江苏省苏州市2018年中考数学《第五讲一次函数与反比例函数》专题复习
- 格式:doc
- 大小:1.05 MB
- 文档页数:25
2018年中考数学函数知识点2018年中考数学函数知识点一次函数与反比例函数考点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
考点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0⇔yx,0><点P(x,y)在第三象限0x⇔y,0<<点P(x,y)在第四象限0x,0<⇔y>2、坐标轴上的点的特征点P(x,y)在x轴上0=⇔y,x为任意实数点P(x,y)在y轴上0=⇔x,y为任意实数点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称⇔横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称⇔纵坐标相等,横坐标互为相反数点P与点p’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx+考点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。
2018中考数学专题练习《反比例函数》(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.如果反比例函数ky x=的图象经过点(1,2)-,那么它还一定经过( ) A. (2,1)- B. 1(,2)2-C. (2,1)--D. 1(,2)22.如图1,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3(0)y x x=>上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将( )A.逐渐增大B.不变C.逐渐减小D.先增大,后减小3.如果反比例函数1ky x-=的图象与直线y x =没有交点,那么符合条件的k 值为( )A. 1k =B. 1k =-C. 2k =D. 2k =-4.在反比例函数13ky x-=的图象上有两个点1122(,),(,)A x y B x y ,且120x x <<,12y y <,则k 的取值范围是( )A. 13k ≥B. 13k >C. 13k <-D. 13k < 5.如图2,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(2,1)A ,若210y y >>,则x 的取值范围在数轴上表示为( )6.如图3,点A 是反比例函数11(0)k y x x=>图象上一点,过点A 作x 轴的平行线,交反比例函数22(0)k y x x=>的图象于点B ,连接,OA OB ,若O A B ∆的面积为2,则21k k -的值为( )A. 2-B. 2C. 4-D. 47.设ABC ∆的一边长为x ,这条边上的高为y ,y 与x 满足的反比例函数关系如图4所示,当ABC ∆为等腰直角三角形时,x y +的值为( ) A. 4 B. 5C. 5或D. 4或8.在数学活动课上,小华借助下列表格中的数据,在平面直角坐标系中经历描点和连线 的步骤,正确绘制了某个反比例函数的图象,则下列关于该函数的描述错误的是( )A.图象在第二、四象限B.图象必经过点1(6,)2- C.图象与坐标轴没有交点D.当4x <-时,y 的取值范围是34y < 9.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P ,则在第一象限内,经过点'P 的反比例函数图象的表达式是( )A. 5(0)y x x =-> B. 5(0)y x x => C. 6(0)y x x =-> D. 6(0)y x x=>10.如图6,ABC ∆和DEF ∆的各顶点分别在双曲线1y x =,2y x =,3y x=的第一象限的图象上,90C F ∠=∠=︒,////AC DF x 轴,////B C E F y 轴,则ABC DEF S S ∆∆-=( )A.112 B. 16 C. 14 D. 512二、填空题(本大题共10小题,每小题3分,共30分)11.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式是 (不考虑x 的取值范围).12.如果关于x 的函数11(1)k y k x x+=+-是反比例函数,那么k 的值等于 . 13.如图7,点,A B 是双曲线3y x=上的点,分别经过,A B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14.若反比例函数(0)ky k x=<的函数图象过点(2,),(1,)P m Q n ,则m 与n 的大小关系是m n .(填“>”或“=”“<”)15.如图8,一次函数1y ax b =+的图象与反比例函数23y x=的图象相交于,A B 两点,当12y y >时,10x -<<,或3x >,则一次函数的表达式为 . 16.在平面直角坐标系中,点A 的坐标为(5,0),点C 的坐标为(0,4),四边形ABCO 为矩形,点P 为线段BC 上的一个动点,若POA ∆为等腰三角形,且点P 在双曲线ky x=上,则k 的值可以是 .17. 