模式识别试题
- 格式:doc
- 大小:80.54 KB
- 文档页数:4
模式识别考试题答案题1:设有如下三类模式样本集ω1,ω2和ω3,其先验概率相等,求Sw 和Sb ω1:{(1 0)T, (2 0) T, (1 1) T} ω2:{(-1 0)T, (0 1) T, (-1 1) T}ω3:{(-1 -1)T, (0 -1) T, (0 -2) T}解:由于本题中有三类模式,因此我们利用下面的公式:b S =向量类模式分布总体的均值为C ,))()((00031m m m m m P t i i i i --∑=ω,即:i31i i0m )p(E{x }m ∑===ωi m 为第i 类样本样本均值⎪⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛=--=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--=⎪⎪⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡---++-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡++-+-=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡++++=∑=81628113811381628112181448144811681498149814981498116814481448112131911949119497979797949119491131)m m )(m m ()(P S 919134323131323431m 343121100131m 323211010131m ;313410012131m t0i 0i 31i i b10321ω;333t(i)(i)k k w i i i i i i i i 1i 11111S P()E{(x-m )(x-m )/}C [(x m )(x m )33361211999271612399279Tk ωω====•==--⎡⎤⎡⎤--⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑题2:设有如下两类样本集,其出现的概率相等: ω1:{(0 0 0)T , (1 0 0) T , (1 0 1) T , (1 1 0) T}ω2:{(0 0 1)T , (0 1 0) T , (0 1 1) T , (1 1 1) T}用K-L 变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置。
大学模式识别考试题及答案详解————————————————————————————————作者:————————————————————————————————日期:一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
模式识别期末试题1.模式识别系统的基本构成单元包括模式采集、特征提取与选择和模式分类。
这些构成单元一起协作,以确定输入模式的类别或特征。
2.统计模式识别中,描述模式的方法一般使用特征向量;而句法模式识别中,模式描述方法一般有串、树、网等。
3.聚类分析算法属于无监督分类;判别域代数界面方程法属于统计模式识别方法。
4.若描述模式的特征量为0-1二值特征量,则一般采用匹配测度进行相似性度量。
5.准则函数可以作为聚类分析中的判别标准,常用的有距离准则、均值准则和连通性准则。
6.Fisher线性判别函数的求解过程是将N维特征向量投影在一维空间中进行。
7.感知器算法只适用于线性可分情况;而积累位势函数法既适用于线性可分,也适用于线性不可分情况。
8.满足文法定义的四元组包括:起始符号、非终结符号集合、终结符号集合和产生式规则集合。
其中,第一、二、四个四元组满足文法定义。
9.影响层次聚类算法结果的主要因素包括计算模式距离的测度、聚类准则、类间距离门限和预定的类别数目。
10.欧式距离具有平移不变性和旋转不变性;马式距离具有平移不变性、旋转不变性、尺度缩放不变性和不受量纲影响的特性。
11.线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
12.感知器算法适用于线性可分和线性不可分的情况。
13.积累位势函数法相较于H-K算法的优点是该方法可用于非线性可分情况,也可用于线性可分情况。
位势函数K(x,xk)与积累位势函数K(x)的关系为K(x) = ∑αkK(x,xk),其中xk∈X。
14、XXX判决准则适用于一种判决错误比另一种判决错误更为重要的情况,而最小最大判决准则适用于先验概率未知的情况。
15、特征个数越多并不一定有利于分类。
特征选择的主要目的是从n个特征中选出最有利于分类的m个特征(m<n),以降低特征维数。
在可分性判据对特征个数具有单调性且特征个数远小于样本数的情况下,可以使用分支定界法以减少计算量。
一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。
解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。
(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。
解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。
一、单选题【本题型共44道题】1.下列选项中()不属于机械疲劳损伤发展阶段。
