米的正方形展厅,用去正方形的地砖120块,它的边长应是多少?一个数的平方等于1000,这个数是多少?这些问题的共同特点是:已知乘方的结果的值, 求底数的值。
为了解决这些问题,就要进行乘方运算的逆运算,也就是要进行开方运算。
在这一章里, 我们来学习数的开方和实数的初步知识。
新课讲解:一个数的平方是9,那么这个数是什么数?因为3 2= 9, ( -3 ) 2= 9 ,所以这个数是 3 或-3。
又如 ,一个数的平方是254,因为254522=⎪⎭⎫ ⎝⎛、254522=⎪⎭⎫ ⎝⎛-,所以这个数是52或 -52。
一般的,如果一个数r 的平方等于 a ,这个数r 就叫做 a 一个的平方根 。
就是说,如果a x =2,x 就叫做 a 的平方根。
上面,3与-3 都是 9 的平方根,52与-52都是254的平方根。
启发学生观察,正数的两个平方根之间,有什么关系?其它数呢?进一步,总结一般结论:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
八年级上册数学全册教案新版湘教版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级上册数学全册教案新版湘教版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级上册数学全册教案新版湘教版(word版可编辑修改)的全部内容。
八年级上册数学全册教案(2013年新版湘教版)5.3。
2 二次根式的混合运算(第10课时) 教学内容 : 含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题: 1.计算 (1)(2x+y)•zx (2)(2x2y+3xy2)÷xy 2.计算 (1)(2x+3y)(2x—3y)(2)(2x+1)2+(2x-1)2 老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算: (1)( + )× (2)(4 -3 )÷2 分析:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)( + )× = × + × = + =3 +2 (2)解:(4 -3 )÷2 =4 ÷2 -3 ÷2 =2 - 例2.计算(1)( +6)(3- ) (2)( + )(— ) 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)( +6)(3- ) =3 -()2+18—6 =13-3(2)( + )(—) =( )2-()2 =10-7 =3 三、应用拓展例3.已知=2—,其中a、b是实数,且a+b≠0,化简 + ,并求值.分析:由于( + )( - )=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式= + = + =(x+1)+x—2 +x+2 =4x+2 ∵ =2- ∴b(x—b)=2ab—a(x—a)∴bx-b2=2ab-ax+a2 ∴(a+b)x=a2+2ab+b2 ∴(a+b)x=(a+b)2 ∵a+b≠0 ∴x=a+b ∴原式=4x+2=4(a+b)+2 五、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业 1.P172 习题5.3 B组 5、6 2.选用课时作业设计.作业设计一、选择题 1.( -3 +2 )× 的值是( ). A. -3 B.3 - C.2 — D.— 2.计算( + )(—)的值是( ). A.2 B.3 C.4 D.1 二、填空题 1.(— + )2的计算结果(用最简根式表示)是________. 2.(1—2 )(1+2 )—(2 —1)2的计算结果(用最简二次根式表示)是_______. 3.若x= —1,则x2+2x+1=________. 4.已知a=3+2 ,b=3—2 ,则a2b-ab2=_________.三、综合提高题 1.化简 2.当x= 时,求 + 的值.(结果用最简二次根式表示)课外知识 1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是( ). A.与 B.与 C.与 D.与 2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1—与x+1+ 就是互为有理化因式; 与也是互为有理化因式.练习: + 的有理化因式是________; x- 的有理化因式是_________.— - 的有理化因式是_______. 3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化 (1) ; (2);(3);(4). 4.其它材料:如果n是任意正整数,那么 =n 理由: = =n 练习:填空 =_______;=________; =_______.答案:一、1.A 2.D 二、1.1—2.4 -24 3.2 4.4 三、1.原式= = = =-(—)= —2.原式= = = = 2(2x+1)∵x= = +1 原式=2(2 +3)=4 +6.二次根式小结与复习(第11、12课时)有关二次根式的化简与运算是初中数学的重、难点之一,由于这类题目形式灵活,同时对整式、分式的运算和性质有着密切的联系,所以成为考察学生综合运用能力的“试金石”,现将一些常见的运算错误归纳如下 ,希望同学们加以注意,并引以为戒.一、概念不清例1.下列各式中,哪些是二次根式?哪些不是二次根式?为什么?, , 错解:, , 都是二次根式;不是二次根式.剖析:对二次根式的定义理解不透,认为只要带二次根号,即为二次根式,忽视了二次根式中a≥0的条件,所以同学们在平时做题中必须特别注意理解二次根式的被开方数是非负数.正解: ,,都是二次根式; , ,不是二次根式.二、违背运算顺序例2.计算: 错解:原式= 剖析:由于乘除是同一级运算,因此按顺序除在前,就要先算除法.正解:原式= .三、错用运算法则例3.化简:.错解:原式= .剖析:本题乱套乘法分配律,应注意:.正解: 原式= .四、错用根式性质例4.计算:(1);(2)错解:(1)原式= ; (2)原式= .剖析:二次根式的性质有:;;而不存在.正解:(1 )原式= .五、忽视字母范围例5.计算:错解:原式= .剖析:本题的分子、分母同乘以时,不允许a=b,错在没有注意a=b的情形.正解:(1)当a≠b时, 原式= ;(2)当a=b时,原式= .六、忽视隐含条件例6.化简: .错解:原式= .剖析:本题隐含着,所以a<0,这个条件.正解:原式= .七、忽视限制条件例7.已知a+b=-2,ab=1,求的值.错解:原式= .剖析:应用二次根式的运算性质: ; 时,必须这样括号里的条件,本题由a+b=—2,ab=1可知a<0,b<0,不满足性质的条件造成错误.正解:由条件可知a<0,b<0,所以原式= .八、忽视题设条件例8.化简:(≤x≤ ).错解:原式= .剖析:这里忽视了≤x≤ 这个条件,当有附加条件时,要注意的应用.正解:因为≤x≤ ,所以—3≤x≤5,所以2x+3≥0,2x-5≤0,所以,原式= .九、忽视分类讨论例9.化简:.错解:.剖析:此题的限制条件不明确,又没有隐含条件,在利用化简时,必须利用零点分段法进行分类讨论,否则易出现错误.正解:第一步:找分点,令x+2=0,x-1=0,所以x=—2 ,x=1; 第二步,分区间,x<-2,—2 ≤x<1,x≥1;第三步,分段按条件化简:当x<-2时,原式=-(x+2)+(1—x)=-2x —1;当—2≤x<1时,原式=x+2+1-x=3;当x ≥1时,原式=x+ 2+x—1=2x+1.第五章二次根式单元检测题姓名________. 第13、14课时一.选择题 (每小题4分,共40分) 1. 下列运算正确的是 A. B. C. D。
湘教版数学八年级上册教案1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点) 3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x 2y ,x2x 中的分式有( )A .1个B .2个C .3个D .4个 解析:a +2a -1,3x 2y ,x2x中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式.探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x|x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C. 方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12.方法总结:分式无意义的条件是分母等于0.探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式⎩⎪⎨⎪⎧分式的概念分式有无意义的条件⎩⎪⎨⎪⎧分式有意义:分母≠0分式无意义:分母=0分式的值⎩⎪⎨⎪⎧分式的值为0:分子=0且分母≠0求分式的值在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.第2课时 分式的基本性质1.通过与分数的类比学习,掌握这一基本而常用的数学思想方法;2.掌握分式的基本性质,并会运用分式的基本性质把分式变形;(重点,难点)3.