课题 高二数学必修5等比数列前n项和学案
- 格式:doc
- 大小:105.00 KB
- 文档页数:1
人教版高中必修5(B版)2.3.2等比数列的前n项和教学设计一、教学目标1.掌握等比数列的概念和性质,能够判断一个数列是否为等比数列;2.掌握等比数列的通项公式和求和公式;3.能够应用等比数列的公式解决实际问题。
二、教学重点和难点1.等比数列的通项公式和求和公式的推导;2.解决实际问题时对问题的转化和数据的分析。
三、教学过程设计1. 导入环节通过引入一些实际应用问题,比如生态链问题、财务问题等,介绍等比数列的应用场景,引发学生对等比数列的兴趣,并激发学生的求知欲望。
2. 概念讲解1.定义等比数列,列举等比数列的性质;2.推导等比数列的通项公式和求和公式,并简单讲解推导过程,引导学生理解公式;3.通过实例讲解公式的应用方法,强化学生的运用能力。
3. 练习与巩固1.利用课堂时间进行一些基础题型的演示和讲解,使学生对基础概念和公式更加熟悉;2.在课后布置一些练习,提高学生对等比数列的掌握程度;3.在下次课时进行讲解和答疑,帮助学生发现和纠正错误。
4. 实际应用通过一些实际问题的讲解和分析,如金融投资、人口增长等,让学生发现等比数列在实际问题中的应用,丰富学生的实际运用能力。
四、教学方法1.讲授法:通过讲述概念和公式,并通过例题让学生掌握解题方法;2.互动式教学:通过提问、讨论、闯关等方式,增强学生的参与性,让学生主动探究;3.多媒体教学:通过使用电子教具或多媒体课件辅助教学,让学生更加生动和直观地了解概念和公式。
五、教学反思1.整体教学效果良好,学生对等比数列的掌握程度得到了很大提高;2.需要针对性更强的练习来巩固学生的理论知识和应用技巧;3.可以结合实际应用更多的案例,让学生更加深入理解等比数列的实际应用。
《等比数列前n项和》说课稿(精选10篇)因为an = a1q^(n-1)这次为您整理了《等比数列前n项和》说课稿(精选10篇),在大家参照的同时,也可以分享一下给您最好的朋友。
《等比数列前n项和》说课稿篇一一、教材分析《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。
等比数列的前n 项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到。
具有一定的探究性。
二、学情分析在认知结构上已经掌握等差数列和等比数列的有关知识。
在能力方面已经初步具备运用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。
在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。
并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。
三、教学目标分析:知识与技能目标:(1)能够推导出等比数列的前n项和公式;(2)能够运用等比数列的前n项和公式解决一些简单问题。
过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。
体会公式探求过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。
情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。
四、重难点的确立《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。
五、教学方法为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。
2.5等比数列前n项和(第一课时)案例设计和实施教学目标(一)知识与技能目标:理解等比数列的前n项和公式及公式证明思路;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
(二).过程与方法目标:经历学生自主探究等比数列比数列的前n项和的推导过程以及等比数列前n项和公式的灵活应用,总结出数列的求和的一种方法——错位相减法。
(三)情感与态度目标:通过“国王赏麦”故事激发学生对苏学的好奇心,引导学生从数学的角度发现和提出问题,正确使用方法解决问题,让学生在自主学习,合作交流中获得新知识,在应用数列知识解决问题过程中要勇于探索、积极进取,激发学习数学的热情和实事求是的精神。
教学重点:等比数列的前项和公式的推导及其简单应用。
教学难点:等比数列前n项和公式的推导以及灵活应用公式解决有关问题教法学法:(一)教学方法:引导探索、发现法(二)学习方法:自主探究,合作交流(三)教学手段:多媒体辅助教学授课类型:新授课课时安排:1课时教学过程S=a+a+a++a+an123n-1n2n-2n-1S=a+a q+a q++a q+a qn11111qS=a q+a q+a q++a q+a q()2-n +-板书设计教学案例评析:本节课的教学设计充分体现了以学生发展为中心的课改理念,落实了课程目标,达到了课程标准,培养了学生的数学素养,塑造了学生人格。
在教学设计上充分考虑到学生心理发展需求,运用自主学习、合作学习、探究学习等学习方式提高了学生对数学学习的兴趣。
