八年级数学上册知识点归纳:勾股定理的逆定理
- 格式:docx
- 大小:19.20 KB
- 文档页数:8
勾股定理知识点归纳和题型归类 一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EF G H S S S∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++,所以222a b c +=方法三:1()()2S a b a b=+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c ,cbaHG F EDCB Abacbac cabcab a bcc baE D CBAb,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形,其中c为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b+与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222a b c+<,时,以a,b,c为三边的三角形是钝角三角形;若222a b c+>,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及222a b c+=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222a c b+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c+=中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:丢番图发现的:式子nmnmmnnm>+-(,2,2222的正整数)毕达哥拉斯发现的:122,22,1222++++nnnnn(1>n的整数)柏拉图发现的:1,1,222+-n n n (1>n 的整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用 勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为例3.如图ABC ∆中,90C ∠=︒,12∠=∠,1.5CD =,2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m 。
数学八年级上册勾股定理一、勾股定理的内容1. 定理表述- 在直角三角形中,两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。
- 例如,一个直角三角形的两条直角边分别为3和4,根据勾股定理,斜边c满足3^2+4^2=c^2,即9 + 16=c^2,c^2=25,所以c = 5。
2. 定理的证明- 赵爽弦图证明法- 赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形。
- 设直角三角形的两条直角边分别为a、b(b>a),斜边为c。
大正方形的面积可以表示为c^2,同时它又等于四个直角三角形的面积加上中间小正方形的面积。
- 四个直角三角形的面积为4×(1)/(2)ab = 2ab,中间小正方形的边长为b - a,其面积为(b - a)^2=b^2-2ab+a^2。
- 所以c^2=a^2+b^2。
- 毕达哥拉斯证法(拼图法)- 用四个全等的直角三角形(直角边为a、b,斜边为c)拼成一个以a + b为边长的正方形。
- 这个大正方形的面积为(a + b)^2=a^2+2ab + b^2,同时它又等于四个直角三角形的面积加上中间边长为c的正方形的面积,即4×(1)/(2)ab+c^2=2ab +c^2。
- 所以a^2+b^2=c^2。
二、勾股定理的应用1. 已知直角三角形的两边求第三边- 当已知两条直角边求斜边时,直接使用c=√(a^2)+b^{2}。
例如,直角边a = 6,b = 8,则c=√(6^2)+8^{2}=√(36 + 64)=√(100)=10。
- 当已知一条直角边和斜边求另一条直角边时,使用a=√(c^2)-b^{2}(设c为斜边,b为已知直角边)。
例如,斜边c = 13,一条直角边b = 5,则a=√(13^2)-5^{2}=√(169 - 25)=√(144)=12。
2. 解决实际问题中的直角三角形问题- 例如,在一个长方形中,已知长为8米,宽为6米,求对角线的长度。
第一章勾股定理1、勾股定理直角三角形两直角边a,b的平方与等于斜边c的平方,即222a b c+=2、勾股定理的逆定理假如三角形的三边长a,b,c有关系,222+=,那么这个三角a b c形是直角三角形。
勾股数:满意222+=的三个正整数,称为勾股数。
a b c第二章实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数与无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3等;(3)有特定构造的数,如0.1010010001…等;二、实数的倒数、相反数与肯定值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、肯定值在数轴上,一个数所对应的点与原点的间隔,叫做该数的肯定值。
(|a|≥0)。
零的肯定值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数假如a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1与-1。
零没有倒数。
4、数轴规定了原点、正方向与单位长度的直线叫做数轴(画数轴时,要留意上述规定的三要素缺一不行)。
5、估算三、平方根、算数平方根与立方根1、算术平方根:一般地,假如一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特殊地,0的算术平方根是0。
表示方法:记作“a”,读作根号a。
性质:正数与零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,假如一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
表示方法:正数a的平方根记做“a”,读作“正、负根号a”。
数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
(北师大版《数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理直角三角形两直角边 a ,b 的平方和等于斜边 c 的平方,即 2、勾股定理的逆定理如果三角形的三边长 a ,b ,c 有关系,那么这个三角形是直角三角形。
3、勾股数:满足的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类正有理数 有理数零有限小数和无限循环小数实数负有理数 正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率 π,或化简后含有 π 的数,如+8 等;(3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数值,如 sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是 零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数, 则有 a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
|a|≥0)。
零的绝对值 是它本身,也可看成它的相反数,若|a|=a ,则 a ≥0;若|a|=-a ,则 a ≤0。
3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。
倒数等于本身的数是 1 和-1。
零没有倒 数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素 缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数 x 的平方等于 a ,即 x 2=a ,那么这个正数 x 就 叫做 a 的算术平方根。
特别地,0 的算术平方根是 0。
八年级数学勾股定理3篇《勾股定理》知识点总结1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2) 要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2 a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2 a2+b2,则△abc为锐角三角形)。
p=3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理中考数学|勾股定理知识点规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
初二上册数学勾股定理及其逆定理知识点总结初二上册数学勾股定理及其逆定理知识点总结一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
3.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的'逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c 为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
八年级数学上册知识点总结数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。
2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。
3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如222π+8等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60等。
二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=−b,反之亦成立。
2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值(|a|≥)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥;若|a|=−a,则a≤。
3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和−1.零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算。
三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。
八年级数学《勾股定理》知识点一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n的线段1。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类 1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
八年级数学上册知识点归纳:勾股定理的逆
定理
知识点总结
一、勾股定理:
勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是:
图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;
根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理的适用范围:
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理
逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;
定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.
