锤击式沉管灌注桩贯入度控制标准
- 格式:doc
- 大小:16.00 KB
- 文档页数:4
灌注桩质量控制标准一、引言灌注桩是一种常用的地基处理方法,广泛应用于建筑、桥梁、港口、水利等工程领域。
为了确保灌注桩的质量,提高工程的安全性和可靠性,制定灌注桩质量控制标准是必要的。
本文将详细介绍灌注桩的质量控制标准,包括灌注桩的设计要求、施工工艺、材料要求、施工质量检验等内容。
二、设计要求1. 灌注桩的设计应符合相关国家或行业标准,如《桩基与基坑支护技术规范》等。
2. 灌注桩的设计应满足工程的承载力、变形和稳定性等要求。
3. 灌注桩的设计应考虑地质条件、荷载特点、施工工艺等因素。
三、施工工艺1. 灌注桩施工前,应对施工现场进行勘察,确保地质条件符合设计要求。
2. 灌注桩施工应按照设计要求进行,包括桩径、桩长、钢筋布置等。
3. 灌注桩施工应采用适当的施工工艺,如钻孔灌注桩、静压灌注桩等。
4. 灌注桩施工中应注意施工现场的安全,采取必要的安全措施,如设置警示标志、围挡等。
四、材料要求1. 灌注桩所使用的水泥应符合国家标准,具有良好的凝结性和强度。
2. 灌注桩所使用的钢筋应符合国家标准,具有足够的抗拉强度和耐腐蚀性。
3. 灌注桩所使用的砂、石等填料应符合国家标准,具有良好的稳定性和排水性能。
五、施工质量检验1. 灌注桩施工过程中应进行质量检验,包括桩孔的钻进质量、灌注过程的控制等。
2. 灌注桩施工完成后,应进行质量验收,包括桩身的垂直度、桩顶标高等。
3. 灌注桩的质量检验应符合相关国家或行业标准,如《地基与基础工程验收规范》等。
六、质量控制要点1. 灌注桩施工前应制定详细的施工方案,并进行技术交底和安全教育。
2. 灌注桩施工过程中应严格按照设计要求和施工工艺进行,确保施工质量。
3. 灌注桩施工现场应设置专人负责施工质量的监督和检查。
4. 灌注桩施工完成后应及时进行质量验收,确保工程质量符合要求。
七、总结灌注桩质量控制标准是确保灌注桩工程质量的重要依据,本文详细介绍了灌注桩的设计要求、施工工艺、材料要求、施工质量检验等内容。
建筑分项工程施工标准锤击沉管混凝土灌注桩施工工艺标准编制说明我国自2002年1月1日起相继出台了《建筑工程质量验收统一标准》和13项分项工程质量验收规范,在新版系列规范中删除了原规范中关于“施工工艺和技术”的有关内容,施工工艺标准被定位为企业内控的标准,为了顺应我国施工技术标准改革的发展趋势,公司成立了公司企业标准编审小组,由公司科技教育处统一策划组织,由公司及第一至第六分公司、其它专业分公司共同参与编写了公司企业施工工艺标准。
本次编写的系列标准是施工企业应用最为普通的常规施工工艺标准。
其编制依据为:1、新版《建筑工程质量验收统一标准》及各专业质量验收规范;2、原各专业施工及验收规范或施工手册中符合现行规范要求(即能达到《统一标准》规范体系质量验收标准)的施工工艺;3、成熟的企业施工工艺;4、经过时间考验的公司的QC成果。
是根据新版施工验收规范量身定做的标准,符合国家施工验收规范的要求,对现场施工具有很强的指导性和实时性。
本标准为锤击沉管混凝土灌注桩分项工程施工工艺标准,现批准为企业标准,编号Q/GXSJ1407-2003,自2004年1月1日起实施。
锤击沉管混凝土灌注桩施工工艺标准1. 适用范围本工艺标准适用于工业与民用建筑的锤击沉管灌注桩。
2.材料要求2.1水泥:用32.5强度等级以上普通水泥,矿渣水泥。
2.2石子:碎石粒径20~40mm,针片状颗粒≤25%。
卵石粒径≤50mm。
2.3 砂子:采用中、粗砂,砂含泥量不大于3%。
2.4钢筋:品种和规格按设计要求采用,应有出厂合格证。
3.施工设备:3.1锤击打桩设备:一般锤击桩机,由桩架、桩锤、桩管等组成,桩管直径为325mm~425mm,长15m~20m。
3.2配套机具设备:料斗、混凝土搅拌机、交流电焊机,氧割装置、手推车等。
