最新新课标2013年全国高考理科数学试题分类汇编6:不等式
- 格式:doc
- 大小:153.50 KB
- 文档页数:5
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,l β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B )1++ +…+(C )1+ + +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是x ≥1, x+y ≤3, y ≥a(x-3). {(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013届全国各地高考押题数学(理科)精选试题分类汇编6:不等式一、选择题1 .(2013届海南省高考压轴卷理科数学)设变量x,y 满足约束条件,则目标函数z=2x+3y+1的最大值为( )A .11B .10C .9D .8.5【答案】答案:B考点:二元一次不等式(组)与平面区域. 分析:首先做出可行域,将目标函数转化为,求z 的最大值,只需求直线l:在y 轴上截距最大即可.解答:解:做出可行域如图所示: 将目标函数转化为,求z 的最大值,只需求直线l:在y 轴上截距最大即可.作出直线l 0:,将直线l 0平行移动,当直线l:经过点A 时在y 轴上的截距最大,故z 最大. 由可求得A(3,1),所以z 的最大值为2×3+3×1+1=102 .(2013届湖北省高考压轴卷 数学(理)试题)设实数12,,,x a a y 成等差数列,实数12,,,x b b y 成等比数列,则21212()a a b b +的取值范围是( )A .[4,)+∞B .(,0][4,)-∞+∞C .[0,4]D .(,4)(4,)-∞-+∞【答案】B 【解析】:由于实数12,,,x a a y 成等差数列,则12x y a a +=+;由于实数12,,,x b b y成等比数列,则12xy b b =,所以21212()a a b b +2()x y xy +=2222222x y xy x y x y xy xy y x +++==+=++,利用基本不等式易得,当,x y 同号时,21212()a a b b +2224x yy x=++≥+=;当,x y 异号时,21212()a a b b +2220x y y x=++≤-+=.故选B .3 .(2013届重庆省高考压轴卷数学理试题)若a 是12b +与12b -的等比中项,则22aba b+的最大值为 ( )ABCD【答案】解析:由2122x y x x ==-++可得122,2,12(1),21(2)x y k y y x y x x =-''===+=+=++ 应选( )A .4 .(2013届辽宁省高考压轴卷数学理试题)已知正数x 、y 满足20350{x y x y -≤-+≥,则y x z -∙=4)21(的最小值为)(A 1 )(B 14 )(C 116)(D 132 【答案】D5 .(2013届江西省高考压轴卷数学理试题)设变量,x y 满足约束条件20510080x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤,则目标函数34z x y =-的最大值和最小值分别为( )A .3,11-B .3,11--C .11,3-D .11,3【答案】A【解析】作出满足约束条件的可行域,如右图所示,可知当直线z=3x-4y 平移到点 (5,3)时,目标函数z=3x-4y 取得最大值3;当直线z=3x-4y 平移到点(3,5)时,目标函数z=3x-4y 取得最小值-11,故选( )6 ,x y 满足线性约束条件1020410x y x y x y -+≥⎧⎪+-≤⎨⎪++≥⎩,( )5D .7【答案】C7 .(2013届浙江省高考压轴卷数学理试题)设变量x 、y 满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x+y 的最小值为 ( )A .6B .4C .2D .32【答案】C【解析】由题意可得,在点B 处取得最小值,所以z=2,故选C8 .(2013届安徽省高考压轴卷数学理试题)实数满足不等式组2303270210x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则x y -的最小值是 ( ) A .-1 B .-2 C .1 D .2【答案】B 【解析】本题考查简单的线性规划问题中的求最值问题.根据题目可得如下的可行域,其中 ,令Z x y =- ,将这条直线平移可以得到在A 点使得x y - 取得最小值,所以min ()112x y -=--=-,故选B9 .(2013届陕西省高考压轴卷数学(理)试题)若y x ,满足条件⎪⎩⎪⎨⎧≥≤-+≥+-,001532,0653y y x y x ,当且仅当3==y x 时,y ax z -=取最小值,则实数a 的取值范围是( )A .32,43⎛⎫- ⎪⎝⎭B .23,34⎛⎫- ⎪⎝⎭C .23,35⎛⎫- ⎪⎝⎭D .33,45⎛⎫ ⎪⎝⎭【答案】C 【解析】画出可行域,得到最优解()3,3,把y ax z -=变为z ax y -=,即研究z -的最大值.当⎪⎭⎫ ⎝⎛-∈53,32a 时,z ax y -=均过()3,3且截距z -最大 . 10.(2013届重庆省高考压轴卷数学理试题)设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->= ks5u( )A . {|24}x x x <->或B .{|04}x x x <>或C .{|0x x x <>或【答案】解析:当0x <时,则0x ->,由偶函数满()f x 足3()8(0)f x x x =-≥可得,3()()8f x f x x =-=--,则338(0)()8(0)x x f x x x ⎧-≥=⎨--<⎩,33(2)8(2)(2)(2)8(2)x x f x x x ⎧--≥-=⎨---<⎩ 令(2)0f x ->,可解得4,0x x ><或.应选B .另解:由偶函数满()f x 足3()8(0)f x x x =-≥可得3()()8f x f x x ==-, 则3(2)(2)28f x f x x -=-=--,要使(2)0f x ->,只需3280,22x x -->->解得4,0x x ><或.应选B .二、填空题11.(2013届福建省高考压轴卷数学理试题)若正数,x y 满足230x y +-=,则2x yxy+的最小值为________.【答案】3【解析】由题意:2230133x yx y +-=⇒+=, 221212252523333333x y x y y x xy x y x y x y ⎛⎫⎛⎫+⎛⎫=+=+⋅+=++≥⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12.(2013届湖南省高考压轴卷数学(理)试题)已知实数,x y 满足不等式组20302x y x y x y m -≤⎧⎪+-≥⎨⎪+≤⎩,且z x y =-的最小值为3-,则实数m 的值__.【答案】613.(2013届重庆省高考压轴卷数学理试题)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 ___.【答案】解析:画出区域图知,过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =- 14.(2013届上海市高考压轴卷数学(理)试题)设,x y 满足约束条件112210x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩,向量(2,),(1,1)a y x m b =-=-,且//a b ,则m 的最小值为_________________.【答案】6-【解析】不等式对应的可行域是顶点为)2,4(),21,1(),8,1(C B A 的三角形及其内部,由b a //,得2m x y =-,可知在)8,1(A 处2m x y =-有最小值6-15.(2013届江西省高考压轴卷数学理试题)若不等式211ax bx c -<++<的解集为(1,3)-,则实数a 的取值范围是______.【答案】1122a -<<16.(2013届福建省高考压轴卷数学理试题)若整数..,x y 满足不等式组0700y x x y x -≥⎧⎪+-≤⎨⎪≥⎩,则2x y +的最大值为________【答案】10【解析】由题意,绘出可行性区域如下:设2z x y =+,即求2y x z =-+的截距的最大值.因为,x y Z ∈,不妨找出77,22⎛⎫ ⎪⎝⎭附近的“整点”.有(3, 3)、(3, 4)满足. 显然过(3, 4)时,10z =最大.17当对数函数()10log ≠>=a a x y a 且的图,0x y R ⎫≥⎪∈⎬⎪≥⎭内的一个点时,实数a 的取值范围为,log a y x =的图像分别过点(3,3),(4,4),(5,3)时,a的值分别为, 因为<<,所以a的取值范围是.18.(2013届广东省高考压轴卷数学理试题)设,x y 满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最大值是_________.【答案】0 线性规划,三角形区域,最优解(1,1)19.(2013届上海市高考压轴卷数学(理)试题)已知定义域为R 上的偶函数()f x 在(,0]-∞上是减函数,且1()22f =,则不等式(2)2xf >的解集为_____________.【答案】()+∞-,1【解析】因为函数为偶函数,所以11()()222f f -==,且函数在(0,)+∞上递增.所以由(2)2x f >得122x >,即1x >-,所以不等式()22>xf 的解集为()+∞-,1. 20.(2013届湖南省高考压轴卷数学(理)试题)已知,x y R +∈,且满足22x y xy +=,那么+4x y的最小值是____________【答案】3+21.(2013届四川省高考压轴卷数学理试题)若实数,x y 满足222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则目标函数1y z x =+的最大值是__________. 【答案】222.(2013新课标高考压轴卷(一)理科数学)已知实数y x ,满足1218y y x x y ≥⎧⎪≤-⎨⎪+≤⎩,则目标函数y x z -=的最小值为_____________【答案】2-【解析】由z x y =-得y x z =-.作出不等式对应的平面区域BCD,平移直线y x z =-,由平移可知,当直线y x z =-经过点C 时,直线的截距最大,此时z 最小.由218y x x y =-⎧⎨+=⎩,解得35x y =⎧⎨=⎩,即(3,5)C ,代入z x y =-得最小值为352z =-=-.ks5u。
新课标全国统考区(吉林、河南、黑龙江、内蒙古、山西、云南)2013届最新高三名校理科数学试题精选分类汇编6:不等式一、选择题1 .(河南省六市2013届高三第二次联考数学(理)试题)当实数,x y 满足不等式⎪⎩⎪⎨⎧≤+≥≥2200y x y x 时,恒有3ax y +≤成立,则实数a 的取值范围是( )A .0a ≤B .0a ≥C .02a ≤≤D .3a ≤【答案】D2 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若*1(),()(),2f n n g n n n n N nϕ==-=∈,则(),(),()f n g n n ϕ的大小关系 ( ) A .()()()f n g n n ϕ<< B .()()()f n n g n ϕ<< C .()()()g n n f n ϕ<<D .()()()g n f n n ϕ<<【答案】B3 .(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z =3x +y 的最大值为( )( )A .12B .11C .3D .-1【答案】B4 .(河南省豫东、豫北十所名校2013届高三阶段性测试(四) 数学(理)试题(word 版))已知实数⎪⎩⎪⎨⎧≤+-≤≥.,13,1,m y x x y y y x 满足如果目标函数y x z 45-=的最小值为—3,则实数m=( )A .3B .2C .4D .311 【答案】A5 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x +y=a 扫过A 中的那部分区域面积为 ( )A .2B .1C .34D .74【答案】D6 .(河南省商丘市2013届高三第三次模拟考试数学(理)试题)若0.5222,log 3,log sin5a b c ππ===,则,,a b c 之间的大小关系是( )A .c a b >>B .a b c >>C .b a c >>D .b c a >>【答案】B7 .(云南省2013年第二次高中毕业生复习统一检测数学理试题(word 版) )已知()f x 是定义域为实数集R的偶函数,10x ∀≥,20x ∀≥,若12x x ≠,则1212()()0f x f x x x -<-.如果13()34f =,184(log )3f x >,那么x 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .1,22⎛⎫⎪⎝⎭C .()1,12,2⎛⎤+∞⎥⎝⎦D .110,,282⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B8 .(河南省开封市2013届高三第四次模拟数学(理)试题)若a>1,设函数4)(-+=x a x f x 的零点为m,g(x)4log -+=x x a 的零点为n,则nm 11+的取值范围是 ( )A .(3.5,+∞)B .(1,+∞)C .(4,+∞)D .(4.5,+∞)【答案】B9 .(吉林省吉林市2013届高三三模(期末)试题 数学理 )已知点(),P x y 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则z x y =-的取值范围是 ( )A .[]2,1--B .[]2,1-C .[]1,2-D .[]1,2【答案】C10.