在教学手段上重视运用现代教育手段和学生自主动手的能力,把抽象的知识变得简单化。
本节课以一个故事“国王赏麦”来引入新课,激发学生解决问题的好奇心,激励引导学生一步步解决问题。
从课堂的引入,公式的推导,例题精讲,习题的设计都是循序渐进,层层深入,有利于学生对新知识的理解和接受。
在教育方式上,让学生参与,自己获取知识,促进学生自主发展;在教学氛围上,努力营造了民主的教学气氛,重视对学生能力的培养;在教学难点的处理上,能运用多种手段,深入浅出予以解决。
等比数列的前n项和教学设计等比数列的前n项和教学设计篇1一、教材分析:等比数列的前n项和是高中数学必修五其次章第3.3节的内容。
它是“等差数列的前n项和”与“等比数列”内容的连续。
这局部内容授课时间2课时,本节课作为第一课时,重在讨论等比数列的前n项和公式的推导及简洁应用,教学中注意公式的形成推导过程并充分提醒公式的构造特征和内在联系。
意在培育学生类比分析、分类争论、归纳推理、演绎推理等数学思想。
在高考中占有重要地位。
二、教学目标依据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:1.学问与技能:理解等比数列的前n项和公式的推导方法;把握等比数列的前n项和公式并能运用公式解决一些简洁问题。
2.过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的力量,培育学生从特别到一般的思维方法,渗透方程思想、分类争论思想及转化思想,优化思维品质。
3.情感与态度:通过自主探究,合作沟通,激发学生的求知欲,体验探究的艰辛,体会胜利的喜悦,感受思维的奇异美、构造的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点重点:等比数列的前项和公式的推导及其简洁应用。
难点:等比数列的前项和公式的推导。
重难点确定的依据:从教材体系来看,它为后继学习供应了学问根底,具有承上启下的作用;从学问本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进展,它需要对等比数列的概念和性质能充分理解并融会贯穿;从学生认知水平来看,学生的探究力量和用数学语言沟通的力量还有待提高。
四、教法学法分析通过创设问题情境,组织学生争论,让学生在尝摸索索中不断地发觉问题,以激发学生的求知欲,并在过程中获得自信念和胜利感。
强调学问的严谨性的同时重学问的形成过程,五、教学过程(一)创设情境,引入新知从故事入手:传奇,波斯国王下令要奖赏国际象棋的创造者,创造者对国王说,在棋盘的第一格内放上一粒麦子,在其次格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。
2.5等比数列的前n 项和(一)教学目标1、 知识与技能:掌握等比数列的前n 项和公式,并用公式解决实际问题2、 过程与方法:由研究等比数列的结构特点推导出等比数列的前n 项和公式3、 情态与价值:从“错位相减法”这种算法中,体会“消除差别”,培养化简的能力(二)教学重、难点重点:使学生掌握等比数列的前n 项和公式,用等比数列的前n 项和公式解决实际问题 难点:由研究等比数列的结构特点推导出等比数列的前n 项和公式(三)学法与教学用具学法:由等比数列的结构特点推导出前n 项和公式,从而利用公式解决实际问题 教学用具:投影仪(四)教学设想教材开头的问题可以转化成求首项为1,公比为2的等比数列的前64项的和.类似于等差数列,我们有必要探讨等比数列的前n 项和公式。
一般地,对于等比数列a 1,a 2,a 3,..., a n ,...它的前n 项和是Sn= a 1+a 2+a 3+...+a n由等比数列的通项公式,上式可以写成Sn= a 1+a 1q + a 1q 2 +...+a 1q n-1 ①① 式两边同乘以公比q 得qSn= a 1q+ a 1q 2 +...+a 1q n-1+ a 1q n ②①,②的右边有很多相同的项,用①的两边分别减去②的两边,得(1-q)Sn= a 1-a 1q n当q≠1时,Sn=qq a n --1)1(1 (q ≠1) 又a n =a 1q n-1 所以上式也可写成 Sn=qq a a n --11(q ≠1) 推导出等比数列的前n 项和公式,本节开头的问题就可以解决了[相关问题]①当q=1时,等比数列的前n 项和公式为Sn=na 1② 公式可变形为Sn=q q a n --1)1(1=1)1(1--q q a n (思考q>1和q<1时分别使用哪个方便) ③ 如果已知a 1, a n,q,n,Sn 五个量中的任意三个就可以求出其余两个[例题分析]例1 求下列等比数列前8项的和: (1)21,41,81,...;(2) a 1=27, a 9=2431,q<0 评注:第(2)题已知a 1=27,n=8,还缺少一个已知条件,由题意显然可以通过解方程求得公比q,题设中要求q<0,一方面是为了简化计算,另一方面是想提醒学生q 既可以为正数,又可以为负数.例2 某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?评注:先根据等比数列的前n 项和公式列方程,再用对数的知识解方程[随堂练习]第1.2.3题[课堂小结](1) 等比数列的前n 项和公式中要求q ≠1;这个公式可以变形成几个等价的式子(2) 如果已知a 1, a n,q,n,Sn 五个量中的任意三个就可以求出其余两个(五)评价设计(1)课后阅读: [阅读与思考](2)课后作业: 1,2,4题精美句子1、善思则能“从无字句处读书”。