A.微观裂纹萌生B.宏观裂纹扩展C.变形D.瞬时断裂正确答案:[C]用户答案:[C] 得分:1.002.如果已经发现了碱腐蚀,还应注意下列哪些可能伴随的损伤?()A.蒸汽阻滞B.球化C.蠕变D.敏化正确答案:[A]用户答案:[A] 得分:1.003.下面几种材料之间比较,哪一种抗环烷酸腐蚀性能最好?()A.Q245RB.304LC.316D.304正确答案:[C]4.下列哪种已知合金可以耐受所有条件下的金属粉化影响?()A.低合金钢B.奥氏体不锈钢C.碳钢D.目前没有正确答案:[D]用户答案:[D] 得分:1.005.盐酸腐蚀速度随温度(),腐蚀速率()。
A.升高,减小B.升高,增大C.升高,不变D.降低,不变正确答案:[B]用户答案:[B] 得分:1.006.冲刷流体可以分为几种?()A.2种B.3种C.4种D.5种正确答案:[B]7.运行期间可采用什么方法来检测冷壁设备的高温部位、判断耐火材料的损伤程度?()A.红外热像仪B.目视检测C.超声检测D.射线检测正确答案:[A]用户答案:[A] 得分:1.008.渗碳损伤导致材料表面硬度(),高温蠕变延展性、常温力学性能、焊接性能和耐腐蚀性能()。
A.增高;增高B.增高;降低C.降低;降低D.降低;增高正确答案:[B]用户答案:[C] 得分:0.009.下列叙述中,()为常见于装置的金属盐酸腐蚀特点描述。
A.常压塔塔顶系统中,塔顶油气冷却形成含盐酸的冷凝液,PH值较低,可对管道和热交换器(包括壳体、管束和管箱)造成快速腐蚀;减压塔顶真空喷射器和冷凝设备会发生盐酸腐蚀B.催化剂中被置换出来的氯化物会反应形成盐酸,流向反应产物系统、再生系统、稳定塔、脱丁烷塔和进料/预加热热交换器;氯化氢也可能随着工艺流穿过分馏单元,在注水点及其下游发生严重的酸露点腐蚀C.催化剂中含有氯化物,如三氯化钛,在聚丙烯的合成工艺中,与水蒸气或谁接触的设备和管线D.反应产物含有HCl,在冷凝后形成盐酸腐蚀;废气系统含有氨和盐酸,对热进料/出料交换器形成氯化铵盐的垢下腐蚀;蒸馏工段可发生严重的盐酸露点腐蚀正确答案:[A]用户答案:[A] 得分:1.0010.检查燃灰腐蚀的最有效的方法为()。
模式识别期末考试试题# 模式识别期末考试试题## 一、选择题(每题2分,共20分)1. 模式识别中,特征提取的目的是什么?A. 降低数据维度B. 提高计算效率C. 增强数据的可解释性D. 以上都是2. 在K-近邻算法中,K值的选择对结果的影响是什么?A. 无影响B. 影响分类的准确性C. 影响算法的运行时间D. 影响数据的可读性3. 决策树算法中,信息增益的计算是基于以下哪个概念?A. 熵B. 互信息C. 条件熵D. 联合熵4. 支持向量机(SVM)的主要思想是?A. 寻找数据点之间的最大间隔B. 寻找数据点之间的最小间隔C. 寻找数据点的平均间隔D. 寻找数据点的中心点5. 以下哪个算法属于聚类算法?A. K-近邻B. 决策树C. K-均值D. 支持向量机## 二、简答题(每题10分,共30分)1. 描述主成分分析(PCA)的基本原理及其在模式识别中的应用。
2. 解释什么是过拟合(Overfitting)现象,并给出避免过拟合的几种常用方法。
3. 给出神经网络在模式识别中的基本工作原理,并说明其优缺点。
## 三、计算题(每题25分,共50分)1. 给定以下数据点,使用K-均值算法将它们分为两个簇,并说明算法的步骤:- 数据点:(1, 2), (2, 3), (5, 6), (8, 7), (9, 8)2. 假设有一个二维数据集,其中包含两类数据点,分别用圆形和三角形表示。
数据点的特征如下表所示:| 特征1 | 特征2 | 类别 || | | - || 1.5 | 2.5 | 圆形 || 2.0 | 3.0 | 圆形 || 3.5 | 4.5 | 三角形 || 4.0 | 5.0 | 三角形 |使用线性判别分析(LDA)方法,找出最佳线性边界,并将数据点分为两类。
## 四、论述题(共30分)1. 论述深度学习在图像识别领域的应用,并讨论其与传统机器学习方法相比的优势和局限性。
## 五、案例分析题(共30分)1. 假设你是一名数据科学家,你的团队正在开发一个用于识别手写数字的系统。
《模式识别》试题答案(A卷)一、填空与选择填空(本题答案写在此试卷上,30分)1、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
2、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性3、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
)。
4、感知器算法1。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
5、积累势函数法较之于H-K算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况));位势函数K(x,x k)与积累位势函数K(x)的关系为(∑∈=XxxxKxK~kkk),()(α).6、在统计模式分类问题中,聂曼—皮尔逊判决准则主要用于(某一种判决错误较另一种判决错误更为重要)情况;最小最大判决准则主要用于(先验概率未知的)情况。
7、“特征个数越多越有利于分类”这种说法正确吗?(错误)。
特征选择的主要目的是(从n个特征中选出最有利于分类的的m个特征(m〈n),以降低特征维数)。
一般在(可分性判据对特征个数具有单调性)和( C n m>〉n )的条件下,可以使用分支定界法以减少计算量。
8、散度Jij越大,说明ωi类模式与ωj类模式的分布(差别越大);当ωi类模式与ωj类模式的分布相同时,Jij=(0)。
