小学四年级奥数教程PPT课件
- 格式:ppt
- 大小:148.50 KB
- 文档页数:23
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
小学奥数基础教程(四年级)第1讲巧算(一)第2讲巧算(二)第3讲等差数列第4讲倒推法的妙用第5讲找规律第6讲几何中的计数问题第7讲应用题第8讲长方形和正方形第9讲数字谜第10讲变化规律(一)(和、差会怎么变)第11讲变化规律(二)(积会怎么变)第12讲容斥问题第13讲归一问题与归总问题第14讲错中求解第15讲简单列举第16讲总复习第一讲巧算(一)巧算是四则计算中的一个重要组成部分,学会一些巧算的方法,对提高计算能力有很大的帮助。
加、减法的巧算方法很多,主要是利用加法、减法的运算定律和运算性质使计算简便。
例1计算63+294+37+54+6练习 27+42+63例2.(1)673+288 (2)9898+203(3)786-109练习9874+987 136-96718-162-238 659-487-113 185-(85+17)(1)296+31-196 (2)521-136-221 练习761+299-561 例3.(1)88-(47-12)(2)376-(176-97)(3)347+(153-129)(4)268+(317-168)练习516-56-44-43-57 5723-(723-189)+576-(276-211)例4 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.练习计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)例5 计算(1+3+5+...+1989)-(2+4+6+ (1988)练习计算 389+387+383+385+384+386+388第二讲巧算(二)这一讲我们学习乘法、除法的巧算方法,这些方法主要根据乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将因数(或被除数、除数)转化成整百、整千的数,或者使算式中的一些数变得易于心算,从而简化计算。
小学四年级奥数教程小学课件在日常生活中,有些问题常常要求我们主要通过分析和推理,而不是计算得出正确的结论。
这类判断、推理问题,就叫做逻辑推理问题。
这类题目与我们学过的数学题目有很大不同,题中往往没有数字和图形,也不用我们学过的数学计算方法,而是根据已知条件,分析推理,得到答案。
下面我们分别介绍利用列表法和假设法求解逻辑问题。
为了使得各种关系更明确,根据题意画几个表解题的方法叫做列表法。
需要注意的是: 1、第一步应将题目条件给出的关系画在表上,然后再依次将分析推理出的关系画在表上; 2、每行每列只能有一个“?”,如果出现了一个“?”,它所在的行和列的其余格中都应画“×”。
例1: 小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。
问:谁是工人,谁是农民,谁是教师, 由题目条件可以知道:小李不是教师,小王不是农民,小张不是农民。
表格中打“?”表示肯定,打“×”表示否定。
表中,任一行、任一列只能有一个“?”,其余是“×”,所以小李是农民,于是得到左下表。
工人农民教师工人农民教师小王× 小王× × ? 小张× 小张 ? × × 小李× ? × 小李× ? × 因为农民小李比小张年龄小,又小李比教师年龄大,所以小张比教师年龄大,即小张不是教师。
因此得到右上表,从而得到右下表,即小张是工人,小李是农民,小王是教师。
例2: 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛。
事先规定:兄妹二人不许搭伴。
第一盘:刘刚和小丽对李强和小英; 第二盘:李强和小红对刘刚和马辉的妹妹。
问:三个男孩的妹妹分别是谁, 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹。
由第二盘看出,小红不是马辉的妹妹。