2.5等比数列的前n 项和预习指导2.等比数列{}n a 的前n 项和为n S ,则k k k k k S S S S S 232,,--组成等比数列,即有等式: ;热身练习1. 在等比数列{}n a 中,259,243a a ==,则{}n a 的前4项和为( )A.81B.120C.168D.1922. 已知在等比数列{}n a 中,公比q 是整数,142318,12a a a a +=+=,则此数列的前8项和为( )A.514B.513C.512D.5103. 已知等比数列{}n a 的前三项依次为1,1,4a a a -++,则n a = .4. 在等比数列{}n a 中,252,16a a ==,则10S = .5. 已知{}n a 为等差数列,且366,0a a =-=,(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足121238,b b a a a =-=++,求{}n b 的前n 项和.6.已知等差数列{}n a 的公差0d ≠,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是 .课后作业1. 已知在等比数列{}n a 中,1346510,4a a a a +=+=,则等比数列{}n a 的公比q 的值为( ) A.41 B. 21 C. 2 D. 8 2. 已知某等比数列的前n 项和4n n S a =+,则a 等于 ( )A .-4 B.-1 C.0 D.13. 已知{}n a 是等比数列,2512,4a a ==,则12231n n a a a a a a ++++=L ( ) A.()1614n -- B. ()1612n -- C. ()32143n -- D. ()32123n -- 4. 设n S 表示等比数列{}()n a n N *∈的前n 项和,已知1053SS =,则155S S =__________.5. 若正项等比数列{}()n a n N*∈满足24331,13,log n n a a S b a ===,则数列{}n b 的前10项和是 .6.已知等比数列{}()n a n N*∈中,1310a a +=,前4项和为40. (1)求数列{}()n a n N *∈的通项公式;(2)若等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T 。
《等比数列的前n项和》教学设计(第一课时)普通高中课程标准实验教科书数学必修5一、教学目标1.知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。
这一目标体现了基础知识的落实、基本技能的形成,这是数学教学的首要环节,也正符合课程标准的要求.2.能力目标:培养学生观察问题、思考问题能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力,提高学生运算求解、数据处理的能力。
3.情感目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美和数学的严谨美。
.二、教学重点、难点分析教学重点:等比数列前n项和公式的推导及其简单应用。
从知识体系看,为后继学习提供了知识基础,具有承上启下的作用;就知识特点而言,蕴涵丰富的思想方法;就能力培养来说,通过公式推导教学可培养学生的运用数学语言交流表达的能力。
教学难点:等比数列前n项和公式推导方法的理解。
从学生认知发展水平看,探究能力和用数学语言交流的能力有待提高。
从知识特点看,等比数列前n项和公式的推导与等差数列的前n项和公式的推导的可比性低,无法进行类比推导,需要充分理解等比数列的概念和性质,并能整合知识,做到融会贯通,而这对学生却是比较困难的,何况错位相减法是初次接触,对学生来说是很新鲜的,因此,教师在发挥学生主体性前提下要给予适当的提示和指导。
三、教学方法数学是一门培养和发展人的思维的重要学科,因此在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现学生的主动地位,遵循学生的认知规律,教学过程分为问题呈现阶段、探索与发现阶段、公式应用阶段。
探索与发现公式推导的方法是本节课的教学难点。
如果直接介绍“错位相减法”求和,对于学生无疑就魔术师手中的魔术一般神奇。
所以在教学中采用“启发――探究”的教学模式以问题驱动、层层铺垫,从特殊到一般启发学生获得推导公式的方法。