4.作业条件:4.1地质资料,施工图纸、施工组织设计(施工方案)已齐全。
4.2施工现场范围内的地面、地下障碍物均已排除或处理。
灌注桩质量控制标准灌注桩是一种常用的地基处理方法,用于加固土层或提供承载力。
为了确保灌注桩的质量达到设计要求,需要制定相应的质量控制标准。
本文将详细介绍灌注桩质量控制标准的要求和步骤。
一、灌注桩质量控制标准的要求1. 桩身强度要求:灌注桩的桩身应具备足够的强度,以承受设计荷载。
桩身的强度要求应符合相关设计规范或标准。
2. 桩身直径和垂直度要求:灌注桩的桩身直径和垂直度应符合设计要求。
桩身直径的偏差和垂直度的偏差应在允许范围内。
3. 桩身质量要求:灌注桩的桩身应无裂缝、空洞、松散或其他缺陷。
桩身表面应平整、光滑,无明显的凹凸和毛刺。
4. 桩端质量要求:灌注桩的桩端应与土层紧密接触,形成良好的承载。
桩端的质量应无松散、空洞或其他缺陷。
5. 灌注材料要求:灌注桩的灌注材料应符合相关规范或标准。
灌注材料的配合比、强度和流动性等性能应满足设计要求。
6. 灌注过程要求:灌注桩的灌注过程应按照相关规范或标准进行。
灌注过程中应控制灌注速度、灌注压力和灌注深度等参数,以确保灌注桩的质量。
二、灌注桩质量控制标准的步骤1. 桩身强度检测:在灌注桩完成后,进行桩身强度检测。
可以采用静载试验、动载试验或无损检测等方法,评估桩身的承载能力。
2. 桩身直径和垂直度检测:在灌注桩完成后,进行桩身直径和垂直度检测。
可以使用激光测量仪或其他测量设备,测量桩身直径和垂直度的偏差。
3. 桩身质量检测:在灌注桩完成后,对桩身进行质量检测。
可以使用超声波检测、钻孔取样等方法,检测桩身是否存在裂缝、空洞或其他缺陷。
4. 桩端质量检测:在灌注桩完成后,对桩端进行质量检测。
可以使用钻孔取样、桩端静载试验等方法,评估桩端与土层的接触情况。
5. 灌注材料质量检测:在灌注桩施工过程中,对灌注材料进行质量检测。
可以采集灌注材料样品,进行强度试验、流动性试验等,确保灌注材料符合要求。
6. 灌注过程监控:在灌注桩施工过程中,对灌注过程进行监控。
可以使用压力传感器、流量计等设备,实时监测灌注速度、灌注压力和灌注深度等参数。
编号:AQ-JS-06668( 安全技术)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑锤击式沉管灌注桩贯入度控制标准浅议Discussion on penetration control standard of hammer driven cast-in-place pile锤击式沉管灌注桩贯入度控制标准浅议使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。
锤击式沉管灌注桩以其诸多优点,成为多层住宅、综合楼的首选桩型。
但其自身也存在一些缺陷和在设计施工中难以操作的指标,灌注桩沉管贯入度的控制便是其中之一。
本文通过工程实例,介绍锤击式沉管灌注桩贯入度设计的一般方法,指出存在问题,初步分析问题原因,提出解决问题的实用方法。
一、问题的提出一般认为,桩的贯入度与其极限承载力有直接关系。
贯入度通常依据现有的打桩动力公式结合当地成功经验确定。
但灌注桩沉管的贯入度与桩承载力的关系是否可以用简单的经验公式确定,或者简单地套用当地成功经验,以及贯入度是否为一项控制性的设计指标,对于这些问题,笔者认为有必要作进一步的探讨。
目前,采用灌注桩的一般是9层以下的二级建筑物。
由于国家规范对二级建筑物没有规定要进行现场试验确定单桩承载力,而是“应根据静力触探、标准贯入、经验参数等估算,并参照地质条件相同的试桩资料,综合确定”,因此这类建筑很少在设计施工前进行桩的现场试验,设计人员依据现有的打桩动力公式结合当地成功经验确定贯入度。
在施工时,对于以摩擦为主的摩擦桩,大多数情况下沉管达不到设计要求的贯入度,此时通常采用四种方法解决:1)加深桩长;2)复打桩;3)扩大桩径;4)加桩。