9、已知有限状态自动机Af=(∑,Q,δ,q0,F),∑={0,1};Q={q0,q1};δ:δ(q0,0)= q1,δ(q0,1)= q1,δ(q1,0)=q0,δ(q1,1)=q0;q0=q0;F={q0}。
现有输入字符串:(a) 00011101011,(b) 1100110011,(c) 101100111000,(d)0010011,试问,用Af对上述字符串进行分类的结果为(ω1:{a,d};ω2:{b,c} ).二、(15分)在目标识别中,假定类型ω1为敌方目标,类型ω2为诱饵(假目标),已知先验概率P(ω1)=0.2和P(ω2)=0.8,类概率密度函数如下:⎧ x 0 ≤ x < 1 ⎧ x 1 1 ≤ x < 2p(x|ω1)=⎨ 2 - x 1 ≤ x ≤ 2 p(x|ω2)= ⎨ 3 - x 2 ≤ x ≤ 3⎩ 0 其它⎩ 0 其它(1)求贝叶斯最小误判概率准则下的判决域,并判断样本x=1.5属于哪一类(2)求总错误概率P(e);(3)假设正确判断的损失λ11=λ22=0,误判损失分别为λ12和λ21,若采用最小损失判决准则,λ12和λ21满足怎样的关系时,会使上述对x=1.5的判断相反?解:(1)应用贝叶斯最小误判概率准则如果则判得l12(1.5)=1 < =4,故 x=1。
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A) (2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分) (1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。
20xx年模式识别试题及参考答案2017年模式识别试题及参考答案(一) 1、举出日常生活或技术、学术领域中应用模式识别理论解决问题的实例。
答:我的本科毕设内容和以后的研究方向为重症监护病人的状态监测与预诊断,其中的第一步就是进行ICU病人的死亡率预测,与模式识别理论密切相关。
主要的任务是分析数据库的8000名ICU病人,统计分析死亡与非死亡的生理特征,用于分析预测新进ICU病人的病情状态。
按照模式识别的方法步骤,首先从数据库中采集数据,包括病人的固有信息,生理信息,事件信息等并分为死亡组和非死亡组,然后分别进行数据的预处理,剔除不正常数据,对数据进行插值并取中值进行第一次特征提取,然后利用非监督学习的方法即聚类分析进行第二次特征提取,得到训练样本集和测试样本集。
分别利用判别分析,人工神经网络,支持向量机的方法进行训练,测试,得到分类器,实验效果比传统ICU中采用的评价预测系统好一些。
由于两组数据具有较大重叠,特征提取,即提取模式特征就变得尤为重要。
语音识别,图像识别,车牌识别,文字识别,人脸识别,通信中的信号识别; ①文字识别汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。
所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。
目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。
其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。
从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了联机手写体识别。
到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。
②语音识别语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。
《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是:、、。
1.2、模式分布为团状时,选用聚类算法较好。
1.3 欧式距离具有。
马式距离具有。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性1.4 描述模式相似的测度有:。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度1.5 利用两类方法处理多类问题的技术途径有:(1);(2);(3)。
其中最常用的是第个技术途径。
1.6 判别函数的正负和数值大小在分类中的意义是:,。
1.7 感知器算法。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
1.8 积累位势函数法的判别界面一般为。
(1)线性界面;(2)非线性界面。
1.9 基于距离的类别可分性判据有:。
(1)1[]w BTr S S-(2)BWSS(3)BW BSS S+1.10 作为统计判别问题的模式分类,在()情况下,可使用聂曼-皮尔逊判决准则。
1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k)与积累位势函数K(x)的关系为()。
1.12 用作确定性模式非线形分类的势函数法,通常,两个n维向量x和x k的函数K(x,x k)若同时满足下列三个条件,都可作为势函数。
①();②( ); ③ K(x,x k )是光滑函数,且是x 和x k 之间距离的单调下降函数。
1.13 散度J ij 越大,说明ωi 类模式与ωj 类模式的分布( )。
当ωi 类模式与ωj 类模式的分布相同时,J ij =( )。
1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。
1.15 信息熵可以作为一种可分性判据的原因是: 。
1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。