理解最简分式的概念,会根据分式的基本性质把分式约分,化为最简分式.(重点)一、情境导入1.我们学过下列分数:12,24,36,它们是否相等?为什么?2.请叙述分数的基本性质.3.类比分数的基本性质,你能猜想分式的基本性质吗?二、合作探究探究点一:分式的基本性质【类型一】 分式基本性质的应用填空:(1)3xy =( )3ax 2y ;(2)x 2-y 2(x -y )2=x +y( ). 解析:(1)小题中,分母由xy 变为3ax 2y ,只需乘以3ax ,根据分式的基本性质,分子也应乘以3ax ,所以括号中应填9ax .(2)小题中,分子由x 2-y 2变为x +y ,只需除以x -y ,根据分式的基本性质,分母也应除以x -y ,所以括号中应填x -y .方法总结:利用分式的基本性质求未知的分子或分母时,若求分子,则看分母发生了何种变化,这时分子也应发生相应的变化;若求分母,则看分子发生了何种变化,这时分母也应发生相应的变化.【类型二】 分式的符号法则下列各式从左到右的变形不正确的是( )A.-23y =-23y B.-y -6x =y 6xC .-8x 3y =8x -3yD .-a -b y -x =b -a x -y解析:选项A 中,同时改变分式的分子及分式本身的符号,其值不变,正确;选项B 中,同时改变分式的分子、分母的符号,其值不变,正确;选项C 中,同时改变分式的分母及分式本身的符号,其值不变,正确;选项D 中,分式的分子、分母及分式本身的符号,同时改变三个,其值变化,错误.故选D.方法总结:根据分式的符号法则,分式的分子、分母、分式本身的符号,同时改变其中的两个,分式的值不变.探究点二:分式的约分【类型一】 运用约分,化简分式约分:(1)8x 2yz 3-32xyz 5; (2)a 2+ab a 2+2ab +b 2. 解析:约分的关键是确定分式中分子、分母的公因式,(1)中分子与分母的公因式是8xyz 3,(2)小题先因式分解,分子与分母的公因式是(a +b ).解:(1)原式=x ·8xyz 34z 2·(-8xyz 3)=-x4z2; (2)原式=a (a +b )(a +b )2=aa +b. 方法总结:①约分的依据是分式的基本性质,关键是找出分子与分母的公因式;②约分时必须将分子、分母先写成乘积的形式,再进行约分,不能只对分子、分母中的某一项或某一部分进行约分;③约分一定要彻底,约分的结果应是最简分式或整式.【类型二】 运用约分,化简求值先约分,再求值:2a 2-ab4a 2-4ab +b 2,其中a =-1,b =2.解:原式=a (2a -b )(2a -b )2=a2a -b. 当a =-1,b =2时,a 2a -b =-12×(-1)-2=14.方法总结:利用分式的基本性质约分求值时,要先把分式化为最简分式再代值计算.探究点三:最简分式下列分式是最简分式的是( ) A.2a 3a 2b B.aa 2-3aC.a +b a 2+b 2D.a 2-ab a 2-b 2解析:选项A 中的分子、分母能约去公因式a ,故选项A 不是最简分式;选项B 中的分子、分母能约去公因式a ,故选项B 不是最简分式;选项C 中的分子、分母没有公因式,选项C 是最简分式,故选C ;选项D 中的分子、分母能约去公因式(a -b ),故选项D 不是最简分式.方法总结:判断最简分式的标准是分子与分母是否有公因式,如果有公因式就不是最简分式.当分子、分母是多项式时,一般要进行因式分解,以便判断是否能约分.三、板书设计 分式的基本性质:f g =f ·hg ·h ,f g =f ÷hg ÷h(h ≠0)↓约分 (找出分子与分母的公因式) ↓最简分式 (分子与分母无公因式)本节课利用类比分数的基本性质学习了分式的基本性质,在学习过程中,应注重让学生在学法上的迁移,突出分式基本性质中的的两个关键词:“都”、“同”,尽量避免符号出错.1.2 分式的乘法和除法第1课时 分式的乘除1.理解并掌握分式的乘、除法法则;2.会用分式的乘、除法法则进行运算.(重点,难点)一、情境导入1.请同学们计算: (1)34×52; (2)13÷25. 2.根据上述分数的乘、除法运算,你能猜想下面这两个式子的运算结果吗? (1)f g ·u v ; (2)f g ÷u v.二、合作探究探究点一:分式的乘法运算【类型一】 分子、分母都是单项式计算: (1)16xy y 2·y 22x ; (2)5a 3bc 22x 2y ·-8x 2y 310a 2bc2.解析:分式乘分式,用分子的积作积的分子,分母的积作积的分母,然后再约分. 解:(1)16xy y 2·y 22x =16xy ·y 2y 2·2x=8y ;(2)5a 3bc 22x 2y ·-8x 2y 310a 2bc 2=-5a 3bc 2·8x 2y 32x 2y ·10a 2bc2=-2ay 2.方法总结:分式乘法运算的方法:①注意运算顺序及解题步骤,注意符号问题,不要漏乘负号;②整式与分式的运算,根据题目的特点,可将整式化为分母为“1”的分式;③运算中及时约分、化简;④注意运算律的正确使用;⑤结果应化为最简分式或整式.【类型二】 分子、分母中有多项式计算:m 2-4n 2m 2-mn ·m -nm 2-2mn.解析:观察分式的特点,分子与分母含有多项式,应先将多项式因式分解,再应用分式乘法法则运算.解:m 2-4n 2m 2-mn ·m -n m 2-2mn =(m +2n )(m -2n )m (m -n )·m -n m (m -2n )=m +2n m2.方法总结:分式中含多项式的乘法运算的一般步骤:①运用分式乘法的法则,用分子之积作为新分子,用分母之积作为新分母;②确定分子与分母的公因式;③约分,化为最简分式或整式.探究点二:分式的除法运算【类型一】 分子、分母都是单项式计算:2m 5n ÷4m2-10n2.解析:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 解:2m 5n ÷4m 2-10n 2=-2m 5n ·10n 24m 2=-n m. 方法总结:进行分式的除法运算时,先把分式的除法转化成乘法,然后按照乘法法则进行计算,要注意结果的符号.【类型二】 分子、分母中有多项式计算:(1)x 2-1y ÷x +1y2;(2)(xy -x 2)÷x -yxy; (3)x 2-6x +99-x 2÷2x -6x 2+3x. 解析:(1)小题中,先把除法转化为乘法,把x 2-1因式分解,再约分.(2)小题中,把xy -x 2看作是分母是1的分式,把除法转化为乘法,因式分解,再约分.(3)小题中,把除法转化为乘法,把各个分子、分母因式分解,再约分.解:(1)原式=(x +1)(x -1)y ·y2x +1=y (x -1);(2)原式=x (y -x )·xy x -y=-x 2y ; (3)原式=(x -3)2-(x +3)(x -3)·x (x +3)2(x -3)=-x2.方法总结:分式的除法计算首先要转化为乘法运算,若除式是整式,应将这个整式看作是分母为“1”的分式,然后对式子进行化简.化简时如果分子、分母有多项式,一般应先进行因式分解,然后再约分.分式的乘除运算实际就是分式的约分.三、板书设计1.分式的乘法:f g ·u v =fu gv.2.分式的除法:f g ÷u v =f g ·v u =fv gu(u ≠0).本节课学习了分式的乘、除法运算,通过观察、比较、猜想、分析,类比分数的乘、除法运算,得出分式的乘、除法运算法则.在运算中,把除法转化为乘法,分子、分母有多项式的要先因式分解,同时要注意避免符号出错.第2课时 分式的乘方1.理解并掌握分式的乘方法则,并会运用分式的乘方法则进行分式的乘方运算;(重点) 2.进一步熟练掌握分式乘、除法的混合运算.(难点)一、情境导入1.计算:(35)2,(35)3,(35)n;2.类似地,请你计算:(fg)n.二、合作探究探究点一:分式的乘方计算: (1)(3y 2x 2)2; (2)(-x 2y 2z 2xyz)3.解析:把分式的分子、分母分别乘方,(2)小题还可以先约分,再乘方. 解:(1)(3y 2x 2)2=(3y )2(2x 2)2=9y 24x 4;(2)(-x 2y 2z 2xyz )3=(-x 2y 2z )3(2xyz )3=-x 3y38. 方法总结:分式的乘方,把分子、分母各自乘方,运算时要注意符号,明确“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”,还要注意最后结果是最简分式或整式.探究点二:分式的乘除、乘方混合运算计算:(1)(-2a 2b cd 3)3÷2a d 3·(c a)3;(2)(ab 3)2·(-b a2)3÷(-b a)4;(3)a -b a ·(b b -a )2÷b 2a2.解析:先算乘方,再把除法转化为乘法,然后约分. 解:(1)(-2a 2b cd 3)3÷2a d 3·(c a )3=-8a 6b 3c 3d 9·d 32a ·c 3a 3=-4a 2b 3d6;(2)(ab 3)2·(-b a 2)3÷(-b a )4=a 2b 6·(-b 3a 6)·a 4b4=-b 5;(3)a -b a ·(b b -a )2÷b 2a 2=a -b a ·b 2(a -b )2·a 2b 2=aa -b. 方法总结:进行分式的乘除、乘方混合运算时,先算乘方,再算乘除,最后结果应化成最简分式或整式,通常情况下,计算得到的最后结果要使分子和分母第一项的符号为正号.对于含负号的分式,奇次方为负,偶次方为正.三、板书设计1.分式的乘方法则:(f g )n =f ngn .2.分式乘除、乘方的混合运算:先算乘方,再算乘除.