灌注桩质量控制标准一、引言灌注桩作为一种常用的地基处理方法,对于建筑物的稳定性和安全性具有重要作用。
为了确保灌注桩的质量,制定相应的质量控制标准是必要的。
本文将详细介绍灌注桩质量控制标准的要求和措施。
二、灌注桩质量控制标准的要求1. 桩身强度要求灌注桩的桩身强度是保证其承载能力的关键指标。
桩身强度应符合设计要求,并在施工过程中进行监测和控制。
常用的监测方法包括静载试验、动载试验等。
2. 桩身直径和垂直度要求灌注桩的桩身直径和垂直度对于其承载能力和稳定性具有重要影响。
桩身直径应符合设计要求,并在施工过程中进行测量和控制。
桩身的垂直度应控制在允许范围内,以保证桩的稳定性。
3. 灌注混凝土配合比要求灌注桩的混凝土配合比应符合设计要求,并在施工过程中进行控制和检测。
混凝土配合比的控制包括水灰比、砂率、骨料粒径等指标的控制,以保证混凝土的强度和耐久性。
4. 灌注桩钢筋配筋要求灌注桩的钢筋配筋应符合设计要求,并在施工过程中进行控制和检测。
钢筋的直径、间距、长度等要求应满足设计要求,并进行相应的检查和验收。
5. 灌注桩施工孔底清洁度要求灌注桩施工孔底的清洁度对于桩的质量具有重要影响。
施工孔底应清除杂物、泥浆等,以保证灌注桩与地基的良好连接。
施工孔底的清洁度应通过目视检查和清理措施进行控制。
三、灌注桩质量控制标准的措施1. 施工方案和技术要求制定详细的施工方案和技术要求,包括灌注桩的施工步骤、施工工艺和注意事项等。
施工方案和技术要求应经过设计单位和监理单位的审核,并在施工现场进行严格执行。
2. 施工材料的选择和检验选择符合国家标准的混凝土、钢筋等施工材料,并进行必要的检验。
混凝土材料的检验包括水泥、砂、石等的质量检验,钢筋材料的检验包括直径、强度等指标的检验。
3. 施工设备和工具的检验和维护保证施工设备和工具的正常运行和使用,对设备和工具进行定期检验和维护。
特别是对于混凝土搅拌机、钢筋弯曲机等关键设备,应进行日常巡检和定期维护。
一、工作原理夯扩桩是在锤击沉管桩的机械设备与施工方法的基础上加以改进,增加一根内夯管,按照一定的施工工艺,采用夯扩的方式将桩端现浇混凝土扩大成大头形的一种桩型,通过增大桩端截面和挤密地基土,使桩的承载力大幅提高,大量工程实践证明:该桩型具有施工技术可靠、工艺科学、无泥浆污染以及工程性价比高等优点,使得该桩型在南昌大规模使用,并取得良好的社会效益和经济效益。
二、施工工艺技术参数根据规范要求,桩端进入持力层深度≥1m,沉桩深度采取设计桩长与贯入度双向控制,最后锤击平均贯入度小于100mm,具体参数如下:管内夯扩灌注砬高度H(m)外管上拔高度H(m)设计桩长与双管内步夯入深度差值C(m)第一次夯扩≥3.6 0.8~1.0 0.2~0.3第二次夯扩≥4.2 0.8~1.0 0.2~0.3施工准备阶段监理的要点一、项目部监理人员的配备:监理公司应根据工程量的大小以及专业工程的要求配备项目监理人员,涉及专业应包括土建、测量、工程地质等专业,项目监理组织机构可按直线制或矩阵制进行设置。
二、施工单位在施工准备阶段上报施工组织设计,该施工组织设计应针对工程实际情况、施工总平面布置及进度计划的要求,对设备、人员和质量保证体系进行合理的配置。
监理单位在审核施工组织设计中的重点是审核施工单位的质量保证体系及质保措施是否满足质量及进度控制的要求。
三、工程技术质量指标及参数的审核,监理单位依据施工图纸及相关工程技术规范,在审核工程技术质量指标及参数是否满足要求,具体指标有:①桩位放样偏差;②垂直度误差;③桩位允许偏差;④成桩允许偏差;⑤钢筋笼制安;⑥砼配合比强度试验报告。
四、测量放线监理工作:1、施工单位应根据“先轮廓后轴线,先承台后桩位”的原则,按建设单位提供的基准线、基准点进行放样。
2、线桩及标高控制点应设在不受施工影响的地方,以使施工桩、复桩在同一基点。