如图9,已知双曲线1214(0),(0)y x y x x x =>=>,点P 为双曲线24y x=上的一点,且PA x ⊥轴于点A ,PB y ⊥轴于点B ,,PA PB 分别交双曲线11y x=于,D C 两点,则PCD ∆的面积是 .18.直线(0)y a x a =≥,与双曲线3y x=交于1122(,),(,)A x y B x y 两点,则122143x y x y -= .19.我们已经学习过反比例函数1y x=的图象和性质,请回顾研究它的过程,对函数21y x=进行探索,下列结论:①图象在第一、二象限; ②图象在第一、三象限; ③图象关于y 轴对称; ④图象关于原点对称;⑤当0x >时,y 随x 增大而增大;当0x <时,y 随x 增大而增大; ⑥当0x >时,y 随x 增大而减小;当0x <时,y 随x 增大而增大.其中是函数21y x=的性质及它的图象特征的是 .(填写所有正确答案的序号) 20.如图10,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345,,,,A A A A A ,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点12345,,,,P P P P P ,得直角三角形11OP A ,122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为12345,,,,S S S S S ,则5S 的值为 ,以此类推n S = (1n ≥的整数).三、解答题(本大题共6小题,共60分)21. ( 8分)已知变量y 与x 成反比例函数,并且当5x =时,3y =. (1)求y 与x 之间的函数关系式.(2)求15x =时,y 的值.22.(10分)函数2y x=的图象如图11所示. (1)在同一平面直角坐标系中,用描点法画下列函数的图象. ①21y x =+;②21y x =+. 列表:画图象,并注明函数表达式. (2)观察图象,完成填空:①将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象.(3)函数2y x =的图象经过怎样的变化,可得函数20192017x y x +=+的图象?(写出一种即可)23. ( 8分)如图12,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点(1,3)A .(1)求这两个函数的表达式及其图象的另一个交点B 的坐标.(2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.24. (10分)如图13,在平面直角坐标系中,直线(0)y k x b k =+≠与双曲线(0)my m x=≠相交于点(2,3)A -和点(,2)B n . (1)求直线与双曲线的表达式.(2)对于横、纵坐标都是整数的点叫做整点.动点P 是双曲线(0)my m x=≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q ,当点P 位于点Q 的下方时,请直接写出整点P 的坐标.25. (12分)一辆汽车匀速通过某段公路,所需时间t (h)与行驶速度v (km/h)满足函数关系式kt v=,其图象为如图14所示的一段曲线且端点为(40,1)A 和(,0.5)B m . (1)求k 和m 的值.(2)若行驶速度不得超过60km/h ,则汽车通过该路段最少需要多少时间?26. (12分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图15 ).(1)分别求该化工厂治污期间及治污改造工程完工后,y 与x 之间对应的函数关系式. (2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平? (3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?参考答案1.A2. C3. C4. D5. D6. D7. D8. D9. D 10. A11.90y x= 12. 1或2- 13. 5 14. >15. 2y x =- 16. 10或12或817. 98 18. 3-19. ①③⑥ 20.15 1n21. (1)设y 与x 之间的函数关系式为ky x=, 由题意,得35k =, 解得15k = ∴15y x=(2)当15x =时,15115y ==.22. (1)图略.(2)观察图象,完成填空: ①将函数2y x =的图象向上平移1个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向左平移1个单位,可得函数21y x =+的图象.(3)函数2y x =的图象向左平移2017个单位,可得函数22017y x =+的图象.再将所得的图象向上平移1个单位,可得函数212017y x =++,即20192017x y x +=+的图象;23.(1)由题意,得31m =+.解得2m =.∴一次函数的表达式为12y x =+. 由题意,得,31k =. 解得3k =.∴反比例函数的表达式为23y x=. 由题意,得32x x+=. 解得11x =,23x =-. 当23x =-时,121y y ==-, ∴点B 的坐标为(3,1)--.(2)由图象,可知当30x -≤<或1x ≥时,函数值12y y ≥.24. (1)∵双曲线(0)my m x=≠经过点(2,3)A -,如图5, ∴6m =-.