本节课学习了分式的乘方及分式的乘除、乘方混合运算,在教学中应注重激发学生的积极性,勇于尝试.本节课的混合运算是一个难点,也是学生常出错的地方,教学时要引导学生注意运算顺序,优先确定运算符号,提高运算的准确率.1.3整数指数幂1.3.1同底数幂的除法1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.会用同底数幂的除法法则进行运算.(重点,难点)一、情境导入传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔.这位聪明的大臣跪在国王面前说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍.国王说:“你的要求不高,会如愿以偿的.”说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了……还没到第二十小格,袋子已经空了,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的诺言.问题1:国王应该给发明者多少粒麦子?问题2:假如一粒麦子是0.02克,用计算器算出国王应奖励给发明者的麦子总质量大约多少克?问题3:假如每个人每顿吃250克,一天三顿饭,一年365天,这些粮食可供1010(10亿)人食用多少年?二、合作探究探究点一:同底数幂的除法【类型一】底数是单项式计算:(1)(-a)3÷(-a)2; (2)(a3)2÷a5;(3)(xy3)3(-xy3)2; (4)-x3n+2x3n-1.解析:根据同底数幂的除法法则,即a m÷a n=a m-n进行运算.(3)小题可先确定符号,再按同底数幂的除法法则计算.解:(1)原式=(-a)3-2=-a;(2)原式=a 6÷a 5=a6-5=a ;(3)原式=(xy 3)3(xy 3)2=xy 3;(4)原式=-x 3.方法总结:进行同底数幂的除法运算时,只有底数相同时,才能把指数相减.因此计算时首先必须确定底数是否相同,如果底数是互为相反数,可以通过符号变化把底数化为相同.【类型二】 底数是多项式计算:(1)(x -y )8÷(y -x )6;(2)(a -b )3(b -a )2n ÷(a -b )2n -1.解析:底数为多项式时,可把多项式看作一个整体,再根据同底数幂的除法法则计算.解:(1)原式=(y -x )8÷(y -x )6=(y -x )2;(2)原式=(a -b )3(a -b )2n ÷(a -b )2n -1=(a -b )3+2n -(2n -1)=(a -b )4.方法总结:两数(式)互为相反数,则它们的偶次幂相等,奇次幂仍是互为相反数.即:(b -a )2n =(a -b )2n ,(b -a )2n +1=-(a -b )2n +1.(n 是正整数)探究点二:逆用同底数幂的性质已知a m =3,a n =4,求a 2m -n的值.解析:首先应用含a m 、a n 的代数式表示a 2m -n ,然后将a m 、a n的值代入即可求解.解:∵a m =3,a n=4,∴a2m -n=a 2m ÷a n =(a m )2÷a n =32÷4=94.方法总结:逆用同底数幂的除法法则:a m÷a n=a m -n,可以得到a m -n=a m÷a n.解决这类问题的关键在于把要求的式子a m -n 分别用a m 和a n来表示.这类题一般同时考查两个知识点:同底数幂的除法,幂的乘方,解题时应熟练掌握运算性质并能灵活运用.探究点三:同底数幂除法的实际应用某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌.现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?解析:根据题意可知2升液体中有2×1012个有害细菌,而1滴可杀死109个此种有害细菌,把两个量相除即可求得答案.解:∵液体中每升含有1012个有害细菌,∴2升液体中的有害细菌有2×1012个,又∵杀虫剂1滴可杀死109个此种有害细菌,∴用这种杀虫剂的滴数为2×1012÷109=2×103=2000滴. 方法总结:本题主要考查同底数幂的除法及学生阅读理解题意的能力,是数学与生活相结合的例子.解决这类问题的方法是:先列出解决问题的式子,再根据同底数幂的除法法则进行计算.三、板书设计 同底数幂的除法a m=a m-n(a≠0).即:同底数幂相除,底数不变,指数相减.a n本节课学习了同底数幂的除法法则及运用法则进行计算.易错点有两个:一是理解法则错误,认为同底数幂相除,底数不变,指数相除;二是对于底数是互为相反数的指数幂的除法运算,容易出现符号错误.在课堂上,让学生把这些错误展示在黑板上,大家共同分析产生错误的原因以及怎样避免错误的发生.1.3.2 零次幂和负整数指数幂1.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;(重点,难点) 2.会用科学记数法表示绝对值较小的数.(重点)一、情境导入上节课我们学习了同底数幂的除法法则:a m a n =a m -n,其中a ≠0,m ,n 是正整数,且m >n .在这里,如果m =n 或m =0,又会出现什么结果呢?二、合作探究 探究点一:零次幂【类型一】 零次幂有意义的条件已知(3x -2)0有意义,则x 应满足的条件是________.解析:根据零次幂的意义可知:(3x -2)0有意义,则3x -2≠0,x ≠23.故填x ≠23.方法总结:零次幂有意义的条件是底数不等于0,所以解决有关零次幂的意义类型的题目时,可列出关于底数不等于0的式子求解即可.【类型二】 零次幂的运算计算: (1)30; (2)(-2)0;(3)(-12)0; (4)-22+|4-7|+(3-π)0.解析:(1),(2),(3)小题根据零次幂的意义计算;(4)小题先分别求乘方、绝对值、零次幂,再计算.解:(1)30=1;(2)(-2)0=1;(3)(-12)0=1;(4)-22+|4-7|+(3-π)0=-4+3+1=0.方法总结:①任何不等于零的数的零次幂等于1.零次幂式子的特征是:底数不等于0,指数等于0,要注意的是结果等于1而不等于0.②零次幂与其他运算相结合时,要分别计算.计算-22时,易错误的计算为-22=4,因此要正确理解-22和(-2)2的意义.【类型三】 零次幂的综合运用若(x -1)x +1=1,求x 的值.解析:由于任何不等于零的数的零次幂等于1,1的任何次幂都等于1,-1的偶数次幂等于1,故应分三种情况讨论.解:①当x +1=0,即x =-1时,原式=(-2)0=1;②当x -1=1,x =2时,原式=13=1;③x -1=-1,x =0,0+1=1不是偶数.故舍去. 故x =-1或2.方法总结:乘方的结果为1,可分为三种情况:不为零的数的零次幂等于1;1的任何次幂都等于1;-1的偶次幂等于1即在底数不等于0的情况下考虑指数等于0;考虑底数等于1或-1.探究点二:负整数指数幂【类型一】 负整数指数幂的意义与运算计算:(1)3-3; (2)(-2)-2; (3)(-23)-4.解析:根据负整数指数幂的意义知,一个数的负整数指数幂的结果,底数是原来底数的倒数,指数是原来指数的相反数.解:(1)3-3=133=127;(2)(-2)-2=1(-2)2=14;(3)(-23)-4=(-32)4=8116.方法总结:求负整数指数幂的方法:把底数取倒数,指数变为相反数.【类型二】 运用零次幂和负整数指数幂来计算计算:|-5|-(π-1)0+(12)-2.解析:本题涉及零次幂、负整数指数幂、绝对值三个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据运算法则计算.解:|-5|-(π-1)0+(12)-2=5-1+22=5-1+4=8.方法总结:此题主要考查了学生的综合运算能力,是中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零次幂、绝对值等考点的运算.【类型三】 运用零次幂和负整数指数幂来化简、求值已知a x=3,求a 2x -a -2xa x -a-x 的值.解析:根据负整数指数幂的意义先化简分式,然后代入求值.解:a 2x -a -2x a x -a -x =(a x )2-(a -x )2a x -a -x=a x +a -x =3+3-1=103. 方法总结:求值时,把要求的式子根据负整数指数幂的意义用已知的式子表示出来是解题的关键.探究点三:用科学记数法表示绝对值小于1的数一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( )A.6.5×10-5 B.6.5×10-6C.6.5×10-7 D.65×10-6解析:把0.0000065的小数点向右移动6位变成6.5×0.000001=6.5×10-6,故选B.方法总结:绝对值很小的数用科学记数法表示时,先把小数点向右移动n位,使这个数变成一个整数数位只有一位的数a,再在后面乘以10-n.即用科学记数法把一个绝对值很小的数写成a ×10-n的形式时,n等于第一个非零数前面零的个数(包括小数点前面的零).三、板书设计1.零次幂2.负整数指数幂3.科学记数法:a×10-n(1≤|a|<10,n等于第一个非零数前面所有零的个数).本节课学习了零次幂和负整数指数幂,在学习中,以正整数指数幂为基础,探究零次幂和负整数指数幂的运算法则.本节课的易错点一是误认为零次幂等于0,二是用科学记数法表示绝对值小于1的数:a×10-n,误认为一定是负数.