3、轴线控制桩放完后,应报监理单位及业主代表复核,经同意后准予开始放桩位,桩位放完后,用外钢管做好钢模在桩位做好10cm厚砼块用来定位,然后由监理和施工单位对桩号进行统一的编号开在砼块上进行标识。
7.4.5 本条所规定的停止锤击的控制原则适用于一般情况,实践中也存在某些特例。
如软土中的密集桩群,由于大量桩沉入土中产生挤土效应,对后续桩的沉桩带来困难,如坚持按设计标高控制很难实现。
按贯入度控制的桩,有时也会出现满足不了设计要求的情况。
对于重要建筑,强调贯入度和桩端标高均达到设计要求,即实行双控是必要的。
因此确定停锤标准是较复杂的,宜借鉴经验与通过静载试验综合确定停锤标准。
7.4.6 桩终止锤击的控制应符合下列规定:
1 当桩端位于一般土层时,应以控制桩端设计标高为主,贯入度为辅;
2 桩端达到坚硬、硬塑的黏性土、中密以上粉土、砂土、碎石类土及风化岩时,应以贯入度控制为主,桩端标高为辅;
3 贯入度已达到设计要求而桩端标高未达到时,应继续锤击3 阵,并按每阵10 击的贯入度不
应大于设计规定的数值确认,必要时,施工控制贯入度应通过试验确定。
7.4.10 预应力混凝土管桩的总锤击数及最后1.0m 沉桩锤击数应根据当地工程经验确定。
锤击式PHC预应力混凝土管桩贯入度的控制在建筑工程领域,锤击式 PHC 预应力混凝土管桩作为一种常见的基础形式,其施工质量的控制至关重要。
而贯入度作为衡量管桩施工质量的重要指标之一,直接关系到桩基础的承载能力和稳定性。
因此,对锤击式 PHC 预应力混凝土管桩贯入度的有效控制,是确保工程质量的关键环节。
首先,我们需要了解什么是锤击式 PHC 预应力混凝土管桩的贯入度。
简单来说,贯入度是指在锤击作用下,管桩每锤击一次的入土深度。
贯入度的大小受到多种因素的影响,包括桩的类型、规格、地质条件、锤重、锤击能量等。
地质条件是影响贯入度的关键因素之一。
不同的地质层,如软土、硬土、砂土、岩石等,其阻力和承载能力差异较大。
在软土地基中,管桩的贯入度通常较大,因为土体的阻力较小;而在坚硬的地质层中,贯入度则会明显减小。
因此,在施工前,必须对地质情况进行详细的勘察和分析,以便合理地预估贯入度,并为施工方案的制定提供依据。
桩的类型和规格也会对贯入度产生影响。
PHC 管桩的直径、壁厚、长度等参数不同,其抵抗锤击的能力和入土的难易程度也会有所不同。
一般来说,直径较大、壁厚较厚的管桩,在相同的锤击能量下,贯入度相对较小。
锤重和锤击能量是控制贯入度的重要手段。
较大的锤重和较高的锤击能量可以增加管桩的入土深度,但并非锤重越大、锤击能量越高就越好。
过度的锤击可能会导致桩身损坏,甚至影响桩的承载能力。
因此,需要根据桩的类型、地质条件等因素,合理选择锤的类型和重量,并控制好锤击的频率和能量。
在施工过程中,对贯入度的监测和记录是必不可少的。
施工人员应在每一次锤击后,准确测量管桩的贯入度,并与预先设定的标准贯入度进行对比。
如果实际贯入度与标准贯入度偏差较大,就需要及时分析原因,并采取相应的措施进行调整。
例如,如果贯入度过大,可能表明地质情况与勘察结果不符,或者锤击能量过大,此时需要适当降低锤击能量,或者重新评估地质条件;如果贯入度过小,可能需要更换更大的锤或者采取其他辅助措施,以确保管桩能够顺利入土达到设计要求的深度。
锤击沉管灌注桩施工执行标准FJSJ/JS C 00-001-20031..施工准备:1.1材料1.1.1所用的水泥经检验合格,砂、石子有出厂合格证并经检验合格,所用的外加剂也有合格证。
1.1.2混凝土配合比已按实际砂、石含水量进行调整,外加剂也按使用要求进行稀释或溶解。
1.1.3所用的焊条、钢材有合格证并经检验合格,进口钢材还应进行化检和可焊性试验。
1.2机具1.2.1桩机设备等经检验试运转符合施工要求。
1.2.2搅拌机可靠安装符合使用要求,且经试运转。
1.2.3计量用的磅秤已经安装妥当,且磅称经检验符合要求。