∴双曲线的表达式为6y x =-. ∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)-.∵直线y kx b =+经过点(2,3)A -和点B (3,2)-,∴2332k b k b +=-⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩,∴直线的表达式为1y x =--.(2)符合条件的点P 的坐标是(1,6)-或(6,1)-. 25.(1)将(40,1)代入k t v=, 得140k =, 解得40k =.所以函数表达式为40t v =. 当0.5t =时,400.5m=.解得80m =.所以40,80k m ==. (2)令60v =,得402603t ==.结合函数图象可知,汽车通过该路段最少需要23小时. 26.(1)①当15x ≤≤时,设k y x =,把(1,200)代入, 得200k =, 即200y x= ②当5x =时,40y =,∴当5x >时,4020(5)2060y x x =+-=-.(2)当200y =时,2002060x =-.解得13x =.所以治污改造工程顺利完工后经过1358-= (个)月后,该厂利润达到2017年1月的水平.(3)对于200y x=,当100y =时,2x =; 对于2060y x =-,当100y =时,8x =,所以资金紧张的时间为826-=(个)月.。
2018中考数学专题练习《反比例函数》(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.已知120k k <<,则函数11y k x =-和2k y x=的图象大致是( )2一次函数(0)y kx b k =+≠与反比例函数(0)ky k x=≠的图象在同一平面直角坐标系下的大致图象如图1所示,则,k b 的取值范围是( )A. 0,0k b >>B. 0,0k b <>C. 0,0k b <<D. 0,0k b ><3.如图2,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠相交于,A B 两点,若点B 的坐标为(1,2)--,则点A 的坐标为( )A. (2,1)B. (1,2)C. (1,1)D. (2,2)4.如图3,正比例函数1y 与反比例函数2y 相交于点(1,2)E -,若120y y <<,则x 的取值范围在数轴上表示正确的是( )5.如图4,已知P 为反比例函数4y x=图象上的一个动点,O 为坐标原点,过P 作x 轴的垂线,垂足为C ,连接OP ,则PCO ∆的面积为( )A.2B.4C.8D.不确定6.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一公共点,其横坐标为1,则一次函数y bx ac =+的图象可能是( )7.若0a ≠,则函数a y x=与2y ax a =-+在同一平面直角坐标系中的大致图象可能是( )8.如图5,若抛物线23y x =-+与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数(0)ky k x=>的图象是( )9.方程2310x x +-=的根为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程2310x x +-=的实数根0x 的取值范围是( )A. 0104x <<B. 01143x << C. 01132x << D. 0112x <<10.在平面直角坐标系中,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y x =和双曲线1y x=相交于点,A B ,且4AC BC +=,则OAB ∆的面积为( )A. 3或3B. 11C. 3D.1二、填空题(本大题共6小题,每小题4分,共24分)11.函数1y x =与24y x=的图象如图6所示,下列关于函数12y y y =+的结论:①函数的图象关于原点中心对称;②当2x >时,y 随x 的增大而增大;③当0x >时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 .12.如图7,直线y ax =与双曲线k y x =(0)x >交于点(1,2)A ,则不等式kax x <的解集是 .13.如图8,直线2x =与反比例函数3y x =和1y x=-的图象分别交于,A B 两点,若点P 是y 轴上的任意一点,则PAB ∆的面积是 .14.设函数3y x =与26y x =-+的图象的交点坐标为(,)a b ,则12a b+的值是 . 15.已知点(,)A a b 在双曲线5y x=上,若,a b 都是正整数,则图象经过(0,),(,0)B aC b 两点的一次函数表达式为 .16.如图9,已知一次函数3(0)y kx k =-≠的图象与x 轴、y 轴分别交于,A B 两点,与反比例函数6(0)y x x=>交于C 点,且AB AC =,则k 的值为 .三、解答题(本大题共6小题,共66分)17.(8分)已知一次函数1y x =+的图象与反比例函数(0)ky k x=≠的图象都经过点(,2)A a .(1)求a 的值及反比例函数表达式.