1.17 随机变量l(x )=p( x |ω1)/p( x |ω2),l( x )又称似然比,则E {l( x )|ω2}=( )。
科目模式识别班级姓名学号得分:1、简答题(40分)1. 什么是模式?人们通常是如何表示模式的?对分类识别的对象进行科学的抽象,建立它的数学模型,用以描述和代替识别对象,称这种对象的描述为模式。
从它的定义可看出,模式是通过数学模型来表示的。
2. 什么是聚类分析?聚类分析是有监督分类还是无监督分类?为什么?聚类分析是基于数据集客观存在着若干个自然类、每个自然类中的数据某些属性都具有较强的相似性而建立的一种数据描述方法。
是无监督的分类。
因为在分类中不需要用训练样本进行学习和训练。
3. 什么是模式识别?模式识别系统通常包括哪些主要的环节?模式识别是根据研究对象的特征或属性,利用以计算机为中心的机器系统,运用一定的分析算法认定它的类别,系统应使分类识别的结果尽可能地符合真实。
主要环节包括:(1)特征提取(2)特征选择(3)学习和训练(4)分类识别4. 什么是最大后验概率准则?5. 什么是总体推断?6. 什么是梯度下降法?就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减少。
7. 什么是无偏估计?无偏估计是参数的样本估计值的期望值等于参数的真实值。
估计量的数学期望等于估计参数。
8. 什么是最小损失准则判决?其基本表达形式是什么?当对一待识模式进行分类识别决策时,算出判属它为各类的条件期望损失之后,判决属于条件期望损失最小的那一类。
基本表达式如下:如果,则判9. 有教师学习和无教师学习在算法上有何区别?10. 线性判别函数的几何意义是什么?11. 一次准则函数的基本形式是什么?简要说明这种形式的特点。
12. 在统计判决中,什么是损失、损失函数和平均损失?13. 利用特征矢量和特征空间如何表达模式和模式类?14. 聚类分析在选取特征时需要注意哪些问题?为什么?15. 判别域界面方程分类的基本思想是什么?16. Fisher判别规则的基本思想是什么?17. 特征空间在模式识别的研究起什么作用?请简要论述。
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
《模式识别》试卷( A)一、填空与选择填空(本题答案写在此试卷上,30 分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1 二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher 线性判别函数的求解过程是将N 维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A 01, A0A1 ,A1A0 , B BA , B0}, A)(2)({A}, {0, 1}, {A 0, A0A}, A)(3)({S}, {a, b}, {S 00S, S11S, S00, S11},S)(4)({A}, {0, 1}, {A 01, A0A1, A1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有(1、 2);马式距离具有(1、2、3、 4)。
(1)平移不变性( 2)旋转不变性( 3)尺度缩放不变性( 4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
模式识别试题及总结⼀、填空与选择填空(本题答案写在此试卷上, 30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择 _________和模式分类。
2、统计模式识别中描述模式的⽅法⼀般使⽤特真⽮量 ;句法模式识别中模式描述⽅法⼀般有串树、⽹。
3、聚类分析算法属于(1);判别域代数界⾯⽅程法属于(3)。
(1)⽆监督分类(2)有监督分类(3)统计模式识别⽅法(4)句法模式识别⽅法4、若描述模式的特征量为0-1⼆值特征量,则⼀般采⽤(4)进⾏相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度3 = 2 (函-两》(函-m )⑷⼆6、 Fisher 线性判别函数的求解过程是将N 维特征⽮量投影在(2)中进⾏。
(1)⼆维空间(2) —维空间(3) N-1维空间7、下列判别域界⾯⽅程法中只适⽤于线性可分情况的算法有(1);线性可分、不可分都适⽤的有(3)8、下列四元组中满⾜⽂法定义的有(1)( 2)( 4)(1) ({ A ,B },{0, , A >01, A 0 A 1 , A-. 1 A0 , B-. BA , B )0}, A )(2) ({ A }, {0, 1}, {A >0, A —; 0 A }, A )(3) ({ S }, { a, b }, { S — 00 S , S 11 S , S-00,S > 11},S )(4) ({A }, {0, 1}, {A >01, A > 0A 1, A > 1 A 0}, A )9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数⽬))。
10、欧式距离具有(1、2 );马式距离具有(1、2、3、4)。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值⼤⼩的⼏何意义是(正(负)表⽰样本点位于判别界⾯法向量指向的正(负)半空间中;绝对值正⽐于样本点到判别界⾯的距离。
模式识别试题
1 / 4
一、 试问“模式”与“模式类”的含义。如果一位姓王的先生是位老年人,试问“王先
生”和“老头”谁是模式,谁是模式类?