在课堂教学中,老师应让学生积极参与,主动练习,从练习中发现问题,纠正错误.1.3.3 整数指数幂的运算法则1.理解整数指数幂的运算法则;2.会用整数指数幂的运算法则进行计算.(重点,难点)一、情境导入1.请同学们回顾,我们学过的正整数指数幂的运算法则有哪些?2.我们在前面还学过,可以把幂的指数从正整数推广到整数.这时我们怎样理解这些运算法则呢?二、合作探究探究点一:整数指数幂的运算【类型一】 乘积形式的整数指数幂的运算计算:(1)(-a )3÷a -1÷(a -2)-2;(2)(a -2b -3)-3·(a 2b )-2;(3)(2x -3y 2z -2)-2(3xy -3z 2)2;(4)(-2a -3)2b 3÷2a -6b -2.解:(1)原式=-a 3÷a -1÷a 4=-a 4÷a 4=-1;(2)原式=a 6b 9·a -4b -2=a 2b 7;(3)原式=(2-2x 6y -4z 4)(32x 2y -6z 4)=2-2·32x 8y-10z 8=9x 8z 84y10;(4)原式=4a -6b 3÷2a -6b -2=2b 5.方法总结:整数指数幂的运算要注意运算顺序:先算乘方,再算乘除.最后结果要化为正整数指数.【类型二】 商形式的整数指数幂的运算计算:(1)(x 2+x x 2+2x +1)-1÷(x x +1)-2;(2)[(2a -3b -2c 3a -4b -2)-1]-2;(3)[(a -b )-3(a +b )3(a +b )2(a -b )-2]-2. 解:(1)原式=[x (x +1)(x +1)2]-1·(x x +1)2=x +1x ·x 2(x +1)2=xx +1;(2)原式=(2a -3b -2c 3a -4b -2)2=4a 2c29;(3)原式=(a -b )6(a +b )-6(a +b )-4(a -b )4=(a -b )2(a +b )2.方法总结:商形式的整数指数幂的运算有两种方法:一是先把负整数指数幂转化为正整数指数幂,再约分化简;二是先计算整数指数幂,最后再把负整数指数幂化为正整数指数幂.【类型三】 逆用幂的运算法则求值已知a -m =3,b n =2,则(a -m b -2n )-2=________.解析:(a -m b-2n )-2=(a -m )-2·b 4n =(a -m )-2(b n )4=3-2×24=169.故填169.方法总结:把要求的代数式逆用幂的运算法则,用已知的式子来表示是解题的关键.计算:(278)x -1·(23)3x -4.解:(278)x -1·(23)3x -4=(32)3x -3·(23)3x -4=(23)3-3x ·(23)3x -4=(23)3-3x +3x -4=(23)-1=32.方法总结:利用负整数指数幂,把底数是互为相反数的两数可以转化为相同,再根据幂的运算法则进行计算.探究点二:整数指数幂运算的实际应用某房间空气中每立方米含3×106个病菌,为了试验某种杀菌剂的效果,科学家们进行实验,发现1毫升杀菌剂可以杀死2×105个这种病菌,问要将长10m ,宽8m ,高3m 的房间内的病菌全部都杀死,需要多少杀菌剂?解:(10×8×3)×(3×106)÷(2×105)=(720×106)÷(2×105)=360×10=3.6×103(毫升).答:需要3.6×103毫升杀菌剂才能将房间中的病菌全部杀死.方法总结:科学记数法在实际生活中应用广泛,在运用科学记数法解题时要注意a ×10-n中n 的值.三、板书设计整数指数幂的运算法则:(1)同底数幂的乘法:a m ·a n =a m +n(a ≠0,m ,n 都是整数);(2)幂的乘方:(a m )n =a mn(a ≠0,m ,n 都是整数);(3)积的乘方:(ab )n =a n ·b n(a ≠0,b ≠0,n 是整数).本节课通过把正整数指数幂的五个运算法则,推广到整数范围内,从而可用三个运算法则来概括.整数指数幂的运算是学生学习过程中的一个难点,也是易错点,在教学过程中,可让学生把典型错误展示在黑板上,引导学生分析产生错误的原因.1.4 分式的加法和减法第1课时 同分母分式的加减1.理解同分母分式的加减法的法则,会进行同分母分式的加减法运算;(重点) 2.会把分母互为相反数的分式化为同分母分式进行加减运算.(难点)一、情境导入市场上有A ,B 两种电脑,花10000元可以买A 型电脑a 台,花8000元可以买B 型电脑a 台,A 型电脑比B 型电脑每台贵多少元?二、合作探究探究点一:同分母分式的加减法计算: (1)3a -2b 3ab -3a +3b 3ab ;(2)1a -1+-a 2a -1; (3)x -2x -1-2x -3x -1. 解析:根据同分母分式加减法的法则,把分子相加减,分母不变.注意(1),(3)两小题属于同分母分式的减法运算,减式的分子要变号.解:(1)原式=3a -2b -3a -3b 3ab =-5b 3ab =-53a ;(2)原式=1-a 2a -1=-(a +1)(a -1)a -1=-a -1;(3)原式=x -2-2x +3x -1=-x +1x -1=-1.方法总结:同分母分式相加减,分母不变,分子相加减,最后结果要化为最简分式或整式.探究点二:分式的符号法则计算: (1)2x 2-3y 2x -y +x 2-2y 2y -x ;(2)2a +3b b -a +2b a -b -3b b -a.解析:(1)先把第二个分式的分母y -x 化为-(x -y ),再把分子相加减,分母不变; (2)先把第二个分式的分母a -b 化为-(b -a ),再把分子相加减,分母不变. 解:(1)原式=2x 2-3y 2x -y -x 2-2y2x -y=2x 2-3y 2-(x 2-2y 2)x -y=x 2-y 2x -y =(x +y )(x -y )x -y=x +y ; (2)原式=2a +3b b -a -2b b -a -3b b -a=2a +3b -2b -3b b -a=2a -2b b -a =-2(b -a )b -a=-2. 方法总结:分式的分母是互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法的法则:f g ±h g =f ±hg.2.分式的符号法则:f g =-f -g ,-f g =f -g =-f g.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.第2课时 分式的通分1.会确定几个分式的最简公分母;2.会根据分式的基本性质把分式进行通分.(重点,难点)一、情境导入 1.通分:12,23.2.分数通分的依据是什么? 3.类比分数,怎样把分式通分? 二、合作探究探究点一:最简公分母分式1x 2-3x 与2x 2-9的最简公分母是________. 解析:∵x 2-3x =x (x -3),x 2-9=(x +3)(x -3),∴最简公分母为:x (x +3)(x -3). 方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.探究点二:分式的通分【类型一】 分母是单项式分式的通分通分.(1)c bd ,ac2b2; (2)b 2a 2c ,2a 3bc2; (3)45y 2z ,310xy 2,5-2xz2. 解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b 2d ,c bd =2bc 2b 2d ,ac 2b 2=acd 2b 2d; (2)最简公分母是6a 2bc 2,b 2a 2c =3b 2c 6a 2bc 2,2a 3bc 2=4a36a 2bc2;(3)最简公分母是10xy 2z 2,45y 2z =8xz 10xy 2z 2,310xy 2=3z 210xy 2z 2,5-2xz 2=-25y210xy 2z2.方法总结:通分时,先确定最简公分母,然后根据分式的基本性质把各分式的分子、分母同时乘以一个适当的整式,使分母化为最简公分母.【类型二】 分母是多项式分式的通分通分.(1)a 2(a +1),1a 2-a; (2)2mn 4m 2-9,3m 4m 2-6m +9. 解析:先把分母因式分解,再确定最简公分母,然后再通分. 解:(1)最简公分母是2a (a +1)(a -1),a 2(a +1)=a 2(a -1)2a (a +1)(a -1),1a 2-a =2(a +1)2a (a +1)(a -1); (2)最简公分母是(2m +3)(2m -3)2,2mn 4m 2-9=2mn (2m -3)(2m +3)(2m -3)2,3m 4m 2-6m +9=3m (2m +3)(2m +3)(2m -3)2. 方法总结:①确定最简公分母是通分的关键,通分时,如果分母是多项式,一般应先因式分解,再确定最简公分母;②在确定最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母的商.三、板书设计 1.最简公分母 2.通分:(1)依据:分式的基本性质;(2)方法:先确定最简公分母,再把各分式的分母化为最简公分母.本节课学习了分式的通分,方法可类比分数的通分.在教学中应注意循序渐进,先让学生学会确定最简公分母,再让学生学习通分.通分时,一要注意避免符号错误,二要注意通分不改变分式的值,即分母乘了一个整式,分子也要乘以同样的一个整式.。