高中数学必修5《等比数列前n项和》教案2篇High school mathematics compulsory 5 "the first n sum of equal ratio series" teaching plan高中数学必修5《等比数列前n项和》教案2篇前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:高中数学必修5《等比数列前n项和》教案2、篇章2:高中数学必修5《等比数列前n项和》教案篇章1:高中数学必修5《等比数列前n项和》教案教学准备教学目标熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差(或公比)等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成()A、511B、512C、1023D、10242.若一工厂的生产总值的月平均增长率为p,则年平均增长率为()A、 B、C、 D、二、典型例题例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即最后一期)的利息是Ap,问到第n期期末的本金和是多少?评析:此例来自一种常见的存款叫做零存整取。
等比数列及其前n 项和【学习目标】1.掌握等比数列的定义,理解等比中项的概念;掌握等比数列的通项公式及推导;2.掌握等比数列的性质和前n 项和公式及公式证明思路;会用它们灵活解决有关等比数列的问题;3.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;4.了解等比数列与指数函数的关系. 【要点梳理】要点一、等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(0q ≠),即:1(0)n na q q a +=≠. 要点诠释:①由于等比数列每一项都可能作分母,故每一项均不为0,因此q 可不能是0;②“从第二项起,每一项与它的前一项的比等于同一个常数q ”,这里的项具有任意性和有序性,常数是同一个;③隐含条件:任一项0n a ≠且0q ≠;“0n a ≠”是数列{}n a 成等比数列的必要非充分条件; ④常数列都是等差数列,但不一定是等比数列。
不为0的常数列是公比为1的等比数列; ⑤证明一个数列为等比数列,其依据*1(0)n na q n N q a +=∈≠,.利用这种形式来判定,就便于操作了. 要点二、等比中项如果三个数a 、G 、b 成等比数列,那么称数G 为a 与b 的等比中项.其中G = 要点诠释:①只有当a 与b 同号即0ab >时,a 与b 才有等比中项,且a 与b 有两个互为相反数的等比中项. 当a 与b 异号或有一个为零即0ab ≤时,a 与b 没有等比中项。
②任意两个实数a 与b 都有等差中项,且当a 与b 确定时,等差中项2a bc +=唯一. 但任意两个实数a 与b 不一定有等比中项,且当a 与b 有等比中项时,等比中项不唯一。
③当0ab >时,a 、G 、b成等比数列2G bG ab G a G⇔=⇔=⇔= ④2G ab =是a 、G 、b 成等比数列的必要不充分条件。
第 1 页 共 1 页
课题 高二数学必修5数列
等比数列的前n 项和学案
设计 审核 编号008
班级 组名 姓名 学号
一.学习目标
1. 等比数列前n 项和公式,等比数列的判断。
2. 等比数列前n 项和公式及其获取思路;会用等比数列的前n 项和公式解决一些简单的与前n 项和有关的问题。
3. 提高学生的推理能力;培养学生应用意识。
二.学习重难点:等比数列前n 项和公式的理解、推导及应用.
灵活应用等差数列前n 项公式解决一些简单的有关问题.
三.学习过程
<1>自主学习-----------发现问题
1.等比数列的前n 项和:等比数列{}n a 中123,,,,n a a a a 的和,即
=n S 123n a a a a ++++
2. 推导等比数列前n 项和公式的方法:
3.等比数列前n 项和公式: 4一般公式推导:
设n n n a a a a a S +++++=-1321.... ① 乘以公比q ,n n n n qa a a a a qS +++++=-132.... ②
①-②:
注意:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个,
(2)注意求和公式中是n q ,通项公式中是1-n q 不要混淆, (3)应用求和公式时1≠q ,必要时应讨论1=q 的情况。
等比数列的判定方法:
1、定义法:若数列{}n a 满足 ,则为等比数列;
2、通项公式法:若数列{}n a 的通项满足 或其前n 项和满足 ,则该数列为等比数列;
3、等比中项法:若c b a ,,满足 ,则c b a ,,为等比数列; <2>合作探究-----------问题生成与解决 1、求等比数列{}n a 中,(1)已知;14a =-,1
2
q =
,求10S ;(2)已知;11a =,243k a =,3q =,求k S .
2、已知数列{}n a 的前n 项和为n S ,且对任意*N n ∈有n S a n n =+,设1-=n n a b ,
求证:数列{}n b 是等比数列;
证明:
<3>拓展训练-----------问题评价
1、求等比数列{}n a 中,372S =,663
2
S =,求n a ;
2、求数列1111
1,2,3,,,2482
n n ++++ 的前n 项和.
3、在等比数列{}n a 中,2
63
,2763==S S ,求n a .
三.反思小结
1.我的问题
2.我的收。