二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的
几何意义,它与欧氏距离的区别与联系。
三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以
说明这两种学习方法的定义与它们间的区别。
四、试述动态聚类与分级聚类这两种方法的原理与不同。
五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,
而该时序信号的内在状态序列表示成。如果计算在给定O条件下出现S的概
率,试问此概率是何种概率。如果从观察序列来估计状态序列的最大似然估计,这与Bayes
决策中基于最小错误率的决策有什么关系。
六、已知一组数据的协方差矩阵为,试问
1. 协方差矩阵中各元素的含义。
2. 求该数组的两个主分量。
3. 主分量分析或称K-L变换,它的最佳准则是什么?
4. 为什么说经主分量分析后,消除了各分量之间的相关性。
七、试说明以下问题求解是基于监督学习或是非监督学习:
1. 求数据集的主分量 非
2. 汉字识别 有
3. 自组织特征映射 非
4. CT图像的分割 非
八、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。
九、在一两维特征空间,两类决策域由两条直线H1和H2分界,
其中
而包含H1与H2的锐角部分为第一类,其余为第二类。
试求:
1.用一双层感知器构造该分类器
2.用凹函数的并构造该分类器
十、设有两类正态分布的样本基于最小错误率的贝叶斯决策分界面,分别为X2=0,以及
X1=3,其中两类的协方差矩阵,先验概率相等,并且有,
。
试求:以及。
模式识别试题
2 / 4
( 九题图)
模式识别试题二 答案
1、答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概
念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模
式”,是“老头”的具体化。
2、答:Mahalanobis距离的平方定义为: 其中x,u为
两个数据,是一个正定对称矩阵(一般为协方差矩阵)。根据定义,距某一点的
Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通
常的欧氏距离。
3、答:监督学习方法用来对数据实现分类,分类规则通过训练获得。该训练集由带分类号
的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,
一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素
集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运
算,以实现道路图像的分割。
4答:动态聚类是指对当前聚类通过迭代运算改善聚类;
分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。
5、答:在给定观察序列条件下分析它由某个状态序列S产生的概率似后验
概率,写成P(S|O),而通过O求对状态序列的最大似然估计,与贝叶斯决策的最小错误率决
策相当。
6、答:协方差矩阵为,则
1) 对角元素是各分量的方差,非对角元素是各分量之间的协方差。
2) 主分量,通过求协方差矩阵的特征值,用得,则,
相应的特征向量为:,对应特征向量为,对应。
模式识别试题
3 / 4
这两个特征向量即为主分量。
3) K-L变换的最佳准则为:
对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截
尾误差最小。
4) 在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关消除。
8、答:线性分类器三种最优准则:
Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的
法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。
感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。
其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网
络多层感知器的基础。
支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间
隔为最大, 它的基本出发点是使期望泛化风险尽可能小。
9、答:按题意要求
1) H1与H2将空间划分成四个部分,按使H1与H2大于零与小于零表示成四个区域,
而第一类属于(-+)区域,为方便起见,令则第一类在(++)区域。
用双层感知器,神经元用域值,则在第一类样本输入时,两隐层结点的输出均为+1,其
余则分别为(+-),(――),(-+), 故可按图设置域值。
2) 用凹函数的并表示:或表示成,如,则
,否则
10、答:设待求,待求
由于,先验概率相等。
则基于最小错误率的Bayes决策规则,在两类决策面分界面上的样本X应满足
(1)
其中按题意,(注:为方便起见,在下面计算中先去掉系
数4/3)。
按题意分界面由x1=3及x2=0两条直线构成,则分界面方程为
(2)
对(1)式进行分解有
模式识别试题
4 / 4
得 (3)
由(3)式第一项得
(4)
将(4)式与(2)式对比可知
a=1,c=1
又由c=1与,得b2=1/4,b有两种可能,即b=1/2或b=-1/2,
如果b=1/2,则表明,此时分界面方程应为线性,与题意不符,只有b=-1/2
则(4)式为:2X1X2 (5)
将相应结果带入(3)式第二项有
(6)
则结合(5)(2)应有
,则 (7)
解得,
由得