1.2.4使用工具:板子、铁丝钩、操作架(台)、铁马、小撬杆、铡刀、手锤和钢丝刷、手推车、铁铲、扳手、洋镐、小铁锤、木锤、振动棒、串筒和料斗、各种规格扳手、梅花扳手、大锤、探锤钢卷尺、靠尺和水平尺等。
1.3作业条件1.3.1施工图已经自审、会审和交底,已经必要的试桩或试成孔,工人已经接受技术交底。
1.3.2具有符合规范要求和施工要求的地质报告。
1.3.3施工现场“三通一平”,地耐力大于100kpa,地下障碍物和地下管线已经处理完毕。
1.3.4临近场地的建筑物已经论证,在施工期间不致由于施工影响造成危害或已经有相应的措施。
1.3.5开工报告已经审批,施工期间对周边环境的影响符合城市管理的要求。
1.3.6工程测量、放线工作已经完成且经复核符合要求,桩位测设已经复核符合要求。
1.3.7用于工程的原材料已经检验符合要求。
1.3.8桩机设备等经试运转符合施工要求。
1.3.9有关人员已接受安全、技术交底,且有钢筋制作详图。
2.施工工艺:打桩的工艺流程为:在地表桩位埋设桩尖→桩机就位、桩管对准桩位→锤击沉管→探管→安装钢筋笼→浇灌混凝土→边拔管边倒打并继续浇灌混凝土→成桩。
2.1移动桩机到已经复核的桩位上对中,对中桩位偏差小于20mm,桩管垂直度偏差小于1%(用靠尺检查),否则应调整桩机水平位置直至满足要求。
锤击式沉管灌注桩贯入度控制标准浅议摘要锤击式沉管灌注桩由于结构简单、施工方便等特点,近年来被广泛应用于基础工程中。
而在沉管灌注桩的施工中,如何控制灌注桩的贯入度,直接关系到桩基质量的好坏。
本文通过介绍锤击式沉管灌注桩的施工流程及常见的贯入度控制标准,旨在为相关人员提供指导和参考。
引言沉管灌注桩是一种以沉管为桩身,沿整个桩长施以高压流混凝土或注浆实现桩的加固的桩基工程。
而锤击式沉管灌注桩,是沉管灌注桩中的一种。
它的优点在于施工简单、成本低、适用于各种地质条件。
它是通过人力或机械,使用锤击将沉管向下推进,同时在推进过程中不断施以高压混凝土。
随着近年来基础工程的不断扩大,锤击式沉管灌注桩的应用越来越广泛。
然而,在锤击式沉管灌注桩的施工中,如何控制灌注桩的贯入度,直接关系到桩基质量的好坏。
下面将从沉管灌注桩的施工流程和常见的贯入度控制标准两个方面来进行阐述。
沉管灌注桩的施工流程1. 设计在进行沉管灌注桩的施工前,必须进行合理的设计。
根据所在地区的地质环境,确定沉管的长度、直径和材质,以及灌注桩混凝土配合比等参数。
2. 现场准备现场准备工作包括现场勘察、基坑开挖和沉管的运输等。
在进行基坑开挖前,必须确定所开挖的基坑的大小和深度,并按照设计要求进行开挖。
沉管的运输需要保证沉管的完好,以免发生变形。
3. 沉管安装在安装沉管时,必须要保证沉管在垂直方向上和水平方向上的位置,以及沉管的间距。
同时,还需要注意沉管的深度,要保证沉管底部已经达到设计标高。
4. 灌注桩施工灌注桩的施工,是在沉管安装完成后进行的。
首先是从沉管的顶部开始,向下逐层灌注混凝土,同时在灌注过程中使用锤击将沉管向下推进。
灌注桩的施工要按照设计混凝土配合比进行,同时要控制灌注速度和施工压力,以确保混凝土浆体的充实度和均匀性。
常见的贯入度控制标准在施工过程中,必须对灌注桩的贯入度进行控制。
贯入度是指每一次锤击后沉管向下推进的距离。
针对不同的地质条件,常用的贯入度控制标准如下:1. 岩石地层在岩石地层中,贯入度控制标准一般为 1-2 厘米。