(黑龙江省哈师大附中2013届第三次高考模拟考试 理科数学 Word 版含答案)设x 、y 满足约束条件2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩,则目标函数z = 2x + y 的最大值为 A .-4B .5C .6D .不存在【答案】C11.(山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第四次四校联考数学(理)试题)若实数x ,y 满足约束条件142x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则目标函数 24z x y =+的最大值为( )A .10B .12C .13D .14【答案】C12.(河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模)考试数学(理)试题)设实数,x y 满足约束条件:360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则2294a b +的最小值为( )A .12 B .1325C .1D .2【答案】A 13.(河北省石家庄市2013届高中毕业班第二次模拟考试数学理试题(word 版) )设y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥,1434,,0y x x y x 则21++x y 的取值范围是 ( )A .]617,21[ B .]43,21[C .]617,43[ D .),21[+∞【答案】A 二、填空题14.(河南省郑州市2013届高三第三次测验预测数学(理)试题)已知⎪⎩⎪⎨⎧≥≤-+≤++101553,034x y x y x ,则z =______.【答案】812[,]15515.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知点P (x ,y )的坐标满足条件0,0,20,≥≥≤x y x y ⎧⎪⎨⎪+-⎩则z =2x -y 的最大值是_________. 【答案】416.(2013年红河州高中毕业生复习统一检测理科数学)设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-0,0048022y x y x y x ,若目标函数)0,0(>>+=b a y abx z 的最大值为8,则b a +的最小值为_______. 【答案】417.(山西省山大附中2013届高三4月月考数学(理)试题)设二次函数c x ax x f +-=4)(2的值域为[)+∞,0,_______18.(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)若正实数a,b 满足:(a-1)(b-1)=4,则ab 的最小值是_____.【答案】919.(内蒙古包头市2013届高三第二次模拟考试数学(理)试题)设x,y 满足条件20360,(0,0)0,0x y x y z ax by a b x y -+≥⎧⎪--≤=+>>⎨⎪≥≥⎩若目标函数的最大值为12,则32a b +的最小值为________【答案】 420.(河北省衡水中学2013届高三第八次模拟考试数学(理)试题 )已知点P (x ,y )在不等式组1003x y x y x ⎧⎪⎨⎪⎩+-≥,-≥,≤表示的平面区域内运动,则34z x y =-的最小值为________ 【答案】解析:可行域是以11(,),(3,3),(3,2)22A B C -三点为顶点的三角形,当过点B 时,z 取最小值是3-.21.(河南省开封市2013届高三第四次模拟数学(理)试题)实数x,y 满足条件yx z y x y x y x -=⎪⎩⎪⎨⎧≥≥≥+-≤-+2,0,002204则的最小值为_________. 【答案】1-22.(山西省山大附中2013届高三4月月考数学(理)试题)在平面直角坐标系中,不等式⎪⎩⎪⎨⎧≤≥-≥+a x y x y x 00a (为常数)表示的平面区域的面积为8,则32+++x y x 的最小值为_________23.(2013年长春市高中毕业班第四次调研测试理科数学)设,x y 满足约束条件00+2y y xx y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a =______.【答案】【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且可以使一条斜率为3-的直线经过该点时取最大值,因此点 (2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0), 因此2a =.24.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知P 是面积为1的△ABC 内的一点(不含边界),若△PBC ,△PCA 和△PAB 的面积分别为,,x y z ,则1x yx y z +++的最小值是_________. 【答案】325.(山西省太原市第五中学2013届高三4月月考数学(理)试题)设实数x ,y 满足约束条件2220,20,220,x y x y x y x y ⎧-≤⎪-≥⎨⎪+--≤⎩,则目标函数z x y =+的最大值为_________. 【答案】4。
2013 年全国高考理科数学试题分类汇编6:不等式一、选择题1 .( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数x, y, z满足x23xy 4 y2xy 21 2z, 则当 z取得最大值时 ,xyz的最大值为()9A . 0B . 1C .4D . 3【答案】 B2 .( 2013 年高考陕西卷(理) ) 设[ x ] 表示不大于 x 的最大整数 , 则对任意实数 x , y , 有 ()A . [- x ] = -[ x ]B . [2 x ] = 2[x ]C . [ x +y ] ≤[x ]+[y ] D . [ x - y ] ≤[x ]-[ y ]【答案】 Dy 2x3 .( 2013 年高考湖南卷(理) ) 若变量 x, y 满足约束条件xy 1, 则x 2y 的最大值是y1A . -5B . 0C .5D .5232【答案】 C4 .( 2013 年 普 通 高 等 学 校 招 生 统 一 考 试 天 津 数 学 ( 理 ) 试 题 ( 含 答 案 )) 已知 函数( )f ( x) x(1 a | x |) . 设关于 x 的不等式 则实数 a 的取值范围是A .1 5,0 B .1 3,022【答案】 A5 .( 2013 年普通高等学校招生统一考试新课标f ( x a) f ( x) 的解集为A , 若1 , 1 A ,2 2C .1 5,0 0,1 322Ⅱ 卷数学(理) (纯 WORD 版含答案) ) 已知()D .,1 52x 1a 0 , x, y 满足约束条件 xy3, 若 z 2x y 的最小值为 1, 则 a()y a( x3)A .1B .1C . 1D . 242【答案】 B6 .( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案)) 设变量 x , y 满足约3xy 60,束条件x y 2 0,则目标函数z =-2 x 的最小值为()yy 3 0,第 1 页 共 5 页A . -7B . -4C . 1D . 2【答案】 A7 .( 2013 年高考湖北卷(理) ) 一辆汽车在高速公路上行驶, 由于遇到紧急情况而刹车 , 以速度 v t7 3t25( t 的单位 : s , v 的单位 : m / s ) 行驶至停止 . 在此期间汽车继续1 t行驶的距离 ( 单位 ; m ) 是()A . 1 25ln5B .811 C . 4 25ln5D . 4 50ln 225ln【答案】 C38 .( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版)) 已知一元二次不等式 f (x)<0 的解集为 x |x<-1或 x>1, 则 f (10x )>0 的解集为()2A . x|x<-1或 x>lg2B . x|-1<x<lg2C . x |x>-lg2D . x|x<-lg2【答案】 D9 .( 2013 年上海市春季高考数学试卷( 含答案 ) ) 如果 a b 0 , 那么下列不等式成立的是()A .1 1B . ab b 2C . aba 2D . 11 ab ab【答案】 D10.( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案))在平面直角坐标系xoy2x y 2 0,x2y1 0,中 , M为不等式组3x y80,所表示的区域上一动点 , 则直线OM斜率的最小值为()11A . 2B . 1C .3D .2【答案】 C11 .( 2013 年普通高等学校招生统一考试新课标Ⅱ 卷数学(理) (纯 WORD 版含答案) ) 设a log 3 6,b log 5 10, clog 7 14 , 则()A . c b aB . b c aC . a c bD . a b c【答案】2x y 1 0,12.( 2013 年高考北京卷(理) )设关于 x , y 的不等式组x m 0, 表示的平面区域内存y m 0在点 P ( x 0, y 0), 满足 x 0-2 y 0=2, 求得 m 的取值范围是( )第 2 页 共 5 页A . 4B .1C . 2D . 5,,,,3333【答案】 C二、填空题13.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 记不等式x 0,组 x 3y4, 所表示的平面区域为 D , 若直线 yax 1 与 D 公共点 , 则 a 的取值3x y4,范围是 ______.【答案】 [1, 4]214.( 2013 年高考陕西卷(理) ) 若点 ( x , y ) 位于曲线 y | x 1| 与 y =2 所围成的封闭区域 , 则2x - y 的最小值为 ___-4_____.【答案】 - 415 .( 2013 年 高 考 四 川 卷 ( 理 )) 已 知 f ( x) 是 定 义 域 为 R 的 偶 函 数 , 当 x ≥ 0时, f ( x)x 2 4x , 那么 , 不等式 f ( x 2) 5 的解集是 ____________.【答案】 (7,3)16 .( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 给定区域x 4 y 4x y4D : x 0, 令点集T{ x 0 , y 0 D | x 0 , y 0Z, x 0, y0 ,是 zx y在 D 上取得最大值或最小值的点}, 则 T中的点共确定 ______条不同的直线 .【答案】617.( 2013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 设zkx y , 其xy 2 0中实数 x, y 满足 x2y4 0 , 若 z 的最大值为 12, 则实数 k ________.2x y 4 0【答案】 218.( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案)) 设 a + b = 2, b >0, 则当 a = ______ 时 ,1| a | 2 | a |b 取得最小值 .【答案】 219.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD 版))不等式 x 2x 2 0第 3 页 共 5 页的解集为 ___________.【答案】2,120.(2013年 高考 湖南 卷(理 ) )已知a,b,c ,23c 229ca 2则 b6的最,小值a 为4b .【答案】 12三、解答题21.( 2013 年上海市春季高考数学试卷( 含答案 ) )如图 , 某校有一块形如直角三角形ABC 的空地 , 其中B 为直角 , AB 长 40 米 , BC 长 50 米 , 现欲在此空地上建造一间健身房, 其占地形状为矩形 , 且 B 为矩形的一个顶点, 求该健身房的最大占地面积 .ABC【答案】 [ 解 ] 如图 , 设矩形为 EBFP , FP 长为 x 米, 其中 0x40 ,AEPBFC健身房占地面积为 y 平方米 . 因为 CFP ∽ CBA ,以 FPCF , x 50BF , 求得 BF505x ,BACB 40 504从而 yBF FP(505x) x5 x 2 50x5( x 20) 2500500 ,444当且仅当 x20 时 , 等号成立 .答 : 该健身房的最大占地面积为 500 平方米 .22.( 2013 年高考上海卷(理) ) (6 分 +8 分 ) 甲厂以 x 千克 / 小时的速度运输生产某种产品( 生产条件要求 1x 10 ), 每小时可获得利润是 100(5 x 13) 元.x(1) 要使生产该产品 2 小时获得的利润不低于 3000 元, 求 x 的取值范围 ;(2) 要使生产 900 千克该产品获得的利润最大 , 问: 甲厂应该选取何种生产速度?并求最大利润 .【答案】 (1) 根据题意 , 200(5 x1 3)30005x 143 0又 1 x 10 , 可解得 3 x 10xx(2) 设利润为 y 元 , 则 y900 100(5x 1 3) 9 104[ 3( 11)261]xxx 6 12第 4 页 共 5 页故 x 6 时,y max 457500元.第 5页共5页。