湘教版数学八年级上册教案1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点) 3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x 2y ,x2x 中的分式有( )A .1个B .2个C .3个D .4个 解析:a +2a -1,3x 2y ,x2x中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式.探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x|x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C. 方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12.方法总结:分式无意义的条件是分母等于0.探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式⎩⎪⎨⎪⎧分式的概念分式有无意义的条件⎩⎪⎨⎪⎧分式有意义:分母≠0分式无意义:分母=0分式的值⎩⎪⎨⎪⎧分式的值为0:分子=0且分母≠0求分式的值在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.第2课时 分式的基本性质1.通过与分数的类比学习,掌握这一基本而常用的数学思想方法;2.掌握分式的基本性质,并会运用分式的基本性质把分式变形;(重点,难点)3.理解最简分式的概念,会根据分式的基本性质把分式约分,化为最简分式.(重点)一、情境导入1.我们学过下列分数:12,24,36,它们是否相等?为什么?2.请叙述分数的基本性质.3.类比分数的基本性质,你能猜想分式的基本性质吗?二、合作探究探究点一:分式的基本性质【类型一】 分式基本性质的应用填空:(1)3xy =( )3ax 2y ;(2)x 2-y 2(x -y )2=x +y( ). 解析:(1)小题中,分母由xy 变为3ax 2y ,只需乘以3ax ,根据分式的基本性质,分子也应乘以3ax ,所以括号中应填9ax .(2)小题中,分子由x 2-y 2变为x +y ,只需除以x -y ,根据分式的基本性质,分母也应除以x -y ,所以括号中应填x -y .方法总结:利用分式的基本性质求未知的分子或分母时,若求分子,则看分母发生了何种变化,这时分子也应发生相应的变化;若求分母,则看分子发生了何种变化,这时分母也应发生相应的变化.【类型二】 分式的符号法则下列各式从左到右的变形不正确的是( )A.-23y =-23y B.-y -6x =y 6xC .-8x 3y =8x -3yD .-a -b y -x =b -a x -y解析:选项A 中,同时改变分式的分子及分式本身的符号,其值不变,正确;选项B 中,同时改变分式的分子、分母的符号,其值不变,正确;选项C 中,同时改变分式的分母及分式本身的符号,其值不变,正确;选项D 中,分式的分子、分母及分式本身的符号,同时改变三个,其值变化,错误.故选D.方法总结:根据分式的符号法则,分式的分子、分母、分式本身的符号,同时改变其中的两个,分式的值不变.探究点二:分式的约分【类型一】 运用约分,化简分式约分:(1)8x 2yz 3-32xyz 5; (2)a 2+ab a 2+2ab +b 2. 解析:约分的关键是确定分式中分子、分母的公因式,(1)中分子与分母的公因式是8xyz 3,(2)小题先因式分解,分子与分母的公因式是(a +b ).解:(1)原式=x ·8xyz 34z 2·(-8xyz 3)=-x4z2; (2)原式=a (a +b )(a +b )2=aa +b. 方法总结:①约分的依据是分式的基本性质,关键是找出分子与分母的公因式;②约分时必须将分子、分母先写成乘积的形式,再进行约分,不能只对分子、分母中的某一项或某一部分进行约分;③约分一定要彻底,约分的结果应是最简分式或整式.【类型二】 运用约分,化简求值先约分,再求值:2a 2-ab4a 2-4ab +b 2,其中a =-1,b =2.解:原式=a (2a -b )(2a -b )2=a2a -b. 当a =-1,b =2时,a 2a -b =-12×(-1)-2=14.方法总结:利用分式的基本性质约分求值时,要先把分式化为最简分式再代值计算.探究点三:最简分式下列分式是最简分式的是( ) A.2a 3a 2b B.aa 2-3aC.a +b a 2+b 2D.a 2-ab a 2-b 2解析:选项A 中的分子、分母能约去公因式a ,故选项A 不是最简分式;选项B 中的分子、分母能约去公因式a ,故选项B 不是最简分式;选项C 中的分子、分母没有公因式,选项C 是最简分式,故选C ;选项D 中的分子、分母能约去公因式(a -b ),故选项D 不是最简分式.方法总结:判断最简分式的标准是分子与分母是否有公因式,如果有公因式就不是最简分式.当分子、分母是多项式时,一般要进行因式分解,以便判断是否能约分.三、板书设计 分式的基本性质:f g =f ·hg ·h ,f g =f ÷hg ÷h(h ≠0)↓约分 (找出分子与分母的公因式) ↓最简分式 (分子与分母无公因式)本节课利用类比分数的基本性质学习了分式的基本性质,在学习过程中,应注重让学生在学法上的迁移,突出分式基本性质中的的两个关键词:“都”、“同”,尽量避免符号出错.1.2 分式的乘法和除法第1课时 分式的乘除1.理解并掌握分式的乘、除法法则;2.会用分式的乘、除法法则进行运算.(重点,难点)一、情境导入1.请同学们计算: (1)34×52; (2)13÷25. 2.根据上述分数的乘、除法运算,你能猜想下面这两个式子的运算结果吗? (1)f g ·u v ; (2)f g ÷u v.二、合作探究探究点一:分式的乘法运算【类型一】 分子、分母都是单项式计算: (1)16xy y 2·y 22x ; (2)5a 3bc 22x 2y ·-8x 2y 310a 2bc2.解析:分式乘分式,用分子的积作积的分子,分母的积作积的分母,然后再约分. 解:(1)16xy y 2·y 22x =16xy ·y 2y 2·2x=8y ;(2)5a 3bc 22x 2y ·-8x 2y 310a 2bc 2=-5a 3bc 2·8x 2y 32x 2y ·10a 2bc2=-2ay 2.方法总结:分式乘法运算的方法:①注意运算顺序及解题步骤,注意符号问题,不要漏乘负号;②整式与分式的运算,根据题目的特点,可将整式化为分母为“1”的分式;③运算中及时约分、化简;④注意运算律的正确使用;⑤结果应化为最简分式或整式.【类型二】 分子、分母中有多项式计算:m 2-4n 2m 2-mn ·m -nm 2-2mn.解析:观察分式的特点,分子与分母含有多项式,应先将多项式因式分解,再应用分式乘法法则运算.解:m 2-4n 2m 2-mn ·m -n m 2-2mn =(m +2n )(m -2n )m (m -n )·m -n m (m -2n )=m +2n m2.方法总结:分式中含多项式的乘法运算的一般步骤:①运用分式乘法的法则,用分子之积作为新分子,用分母之积作为新分母;②确定分子与分母的公因式;③约分,化为最简分式或整式.探究点二:分式的除法运算【类型一】 分子、分母都是单项式计算:2m 5n ÷4m2-10n2.解析:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 解:2m 5n ÷4m 2-10n 2=-2m 5n ·10n 24m 2=-n m. 方法总结:进行分式的除法运算时,先把分式的除法转化成乘法,然后按照乘法法则进行计算,要注意结果的符号.【类型二】 分子、分母中有多项式计算:(1)x 2-1y ÷x +1y2;(2)(xy -x 2)÷x -yxy; (3)x 2-6x +99-x 2÷2x -6x 2+3x. 解析:(1)小题中,先把除法转化为乘法,把x 2-1因式分解,再约分.(2)小题中,把xy -x 2看作是分母是1的分式,把除法转化为乘法,因式分解,再约分.(3)小题中,把除法转化为乘法,把各个分子、分母因式分解,再约分.解:(1)原式=(x +1)(x -1)y ·y2x +1=y (x -1);(2)原式=x (y -x )·xy x -y=-x 2y ; (3)原式=(x -3)2-(x +3)(x -3)·x (x +3)2(x -3)=-x2.方法总结:分式的除法计算首先要转化为乘法运算,若除式是整式,应将这个整式看作是分母为“1”的分式,然后对式子进行化简.化简时如果分子、分母有多项式,一般应先进行因式分解,然后再约分.分式的乘除运算实际就是分式的约分.三、板书设计1.分式的乘法:f g ·u v =fu gv.2.分式的除法:f g ÷u v =f g ·v u =fv gu(u ≠0).本节课学习了分式的乘、除法运算,通过观察、比较、猜想、分析,类比分数的乘、除法运算,得出分式的乘、除法运算法则.在运算中,把除法转化为乘法,分子、分母有多项式的要先因式分解,同时要注意避免符号出错.第2课时 分式的乘方1.理解并掌握分式的乘方法则,并会运用分式的乘方法则进行分式的乘方运算;(重点) 2.进一步熟练掌握分式乘、除法的混合运算.(难点)一、情境导入1.计算:(35)2,(35)3,(35)n;2.类似地,请你计算:(fg)n.二、合作探究探究点一:分式的乘方计算: (1)(3y 2x 2)2; (2)(-x 2y 2z 2xyz)3.解析:把分式的分子、分母分别乘方,(2)小题还可以先约分,再乘方. 解:(1)(3y 2x 2)2=(3y )2(2x 2)2=9y 24x 4;(2)(-x 2y 2z 2xyz )3=(-x 2y 2z )3(2xyz )3=-x 3y38. 