水处理工艺——离子交换处理(精选)
- 格式:ppt
- 大小:1.64 MB
- 文档页数:24
四、离子交换一、离子交换介绍离子交换是五、六十年代发展起来的水处理工艺,我国也有近六十多年的应用历史,其工艺原理是十分成熟的,运行实践是丰富的,国家有成熟的工艺设计标准和出水水质标准。
离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。
1.1离子交换树脂离子交换树脂是离子交换树脂是带有官能团(有交换离子的活性基团)、具有网状结构、不溶性的高分子化合物。
通常是球形颗粒物。
离子交换树脂是一类具有离子交换功能的高分子材料。
在溶液中它能将本身的离子与溶液中的同号离子进行交换。
按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。
离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。
同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。
从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。
阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。
也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。
不论是哪一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。
再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。
离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。
孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。
分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。
如:大孔强酸性苯乙烯系阳离子交换树脂。
离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。
树脂中化学活性基团的种类决定了树脂的主要性质和类别。
水处理工艺流程1. 引言水是人类生活中不可或缺的资源,但由于人口增加、工业发展和环境污染等原因,水资源的供应变得越来越紧张。
因此,水处理工艺变得至关重要。
水处理工艺流程是一系列的处理步骤,旨在将不洁净的水转化为安全、可用的水源。
本文将介绍水处理工艺流程的主要步骤以及涉及的关键技术。
2. 水处理工艺流程水处理工艺流程可以分为三个主要步骤:预处理、主要处理和后处理。
2.1 预处理预处理是水处理工艺流程的第一步,旨在去除水中的悬浮颗粒、沉积物、颜色和味道等。
常见的预处理方法包括:•滤网过滤:使用物理屏障,如网状滤网,去除大颗粒、悬浮物和杂质。
•沉淀:通过加入化学混凝剂,使悬浮物凝聚并沉淀到底部。
•气浮:通过注入气体,使悬浮物浮起,并通过网状滤网进行分离。
2.2 主要处理主要处理是水处理工艺流程的核心步骤,旨在去除水中的溶解性物质、有机物、微生物和重金属等。
常见的主要处理方法包括:•活性炭吸附:使用活性炭去除溶解性有机物和色素。
•活性氧化:通过加入氧化剂,如臭氧或氯,氧化有机物和微生物。
•逆渗透:通过半透膜过滤,去除水中的溶解性物质和微生物。
•离子交换:使用离子交换树脂吸附并去除水中的离子,如钙、镁、铁等。
•超滤:通过微孔膜过滤,去除水中的颗粒、胶体和微生物。
2.3 后处理后处理是水处理工艺流程的最后一步,旨在提高水的稳定性和安全性。
常见的后处理方法包括:•pH调节:通过调整水的酸碱度,提高水的安全性。
•二次消毒:通过添加消毒剂,如氯或臭氧,杀灭水中的病原微生物。
•补充营养物质:根据实际需要,向水中添加适当的营养物质。
•净化:通过加入除臭剂、风味剂等,提升水的品质。
3. 水处理关键技术水处理工艺流程中涉及到许多关键技术,以下是其中的几个重要技术:3.1 活性炭吸附活性炭吸附是一种高效的去除水中有机物的技术。
活性炭的大孔结构和广泛的表面积使其具有很强的吸附能力。
通过调整活性炭的孔径和化学性质,可以使其对不同类型的有机物具有选择性吸附作用。