利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:
确定最大边;
算出最大边的平方与另两边的平方和;
比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数
能够构成直角三角形的三边长的三个正整数称为勾股数.
四、一个重要结论:
由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用
解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法
直接考查勾股定理及其逆定理;应用勾股定理建立方程;实际问题中应用勾股定理及其逆定理。
误区提醒
忽略勾股定理的适用范围;误以为直角三角形中的一定是斜边。
【典型例题】
[问题情境]
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”带到其他星球,作为地球人与其他星球“人”进行次“谈话”的语言。
[定理表述]
请你根据图1中的直角三角形叙述勾股定理;
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形,请你利用图2,验证勾股定理;
[知识拓展]
一、选择题
△ABc的三边分别为下列各组值,其中不是直角三角形三边的是
A.a=41,b=40,c=9
B.a=1.2,b=1.6,c=2
c.a=12,b=13,c=14D.a=35,b=45,c=1
以下列数组为三角形的边长:5,12,13;10,12,13;7,24,25;6,8,10,其中能构成直角三角形的有
A.4组
B.3组c.2组D.1组
五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是
A.
B.
c.
D.
下列命题中,真命题是
A.如果三角形三个角的度数比是3:4:5,那么这个三角形是直角三角形;
B.如果直角三角形两直角边的长分别为a和b,那么斜边的长为a2+b2;
c.若三角形三边长的比为1:2:3,则这个三角形是直角三角形;
D.如果直角三角形两直角边分别为a和b,斜边为c,那么斜边上的高h的长为abc显示解析5.下列命题的逆命题
是真命题的是
A.若a=b,则a2=b2
B.全等三角形的周长相等
c.若a=0,则ab=0
D.有两边相等的三角形是等腰三角形
显示解析6.△ABc中∠A、∠B、∠c的对边分别是a、b、c,下列命题中的假命题是
A.如果∠c-∠B=∠A,则△ABc是直角三角形
B.如果c2=b2-a2,则△ABc是直角三角形,且∠c=90°
c.如果=b2,则△ABc是直角三角形
D.如果∠A:∠B:∠c=5:2:3,则△ABc是直角三角形
下列四条线段不能组成直角三角形的是
A.a=8,b=15,c=17
B.a=9,b=12,c=15
c.a=5,b=3,c=2
D.a:b:c=2:3:4
以下面每组中的三条线段为边的三角形中,是直角三角形的是
A.5c,12c,13c
B.5c,8c,11c
c.5c,13c,11cD.8c,13c,11c
△ABc中,如果三边满足关系Bc2=AB2+Ac2,则△ABc的直角是
A.∠c
B.∠Ac.∠BD.不能确定
0.三角形的三边长为a,b,c,且满足2=c2+2ab,则这个三角形是
A.等边三角形
B.钝角三角形c.直角三角形D.锐角三角形
二、填空题
1.已知△ABc的三边长a,b,c分别为6,8,10,则△ABc直角三角形.显示解析1
2.△ABc中,AB=7,Ac=24,Bc=25,则∠A=度.显示解析1
3.△ABc中,Bc=n2-1,Ac=2n,AB=n2+1,则这个三角形是三角形.显示解析1
4.如果三角形的三边长为1.5,2,2.5,那么这个三角形最短的高为.显示解析1
5.已知一个三角形的三边长分别为+1,+2,+3,那么当=时,此三角形是直角三角形.☆☆☆☆☆显示解析1
6.在△ABc 中,若a2+b2=25,a2-b2=7,c=5,则最大边上的高为.显示解析1
7.若一个三角形的三边之比为5:12:13,且周长为60c,则它的面积为c2.★☆☆☆☆显示解析1
8.三角形的两边长为5和4,要使它成为直角三角形,则第三边的平方为.显示解析1
9.如果一个三角形一边上的中线等于这边的一半,那么这条边所对的角等于度.☆☆☆☆☆显示解析三、解答题
如图所示,四边形ABcD中,BA⊥DA,AB=2,AD=23,cD=3,Bc=5,则∠ADc=度.显示解析
如图所示,在△ABc中,AB:Bc:cA=3:4:5,且周长
为36c,点P从点A开始沿AB边向B点以每秒1c的速度移动;点Q从点B沿Bc边向点c以每秒2c的速度移动,如果同时出发,则过3秒时,△BPQ的面积为c2.☆☆☆☆☆显示解析
已知:如图,四边形ABcD,AB=1,Bc=34,cD=134,AD=3,且AB⊥Bc.则四边形ABcD的面积为.显示解析
0.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB=4米,Bc=3米,cD=13米,DA=12米,又已知∠B=90度.那么这块土地的面积为平方米.显示解析
如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、c三点构成直角三角形显示解析32.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达c地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,则甲巡逻艇的航向为北偏东度.
3.能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,观察下列表格所给出的三个数a,b,c,a 试找出它们的共同点,并证明你的结论;
写出当a=17时,b,c的值.3,4,532+42=52 12,13,52+122=132
24,2572+242=252
40,4192+402=412……17,b,c172+b2=c2
已知:在△ABc中,cD⊥AB于D,且cD2=AD•BD. 求证:△ABc总是直角三角形.。