沉管管桩贯入度的准确控制文章编号:1009—9441(2006)03—0039一O2沉管管桩贯入度的准确控制口口周宏(深圳市道路工程公司,广东深圳518024)摘要:结合工程实例,分析了影响沉管管桩贯入度的因素,介绍了沉管管桩贯入度施工设计方法并与实际控制结果进行了比较.提出了提高贯入度控制准确性的实用方法.关键词:管桩;贯入度;施工设计;准确性中图分类号:TU473.1文献标识码:B引言某大型住宅小区由3幢3~4层的公寓及1幢3层的会馆组成,均为砖混结构,最大单柱荷载约2000kN.该场地现状为耕地或池塘,地形稍有起伏,测得各勘探点的孔口高程在4.25—2.38m之间,属山前冲积平原地区.各岩层岩性特征自上而下分述如下:①l一1层为杂填土,灰色,杂色,松软,湿;含有植物根系,以粉质黏土及建筑垃圾为主,局部分布,层厚0.00~3.40m;②1—2层为耕植土,灰黄色,黄灰色,松软,湿;含有植物根系,以粉质黏土为主,局部分布,层厚0.00~1.60m;③2层为粉质黏土,灰黄色,灰色,青灰色,软至软可塑;含少量的铁锰质结核,局部粉粒含量较高;稍有光滑,无摇震反应,干强度中等,韧性中等;局部缺失,层厚0.00~3.10m;(层为淤泥,灰色,饱和,流塑;含有机质及腐植质;稍有光滑至光滑,无摇震反应,干强度及韧性中等;仅z37,z40见,层厚0.00~1.50m;(一2层为粉质黏土,灰黄色,青灰色,硬可塑,局部为硬塑;含少量铁锰质斑点;稍有光滑,无摇震反应,干强度高,韧性中等;全场地稳定分布,层厚1.10~8.40m;⑥4—3层为粉质黏土,黄色,淡褐红色,硬可塑至硬塑;含少量斑点;稍有光滑,无摇振反应,干强度中等,韧性中等; 全场地稳定分布,层厚2.70~17.10m;(一1层为全风化粉砂岩,深黄褐色,褐红色,灰褐色,岩石风化成土状,原岩结构构造不清晰.已控制该层层厚7.40m;⑧6—2层为强风化粉砂岩,深黄褐色,矿物多数变色,结构构造不清晰,矿物成分显着变化,节理裂隙发育,岩芯呈砂土状,局部为碎块状.已控制该层层厚2.30m;⑨7层为中等风化灰岩,灰色,岩芯较完整,呈柱状,个别为碎块状;裂隙较发育,被方解石所充填;岩石较坚硬,岩芯采取率85%左右.已控制该层层厚3.30m.设计要求采用沉管管桩,桩端以中细砂层上部为持力层,桩径为500mm,单桩承载力标准值取值为600kN.1沉管管桩贯入度的影响因素一般认为,桩的贯人度与其极限承载力有直接的关系.贯人度通常是依据现有的打桩动力公式结合当地的成功经验来确定.但沉管管桩贯人度与桩承载力的关系是否可以简单地用经验公式来确定, 或是简单地套用当地的成功经验,以及贯人度是否为一项控制性的设计指标,对于这些问题,笔者认为有必要作进一步的探讨.1.1荷载传递机理桩在荷载作用下,桩身上部首先受到压缩,一部分荷载往下部桩身传递,另一部分则在桩与桩周土之间形成摩阻力.当荷载分级逐步加到桩顶时,桩身上部受到压缩而产生相对于土的向下位移,与此同时,桩周表面受到土的向上摩阻力,桩身荷载通过桩周摩阻力传递到桩周土层中去,致使桩身荷载和桩身压缩变形随深度递减.随着荷载的增加,桩身压缩量和位移量增加,桩身下部的摩阻力随之得以进一步发挥.当桩周摩阻力全部发挥达到极限状态后,若继续增加荷载,则荷载量将全部由桩端土承担.桩的这种传递理论,是符合静压试桩的实际的,且已为许多桩的荷载试验所证实.1.2单桩竖向极限承载力标准值单桩竖向极限承载力标准值按GB5o007—2002(建筑地基基础设计规范》中的经验公式:R.=qpaAP+u∑qcI(1)计算得到单桩竖向承载力特征值尺.如表l所示,最终设计取值为600kN.建材技术与应用3/2006?39?表l单桩竖向承载力特征值桩孔号桩径持力层进人深有效桩桩端标单桩竖向承载型度/m长/m高/m力特征值R/kN沉Z505oo粉质黏土4—33.oo8.7—7.28648.74管Z435oo粉质黏土4—33.oo9.3—7.40698.38管桩Z305oo粉质黏土4—35.08.6—6.53633.031)有效桩长自2—1层顶面算起.实际单桩承载力应根据静载荷试验综合确定.2沉管管桩贯入度施工设计贯入度的设计一般依据现有的打桩动力公式,主要有格尔谢凡诺夫公式,工程新闻修正公式,海利公式和当地打沉管管桩公式等.上述经验公式是根据功能原理和试验推导出来的,适用对象为预制桩(包括钢管桩);而沉管管桩与预制桩在施工方法上有很大区别,如果套用上述经验公式来设计管桩的贯入度显然是不恰当的.