最新新课标2013年全国高考理科数学试题分类汇编16:不等式选讲一、填空题1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是_________【答案】(],8-∞2 .(2013年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为_______.【答案】23 .(2013年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________【答案】[]0,44 .(2013年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,23x y z ++=,则x y z ++=_______.二、解答题 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a ++≥. 【答案】6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-5:不等式选讲已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.【答案】7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))不等式选讲:设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.【答案】解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为38 .(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5:不定式选讲]本小题满分10分.已知b a ≥>0,求证:b a ab b a 223322-≥-[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤.【答案】D 证明:∵=---b a ab b a 223322()=---)(223223b b a ab a ())(22222b a b b a a --- ())2)()(()2(22b a b a b a b a b a --+=--=又∵b a ≥>0,∴b a +>0,0≥-b a 02≥-b a ,∴0)2)()((≥--+b a b a b a∴0222233≥---b a ab b a∴b a ab b a 223322-≥-9 .(2013年高考新课标1(理))选修4—5:不等式选讲 已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围. 【答案】当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩, 其图像如图所示从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43]. 10.(2013年高考湖南卷(理))在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”.如图6所示的路径1231MM M M N MN N 与路径都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点(3,20),(10,0),(14,0)A B C -处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(I)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(II)若以原点O 为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度值和最小.【答案】解: .0),,(≥y y x P 且设点(Ⅰ) d L A P 路径”的最短距离的“到点点)20,3(,|20 -y | + |3 -x |=+d 垂直距离,即等于水平距离,其中.,0R x y ∈≥(Ⅱ)本问考查分析解决应用问题的能力,以及绝对值的基本知识.点P 到A,B,C 三点的“L 路径”长度之和的最小值d = 水平距离之和的最小值h + 垂直距离之和的最小值v.且h 和v 互不影响.显然当y=1时,v = 20+1=21;时显然当]14,10[-∈x ,水平距离之和h=x – (-10) + 14 – x + |x-3| 24≥,且当x=3时, h=24.因此,当P(3,1)时,d=21+24=45.所以,当点P(x,y)满足P(3,1)时,点P 到A,B,C 三点的“L 路径”长度之和d 的最小值为45.。
2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i 全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( )A {}2,1,0B {}2,1,0,1-C {}3,2,0,1-D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅ 重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U AB =ð(A ){1,3,4} (B ){3,4} (C ){3} (D ){4} 天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N= A. {0} B. {0,2} C. {-2,0} D {-2,0,2} 北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n ≥4,集合X={1,2,3……,n }。
河南省各地市2013年高考数学 最新联考试题分类汇编(6)不等式 一、选择题: 5.(河南省郑州市2013年高三第二次质量预测理)若,则a,b,c的大小关系为A. c>b>aB. b>c>aC. a>b>cD. b>a>c 【答案】B 11.(河南省郑州市2013年高三第二次质量预测理)设f(x)是定义在R上的增函数,且对于任意的x都有f(2—x)+f(x)=0恒成立.如果实数m、n满足不等式组’则m2+n2的取值范围是A. (3,7)B. (9,25)C. (13,49)D. (9,49) 【答案】C 3、 ,则满足不等式f(1-x)>f(2x)的x的取值范围A、(-,0]B、(-,)C、(-,)D、 【答案】B 10、(河南省焦作市2013届高三第一次模拟文)已知实数x,y满足,则2x+y的最小值,最大值分别为A、3,6B、0,3C、0,6D、-,6 【答案】D 1.,,则 A.B.C.D. 9. (河南省三市平顶山、许昌、新乡2013届高三第三次调研理)设实数满足约束条件:,若目标函数的最大值为12,则的最小值为 A. B. C. D. 【答案】A 12. (河南省十大名校2013届高三第四次联合模拟文)已知是定义在R上的偶函数,在区间上为增函数,且,则不等式的解集为( ) A. B. C. D. -x-2>0},B={x|1<<8),则(CUA)∩B等于 A.[-1,3) B.(0,2] C.(1,2] D.(2,3) 【答案】B 8.(河南省六市2013年高中毕业班第一次联考文)若A为不等式组表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为 A. B. C. D.1 【答案】A 二、填空题: 14.(河南省郑州市2013年高三第二次质量预测理)已知O为坐标原点,点M(3,2),若N(x,y)满足不等式组则的最大值为______. 【答案】12 15. (河南省郑州市2013年高三第二次质量预测理)已知不等式,若对任意x∈[l,2],且y∈[2,3],该不等式恒成立,则 实数a的取值范围是______. 【答案】 (13) (河南省豫东、豫北十所名校2013届高三阶段性测试四)如果实数满足条件那么目标函数z=2x - y的最小值为______ 【答案】-3 13.已知实数x,y满足条件 ,则目标函数z=2x-y的最大值是 . +2x-4y+1=0截得的弦长为4,则的最小值为______________. 【答案】4 三、解答题: 19. (河南省十大名校2013届高三第四次联合模拟文) (本小题12分)鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)。
一、选择题 1 .(宁夏银川一中2013届高三第二次模拟数学(理)试题)已知函数y =f (x )是定义在R 上的增函数,函数y =f (x -1)的图象关于点(1,0)对称,若任意的x ,y ∈R ,不等式f (x 2-6x +21)+f (y 2-8y )<0恒成立,则当x >3时,x 2+y 2的取值范围是 ( ) A .(3,7) B .(9,25) C .(13,49) D .(9,49) 2 .(宁夏银川一中2013届高三第二次模拟数学(理)试题)已知正数x ,y 满足⎩⎨⎧≥+-≤-05302y x y x ,则y x z )21(4⋅=-的最小值为( )A .1B .3241C .161 D .3213 .(宁夏银川市育才中学2013届高三第五次月考数学(理)试题 )△ABC 满足23AB AC ⋅=,∠BAC=30°,设M 是△ABC 内的一点(不在边界上),定义f(M)=(x,y,z),其中x,y,z 分别表示△MBC,△MCA,△MAB 的面积,若f(M)=(x,y,12),则14x y +的最小值为( )A .9B .8C .18D .164 .(宁夏银川二中2013届高三第六次月考数学(理)试题)设两个正数满足1x y +=,则49x y+的最小值为( )A .24B .26C .25D .15 .(吉林省实验中学2013年高三下学期第一次模拟考试数学(理)试题)已知32()69f x x x x abc =-+-,a b c <<,且()()()0f a f b f c ===. 现给出如下结论:①(0)(1)0f f >; ②(0)(1)0f f <; ③(0)(3)0f f >; ④(0)(3)0f f <; ⑤4abc <; ⑥4abc >.其中正确结论的序号是 ( )A .①③⑤B .①④⑥C .②③⑤D .②④⑥6 .(吉林省吉林市普通中学2013届高三下学期期中复习检测数学(理)试题)不等式2log 0a x x -<在1(0,)2x ∈时恒成立,则a 的取值范围是( )A .1116a ≤< B .01a << C .1a > D .1016a <≤7 .(吉林省2013年高三复习质量监测数学(理)试题)设x,y 满足约束条件⎪⎩⎪⎨⎧≥≥-≤--,0,0,023y y x y x 则z=-2x+y的最小值为( )A .-34B .-1C .0D .18 .(黑龙江省教研联合体2013届高三第一次模拟考试数学(理)试题 )设函数1()f x x x=-,对任意[1,),()()0x f mx mf x ∈+∞+<恒成立,则实数m 的取值范围是( )A .(1,1)-B .,0m R m ∈≠C .--∞(,1)D .--∞(,1)或+∞(1,)9 .(黑龙江省哈尔滨市六校2013届高三第一次联考理科数学试题 )实数对(x,y)满足不等式组20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩则目标函数z=kx-y 当且仅当x=3,y=1时取最大值,则k 的取值范围是 ( ) A .[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭B .1,|2⎛⎫-+∞ ⎪⎝⎭C .1.12⎛⎫- ⎪⎝⎭D .(],1-∞-10.(黑龙江哈尔滨市九中2013届高三第五次月考数学(理)试题)若()224ln f x x x x =--,不等式()'0f x >的解集为p ,关于x 的不等式2(1)0x a x a +-->的解集记为q ,已知p 是q 的充分不必要条件,则实数a 的取值范围是 ( )A .(]2,1--B .[]2,1--C .φD .[)2,-+∞二、填空题11.(宁夏育才中学2013届高三第一次模拟考试数学(理)试题)当实数,x y 满足约束条件{220x y x x y a ≥≤++≤ (a 为常数)时3z x y =+有最大值为12,则实数a 的值为___12.(吉林省延边州2013届高三高考复习质量检测数学(理)试题)设函数b ax x x f ++=2)(,且方程0)(=x f 在区间()1,0和()2,1上各有一解,则b a -2的取值范围用区间表示为________________.13.(吉林省实验中学2013年高三下学期第一次模拟考试数学(理)试题)已知x ,y 为正实数 ,且满足3x y xy ++=,若对任意满足条件的x ,y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为_______________.14.(吉林省实验中学2013年高三下学期第一次模拟考试数学(理)试题)设x ,y 满足约束条件112210x y x x y ⎧⎪⎪⎨⎪+⎪⎩≥≥≤,向量(2)(11)a b y x m =-=-,,,,且a ∥b ,则m 的最小值为_________________.15.(黑龙江省教研联合体2013届高三第二次模拟考试数学(理)试题(word 版,含答案) )“求方程34()()155x x +=的解”有如下解题思路:设34()()()55x x f x =+,则()f x 在R 上单调递减,且(2)1f =,所以原方程有唯一解2x =.类比上述解题思路,不等式632(2)(2)x x x x -+>+-的解集为____ 16.(黑龙江省哈三中等四校联考2012届四校联考第三次高考模拟考试数学(理)试题)已知y x ,满足条件⎪⎩⎪⎨⎧≤-+≥+-≥.052,02,0y x y x x 则y x z 3+=的最大值是____________ 17.(黑龙江省大庆实验中学2013届高三下学期开学考试数学(理)试题)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ____________.18.(黑龙江哈尔滨市九中2013届高三第五次月考数学(理)试题)若在不等式组02y x x x y ≥⎧⎪≥⎨⎪+≤⎩所确定的平面区域内任取一点(),P x y ,则点P 的坐标满足221x y +≤的概率是__________________.19.(2013年宁夏回族自治区石嘴山市高三第一次联考理科数学试题)已知变量x 、y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则41log (24)2u x y =+++的最大值为__________.【精品推荐】新课标全国统考区(宁夏、吉林、黑龙江)2013届高三名校理科最新试题精选(一)分类汇编6:不等式参考答案一、选择题 1. C 2. C3. C4. C5. C6. A7. A8. C9. C 10. D二、填空题 11. -12 12. ()2,8-- 13. 37(,]6-∞ 14. -615. ),2()1,(+∞⋃--∞ 16. 10 17.7418.;8π19. 2。