(2)判断点(2B 是否在改反比例函数的图象上,请说明理由.18. (10分)已知一次函数32y x =-的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)求该反比例函数的表达式.(2)将一次函数32y x =-的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标.19. (10分)如图10,已知反比例函数1ky x=的图象与一次函数2y ax b =+的图象交于点(1,4)A 和点(2,)B m -.(1)求这两个函数的表达式.(2)根据图象直接写出一次函数的值小于反比例函数的值的x 的取值范围.20. (12分)如图11,将直线31y x =+向下平移1个单位,得到直线3y x m =+,若反比例函数ky x=的图象与直线3y x m =+相交于点A ,且点A 的横坐标是1. (1)求m 和k 的值.(2)结合图象,求不等式3kx m x+>的解集.21. (12分)如图12,一次函数y x b =-+与反比例函数ky x=(0)x >的图象交于点(1,3)A 和点(3,)B m .(1)填空:一次函数的表达式为 ,反比例函数的表达式为 .(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.22. (14分)如图13,在平面直角坐标系中,函数ky x=(0)x >的图象与直线2y x =-交于点(3,)A m . (1)求,k m 的值(2)已知点((,)(0)P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数ky x=(0)x >的图象于点N ,当1n =时,判断线段PM 与PN 的数量关系,并说明理由.参考答案1. C2. C3. B4. B5. A6. B7. D8. D9. C 10. A11. ①②③ 12. 01x <<13. 2 14. 2 15. 115y x =-+或55y x =-+ 16. 317.(1)将(,2)A a 代入1y x =+中, 得21a =+. 解得1a =, 即(1,2)A .将(1,2)A 代入反比例函数表达式ky x=中, 得2k =.所以反比例函数表达式为2y x=. (2)点B 在该反比例函数的图象上. 理由如下:将y =得x =∴点B 在该反比例函数的图象上. 18. (1)把1x =代入32y x =-, 得1y =.设反比例函数的表达式为k y x=, 把1,1x y ==代入, 得1k =.∴该反比例函数的表达式为1y x=. (2)由题意,得平移后的图象对应的函数表达式为32y x =+.解方程组132y xy x ⎧=⎪⎨⎪=+⎩, 得133x y ⎧=⎪⎨⎪=⎩或11x y =-⎧⎨=-⎩, ∴平移后的图象与反比例函数图象的交坐标为1(,3)3和(1,1)--. 19.(1)∵(1,4)A 在反比例函数图象上, ∴把(1,4)A 代入反比例函数1ky x=,得 解得4k =.∴反比例函数表达式为4y x=. ∵(2,)B m -在反比例函数图象上, ∴把(2,)B m -代入反比例函数表达式, 可得2m =-. ∴(2,2)B --.把(1,4)A 和(2,2)B --代入一次函数表达式2y ax b =+,得422a b a b +=⎧⎨-+=-⎩,解得22a b =⎧⎨=⎩.∴一次函数表达式为22y x =+. (2)根据图象,得2x <-或01x <<.20. (1)∵3y x m =+由31y x =+向下平移1个单位得到的, ∴0m =.∵点A 的横坐标为1,且在3y x =上, ∴(1,3)A . ∵点A 在ky x=上,∴3k =.(2)由图象,知10x -<<或1x >.21.(1)依题意,把(1,3)A 分别代入y x b =-+和ky x=(0)x >, 即可求得43b k =⎧⎨=⎩, ∴4y x =-+,3y x =. (2)∵点(3,)B m 在3y x=的图象上,∴(3,1)B .∵点P 是线段AB 上一点, ∴设点(,4)P n n -+. ∴13n ≤≤. ∴2111(4)(2)2222S OD PD n n n ==⨯⨯-+=--+g . ∵102-<且13n ≤≤, ∴当2n =时,2S =最大; 当1n =或3n =时,32S =最小. ∴S 的取值范围是322S ≤≤. 22.(1)∵函数ky x =(0)x >的图象与直线2y x =-交于点(3,)A m ,如图2, ∴321m =-= 把(3,1)A 代入k y x=, 得313k =⨯=.(2)当1n =时,(1,1)P . 令1y =,代入2y x =-, 得3x =. ∴(3,1)M . ∴2PM = 令1x =,代入3y x=, 得3y =. ∴(1,3)N . ∴2PN =. ∴PM PN =.。
2018年苏州中考数学专题辅导第五讲应用题(一次函数与反比例函数专题)选讲此部分内容包括:函数的应用(主要是一次函数与反比例函数),则属于中档题。
真题再现:1.(2008年苏州•本题8分)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O 点.训练时要求A、B两船始终关于O点对称.以O为原点.建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线4yx=上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A、B两船恰好在直线y x=上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A( ,)、B( , )和C( ,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