在工程实践中,这种方法往往偏于安全,结果使工程成本增加.2.1格氏公式e=nAQH丽×糟(2)×丽)式中:e——打桩最后阶段平均每锤的贯入度,cm; n——桩及桩垫材料系数,无桩垫时n=0.5; 8——恢复系数,无桩帽时8=0.25;Q——锤重,kN;q——桩,桩帽,桩锤的非冲击部分重量,kN; H——落锤高度,cm;A——桩的横截面积,cm;/12——安全系数,永久建筑为2;尺——单桩承载力标准值,kN.根据现场设备情况和设计要求,有关参数取值为:Q=30kN,q=26kN,A=1.810cm,H=100×0.8=80(cm),R=600kN.将有关数据代入(2)式得:e=0.54(cm/击)2.2当地沉管管桩公式丢×[+](3)式中:e——打桩最后阶段平均每锤的贯入度,cm; Q——锤重,kN;月——落锤高度,in;A——参数,桩径为500mm时A=9:曰——参数,桩径为500mm时B=120;,v——总锤数,此时取800锤;——单桩承载力标准值,kN.将有关数据代入(3)式得:e=0.18(cm/击)3沉管管桩贯入度实际施工控制情况由上述计算可知,当地沉管管桩公式要求较之更加严格.该地的成功经验是:对于桩径500mm,设备锤重为30kN,设定锤落距为1.0in的情况,最后3阵锤击,每阵l0锤,贯入度<6cm.综合考虑计算结果和当地的成功经验,设计规定最后3阵锤击,要求贯入度控制在6cm/10击以下.但在实际施工中,桩管打至设计标高时,大部分桩的贯入度超过了设计要求,个别桩多达22—50cm/10击,距设计要求相差很大.为了减小贯入度,对于部分贯入度较大的桩采取了复打的方法. 考虑到该小区桩基工程量大,为了工程安全和节省投资,并为后续的施工提供依据,对贯入度较大的以及经过复打的桩,选择了6根桩进行了静载测试. 由于此次静载测试的目的并不是进行桩的破坏试验,因而最大试验荷载以满足设计要求为限,至最大试验荷载时未出现极限特征.从静载试验结果可以看出,该地区的管桩沉管贯入度实际值是设计值的2—8倍(至设计标高时),这时即使不加长桩长或复打,桩的承载力也完全能够达到设计要求,可见贯入度设计值偏小;对于贯入度特别大的桩,经过复打,桩的承载力也能达到设计要求,且最大沉降量未超过极限值.4沉管管桩贯入度的准确性分析从上述测试结果可见,若严格按设计控制贯入度则不甚合理.其原因有以下几点:(1)由于构造上的原因,沉管管桩的预制桩靴比桩管外径大6~8cm,施工时土对桩管的挤压力减小,致使桩管下沉的阻力减小,因而使沉管的贯入度增大;成桩后管桩的实际桩径往往比管径大6%~7%,这是由于桩靴的直径较大所致.由于实际桩径扩大,使得桩的承载力相应地增加,所以,尽管施工时的贯入度相对较大,但静载试验加载至最大荷载时沉降量仍然较小.(2)沉管时由于连续震动,土体内摩擦角变化很大.而在桩身灌注混凝土28d后进行静载试验时,土体结构基本稳定,承载力有一定幅度的提高.(3)复打对桩周土和桩端土进行了挤密,使桩侧摩阻力提高,桩端土的强度提高.(4)打桩公式适用于预制桩和钢管桩估算其打桩阻力,将它用于沉管贯人度的计算只是权宜之计.?40?Research&ApplicationofBuildingMaterials文章编号:1009—9441(2006)03—0041—02校园排水工程设计与旋工口口樊源(江西省城乡规划设计研究院,江西南昌330006) 摘要:结合工程实例,探讨了如何结合《室外排水设计规范》的规定,合理地进行排水工程的设计与施工.关键词:排水工程;设计;施工中图分类号-TU992.05;TU992.03文献标识码:B引言江西省交通学校校区位于南昌市昌北经济开发区,现占地面积约l2.13公顷,计划通过逐步扩建调整,形成集高职,中专,技校为一体的专业性院校.扩建完成后,学院规模将达到在校生6000人,校园总占地面积31.73公顷.该校区排水工程采用雨,污分流制的排水系统.生活污水和雨水分别在两个各自独立的系统内排放.