方法总结:分式的乘方,把分子、分母各自乘方,运算时要注意符号,明确“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”,还要注意最后结果是最简分式或整式.探究点二:分式的乘除、乘方混合运算计算:(1)(-2a 2b cd 3)3÷2a d 3·(c a)3;(2)(ab 3)2·(-b a2)3÷(-b a)4;(3)a -b a ·(b b -a )2÷b 2a2.解析:先算乘方,再把除法转化为乘法,然后约分. 解:(1)(-2a 2b cd 3)3÷2a d 3·(c a )3=-8a 6b 3c 3d 9·d 32a ·c 3a 3=-4a 2b 3d6;(2)(ab 3)2·(-b a 2)3÷(-b a )4=a 2b 6·(-b 3a 6)·a 4b4=-b 5;(3)a -b a ·(b b -a )2÷b 2a 2=a -b a ·b 2(a -b )2·a 2b 2=aa -b. 方法总结:进行分式的乘除、乘方混合运算时,先算乘方,再算乘除,最后结果应化成最简分式或整式,通常情况下,计算得到的最后结果要使分子和分母第一项的符号为正号.对于含负号的分式,奇次方为负,偶次方为正.三、板书设计1.分式的乘方法则:(f g )n =f ngn .2.分式乘除、乘方的混合运算:先算乘方,再算乘除.本节课学习了分式的乘方及分式的乘除、乘方混合运算,在教学中应注重激发学生的积极性,勇于尝试.本节课的混合运算是一个难点,也是学生常出错的地方,教学时要引导学生注意运算顺序,优先确定运算符号,提高运算的准确率.1.3整数指数幂1.3.1同底数幂的除法1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.会用同底数幂的除法法则进行运算.(重点,难点)一、情境导入传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔.这位聪明的大臣跪在国王面前说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍.国王说:“你的要求不高,会如愿以偿的.”说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了……还没到第二十小格,袋子已经空了,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的诺言.问题1:国王应该给发明者多少粒麦子?问题2:假如一粒麦子是0.02克,用计算器算出国王应奖励给发明者的麦子总质量大约多少克?问题3:假如每个人每顿吃250克,一天三顿饭,一年365天,这些粮食可供1010(10亿)人食用多少年?二、合作探究探究点一:同底数幂的除法【类型一】底数是单项式计算:(1)(-a)3÷(-a)2; (2)(a3)2÷a5;(3)(xy3)3(-xy3)2; (4)-x3n+2x3n-1.解析:根据同底数幂的除法法则,即a m÷a n=a m-n进行运算.(3)小题可先确定符号,再按同底数幂的除法法则计算.解:(1)原式=(-a)3-2=-a;(2)原式=a 6÷a 5=a6-5=a ;(3)原式=(xy 3)3(xy 3)2=xy 3;(4)原式=-x 3.方法总结:进行同底数幂的除法运算时,只有底数相同时,才能把指数相减.因此计算时首先必须确定底数是否相同,如果底数是互为相反数,可以通过符号变化把底数化为相同.【类型二】 底数是多项式计算:(1)(x -y )8÷(y -x )6;(2)(a -b )3(b -a )2n ÷(a -b )2n -1.解析:底数为多项式时,可把多项式看作一个整体,再根据同底数幂的除法法则计算.解:(1)原式=(y -x )8÷(y -x )6=(y -x )2;(2)原式=(a -b )3(a -b )2n ÷(a -b )2n -1=(a -b )3+2n -(2n -1)=(a -b )4.方法总结:两数(式)互为相反数,则它们的偶次幂相等,奇次幂仍是互为相反数.即:(b -a )2n =(a -b )2n ,(b -a )2n +1=-(a -b )2n +1.(n 是正整数)探究点二:逆用同底数幂的性质已知a m =3,a n =4,求a 2m -n的值.解析:首先应用含a m 、a n 的代数式表示a 2m -n ,然后将a m 、a n的值代入即可求解.解:∵a m =3,a n=4,∴a2m -n=a 2m ÷a n =(a m )2÷a n =32÷4=94.方法总结:逆用同底数幂的除法法则:a m÷a n=a m -n,可以得到a m -n=a m÷a n.解决这类问题的关键在于把要求的式子a m -n 分别用a m 和a n来表示.这类题一般同时考查两个知识点:同底数幂的除法,幂的乘方,解题时应熟练掌握运算性质并能灵活运用.探究点三:同底数幂除法的实际应用某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌.现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?解析:根据题意可知2升液体中有2×1012个有害细菌,而1滴可杀死109个此种有害细菌,把两个量相除即可求得答案.解:∵液体中每升含有1012个有害细菌,∴2升液体中的有害细菌有2×1012个,又∵杀虫剂1滴可杀死109个此种有害细菌,∴用这种杀虫剂的滴数为2×1012÷109=2×103=2000滴. 方法总结:本题主要考查同底数幂的除法及学生阅读理解题意的能力,是数学与生活相结合的例子.解决这类问题的方法是:先列出解决问题的式子,再根据同底数幂的除法法则进行计算.三、板书设计 同底数幂的除法a m=a m-n(a≠0).即:同底数幂相除,底数不变,指数相减.a n本节课学习了同底数幂的除法法则及运用法则进行计算.易错点有两个:一是理解法则错误,认为同底数幂相除,底数不变,指数相除;二是对于底数是互为相反数的指数幂的除法运算,容易出现符号错误.在课堂上,让学生把这些错误展示在黑板上,大家共同分析产生错误的原因以及怎样避免错误的发生.1.3.2 零次幂和负整数指数幂1.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;(重点,难点) 2.会用科学记数法表示绝对值较小的数.(重点)一、情境导入上节课我们学习了同底数幂的除法法则:a m a n =a m -n,其中a ≠0,m ,n 是正整数,且m >n .在这里,如果m =n 或m =0,又会出现什么结果呢?二、合作探究 探究点一:零次幂【类型一】 零次幂有意义的条件已知(3x -2)0有意义,则x 应满足的条件是________.解析:根据零次幂的意义可知:(3x -2)0有意义,则3x -2≠0,x ≠23.故填x ≠23.方法总结:零次幂有意义的条件是底数不等于0,所以解决有关零次幂的意义类型的题目时,可列出关于底数不等于0的式子求解即可.【类型二】 零次幂的运算计算: (1)30; (2)(-2)0;(3)(-12)0; (4)-22+|4-7|+(3-π)0.解析:(1),(2),(3)小题根据零次幂的意义计算;(4)小题先分别求乘方、绝对值、零次幂,再计算.解:(1)30=1;(2)(-2)0=1;(3)(-12)0=1;(4)-22+|4-7|+(3-π)0=-4+3+1=0.方法总结:①任何不等于零的数的零次幂等于1.零次幂式子的特征是:底数不等于0,指数等于0,要注意的是结果等于1而不等于0.②零次幂与其他运算相结合时,要分别计算.计算-22时,易错误的计算为-22=4,因此要正确理解-22和(-2)2的意义.【类型三】 零次幂的综合运用若(x -1)x +1=1,求x 的值.解析:由于任何不等于零的数的零次幂等于1,1的任何次幂都等于1,-1的偶数次幂等于1,故应分三种情况讨论.解:①当x +1=0,即x =-1时,原式=(-2)0=1;②当x -1=1,x =2时,原式=13=1;③x -1=-1,x =0,0+1=1不是偶数.故舍去. 故x =-1或2.方法总结:乘方的结果为1,可分为三种情况:不为零的数的零次幂等于1;1的任何次幂都等于1;-1的偶次幂等于1即在底数不等于0的情况下考虑指数等于0;考虑底数等于1或-1.探究点二:负整数指数幂【类型一】 负整数指数幂的意义与运算计算:(1)3-3; (2)(-2)-2; (3)(-23)-4.解析:根据负整数指数幂的意义知,一个数的负整数指数幂的结果,底数是原来底数的倒数,指数是原来指数的相反数.解:(1)3-3=133=127;(2)(-2)-2=1(-2)2=14;(3)(-23)-4=(-32)4=8116.方法总结:求负整数指数幂的方法:把底数取倒数,指数变为相反数.【类型二】 运用零次幂和负整数指数幂来计算计算:|-5|-(π-1)0+(12)-2.解析:本题涉及零次幂、负整数指数幂、绝对值三个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据运算法则计算.解:|-5|-(π-1)0+(12)-2=5-1+22=5-1+4=8.方法总结:此题主要考查了学生的综合运算能力,是中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零次幂、绝对值等考点的运算.【类型三】 运用零次幂和负整数指数幂来化简、求值已知a x=3,求a 2x -a -2xa x -a-x 的值.