2.(2010年苏州•本题8分) 如图,四边形OABC是面积为4的正方形,函数kyx=(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数kyx=(x>0)的图象交于点E、F,求线段EF所在直线的解析式.3.(2014年•苏州•本题7分)如图,已知函数y=-12x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴垂线,分别交函数y=-12x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.4.(2014年•苏州• 8分)如图,已知函数y=kx(x>0)的图象经过点A,B ,点A 的坐标为(1,2).过点A 作AC ∥y轴,AC=1(点C 位于点A 的下方),过点C 作CD ∥x 轴,与函数的图象交于点D,过点B 作BE ⊥CD,垂足E 在线段CD 上,连接OC,OD . (1)求△OCD 的面积; (2)当BE=12AC 时,求CE 的长.5.(2015年苏州•本题满分8分)如图,已知函数ky x=(x >0)的图像经过点A 、B,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B作BD ⊥y轴,垂足为D,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D,与x 轴的负半轴交于点E .(1)若AC =32O D,求a、b 的值; (2)若BC ∥A E,求BC 的长.6.(2016年苏州•本题满分8分)如图一次函数6y kx =+的图像与x 轴交于点A,与反比例函数(0)my x x=>的图像交干点B (2,n).过点B 作BC x ⊥轴于点P (34,1)n -,P是该反比例函数图像上的一点,且∠PB C=∠AB C.求反比例函数和一次函数的表达式.7.(2017年苏州•本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =.(1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.8. (2017年南京市•本题满分3分)如图,已知点A 是一次函数y =12x (x ≥0)图像上一点,过点A作x轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数ky x=(k)0)的图像过点B 、C ,若△OAB 的面积为6,求△ABC 的面积.9.(2017年南京市•本题满分8分)如图,已知一次函数y =kx +b 的图像与x 轴交于点A ,与反比例函数y =mx(x <0)的图像交于点B(-2,n ),过点B 作BC ⊥x 轴于点C ,点D (3-3n,1)是该反比例函数图像上一点.(1)求m 的值;(2)若∠D BC =∠ABC ,求一次函数y =kx +b 的表达式.10.(2017年无锡市•本题满分12分)操作:“如图1,P是平面直角坐标系中一点(x 轴上的点除外),过点P 作PC ⊥x轴于点C ,点C 绕点P 逆时针旋转60°得到点Q .”我们将此由点P得到点Q 的操作称为点的T变换.(1)点P (a ,b )经过T 变换后得到的点Q的坐标为 ;若点M 经过T变换后得到点N (6,﹣),则点M 的坐标为 . (2)A 是函数y =x 图象上异于原点O 的任意一点,经过T 变换后得到点B .①求经过点O,点B 的直线的函数表达式;②如图2,直线AB交y 轴于点D,求△OA B的面积与△OA D的面积之比.11.(2017年泰州市•本题满分12分)阅读理解:如图①,图形l 外一点P 与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P 到图形l 的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)模拟训练:1.(2017年常熟市•本题满分8分)如图,点A 、B 分别在y 轴和x 轴上,BC AB ⊥ (点C 和点O 在直线AB 的两侧),点C 的坐标为(4,n ).过点C 的反比例函数(0)m y x x =>的图像交边AC 于点1(,3)3D n +.(1)求反比例函数的表达式; (2)求点B 的坐标.2.(2018年蔡老师预测•本题满分8分如图,正比例函数y=2x 的图象与反比例函数y=的图象交于点A 、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C ,则当△A BC为直角三角形,请直接写出点C的坐标.3.( 2017年张家港•本题满分8分) 货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发3h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发x h 后,货车、轿车分别到达离甲地1y km 和2y km 的地方,图中的线段OA 、折线BCDE 分别表示1y 、2y 与x 之间的函数关系.(1)求点D 的坐标,并解释点D 的实际意义;(2)求线段DE 所在直线的函数表达式; (3)当货车出发 h 时,两车相距50km.4.