根据GB儿4—87《室外排水设计规范》的要求, 设计时考虑校区的综合径流系数取0.8,设计重现期为2年,并特别将主干道上的排水管管径加大.校区道路设计车速为20km/h,路宽为18m左右,道路总长为6km.在车行道上布置雨水口,其间距一般为40m,在平曲面,低点,路口等重要部位加设雨水口.现就该校区扩建中排水工程的设计与施工,谈几点体会.1排水工程设计经过对试验结果及其成因的综合分析,认为可以适当加大贯入度的设计值.为了安全起见,后续桩的贯入度宜控制在2倍设计值范围内;对于个别贯入度较大的桩,采用复打的方法将其控制在相同的范围内.5结语沉管管桩已成为住宅及商住,办公楼等建设的首选桩型,但其自身也存在着一些缺陷和在设计施工中难以把握的指标,管桩沉管贯入度的控制即是其中之一.因此,必须结合工程实际,综合分析贯入度的设计值,现场施工记录以及当地的成功经验,避1.1排水管道断面布置按照以往的设计经验,对于路宽在18m左右的校区道路,一般是将雨水主管设在道路中间,雨水主管两侧接雨水口;将污水主管设在道路一侧人行道上,道路另一侧采用接户井接入污水管.现行的各种口径下水道砖砌窨井收口均采用钢筋混凝土或铸铁圆形盖板,它与周边路面混凝土结构的刚度不一致.此外,窨井周围的回填土与道路面层材料难以压实,造成路面竣工通车后沿盖板四周及四角出现方形的放射性裂纹.而且铸铁井盖座的四周由于有肋的存在,将面层分隔成若干小块,道路使用后出现凹陷现象.每逢下雨,雨水就通过裂纹渗入路面结构层中,在车辆的反复水平作用力和震动冲击下,加速了路面面层的开裂,剥落.同时由于附加应力的增加,容易使铸铁井盖座下强度较低的垫层材料被压碎以及无固定措施的铸铁井盖向车行方向滑移,存在着交通安全隐患.由于窨井四周的路面出现高低不平,车辆的反复冲击作用下最终会造成害井的不均匀沉降.该校区所在地均是由沙土回填至设计标高,地基的不均匀沉降会使路面的破坏更严重.为了保持车行道的平整度和行车的舒适性,除了要求道路路基要达到一定的密实度外,还将雨水主管沿道路两免盲目性,适度调整实施中的贯入度值,以尽可能地使贯入度控制值趋于合理,提高贯入度的准确性.参考文献:[1]陈载赋.钢筋混凝土建筑结构与特种结构手册[M].成都:四川科学技术出版社,1994.作者简介:周宏(1960一),男,湖北寰樊人,工程师,1982年7月毕业于中国人民解放军基建工程兵第五技术学校工民建专业,现主要从事工程施工管理及技术管理工作. 收稿日期:2006—04—28(编辑盛晋生)建材技术与应用3/2006?41?。
锤击式沉管灌注桩贯入度控制标准
的首选桩型。
但其自身也存在一些缺陷和在设计施工中难以操作的指标,灌注桩沉管贯入度的控制便是其中之一。
本文通过工程实例,介绍锤击式沉管灌注桩贯入度设计的一般方法,指出存在问题,初步分析问题原因,提出解决问题的实用方法。
一、问题的提出
一般认为,桩的贯入度与其极限承载力有直接关系。
贯入度通常依据现有的打桩动力公式结合当地成功经验确定。
但灌注桩沉管的贯入度与桩承载力的关系是否可以用简单的经验公式确定,或者简单地套用当地成功经验,以及贯入度是否为一项控制性的设计指标,对于这些问题,笔者认为有必要作进一步的探讨。
目前,采用灌注桩的一般是9层以下的二级建筑物。
由于国家规范对二级建筑物没有规定要进行现场试验确定单桩承载力,而是应根据静力触探、标准贯入、经验参数等估算,并参照地质条件相同的试桩资料,综合确定,因此这类建筑很少在设计施工前进行桩的现场试验,设计人员依据现有的打桩动力公式结合当地成功经验确定贯入度。
在施工时,对于以摩擦为主的摩擦桩,大多数情况下沉管达不到设计要求的贯入度,此时通常采用四种方法解决:1)加深桩长;2)复打桩;3)扩大桩径;4)加桩。
每种方法(有时两种、三种方法同时采用)都会增大工程量,增加成本。
当工程验收时,单桩承载力检验合格,证明设定的贯入度没有问题,又可作为经验被采用。
因此,如何把握贯入度,对于。