工艺方法——脱盐水处理工艺工艺简介一、离子交换法我国自上个世纪50年代就开始使用离子交换树脂的技术进行脱盐水的处理,可以说积累了丰富的经验,经过这些年的不断发展进步逐步实现了由间歇式工艺、固定床工艺向离子交换工艺的转变。
其工艺流程主要是:首先通过过滤系统将废水进行预处理,然后将废水注入过滤水槽,接着让原水与强酸阳树脂发生反应,将原水中的阳离子如钙离子,钠离子,镁离子等去除,接着将原水中的碳酸氢根离子分解成二氧化碳和水,以此二氧化碳被排出了,这样阴离子的在后面的去除中就更加便利了。
最后将经过一系列处理后的水与强碱阴树脂反应,水中的阴离子被去除了。
在整个过程中,离子交换系统可以让阴阳树脂不断再生,从而使周期不断的交替进行,直至废水达到排放标准。
优势:(1)设备初期成本较低,工艺流程比较简单,同时又便于操作。
(2)这种方式通过采用阴、阳树脂与废水中的阴、阳离子发生置换反应达到脱盐的目的,有点类似于化学实验中强酸、强碱与水中的阴阳离子发生的反应。
(3)在进行脱盐处理时,如果废水中盐的含量相对较低的情况下,这种离子交换的方法可以达到非常理想的脱盐效果,有利于水资源的充分利用。
不足:(1)这种方法在脱盐处理过程中产生的废液含盐量极高,且由于其酸碱值远远超出污水排放的标准,如果随意排放不但会造成管道的腐蚀,又会造成土壤的污染。
(2)由于废水成分的复杂性,往往会造成树脂被废水中的有机物或者杂质污染的情况,如果出现这种情况不但处理困难而且还影响了工作的顺利展开。
(3)在生产过程中,由于各种因素的影响树脂难免会有损伤、破碎的情况,另外随着阴阳树脂的不断再生,使用年限必将缩短。
二、膜分离技术虽然我国很早就对膜分离技术展开研究了,但由于成本过高和专业技术不完善膜分离技术一直没有得到广泛的应用。
目前在脱盐水处理中最常见的膜分离技术主要是反渗透法,其工艺流程主要是:首先将原水通过过滤器进行过滤,这样大大降低了浑浊的程度,除去了其中的大量杂质,然后利用活性炭吸收水中的有机高分子,难溶胶体以近一步去除水中的难溶物,以便达到反渗透用水的进水标准。
水的离子交换处理第一节离子交换除盐原理、水的离子交换除盐就是顺序用H型阳离子交换树脂将水中各种阳离子交换成H+,用OH型阴离子交换树脂将水中各种阴离子交换成OH-,进入水中的H+和OH-离子组成水分子H2O;或者让水经过阳阴混合离子交换树脂层,水中阳、阴离子几乎同时被H+和OH-离子所取代。
这样,当水经过离子交换处理后,就可除尽水中各种的无机盐类。
该工艺中发生的H离子交换反应和OH离子交换反应以及树脂再生过程中发生的反应如下:(1)氢离子交换反应式:(HCO3) (HCO3)2RH + Ca(Mg,Na2) Cl2 → R2Ca(Mg,Na2) + H2Cl2SO4 SO4再生反应式为:2HCl Cl2R2Ca(Mg,Na2) + → 2RH + Ca(Mg,Na2)H2SO4 SO4(2)氢氧根离子交换反应式为:SO4 SO4Cl2 Cl22ROH + H2 CO3 → R2(HCO3)2 + 2H2OSiO3 (HsiO3)2再生反应式:SO4 SO4Cl2 Cl2R2 (HCO3)2 + 2NaOH → 2ROH + Na2CO32-(HSiO3)2 SiO3进入离子交换器的水中一般都含有大量的碳酸氢盐。
它是天然水中碱度的主要组成部分。
当水经H离子交换后,碳酸氢盐转化成了碳酸,连同水中原来含有的碳酸,可用除碳器一起除去。
这样可以减轻阴离子交换器的负担降低消耗。
水中碳酸的平衡关系如下式所示:H++ HCO3- ≒H2CO3 ≒CO2 +H2O水中H+浓度越大,平衡越易向右移动。
当水的pH值低于4.3时,水中的碳酸几乎全部以游离的CO2形式存在。
水中游离的CO2可以看作是溶解在水中的气体,它在水中的溶解度符合亨利定律,只要降低水面上CO2的分压就可除去CO2。
除碳器就是利用这个原理除去CO2的。
第二节树脂层中的离子交换过程一、阳床工作特性阳床的作用是除去水中H+离子以外的所有阳离子。
当其运行出水钠离子浓度升高时,树脂失效,须进行再生。
中盐离子交换
中盐离子交换是一种处理水的方法,利用特定的离子交换剂去除水中的离子,以达到净化水质的目的。
在离子交换过程中,水中的离子与离子交换剂中的离子进行交换,从而将有害的离子去除。
中盐离子交换技术广泛应用于水处理领域,特别是对于硬水的软化处理。
通过中盐离子交换,可以有效地去除水中的钙、镁等硬度离子,从而降低水的硬度。
这种处理方法不仅可以改善水的口感和外观,还可以延长设备和管道的使用寿命,防止水垢的形成。
在使用中盐离子交换技术时,需要根据具体的水质条件和处理要求选择合适的离子交换剂和工艺参数。