(2017年苏州市区•本题满分8分)如图,在平面直角坐标系中,函数ky x=(0x >,k 是常数)的图像经过(26)A ,,(,)B m n ,其中2m >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,AC 与B D交于点E ,连结AD ,DC ,CB .(1)若ABD △的面积为3,求k 的值和直线AB 的解析式;(2)求证:DE BECE AE=;(3)若AD ∥BC ,求点B的坐标 .5.(2017年昆山市•吴江区••本题满分7分)如图,在平面直角坐标系中,矩形OABC 的对角线,OB AC 相交于点D ,且//,//BE AC AE OB ,(1)求证:四边形AEBD 是菱形;(2)如果3,2OA OC ==,求出经过点E 的反比例函数解析式.6.(2017年高新区•本题满分8分) 如图,反比例函数y =m x的图象与一次函数y=kx +b的图象交于A ,B 两点,点A 的坐标为(2,6),点B的坐标为(n ,1).(1)求反比例函数与一次函数的表达式;(2)点E为y 轴上一个动点,若S △AEB =10,求点E 的坐标.7.(2017年吴中区•本题满分8分)如图,一次函数3y x =-+的图象与反比例k y x=(k 为常数,且0k ≠)的图象交于(1,)A a ,B 两点。
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
一次函数和反比例函数的复习及练习一、函数的定义如果两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,那么y 就是x 的函数,x 叫自变量,y 叫因变量。
练习:1、n 边形的内角和S 与边数n 的函数关系为 ,其中 是常量, 是变量, 自变量的取值范围是 ; 2、小华以每分钟x 字的速度书写,y 分钟写了300个字,则y 与x 的函数关系式为( )(A)x=y300(B) y=x 300(C) x+y=300 (D) y=xx -3003、右图给出了变量x 与y 之间的函数的是 ( )4、下列式子中,y 不是x 的函数的是( ) A 、2x y = B 、xy 1=C 、0=+x yD 、x y =25、甲乙两地相距30千米,某人骑车以每小时10千米的速度从甲地前往乙地,写出此人距离乙地的路程s (千米)与骑车时间t (小时)之间的函数关系式是 ,自变量的取值范围是 。
二、自变量的取值范围①函数关系式是整式的,自变量取全体实数;②函数关系式是分式的,分母不等于0; ③函数关系式是二次根式的,被开方数大于或等于0;(注意:若上述情况同时出现,则要同时满足条件;实际问题中要考虑使实际问题有意义。
) 练习:1、写出下列函数中自变量x 的取值范围: (1)y =275+x ; (2)y =843+x ; (3)y =2、下列函数中,自变量x 的取值范围是x ≥2的是( )A..C .D .3、一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .则y 和x 间的关系式为 ,自变量x 的取值范围是 4、函数11+=x y 中,自变量x 的取值范围是___________;函数y 的取值范围是___________。
三、点的坐标 1、平面直角坐标系2、点的坐标P (x ,y ),x 表示点的横坐标,即过点P 作x 轴的垂线,垂足所对应的数;y 表示点的纵坐标,即过点P 作y 轴的垂线,垂足所对应的数。
中考数学一次函数与反比例函数专题复习讲义中考考点梳理一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
二、不同位置的点的坐标的特征1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>⇔y x ;点P(x,y)在第二象限0,0><⇔y x ;点P(x,y)在第三象限0,0<<⇔y x ;点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数;点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数;点P 与点p’关于原点对称⇔横、纵坐标均互为相反数.三、函数及其相关概念1、函数解析式中,只有一个待定系数,因此只需要一对对y=中自变量y=的自变量【答案】B.【解析】试题分析:根据被开方数大于等于0,分母不等于0可得x+2≥0且x≠0,解得x≥﹣2且x≠0,故答案选B.考点:函数自变量的范围考点典例三、函数图象【例3】小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )A.B.C.D.【答案】B.【解析】考点:函数图象.【点睛】这是分段函数,根据实际情况解决即可.【举一反三】1.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )A.B.C.D.【答案】B.【解析】考点:动点问题的函数图象.考点典例四、一次函数【例4】若一次函数y=ax+b的图像经过第一、二、四象限,则下列不等式中总是成立的是()A、b<0B、a-b>0C、a2+b>0D、a+b>0【答案】C.【解析】试题分析:已知一次函数y=ax+b的图像经过第一、二、四象限,可得a<0,b>0,选项A错误;a-b>0,选项B错误;a2>0,所以a2+b>0,选项C正确;a+b的大小不能确定,选项D错误,故答案选C.