2013 年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5 分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z 满足(3﹣4i)z=|4+3i|,则z 的虚部为()A.﹣4 B.C.4 D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5 分)已知双曲线C:(a>0,b>0)的离心率为,则C 的渐近线方程为()A.y= B.y= C.y=±x D.y=5.(5 分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s 属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5 分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n 项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.68.(5 分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5 分)设m 为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1 展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6 C.7 D.810.(5 分)已知椭圆E:的右焦点为F(3,0),过点F 的, ,直线交椭圆 E 于 A 、B 两点.若 AB 的中点坐标为(1,﹣1),则 E 的方程为()A .B .C .D .11.(5 分)已知函数f (x )=,若|f (x )|≥ax ,则 a 的取值范围是()A .(﹣∞,0]B .(﹣∞,1]C .[﹣2,1]D .[﹣2,0]12.(5 分)设△A n B n C n 的三边长分别为 a n ,b n ,c n ,△A n B n C n 的面积为 S n ,n=1, 2,3…若 b 1>c 1,b 1+c 1=2a 1,a n +1=a n,则( )A .{S n }为递减数列B .{S n }为递增数列C .{S 2n ﹣1}为递增数列,{S 2n }为递减数列D .{S 2n ﹣1}为递减数列,{S 2n }为递增数列二.填空题:本大题共 4 小题,每小题 5 分.13.(5 分)已知两个单位向量,的夹角为 60°,=t +(1﹣t ).若•=0,则 t=.14.(5 分)若数列{a n }的前 n 项和为 S n =a n +,则数列{a n }的通项公式是 a n =.15.(5 分)设当 x=θ 时,函数 f (x )=sinx ﹣2cosx 取得最大值,则 cosθ=.16.(5 分)若函数 f (x )=(1﹣x 2)(x 2+ax +b )的图象关于直线 x=﹣2 对称,则 f (x )的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12 分)如图,在△ABC 中,∠ABC=90°,AB=,BC=1,P 为△ABC 内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12 分)如图,三棱柱ABC﹣A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(I)证明AB⊥A1C;(II)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C 所成角的正弦值.19.(12 分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4 件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4 件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(I)求这批产品通过检验的概率;(II)已知每件产品检验费用为100 元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X 的分布列及数学期望.20.(12 分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C.(I)求C 的方程;(Ⅱ)l 是与圆P,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.21.(12 分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(I)求a,b,c,d 的值;(II)若x≥﹣2 时,f(x)≤kg(x),求k 的取值范围.四、请考生在第22、23、24 题中任选一道作答,并用2B 铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10 分)(选修4﹣1:几何证明选讲)如图,直线AB 为圆的切线,切点为B,点C 在圆上,∠ABC 的角平分线BE 交圆于点E,DB 垂直BE 交圆于D.(I)证明:DB=DC;(II)设圆的半径为1,BC=,延长CE 交AB 于点F,求△BCF 外接圆的半径.23.已知曲线C1 的参数方程为(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ=2sinθ.(1)把C1 的参数方程化为极坐标方程;(2)求C1 与C2 交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(I)当a=﹣2 时,求不等式f(x)<g(x)的解集;(II)设a>﹣1,且当x∈[﹣, ]时,f(x)≤g(x),求a 的取值范围.2013 年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5 分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B 和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2 或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5 分)若复数z 满足(3﹣4i)z=|4+3i|,则z 的虚部为()A.﹣4 B.C.4 D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z 的虚部.【解答】解:∵复数z 满足(3﹣4i)z=|4+3i|,∴z====+i,故z 的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样C.按学段分层抽样B.按性别分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5 分)已知双曲线C:(a>0,b>0)的离心率为,则C 的渐近线方程为()A.y= B.y= C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc 的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x= x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5 分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s 属于()A.[﹣3,4] B.[﹣5,2] C.[﹣4,3] D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1 我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1 与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1 时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s 属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5 分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M 为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M 的半径为4,由球的截面圆性质建立关于R 的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M 的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n 项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6【考点】83:等差数列的性质;85:等差数列的前n 项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n 与S n 的关系可求得a m+1 与a m,进而得到公差d,由前n 项和公式及S m=0 可求得a1,再由通项公式及a m=2 可得m 值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m 不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n 项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n 项和公式及通项a n 与S n 的关系,考查学生的计算能力.8.(5 分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5 分)设m 为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1 展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6 C.7 D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a 和b,再利用组合数的计算公式,解方程13a=7b 求得m 的值.【解答】解:∵m 为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a= ,同理,由(x+y)2m+1 展开式的二项式系数的最大值为b,可得b== .再由13a=7b,可得13 =7 ,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5 分)已知椭圆E:的右焦点为F(3,0),过点F 的直线交椭圆E 于A、B 两点.若AB 的中点坐标为(1,﹣1),则E 的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E 的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5 分)已知函数f(x)= ,若|f(x)|≥ax,则a 的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax 的图象,由导数求切线斜率可得l 的斜率,进而数形结合可得a 的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax 的图象,由图象可知:函数y=ax 的图象为过原点的直线,当直线介于l 和x 轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l 的斜率为﹣2,故只需直线y=ax 的斜率a 介于﹣2 与0 之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5 分)设△A n B n C n 的三边长分别为a n,b n,c n,△A n B n C n 的面积为S n,n=1,,,2,3…若b1>c1,b1+c1=2a1,a n+1=a n ,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n 可知△ A n B n C n的边B n C n 为定值a1 ,由b n+1+c n+1 ﹣【分析】由a n+12a1=及b1+c1=2a1 得b n+c n=2a1,则在△A n B n C n 中边长B n C n=a1 为定值,另两边A n C n、A n B n 的长度之和b n+c n=2a1 为定值,由此可知顶点A n 在以B n、C n 为焦点的椭圆上,根据b n+1﹣c n+1= ,得b n﹣c n= ,可知n→+∞时b n→c n,据此可判断△A n B n C n 的边B nC n 的高h n 随着n 的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1 且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n 在以B n、C n 为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1= ,∴b n+1∴,c n=2a1﹣b n= ,∴[ ][]=[ ﹣]单调递增(可证当n=1 时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4 小题,每小题5 分.13.(5 分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t= 2 .【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0 ,对式子=t + (1 ﹣t )两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1 =0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5 分)若数列{a n}的前n 项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1 .