解析:根据负整数指数幂的意义先化简分式,然后代入求值.解:a 2x -a -2x a x -a -x =(a x )2-(a -x )2a x -a -x=a x +a -x =3+3-1=103. 方法总结:求值时,把要求的式子根据负整数指数幂的意义用已知的式子表示出来是解题的关键.探究点三:用科学记数法表示绝对值小于1的数一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( )A.6.5×10-5 B.6.5×10-6C.6.5×10-7 D.65×10-6解析:把0.0000065的小数点向右移动6位变成6.5×0.000001=6.5×10-6,故选B.方法总结:绝对值很小的数用科学记数法表示时,先把小数点向右移动n位,使这个数变成一个整数数位只有一位的数a,再在后面乘以10-n.即用科学记数法把一个绝对值很小的数写成a ×10-n的形式时,n等于第一个非零数前面零的个数(包括小数点前面的零).三、板书设计1.零次幂2.负整数指数幂3.科学记数法:a×10-n(1≤|a|<10,n等于第一个非零数前面所有零的个数).本节课学习了零次幂和负整数指数幂,在学习中,以正整数指数幂为基础,探究零次幂和负整数指数幂的运算法则.本节课的易错点一是误认为零次幂等于0,二是用科学记数法表示绝对值小于1的数:a×10-n,误认为一定是负数.在课堂教学中,老师应让学生积极参与,主动练习,从练习中发现问题,纠正错误.1.3.3 整数指数幂的运算法则1.理解整数指数幂的运算法则;2.会用整数指数幂的运算法则进行计算.(重点,难点)一、情境导入1.请同学们回顾,我们学过的正整数指数幂的运算法则有哪些?2.我们在前面还学过,可以把幂的指数从正整数推广到整数.这时我们怎样理解这些运算法则呢?二、合作探究探究点一:整数指数幂的运算【类型一】 乘积形式的整数指数幂的运算计算:(1)(-a )3÷a -1÷(a -2)-2;(2)(a -2b -3)-3·(a 2b )-2;(3)(2x -3y 2z -2)-2(3xy -3z 2)2;(4)(-2a -3)2b 3÷2a -6b -2.解:(1)原式=-a 3÷a -1÷a 4=-a 4÷a 4=-1;(2)原式=a 6b 9·a -4b -2=a 2b 7;(3)原式=(2-2x 6y -4z 4)(32x 2y -6z 4)=2-2·32x 8y-10z 8=9x 8z 84y10;(4)原式=4a -6b 3÷2a -6b -2=2b 5.方法总结:整数指数幂的运算要注意运算顺序:先算乘方,再算乘除.最后结果要化为正整数指数.【类型二】 商形式的整数指数幂的运算计算:(1)(x 2+x x 2+2x +1)-1÷(x x +1)-2;(2)[(2a -3b -2c 3a -4b -2)-1]-2;(3)[(a -b )-3(a +b )3(a +b )2(a -b )-2]-2. 解:(1)原式=[x (x +1)(x +1)2]-1·(x x +1)2=x +1x ·x 2(x +1)2=xx +1;(2)原式=(2a -3b -2c 3a -4b -2)2=4a 2c29;(3)原式=(a -b )6(a +b )-6(a +b )-4(a -b )4=(a -b )2(a +b )2.方法总结:商形式的整数指数幂的运算有两种方法:一是先把负整数指数幂转化为正整数指数幂,再约分化简;二是先计算整数指数幂,最后再把负整数指数幂化为正整数指数幂.【类型三】 逆用幂的运算法则求值已知a -m =3,b n =2,则(a -m b -2n )-2=________.解析:(a -m b-2n )-2=(a -m )-2·b 4n =(a -m )-2(b n )4=3-2×24=169.故填169.方法总结:把要求的代数式逆用幂的运算法则,用已知的式子来表示是解题的关键.计算:(278)x -1·(23)3x -4.解:(278)x -1·(23)3x -4=(32)3x -3·(23)3x -4=(23)3-3x ·(23)3x -4=(23)3-3x +3x -4=(23)-1=32.方法总结:利用负整数指数幂,把底数是互为相反数的两数可以转化为相同,再根据幂的运算法则进行计算.探究点二:整数指数幂运算的实际应用某房间空气中每立方米含3×106个病菌,为了试验某种杀菌剂的效果,科学家们进行实验,发现1毫升杀菌剂可以杀死2×105个这种病菌,问要将长10m ,宽8m ,高3m 的房间内的病菌全部都杀死,需要多少杀菌剂?解:(10×8×3)×(3×106)÷(2×105)=(720×106)÷(2×105)=360×10=3.6×103(毫升).答:需要3.6×103毫升杀菌剂才能将房间中的病菌全部杀死.方法总结:科学记数法在实际生活中应用广泛,在运用科学记数法解题时要注意a ×10-n中n 的值.三、板书设计整数指数幂的运算法则:(1)同底数幂的乘法:a m ·a n =a m +n(a ≠0,m ,n 都是整数);(2)幂的乘方:(a m )n =a mn(a ≠0,m ,n 都是整数);(3)积的乘方:(ab )n =a n ·b n(a ≠0,b ≠0,n 是整数).本节课通过把正整数指数幂的五个运算法则,推广到整数范围内,从而可用三个运算法则来概括.整数指数幂的运算是学生学习过程中的一个难点,也是易错点,在教学过程中,可让学生把典型错误展示在黑板上,引导学生分析产生错误的原因.1.4 分式的加法和减法第1课时 同分母分式的加减1.理解同分母分式的加减法的法则,会进行同分母分式的加减法运算;(重点) 2.会把分母互为相反数的分式化为同分母分式进行加减运算.(难点)一、情境导入市场上有A ,B 两种电脑,花10000元可以买A 型电脑a 台,花8000元可以买B 型电脑a 台,A 型电脑比B 型电脑每台贵多少元?二、合作探究探究点一:同分母分式的加减法计算: (1)3a -2b 3ab -3a +3b 3ab ;(2)1a -1+-a 2a -1; (3)x -2x -1-2x -3x -1. 解析:根据同分母分式加减法的法则,把分子相加减,分母不变.注意(1),(3)两小题属于同分母分式的减法运算,减式的分子要变号.解:(1)原式=3a -2b -3a -3b 3ab =-5b 3ab =-53a ;(2)原式=1-a 2a -1=-(a +1)(a -1)a -1=-a -1;(3)原式=x -2-2x +3x -1=-x +1x -1=-1.方法总结:同分母分式相加减,分母不变,分子相加减,最后结果要化为最简分式或整式.探究点二:分式的符号法则计算: (1)2x 2-3y 2x -y +x 2-2y 2y -x ;(2)2a +3b b -a +2b a -b -3b b -a.解析:(1)先把第二个分式的分母y -x 化为-(x -y ),再把分子相加减,分母不变; (2)先把第二个分式的分母a -b 化为-(b -a ),再把分子相加减,分母不变. 解:(1)原式=2x 2-3y 2x -y -x 2-2y2x -y=2x 2-3y 2-(x 2-2y 2)x -y=x 2-y 2x -y =(x +y )(x -y )x -y=x +y ; (2)原式=2a +3b b -a -2b b -a -3b b -a=2a +3b -2b -3b b -a=2a -2b b -a =-2(b -a )b -a=-2. 方法总结:分式的分母是互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法的法则:f g ±h g =f ±hg.2.分式的符号法则:f g =-f -g ,-f g =f -g =-f g.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.第2课时 分式的通分1.会确定几个分式的最简公分母;2.会根据分式的基本性质把分式进行通分.(重点,难点)一、情境导入 1.通分:12,23.2.分数通分的依据是什么? 3.类比分数,怎样把分式通分? 二、合作探究探究点一:最简公分母分式1x 2-3x 与2x 2-9的最简公分母是________. 解析:∵x 2-3x =x (x -3),x 2-9=(x +3)(x -3),∴最简公分母为:x (x +3)(x -3). 方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.探究点二:分式的通分【类型一】 分母是单项式分式的通分通分.(1)c bd ,ac2b2; (2)b 2a 2c ,2a 3bc2; (3)45y 2z ,310xy 2,5-2xz2. 解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b 2d ,c bd =2bc 2b 2d ,ac 2b 2=acd 2b 2d; (2)最简公分母是6a 2bc 2,b 2a 2c =3b 2c 6a 2bc 2,2a 3bc 2=4a36a 2bc2;(3)最简公分母是10xy 2z 2,45y 2z =8xz 10xy 2z 2,310xy 2=3z 210xy 2z 2,5-2xz 2=-25y210xy 2z2.方法总结:通分时,先确定最简公分母,然后根据分式的基本性质把各分式的分子、分母同时乘以一个适当的整式,使分母化为最简公分母.【类型二】 分母是多项式分式的通分通分.(1)a 2(a +1),1a 2-a; (2)2mn 4m 2-9,3m 4m 2-6m +9. 解析:先把分母因式分解,再确定最简公分母,然后再通分. 解:(1)最简公分母是2a (a +1)(a -1),a 2(a +1)=a 2(a -1)2a (a +1)(a -1),1a 2-a =2(a +1)2a (a +1)(a -1); (2)最简公分母是(2m +3)(2m -3)2,2mn 4m 2-9=2mn (2m -3)(2m +3)(2m -3)2,3m 4m 2-6m +9=3m (2m +3)(2m +3)(2m -3)2. 方法总结:①确定最简公分母是通分的关键,通分时,如果分母是多项式,一般应先因式分解,再确定最简公分母;②在确定最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母的商.三、板书设计 1.最简公分母 2.通分:(1)依据:分式的基本性质;(2)方法:先确定最简公分母,再把各分式的分母化为最简公分母.本节课学习了分式的通分,方法可类比分数的通分.在教学中应注意循序渐进,先让学生学会确定最简公分母,再让学生学习通分.通分时,一要注意避免符号错误,二要注意通分不改变分式的值,即分母乘了一个整式,分子也要乘以同样的一个整式.。