考点:一次函数的性质.【点睛】熟练掌握一次函数图象与性质是解决此类问题的关键.【举一反三】1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )2A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D.【解析】试题分析:∵在直角坐标中,点P(2,﹣3),∴点P在第四象限,故选D.考点:点的坐标;探究型.2.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是( )A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【答案】D.【解析】试题分析:将点A(3,2)向左平移4个单位长度得点A′,可得点A′的坐标为(﹣1,2),所以点A′关于y轴对称的点的坐标是(1,2),故选D.考点:关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.3.(2015自贡)小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是( )A.B.C.D.【答案】C.【解析】考点:函数的图象.4.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。
初三中考复习——函数专题一次函数与反比例函数【知识要点】:1.定义:若两个变量的关系可以表示成的形式,则称是的一次函数。
(为自变量, 为因变量).★中考考点:①.②.自变量和因变量例1.已知是一次函数,那么m=___________例2.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.在这个表格中,________________是自变量,____________是因变量,之间的关系是_________________.2.坐标系:①.象限点的特征:例1.点,在第______象限例2. 点在第_______象限。
②.点到坐标轴的距离点P(m,n)到x轴的距离为; 到y轴的距离为;到原点的距离为例1.已知A(-1,-1),B(1,1),点A到X轴的距离为_______,点B到Y轴的距离为_______,AB两点间的距离为_______.例2.已知,到X轴的距离为3,则A点坐标为_________.③.点关于对称轴的对称点点P(a,b)关于原点的对称点是(-a,-b),关于x轴的对称点是(a,-b),关于y轴的对称点是(-a,b).例1.点A(-2,3)关于X轴的对称点为________,关于Y轴的对称点为_______,关于原点的对称点为__________例2.点A(-2,-3)与点B关于Y轴对称,点B坐标为____________④.象限角平分线上点的特征第一、三象限角平分线上的点的横、纵坐标相等,其方程为:;第二、四象限角平分线上的点的横、纵坐标互为相反数,其方程为:例1.已知A的坐标分别为(-2,0),点P在直线上,如果△ABP为直角三角形,这样的P点的坐标共有___________个。
3.正比例函数与反比例函数图像与性质:1.正比例函数的定义:当一次函数的时,就得到函数( 是常数,≠0)叫正比例函数;2.正比例函数的图像:正比例函数y=kx的图像是经过原点和(1,k)两点的—条直线;3.反比例函数的定义:一般地,如果两个变量x、y之间关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数。
博今教育中考数学复习授课讲义姓名:目录一.数式运算、因式分解、分式、数的开方.................................................. 二.方程(组)、不等式(组)及其应用...................................................... 三.函数及其应用.............................................................................................. 四.图形与图形的变换...................................................................................... 五.三角形及其全等、相似.............................................................................. 六.三角函数应用题........................................................................................ 七.几何问题...................................................................................................... 八.图形位置关系(圆).................................................................................. 九.