【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1 代入已知式子可得数列的首项,由n≥2 时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1 时,a1=S1=,解得a1=1当n≥2 时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2 为首项,﹣2 为公比的等比数列,故当n≥2 时,a =(﹣2)n﹣1,n经验证当n=1 时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数(f x)=sinx﹣2cosx 取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1 联立即可求出cosθ 的值.【解答】解:f(x)=sinx﹣2cosx= (sinx﹣cosx)= sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+ )2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5 分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2 对称,则f(x)的最大值为16 .【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0 且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2 对称,∴f(﹣1)=f(﹣3)=0 且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0 且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2 -,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考,查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(12 分)如图,在△ABC 中,∠ABC=90°,AB=,BC=1,P 为△ABC 内一点,∠BPC=90°.(1) 若 PB=,求 PA ;(2) 若∠APB=150°,求 tan ∠PBA .【考点】HP :正弦定理;HR :余弦定理. 【专题】58:解三角形.【分析】(I )在 Rt △PBC ,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在 △PBA 中,利用余弦定理即可求得 PA .(II )设∠PBA=α,在 Rt △PBC 中,可得 PB=sinα.在△PBA 中,由正弦定理得,即,化简即可求出.【解答】解:(I )在 Rt △PBC 中 =,∴∠PBC=60°,∴∠PBA=30°.在 △ PBA 中 , 由 余 弦 定 理得PA 2=PB 2+AB 2 ﹣ 2PB•ABcos30°= =.∴PA=.(II )设∠PBA=α,在 Rt △PBC 中,PB=BCcos (90°﹣α)=sinα.在△PBA 中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12 分)如图,三棱柱ABC﹣A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(I)证明AB⊥A1C;(II)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C 所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB 的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC 两两垂直.以O 为坐标原点,的方向为x 轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C 的法向量,则,可解得=(,1,﹣1),可求|c o s <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB 的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B 为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC 两两垂直.以O 为坐标原点,的方向为x 轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A 1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C 的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>== ,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C 与平面BB1C1C 所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12 分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4 件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4 件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(I)求这批产品通过检验的概率;(II)已知每件产品检验费用为100 元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X 的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4 件产品中恰有3 件优质品为事件A1,第一次取出的4 件产品全是优质品为事件A2,第二次取出的4 件产品全是优质品为事件B1,第二次取出的1 件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1 与A2B2 互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X 可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4 件产品中恰有3 件优质品为事件A1,第一次取出的4 件产品全是优质品为事件A2,第二次取出的4 件产品全是优质品为事件B1,第二次取出的1 件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1 与A2B2 互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X 可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X 的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12 分)已知圆 M :(x +1)2+y 2=1,圆 N :(x (I ) 求 C 的方程;(Ⅱ)l 是与圆 P ,圆 M 都相切的一条直线,l 与曲线 C 交于 A ,B 两点,当圆 P 的半径最长时,求|AB |.【考点】J3:轨迹方程;J9:直线与圆的位置关系. 【专题】5B :直线与圆.【分析】(I )设动圆的半径为 R ,由已知动圆 P 与圆 M 外切并与圆N 内切,可得 |PM |+|P N|=R+1(3﹣R)=4,而|N(II ) 设曲线 C 上任意一点 P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤4﹣2=2,所 以 R≤2,当且仅当⊙P 的圆心为(2,0)R=2 时,其半径最大,其方程为(x ﹣2) 2+y 2=4.分①l 的倾斜角为 90°,此时 l 与 y 轴重合,可得|AB |.②若 l 的倾斜 角不为 90°,由于⊙M 的半径 1≠R ,可知 l 与 x 轴不平行,设 l 与 x 轴的交点为 Q ,根据,可得 Q (﹣4,0),所以可设 l :y=k (x +4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出. 【解答】解:(I )由圆 M :(x +1)2+y 2=1,可知圆心 M (﹣1,0);圆 N :(x ﹣1) 2+y 2=9,圆心 N (1,0),半径 3.设动圆的半径为 R , ∵动圆 P 与圆 M 外切并与圆 N 内切,∴|PM |+|PN |=R +1+(3﹣R )=4, 而|NM |=2,由椭圆的定义可知:动点 P 的轨迹是以 M ,N 为焦点,4 为长轴长的椭圆, ∴a=2,c=1,b 2=a 2﹣c 2=3.∴曲线 C 的方程为(x ≠﹣2).(II )设曲线 C 上任意一点 P (x ,y ), 由于|PM |﹣|PN |=2R ﹣2≤3﹣1=2,所以 R ≤2,当且仅当⊙P 的圆心为(2,0) R=2 时,其半径最大,其方程为(x ﹣2)2+y 2=4.①l 的倾斜角为90°,则l 与y 轴重合,可得|AB|= .②若l 的倾斜角不为90°,由于⊙M 的半径1≠R,可知l 与x 轴不平行,设l 与x 轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l 于M 相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|= ==由于对称性可知:当时,也有|AB|=.综上可知:|AB|= 或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12 分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(I)求a,b,c,d 的值;(II)若x≥﹣2 时,f(x)≤kg(x),求k 的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d 的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k 的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k 的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2 时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2 时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2 时,f(x)≤kg(x)不恒成立,综上,k 的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24 题中任选一道作答,并用2B 铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10 分)(选修4﹣1:几何证明选讲)如图,直线AB 为圆的切线,切点为B,点C 在圆上,∠ABC 的角平分线BE 交圆于点E,DB 垂直BE 交圆于D.(I)证明:DB=DC;(II)设圆的半径为1,BC=,延长CE 交AB 于点F,求△BCF 外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE 交BC 于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE 为⊙O 的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG 是BC 的垂直平分线,即可得到BG=.设DE 的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF 的外接圆的半径=.【解答】(I)证明:连接DE 交BC 于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE 为⊙O 的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG 是BC 的垂直平分线,∴BG=.设DE 的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF 的外接圆的半径= .【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1 的参数方程为(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ=2sinθ.(1)把C1 的参数方程化为极坐标方程;(2)求C1 与C2 交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1 的参数方程消去参数t,得到普通方程,再由,能求出C1 的极坐标方程.(2)曲线C2 的极坐标方程化为直角坐标方程,与C1 的普通方程联立,求出C1 与C2 交点的直角坐标,由此能求出C1 与C2 交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1 的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2 的极坐标方程为ρ=2sinθ.∴曲线C2 的直角坐标方程为x2+y2﹣2y=0,。