同时,需要注意对离子交换剂进行定期的再生和更换,以保证处理效果和延长使用寿命。
总的来说,中盐离子交换是一种有效的水处理技术,能够广泛应用于各种领域,为人们提供安全、健康和优质的用水。
离子交换原理以及工艺操作过程一、离子交换原理1. 离子交换概念离子交换是指在适当条件下,溶液中的离子与固体材料表面上的离子发生置换反应的过程。
离子交换材料通常是树脂或有机高分子物质,其上有大量的具有交换能力的功能团。
2. 离子交换机理离子交换反应是通过固体材料表面上的功能团与溶液中的离子之间通过化学键结合而实现的。
常见的离子交换反应包括阴离子与阳离子之间的交换反应,例如阴离子交换树脂对床磁化处理。
3. 离子交换应用离子交换技术广泛应用于水处理、电子工业、化工、生物制药等领域。
其中,水处理领域中的离子交换技术主要用于软化水、去除溶解物质和离子交换等。
二、离子交换工艺操作过程1. 预处理在进行离子交换工艺前,需对原水进行预处理。
常见的预处理方法包括过滤与沉淀,以去除水中的颗粒物质和悬浮物质,确保原水的清洁度。
2. 离子交换树脂的选择根据需要去除的离子种类和水质情况,选择合适的离子交换树脂。
常见的离子交换树脂包括阳离子交换树脂和阴离子交换树脂。
3. 离子交换操作a. 离子交换树脂的填充:将选择好的离子交换树脂填充至离子交换器的固定床层中,确保均匀分布。
b. 离子交换过程中的工艺操作:根据所需的离子交换反应,适当调节流速、温度和pH值等操作条件,促使离子交换反应充分进行。
c. 清洗和再生:离子交换树脂在一段时间后会逐渐失效,需进行清洗和再生操作,以恢复其交换能力。
4. 后处理对通过离子交换工艺处理后的水进行后处理,通常包括再次过滤、消毒等操作,以确保处理后的水质符合要求。
5. 操作条件控制在离子交换工艺操作中,需要对流速、温度、压力、pH值以及操作时间等条件进行严格控制,以确保离子交换反应能够充分进行,并获得理想的处理效果。
结语离子交换技术作为一种重要的水处理工艺,在提高水质、改善生活环境等方面发挥着重要作用。
通过了解离子交换的基本原理和工艺操作过程,可以更好地应用该技术,并不断提高其处理效果和应用范围。
反渗透—离子交换脱盐处理的优点
反渗透—离子交换联合处理方式,能够有效降低水质多变性所带来的负面影响,并且可减少再生频率,从而得以提高了水处理装置运行的灵活性和可靠性能,在水源的选择上也有了更大的余地。
例如,原水含盐量从1000mg/L增至1500mg/L,反渗透设备在工作压力2.75MPa,出力仅下降1%~2%;而离子交换设备遇此情况,必然会严重降低交换容量。
这说明,反渗透设备的出力与水质的关系不在,只同工作压力差及水质成分所决定的渗透压差成比例变化。
这是反渗透工艺的一个很大的优点。
(1)离子交换设备的再生剂用量可以降低90%~95%,再生剂贮放场地可以大大减小。
(2)由于反渗透装置可以将原水含盐量降低到原来的1/10~1/20,因此除盐设备的盐泄漏可以有效减小,使其运行周期得以延长。
(3)延长了离子交换树脂的使用寿命周期。
(4)通常混床出水电导率为0.1μs/cm,反渗透-除盐联合系统约为0.07μs/cm。
(5)提高了对水源水质变化的适应性和出水质量的可靠性等两大性能。
(6)由于除盐设备排放的废液量减少了,这样更加有利于环境保护。
(7)原来不适宜采用离子交换除盐的水都可能用来作为除盐设备的进水。
(8)除盐系统可以简化,有的水源甚至在反渗透后用混床处理就可满足锅炉用水的要求。
(9)原水水质当中如果通常采用一般的处理方法不易除去的物质如胶体物质、有机物、铁离子、二氧化硅等也可被有效去除。
离子交换工艺简介离子交换工艺简介离子交换工艺除盐化学交换,需要酸碱再生,其再生频率大,酸碱用量大,对周围的水和大气环境均有较大程度的影响。
下面店铺为大家整理了关于离子交换工艺的文章,一起来看看吧!1离子交换的基本原理水处理中主要采用离子交换树脂和磺化煤用于离子交换。
其中离子交换树脂应用广泛,种类多,而磺化煤为兼有强酸型和弱酸型交换基团的阳离子交换剂。
离子交换树脂按结构特征,分为:凝胶型、大孔型和等孔型;按树脂母体种类,分为:苯乙烯系、酚醛系和丙烯酸系等;按其交换基团性质,分为:强酸型、弱酸型、强碱型和弱碱型。
⑴离子交换树脂的构造是由空间网状结构骨架(即母体)与附属在骨架上的许多活性基团所构成的不溶性高分子化合物。
活性基团遇水电离,分成两部分:固定部分,仍与骨架牢固结合,不能自由移动,构成所谓固定离子,活动部分,能在一定范围内自由移动,并与其周围溶液中的其他同性离子进行交换反应,称为可交换离子。