湘教版八年级数学教案教案标题:湘教版八年级数学教案教案目标:1. 确保学生掌握八年级数学课程中的关键概念和技能。
2. 培养学生的数学思维能力和解决问题的能力。
3. 提高学生的数学应用能力和数学沟通能力。
教学内容:本教案将围绕以下几个主题展开教学:1. 线性方程组2. 平方根和立方根3. 三角形与平行线4. 相似与全等5. 几何体的表面积和体积教学步骤:第一课:线性方程组1. 引入线性方程组的概念和解法。
2. 通过实际问题引导学生理解线性方程组的应用。
3. 练习解线性方程组的基本方法和技巧。
第二课:平方根和立方根1. 介绍平方根和立方根的定义和性质。
2. 演示求平方根和立方根的方法。
3. 练习计算平方根和立方根的题目。
第三课:三角形与平行线1. 复习三角形的定义和性质。
2. 引入平行线的概念和判定方法。
3. 练习应用三角形和平行线的相关知识解题。
第四课:相似与全等1. 介绍相似和全等的定义和性质。
2. 演示相似和全等的判定方法。
3. 练习应用相似和全等的知识解题。
第五课:几何体的表面积和体积1. 复习几何体的基本概念和性质。
2. 引入计算几何体表面积和体积的公式和方法。
3. 练习计算几何体表面积和体积的题目。
教学评估:1. 利用课堂练习和小组讨论评估学生对每个主题的理解和掌握程度。
2. 设计小组或个人项目,要求学生应用所学知识解决实际问题,并进行展示和评估。
教学资源:1. 湘教版八年级数学教材和练习册。
2. 多媒体投影仪和计算器等教学辅助工具。
3. 相关的在线学习资源和练习题。
教学延伸:1. 鼓励学生参加数学竞赛和活动,提高数学解决问题的能力。
2. 引导学生进行数学研究和探究,培养数学思维能力和创新意识。
教案总结:通过本教案的设计和实施,学生将能够全面掌握八年级数学课程的核心内容,培养数学思维能力和解决问题的能力。
同时,通过实际问题的引导和应用题的练习,学生将能够提高数学应用能力和数学沟通能力。
教师可以根据学生的实际情况和学校的教学要求进行适当的调整和补充。
八年级上册数学全册教案(XX年新版湘教版)3.2二次根式的混合运算教学内容:含有二次根式的单项式与单项式相乘、相除; 多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:.计算?ZX + x.计算2+2老师点评:这些内容是对八年级上册整式运算的再现.它主要有?单项式x单项式;单项式x多项式;多项式 +单项式;完全平方公式;平方差公式的运用.二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢??仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,?当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1 .计算:X + 2分析:二次根式仍然满足整式的运算规律,?所以直接可用整式的运算规律.解:x=x +x=+=3+2解:* 2=4 - 2-3 - 2=2-例2 .计算分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:=3-2+18-6 =13-3 =2-2=10 -=3三、应用拓展例3.已知=2-,其中a、b是实数,且a+b z 0, 化简+,并求值.分析:由于=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式=+=+=+x-2+x+2=4x+2•/ =2-••• b=2ab-abx-b2=2ab-ax+a2•x=a2+2ab+b2•x=2•a+b 工0•x=a+b•原式=4x+2=4+2五、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.=10 -六、布置作业.P172 习题5.3B 组5、6.选用课时作业设计.作业设计一、选择题.X的值是.A. -3B . 3-C . 2-D.-.计算的值是.A. 2B. 3c. 4D. 1二、填空题.2的计算结果是____________ ..-2的计算结果是___________ ..若x=-1,贝U x2+2x+仁_________ ..已知a=3+2, b=3-2,贝U a2b-ab2= _________ .三、综合提高题.化简.当x=时,求+的值.课外知识.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,?这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是.A .与B .与c.与D .与.互为有理化因式:?互为有理化因式是指两个二次根式的乘积可以运用平方差公式=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+就是互为有理化因式;与也是互为有理化因式.练习:+的有理化因式是___________ ;x-的有理化因式是--的有理化因式是__________ ..分母有理化是指把分母中的根号化去,通常在分子、?分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化♦♦♦> > > •.其它材料:如果n是任意正整数,那么=n理由:==n练习:填空= _________ ; = _________ ; = _______ .答案:一、1 . A2. D二、1. 1-2 . 4-243 . 24. 4三、1 .原式===.原式====2x==+1 原式=2=4+6.二次根式小结与复习有关二次根式的化简与运算是初中数学的重、难点之一,由于这类题目形式灵活,同时对整式、分式的运算和性质有着密切的联系,所以成为考察学生综合运用能力的“试金石”,现将一些常见的运算错误归纳如下,希望同学们加以注意,并引以为戒.一、概念不清例1.下列各式中,哪些是二次根式?哪些不是二次根式?为什么?错解:,,都是二次根式;不是二次根式.剖析:对二次根式的定义理解不透,认为只要带二次根号,即为二次根式,忽视了二次根式中a>0的条件,所以同学们在平时做题中必须特别注意理解二次根式的被开方数是非负数.正解:,,都是二次根式;不是二次根式.二、违背运算顺序例2.计算:错解:原式=剖析:由于乘除是同一级运算,因此按顺序除在前,就要先算除法.正解:原式=.二、错用运算法则例3.化简:.错解:原式=.剖析:本题乱套乘法分配律,应注意:.正解:原式=.四、错用根式性质例4.计算:;错解:原式=;原式=.剖析:二次根式的性质有:;;而不存在.正解:原式=.五、忽视字母范围例5.计算:错解:原式=.剖析:本题的分子、分母同乘以时,不允许a=b,错在没有注意a=b的情形.正解:当a工b时,原式=;当a=b时,原式=.六、忽视隐含条例6.化简:.错解:原式=.剖析:本题隐含着,所以a v 0,这个条件.正解:原式=.七、忽视限制条例7.已知a+b=-2,ab=1,求的值.错解:原式=.剖析:应用二次根式的运算性质:;时,必须这样括号里的条件,本题由a+b=-2,ab=1可知a v 0, b v 0,不满足性质的条件造成错误.正解:由条件可知a v 0, b v 0,所以原式=.八、忽视题设条例&化简:.错解:原式=.剖析:这里忽视了w x w这个条件,当有附加条件时,要注意的应用.正解:因为w x w,所以-3 w x w 5,所以2x+3 > 0, 2x-5 w 0,所以,原式=.九、忽视分类讨论例9.化简:.错解:.剖析:此题的限制条件不明确,又没有隐含条件,在利用化简时,必须利用零点分段法进行分类讨论,否则易出现错误.正解:步:找分点,令x+2=0, x-1=0 ,所以x=-2 , x=1 ;第二步,分区间,x v -2 , -2 <x v 1 , x > 1; 第三步,分段按条件化简:当x v -2 时,原式=-+=-2x-1 ;当-2 < x v 1 时,原式=x+2+1-x=3 ;当x > 1时,原式=x+2+x-仁2x+1 .第五章二次根式单元检测题姓名_____________ .第13、14课时一.选择题1.若无意义,则_______当 ______ 时,有最小值为________3.计算:-3= ________ .函数的自变量x的取值范围是 ____________________ .三.解答题化简17.化简:19.已知:,求的值。