动态几何问题..............................................................................................十、归纳与猜想.................................................................................................. 十一、多种函数交叉综合问题.......................................................................... 十二、概率与统计.............................................................................................. .............................................................................................................................. 一.数式运算、因式分解、分式、数的开方【课标要求】1.因式分解(1)了解因式分解的意义,了解因式分解与整式乘法的联系与区别.(2)掌握因式分解的基本方法:提公因式法、公式法、十字相乘法.(3)巧用运用因式分解求代数式的值.2.分式(1)了解分式、有理式、最简分式、最简公分母的概念.(2)掌握并运用分式的基本性质、约分、通分.(3)掌握分式的加、减、乘、除、乘方的运算法则及其混合运算(化简、求值).3.数的开方(1)理解平方根、算术平方根、立方根的意义.会用根号表示数的平方根、立方根.(2)掌握二次根式、最简二次根式、同类二次根式的概念;掌握二次根式的性质.(3)熟练掌握二次根式的加、减、乘、除运算法则,要求掌握分母为一项或两项的无理式的分母有理化,会用它们进行有关实数的简单四则运算.【课时分布】-第2页,共31页- 本单元在第一轮复习时大约需要4个课时,下表为内容及课时安排(仅供参考).【知识回顾】 1.2.基础知识(1)因式分解:把一个多项式化为几个整式的乘积的形式,叫做因式分解,也叫分解因式.(2)因式分解的常用方法:①提公因式法:()ma mb mc m a b c ++=++. ②公式法:22()()a b a b a b -=+-,2222()a ab b a b ±+=±,))((2233b ab a b a b a +±=± (补充)③十字相乘法:(补充) (3)分式的概念:-第3页,共31页- ①形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式; 整式和分式统称为有理式;②分式有意义的条件:分母不为零。
第五讲应用题(一次函数与反比例函数专题)选讲此部分内容包括:函数的应用(主要是一次函数与反比例函数),则属于中档题。
真题再现:
1.(2008年苏州•本题8分)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A、B两船始终关于O点对称.以O为原点.建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在
双曲线
4
y
x
=上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A、B两船恰好在
直线y x
=上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,
A、B、C三船可分别用A、B、C三点表示).
(1)发现C船时,A、B、C三船所在位置的坐标分别为
A( , )、B( , )和 C( , );
(2)发现C船,三船立即停止训练,并分别从A、O、B
三点出发沿最短路线同时前往救援,设A、B两船
的速度相等,教练船与A船的速度之比为3:4,
问教练船是否最先赶到?请说明理由。
2.(2010年苏州•本题8分) 如图,四边形OABC是面积为4的正方形,函数
k
y
x
=(x>0)
的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、
NA′分别与函数
k
y
x
=(x>0)的图象交于点E、F,求线段EF所在直线的解析式.
3.(2014年•苏州•本题7分)如图,已知函数y=-1
2
x+b的图象与x轴、y轴分别交于
点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P (a,0)(其
中a>2),过点P作x轴垂线,分别交函数y=-1
2
x+b和y=x的图象于点C,D.
(1)求点A的坐标; (2)若OB=CD,求a的值.
4.(2014年•苏州• 8分)如图,已知函数y=k
x
(x>0)的图象经过点A,B,点A的坐标
为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.
(1)求△OCD的面积;
(2)当BE=1
2
AC时,求CE的长.
5.(2015年苏州•本题满分8分)如图,已知函数
k
y
x
(x>0)的图像经过点A、B,点B
的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD 交于点F.一次函数y=ax+b的图像经过点A、D,
与x轴的负半轴交于点E.。