⑵基本性能①外观呈透明或半透明球形,颜色有乳白色、淡黄色、黄色、褐色、棕褐色等,②交联度指交联剂占树脂原料总重量的百分数。
对树脂的许多性能例如交换容量、含水率、溶胀性、机械强度等有决定性影响,一般水处理中树脂的交联度为7%~10%.③含水率指每克湿树脂所含水分的百分率,一般为50%,交联度越大,孔隙越小,含水率越少。
④溶胀性指干树脂用水浸泡而体积变大的现象。
一般来说,交联度越小,活性基团越容易电离,可交换离子的水合离子半径越大,则溶胀度越大;树脂周围溶液电解质浓度越高,树脂溶胀率就越小。
在生产中应尽量保证离子交换器有长的工作周期,减少再生次数,以延长树脂的使用寿命。
⑤密度分为干真密度、湿真密度和湿视密度⑥交换容量是树脂最重要的性能,是设计离子交换过程装置时所必须的数据,定量地表示树脂交换能力的大小。
分为全交换容量和工作交换容量。
⑦有效ph范围由于树脂的交换基团分为强酸强碱和弱酸弱碱,所以水的ph值对其电离会产生影响,影响其工作交换容量。
离子交换柱的原理
离子交换柱就是水中的离子和离子交换柱内树脂上的离子所进行的等电荷摩尔量的反应,通俗的说是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种传统水处理工艺。
离子交换柱主要是利用离子交换树脂中的离子同原水(液体)中的某些离子进行交换而将其除去,使水(液体)得到净化的方法。
已广泛应用于化工、电子、医药、纺织、电镀行业的制取纯水、硬水软化、药物和食品的脱色和提取、重要化工原料的回收以及污水处理等。
离子交换柱的原理
采用离子交换方法,可以把水中呈离子态的阳、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:
1、阳离子交换树脂:R—H+Na+→R-Na+H+
2、阴离子交换树脂:R—OH+CL-→R-CL+OH+
阳、阴离子交换树脂总的反应式即可写成:
RH+ROH+NaCL—RNa+RCL+H2O
由此可看出,水中的Nacl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。
3、混合离子交换柱(混床):
混床是装阳、阴树脂按一定比例(一般为1:2,以便阳、阴树脂同时达到交换终点而同时再生)装入混合柱而成;
实际上它组合成了水中的H+和OH-立即生成电离度很小的水分子(H2O),几乎不存在阳床或阴床交换时产生的逆交换现象;
故可以使交换反应进行得十分彻底,因而混合床的出水水质优于阳、阴床串联组成的复床所能达到的水质,能制取纯度相当高的成品水。
电厂煤水处理流程每个电厂由于发电机组容量不同,对于水处理工艺的要求也不同。
以下以35万瓦机组为例,水处理工艺流程为:水库水—混凝沉淀—原水箱—多介质过滤器—生水箱—超滤—清水箱—反渗透—阳离子交换器—罗兹风机—中间水箱—阴离子交换器—混合离子交换器—除盐水箱。
每一个电厂对上名称有所不同。
扩展资料:水处理的由来:在古时候,当时的人类没有先进的水处理技术,为了降低疾病的水传播,他们便是采用简单的格栅截留和自然沉降等方法进行水处理。
随后,经过多年观察和总结,他们也是发现了用砂子可以过滤掉细微悬浮物的方法,进而出现了药剂混凝预处理。
随着人类文明的不断进步,人类产生的垃圾以及对环境的大肆破坏,导致了水资源受到严重污染。
当各种传染病通过水传播,致使不少人染病或者死亡的时候,人们才是发现水处理是何等的重要。
也正是如此,人们才逐渐开始研究水处理技术。
从十九世纪末开始,工业技术得到长足发展,工业污水也是逐年翻倍产生。
而且当时的工业强国的河流、湖泊也是遭到严重污染,逐渐成为社会公害。
典型的例子有英国的泰晤士河中的鱼类近乎死亡殆尽、美国的密西西比河的生物大量死亡、日本熊本县水俣湾被甲基汞污染,导致了附近居民出现骨痛病。
人们发现,简单的化学、物理方法以及难以处理这些污水,研究出新型的水处理技术已经急不可耐了。
各国的科学家都开始着手研究水处理方法,最早是污水曝气试验,然后又是生物膜法,接着再是人工生物处理法,再到如今具有针对性的离子交换法、电化学法等高新技术。
上世纪九十年代,随着可持续发展的思想提出,不少国家也都开始利用系统工程的方法。
把经济发展与环境保护综合考虑了起来,水处理也不单是处理已经成形的污水,而是从源头开始加以控制。
由于最近几十年经济发展迅速,人们发现传统给水处理工艺已经难以满足社会的用水需求,故而也就开始将生物技术应用到给水工艺当中。
不仅如此,伴随水资源危机的产生,污水再利用的工艺也是成为了人们关注的一点。