2013年高考试题选(不等式选讲)1.(2013·全国卷Ⅰ)已知函数()212f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a >-,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围. 2.(2013·全国卷Ⅱ)设,,abc 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤ (Ⅱ)2221a b c b c a++≥ 3.(2013·山东卷理科)在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为____.4.(2013·福建卷理科)设不等式2()x a a N +-<∈的解集为A 且A A ∉∈21,23(Ⅰ)求a 的值;(Ⅱ)求函数()2f x x a x =-+-的最小值.5.(2013·辽宁卷)已知函数()f x x a =-,其中1a >.(Ⅰ)当=2a 时,求不等式()44f x x ≥--的解集;(Ⅱ)已知关于x 的不等式(2)2()2f x a f x +-≤的解集为{}12x x ≤≤,求a 的值.6.(2013·陕西卷理科)已知,,,a b m n 均为正数, 且1a b +=,2mn =, 则 ()()am bn bm an ++的最小值为 .7.(2013·湖南卷理科)已知,,,236a b c R a b c ∈++=,则22249a b c ++的最小值为 .8.(2013·陕西卷文科)设,a b R ∈,2a b ->, 则关于实数x 的不等式2x a x b -+->的解集是 .9.(2013·重庆卷理科)若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是 .10. (2013·湖北卷理科)设,,x y z R ∈,且满足2221x y z ++=,23x y z ++=则x y z ++= .。
考点 基本不等式一、选择题1.(2013·重庆高考理科·T363)a -≤≤的最大值为 ( )A.9 B .29 C.3 D. 2232. (2013·山东高考文科·T12)设正实数z y x ,,满足04322=-+-z y xy x ,则当z xy取得最大值时,2x y z +-的最大值为( )A.0B.98C.2D.943. (2013·山东高考理科·T12)设正实数,,x y z 满足x 2-3xy+4y 2-z =0.则当xy z 取得最大值时,212x y z +-的最大值为( ) A.0 B.1 C.94D.34.(2013·福建高考文科·T7)若221x y +=,则x+y 的取值范围是 ( )A .[]0,2B .[]2,0-C .[)2,-+∞D .(],2-∞-二、填空题5. (2013·四川高考文科·T13)已知函数()4(0,0)a f x x x a x=+>>在3x =时取得最小值,则a =____________。
6.(2013·天津高考文科·T14)设a + b = 2, b >0, 则1||2||a a b+的最小值为 .7. (2013·天津高考理科·T14)设a + b = 2, b >0, 则当a = 时,1||2||a a b +取得最小值.8.(2013·上海高考文科·T13)设常数a >0.若291a x a x +≥+对一切正实数x 成立,则a 的取值范围为 .9. (2013·陕西高考文科·T14)在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m ).。
2013年全国卷新课标——数学理科(适用地区:吉林 黑龙江 山西、河南、新疆、宁夏、河北、云南、内蒙古) 本试卷包括必考题和选考题两部分,第1-21题为必考题,每个考生都必须作答.第22题~第24题,考生根据要求作答.一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中所含元素的个数为 A. 3 B. 6 C. 8 D. 102. 将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有 A. 12种 B. 10种 C. 9种 D. 8种3. 下面是关于复数iz +-=12的四个命题: :1P 2||=z:2P i z 22= :3P z 的共轭复数为i +1:4P z 的虚部为1-其中的真命题为A. 2P ,3PB. 1P ,2PC. 2P ,4PD. 3P ,4P4. 设21,F F 是椭圆:E 12222=+by a x )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为︒30的等腰三角形,则E 的离心率为A.21B.32 C.43D.545. 已知}{n a 为等比数列,274=+a a ,865-=a a , 则=+101a a A.7B. 5C.5-D. 7-6. 如果执行右边的程序框图,输入正整数N )2(≥N 和实数N a a a ,,,21 ,输出A ,B ,则A. B A +为N a a a ,,,21 的和B.2BA +为N a a a ,,,21 的算术平均数 C. A 和B 分别是N a a a ,,,21 中最大的数和最小的数D. A 和B 分别是N a a a ,,,21 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为 A. 6 B. 9 C. 12 D. 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B ,两点,34||=AB ,则的实轴长为A.2B. 22C. 4D. 89. 已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A. ]45,21[B. ]43,21[C. ]21,0(D. ]2,0(10. 已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为11. 已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.62 B.63 C.32 D.22 12. 设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为A. 2ln 1-B.)2ln 1(2- C. 2ln 1+D.)2ln 1(2+二、填空题.本大题共4小题,每小题5分.13.已知向量a ,b 夹角为︒45,且1=||a ,102=-||b a ,则=||b .14. 设y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x 则y x Z 2-=的取值范围为 .15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)服从正态分布)50,1000(2N ,且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .16. 数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为 .三、解答题:解答题应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,0s i n 3c o s =--+c b C a C a .(Ⅰ) 求A ;(Ⅱ) 若2=a ,ABC △的面积为3,求b ,c .18. (本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理. (Ⅰ) 若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;以100天记录的各需求量的频率作为各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19. (本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1(Ⅰ) 证明:BC DC ⊥1(Ⅱ) 求二面角11C BD A --的大小.20. (本小题满分12分)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 两点(Ⅰ) 若90BFD ∠=︒,ABD △面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.21. (本小题满分12分) 已知函数121()(1)(0)2x f x f ef x x -'=-+. (Ⅰ) 求)(x f 的解析式及单调区间;(Ⅱ) 若b ax x x f ++≥221)(,求b a )1(+的最大值 请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分,作答时请写清题号.22. (本小题满分10分)选修4—1:几何证明选讲 如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的 外接圆于F ,G 两点.若AB CF //,证明: (Ⅰ) BC CD =;(Ⅱ) GBD BCD ∽△△.23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ) 设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围.24. (本小题满分10分)选修4—5:不等式选讲 已知函数|2|||)(-++=x a x x f .(Ⅰ) 当3a =-时,求不等式3)(≥x f 的解集;(Ⅱ) |4|)(-≤x x f 的解集包含]2,1[,求a 的取值范围.。
2013 年全国高考理科数学试题分类汇编6:不等式一、选择题1 .( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))设正实数x, y, z知足x23xy 4 y2xy2 12 z 0, 则当 z获得最大值时 ,xyz9A . 0B . 1C .4【答案】 B的最大值为( )D . 32 .( 2013 年高考陕西卷(理) )设[ x ] 表示不大于 x 的最大整数 , 则对随意实数 x , y , 有 ( )A . [- x ] = -[ x ]B . [2 x ] = 2[ x ]C . [ x +y ] ≤[x ]+[ y ]D . [ x - y ] ≤[x ]-[ y ]【答案】 Dy 2x3 .( 2013 年高考湖南卷(理) ) 若变量 x, y 知足拘束条件xy 1, 则 x 2y 的最大值是y1.5 B .C .5D .5-3 22【答案】 C4 .(2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) 已知函数f ( x)x(1 a | x |) . 设对于 x 的不等式f ( x a )f ( x)的解集为A , 若1 1,A ,2 2则实数 a 的取值范围是A .15,0B .13,0C .15,00,123222【答案】 A5 .( 2013 年一般高等学校招生一致考试新课标Ⅱ 卷数学(理) (纯WORD 版含答案) ) 已知()( )D .,152x 1a 0 , x, y 知足拘束条件 xy3, 若 z 2x y 的最小值为 1, 则 a()y a( x3)A .1B .1C . 1D . 242【答案】 B6 .( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) 设变量 x , y 知足约3xy 60,束条件x y 2 0, 则目标函数z =-2 x 的最小值为()yy 3 0,A . -7B . -4C . 1D . 2【答案】 A7 .( 2013 年高考湖北卷(理) ) 一辆汽车在高速公路上行驶, 因为碰到紧迫状况而刹车 , 以速度 v t7 3t25( t 的单位 : s , v的单位 : m / s ) 行驶至停止 . 在此时期汽车持续1 t行驶的距离 ( 单位 ; m ) 是( )A . 1 25ln5B .8 11 C . 4 25ln5 D . 450ln 225ln【答案】 C38 .( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版)) 已知一元二次不等式 f (x)<0 的解集为 x |x<-1或 x>1, 则 f (10x )>0 的解集为()2A . x|x<-1或 x>lg2B . x|-1<x<lg2C . x |x>-lg2D . x|x<-lg2【答案】 D9 .( 2013 年上海市春天高考数学试卷( 含答案 ) ) 假如 ab 0 , 那么以下不等式建立的是()A .1 1B . ab b 2C . aba 2D .1 1 abab【答案】 D10.( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))在平面直角坐标系xoy2x y 2 0,x2y 1 0,中 , M 为不等式组 3x y80,所表示的地区上一动点 , 则直线OM斜率的最小值为()11A . 2B . 1C .3D .2【答案】 C11 .( 2013 年一般高等学校招生一致考试新课标 Ⅱ 卷数学(理) (纯WORD 版含答案) ) 设a log 3 6,b log 5 10, clog 7 14 , 则()A . c b aB . b c aC . a c bD . a b c【答案】2x y 1 0,12.( 2013 年高考北京卷(理) )设对于 x , y 的不等式组x m 0, 表示的平面地区内存y m 0在点 P ( x 0, y 0), 知足 x 0-2 y 0=2, 求得 m 的取值范围是( )A .,4B .,1C ., 2D .,53333【答案】 C二、填空题13.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 记不等式x 0,组 x3y 4, 所表示的平面地区为 D , 若直线 ya x1 与 D 公共点 , 则 a 的取值3xy4,范围是 ______.【答案】 [1, 4]214.( 2013 年高考陕西卷(理) ) 若点 ( x , y ) 位于曲线 y | x 1| 与 y =2 所围成的关闭地区 , 则2x - y 的最小值为 ___-4_____.【答案】 - 415 .( 2013 年 高 考 四 川 卷 ( 理 )) 已 知 f ( x) 是 定 义 域 为 R 的 偶 函 数 , 当 x ≥ 0时, f ( x)x 2 4x , 那么 , 不等式 f ( x 2) 5 的解集是 ____________.【答案】 (7,3)16 .( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯WORD 版)) 给定地区x 4 y 4x y4D : x 0, 令点集T{ x 0, yD | x 0 , y 0Z, x 0, y0 , 是zx y 在 D 上取得最大值或最小值的点}, 则 T 中的点共确立 ______条不一样的直线.【答案】617.( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯WORD 版)) 设zkx y , 其xy 2 0中实数 x, y 知足 x2 y 4 0 , 若 z 的最大值为 12, 则实数 k ________.2x y 4 0【答案】 218.( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) 设 a + b = 2, b >0, 则当 a = ______ 时 ,1 | a |获得最小值 .2 | a |b【答案】 219.( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯 WORD 版))不等式 x 2x2 0的解集为 ___________.【答案】2,120. ( 2013年 高考 湖南 卷(理 ) )已知a,b,c ,23c 229ca 2则b 6的最,小值a 为4b .【答案】 12三、解答题21.( 2013 年上海市春天高考数学试卷( 含答案 ) )如图 , 某校有一块形如直角三角形ABC 的空地, 此中 B 为直角 , AB 长 40 米 , BC 长50 米 , 现欲在此空地上建筑一间健身房, 其占地形状为矩形 , 且 B 为矩形的一个极点 , 求该健身房的最大占地面积 .ABC【答案】 [ 解 ] 如图 , 设矩形为 EBFP , FP 长为 x 米, 此中 0 x 40 , AEPBFC健身房占地面积为 y 平方米 . 因为 CFP ∽ CBA ,以 FPCF , x 50BF,求得 BF505x ,BACB 40 504进而 yBF FP(50 5 x) x5 x 250x5 ( x 20)2 500 500 ,444当且仅当 x20 时, 等建立 .答 : 该健身房的最大占地面积为 500 平方米 .22.( 2013 年高考上海卷(理) ) (6 分 +8 分 ) 甲厂以 x 千克 / 小时的速度运输生产某种产品( 生产条件要求 1x 10 ), 每小时可获取收益是 100(5x 1 3)元.x(1) 要使生产该产品 2 小时获取的收益不低于 3000 元, 求 x 的取值范围 ;(2) 要使生产 900 千克该产品获取的收益最大, 问: 甲厂应当选用何种生产速度?并求最大收益 .【答案】 (1) 依据题意 , 200(5x13 ) 30005x 143 0x x又 1 x 10 , 可解得 3x 10(2) 设收益为 y 元 , 则 y900100(5x 1 3) 9 104[ 3( 11) 2 61]xxx 6 12故 x 6 时 ,ymax457500 元 .。
2013年高考试题分类汇编(不等式)考点1 不等式的基本性质1.(2013·北京卷·文科)设,,a b c R ∈,且a b <,则 A.ac bc > B.11a b< C.22a b > D.33a b > 4.(2013·天津卷·文科)设,a b R ∈,则“2()0a b a -<”是“a b <”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件考点2 解不等式或证明不等式考法1 一元二次不等式1.(2013·广东卷·理科)不等式220x x +-<的解集为 .2.(2013·全国卷Ⅰ·理科)已知集合2{20}A x x x =->,{B x x =<<, 则A.A B =∅B.A B R =C.B A ⊆D.A B ⊆ 3.(2013·全国卷Ⅱ·理科)已知集合2{(1)4,}M x x x R =-<∈,{}1,0,1,2,3N =- ,则MN =A.{}0,1,2B.{}1,0,1,2-C.{}1,0,2,3-D.{}0,1,2,3 4.(2013·重庆卷·文科)关于x 的不等式22280x ax a --<(0a >)的解集为12(,)x x ,且2115x x -=,则a =A.52B.72C.154D.1525.(2013·安徽卷·理科)已知一元二次不等式()<0f x 的解集为{|<1x x -或1>}2x ,则(10)>0x f 的解集为 A.{|<1,>lg2}x x x - B.{|1<<lg2}x x - C.{|>lg2}x x - D.{|<lg2}x x -6.(2013·安徽卷·文科)函数1ln(1)y x=++的定义域为_______.7.(2013·陕西卷·理科)设全集为R , 函数()f x =M ,则U C M 为A.[1,1]-B.(1,1)-C.(,1][1,)-∞-+∞D.(,1)(1.)-∞-+∞ 8.(2013·重庆卷·文科)设0απ≤≤,不等式28(8sin )cos20x x αα-+≥对x R ∈恒成立,则a 的取值范围为 . 考法2 分式不等式1.(2013·江西卷·文科)下列选项中,使不等式21x x x<<成立的x 的取值范围是A.(,1)-∞-B.(1,0)-C.(0,1)D.(1)+∞,考法3 含有绝对值符号的不等式1.(2013·山东卷·理科)在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为____.2.若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是 . 考法4 数的的大小比较1.(2013·重庆卷·理科)(2013·全国卷Ⅱ·理科)设3log 6a =,5log 10b =,7log 14c =,则A.c b a >>B.b c a >>C.a c b >>D.a b c >> 2.(2013·全国卷Ⅱ·文科)设3log 2a =,5log 2b =,2log 3c =,则A. a c b >>B.b c a >>C. c b a >>D.c b a >>考点3 基本不等式1.(201363a -≤≤)的最大值为A.9B.92 C.3 D.22.(2013·山东卷·文科)设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,2x y z +-的最大值为A.0B.98C.2D.943.(2013·山东卷·理科)设正实数,,x y z 满足22340x xy y z -+-=.则当xy z取得最大值时,212x y z++的最大值为A.0B.1C.94D.3 4.(2013·天津卷·理科)设2a b +=,0b >,则当a = 时,12a a b+取得最小值.5.(2013·陕西卷·理科)已知,,,a b m n 均为正数,且1a b +=,2mn =,则()()am bn bm an ++的最小值为 .6.(2013·四川卷·理科)已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =_ _ __.考点4 线性规划考法11.(2013·四川卷·理科)若变量,x y 满足约束条件82400x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是A.48B.30C.24D.162.(2013·陕西卷·理科)若点(),x y 位于曲线|1|y x =-与2y =所围成的封闭区域,则2x y -的最小值为 .3.(2013·天津卷·理科)设变量,x y 满足约束条件3602030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,则目标函数2z y x =-的最小值为A.-7B.-4C.1D.24.(2013·全国卷Ⅰ·文科)设,x y满足约束条件1310xx y≤≤⎧⎨-≤-≤⎩,则2z x y=-的最大值为______.5.(2013·全国卷Ⅱ·文科)设,x y满足约束条件10103x yx yx-+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y=-的最小值是A.-7B.-6C.-5D.-36.(2013·大纲全国卷·文科)若x y、满足约束条件0,34,34,xx yx y≥⎧⎪+≥⎨⎪+≤⎩则z x y=-+的最小值为 .7.(2013·天津卷·理科)设变量,x y满足约束条件360,20,30,x yyx y≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数2z y x=-的最小值为A.-7B.-4C.1D.2 考法21.(2013·福建卷·文科)若变量,x y满足约束条件21,0,x yxy+≤⎧⎪≥⎨⎪≥⎩,则2z x y=+的最大值和最小值分别为A.4和3 B.4和2 C.3和2 D.2和04.(2013·湖南卷·理科)若变量,x y满足约束条件211y xx yy≤⎧⎪+≤⎨⎪≥-⎩,则2x y+的最大值是A.52- B.0 C.53D.523.(2013·湖南卷·文科)若变量,x y满足约束条件280403x yxy+≤⎧⎪≤≤⎨⎪≤≤⎩,则x y+的最大值为________.4.(2013·全国卷Ⅱ·理科)已知0a >,,x y 满足约束条件()1 3 3x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =A.14B.12C.1D.2 5.(2013·安徽卷·文科)若非负数变量,x y 满足约束条件124x y x y -≥-⎧⎨+≤⎩,则x y +的最大值为_______ . 考法31.(2013·大纲全国卷·理科)记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为.D 若直线()1y a x =+与D 有公共点,则a 的取值范围是 .2.(2013·山东卷·理科)在平面直角坐标系xoy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为 A.2 B.1 C.13- D.12-3.(2013·浙江卷·文科)设z kx y =+,其中实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =____.4.(2013·浙江卷·理科)设z kx y =+,其中实数,x y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =____.5.(2013·北京卷·理科)设关于,x y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P 00(,)x y 满足0022x y -=,求得m 的取值范围是A.4(,)3-∞-B.1(,)3-∞C.2(,)3-∞-D.5(,)3-∞-6.(2013·北京卷·文科)设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.考点5 柯西不等式1.(2013·湖南卷·理科)已知,,,236a b c R a b c ∈++=,则22249a b c ++的最小值为 .。
高考数学理科高考试题分类汇编:不等式E1 不等式的概念与性质 5.,,[山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A. 1x 2+1>1y 2+1 B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.4.[四川卷] 若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.D [解析] 因为c <d <0,所以1d <1c <0,即-1d >-1c >0,与a >b >0对应相乘得,-a d >-b c >0,所以a d <bc.故选D.E2 绝对值不等式的解法 9.、[安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8 9.D [解析] 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.E3 一元二次不等式的解法 2.、[全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.12.、[新课标全国卷Ⅱ] 设函数f (x )=3sin πx m,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)12.C [解析] 函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝⎛⎭⎫k 0+122+3<m 2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).E4 简单的一元高次不等式的解法 E5 简单的线性规划问题5.[安徽卷] x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( )A.12或-1 B .2或12 C .2或1 D .2或-1 5.D [解析]方法一:画出可行域,如图中阴影部分所示,可知点A (0,2),B (2,0),C (-2,-2), 则z A =2,z B =-2a ,z c =2a -2.要使对应最大值的最优解有无数组,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A , 解得a =-1或a =2.方法二:画出可行域,如图中阴影部分所示,z =y -ax 可变为y =ax +z ,令l 0:y =ax ,则由题意知l 0∥AB 或l 0∥AC ,故a =-1或a =2.6.[北京卷] 若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( ) A .2 B .-2 C.12 D .-126.D [解析] 可行域如图所示,当k >0时,知z =y -x 无最小值,当k <0时,目标函数线过可行域内A 点时z 有最小值.联立⎩⎪⎨⎪⎧y =0,kx -y +2=0,解得A ⎝⎛⎭⎫-2k ,0,故z min =0+2k =-4,即k =-12.11.[福建卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.11.1 [解析] 作出不等式组表示的平面区域(如图所示),把z =3x +y 变形为y =-3x +z ,则当直线y =3x +z 经过点(0,1)时,z 最小,将点(0,1)代入z =3x +y ,得z min =1,即z =3x +y 的最小值为1.3.[广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .83.B [解析] 本题考查运用线性规划知识求目标函数的最值,注意利用数形结合思想求解.画出不等式组表示的平面区域,如图所示.当目标函数线经过点A (-1,-1)时,z 取得最小值;当目标函数线经过点B (2,-1)时,z 取得最大值.故m =3,n =-3,所以m -n =6.14.[湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k=________.14.-2 [解析] 画出可行域,如图中阴影部分所示,不难得出z =2x +y 在点A (k ,k )处取最小值,即3k =-6,解得k =-2.14.[全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5.9.、[新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.9.[新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .29.B [解析] 已知不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义可知,目标函数在点A (5,2)处取得最大值,故目标函数的最大值为2×5-2=8.9.[山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值2 5时,a 2+b 2的最小值为( )A. 5B. 4C. 5D. 29.B [解析] 画出约束条件表示的可行域(如图所示).显然,当目标函数z =ax +by 过点A (2,1)时,z 取得最小值,即2 5=2a +b ,所以2 5-2a =b ,所以a 2+b 2=a 2+(2 5-2a )2=5a 2-8 5a +20,构造函数m (a )=5a 2-8 5a +20(5>a >0),利用二次函数求最值,显然函数m (a )=5a 2-85a +20的最小值是4×5×20-(8 5)24×5=4,即a 2+b 2的最小值为4.故选B.18.,[陕西卷] 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值. 18.解:(1)方法一:∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2. 方法二:∵P A →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.5.,[四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图1-1A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.2.[天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .52.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.13. [浙江卷] 当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a的取值范围是________.13.⎣⎡⎦⎤1,32 [解析] 实数x ,y 满足的可行域如图中阴影部分所示,图中A (1,0),B (2,1),C ⎝⎛⎭⎫1,32.当a ≤0时,0≤y ≤32,1≤x ≤2,所以1≤ax +y ≤4不可能恒成立;当a >0时,借助图像得,当直线z =ax +y 过点A 时z 取得最小值,当直线z =ax +y 过点B 或C 时z 取得最大值,故⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.故a ∈⎣⎡⎦⎤1,32.E6 2a b+≤16.、[辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2,当且仅当4a 21=3b 213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.14.,[山东卷] 若⎝⎛⎭⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________. 14.2 [解析]T r +1=C r 6(ax 2)6-r ·⎝⎛⎭⎫b x r=C r 6a 6-r ·b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.10.,[四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B [解析] 由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2,解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)= 1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 14.,[四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.14.5 [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10.∴|P A ||PB |≤|P A |2+|PB |22=5,当且仅当|P A |=|PB |时等号成立.E7 不等式的证明方法20.[北京卷] 对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)20.解:(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.19.、、[天津卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q -1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.E8 不等式的综合应用9.、[安徽卷] 若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为() A.5或8 B.-1或5C.-1或-4 D.-4或89.D[解析] 当a≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.13.[福建卷] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).13.160 [解析] 设底面矩形的一边长为x ,由容器的容积为4 m 3,高为1 m 得,另一边长为4xm.记容器的总造价为y 元,则 y =4×20+2⎝⎛⎭⎫x +4x ×1×10 =80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160(元),当且仅当x =4x,即x =2时,等号成立.因此,当x =2时,y 取得最小值160元, 即容器的最低总造价为160元. 21.,,,[陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k+2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =xx +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.E9 单元综合16.、[辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.12.、[辽宁卷] 已知定义在[0,1]上的函数f (x )满足: ①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12πD.18 12.B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.3.[天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .53.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内min =1×1+2×1=3. 16.[广州七校联考] 不等式|x +2|+|x -1|≤5的解集为________.16.[-3,2] [解析] 根据绝对值的几何意义,得不等式的解集为-3≤x ≤2.4.[安徽六校联考] 若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .44.A [解析] ∵x +y ≥2xy ,且x +y =2,∴2≥2xy ,当且仅当x =y =1时,等号成立,∴xy ≤1,∴1xy≥1,∴1≥M ,∴M max =1.7.[福建宁德期末] 已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( )A.63B.23 3C.43 3D.236 7.C [解析] 由题知x 1+x 2=4a ,x 1x 2=3a 2,∴x 1+x 2+a x 1x 2=4a +13a ≥2 43=4 33,当且仅当a =36时,等号成立.6.[长沙模拟] 若f (x )为奇函数,且在区间(0,+∞)上单调递增,f (2)=0,则f (x )-f (-x )x>0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-∞,-2)∪(2,+∞)6.D [解析] 因为f (x )为奇函数,且在区间(0,+∞)上单调递增,所以f (x )在区间(-∞,0)上单调递增.又f (-x )=-f (x ),所以f (x )-f (-x )x >0等价于2f (x )x>0.根据题设作出f (x )的大致图像如图所示.由图可知,2f (x )x>0的解集是(-∞,-2)∪(2,+∞).13.[浙江六市六校联考] 已知正数x ,y 满足x +y +1x +9y=10,则x +y 的最大值为________.13.8 [解析] ∵1x +9y =10-(x +y ),∴(x +y )1x +9y =10(x +y )-(x +y )2.又(x +y )1x +9y=10+9x y +yx≥10+6=16,∴10(x +y )-(x +y )2≥16,即(x +y )2-10(x +y )+16≤0,∴2≤x +y ≤8,∴x +y 的最大值为8.。
2013年高考数学(文)解析分类汇编6:不等式一、选择题1 .(2013年高考四川卷(文8))若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是()A .48B .30C .24D .16【答案】C【解析】条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩表示以(0,0)、(0,2)、(4,4)、(8,0)为顶点的四边形区域,检验四顶点可知,当4=x ,4=y 时,16445max =-⨯==z a ,当8=x ,0=y 时,8805min -=-⨯==b ,所以24=-b a ,选C.2 .(2013年高考福建卷(文))若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+012y x y x ,则y x z +=2的最大值和最小值分别为 ()A .4和3B .4和2C .3和2D .2和0 【答案】B【解析】本题考查的简单线性规划.如图,可知目标函数最大值和最小值分别为4和2.3 .(2013年高考课标Ⅱ卷(文3)) 设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由z=2x-3y 得3y=2x-z ,即233zy x =-。
作出可行域如图,平移直线233z y x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线z=2x-3y 得32346z =⨯-⨯=-,选B.4 .(2013年高考福建卷(文))若122=+y x ,则y x +的取值范围是() A .]2,0[B .]0,2[-C .),2[+∞-D .]2,(--∞【答案】D【解析】本题考查的是均值不等式.因为y x y x222221⋅≥+=,即222-+≤y x ,所以2-≤+y x ,当且仅当yx 22=,即y x =时取等号.5 .(2013年高考江西卷(文6))下列选项中,使不等式x<1x<2x 成立的x 的取值范围是 () A .(,-1)B .(-1,0)C .0,1)D .(1,+)【答案】A【解析】本题考查不等式的解法。
最新新课标2013年全国高考理科数学试题分类汇编6:不等式
一、选择题
1 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数
,,x y z 满足
22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +-
的最大值为
( )
A .0
B .1
C .94
D .3
【答案】B
2 .(2013年高考陕西卷(理))设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有
( )
A .[-x ] = -[x ]
B .[2x ] = 2[x ]
C .[x +y ]≤[x ]+[y ]
D .[x -y ]≤[x ]-[y ]
【答案】D
3 .(2013年高考湖南卷(理))若变量,x y 满足约束条件211y x x y y ≤⎧⎪
+≤⎨⎪≥-⎩
,2x y +则的最大值是 ( )
A .5-
2
B .0
C .
53
D .
52
【答案】C 4 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数()(1||)f x x a x =+. 设关
于x 的不等式()
()f x a f x +< 的解集为A , 若11,22
A ⎡⎤
-⊆⎢⎥⎣⎦
, 则实数a 的取值范围是
( )
A
.
⎫⎪⎪⎝⎭
B .⎫
⎪⎪⎝⎭
C
.
⎛⋃ ⎝⎫⎪⎝⎭
⎪⎭
D .⎛- ⎝⎭
∞ 【答案】A
5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知0a >,,x y 满足约
束条件1
3(3)x x y y a x ≥⎧⎪
+≤⎨⎪≥-⎩
,若2z x y =+的最小值为1,则a =
( )
A .
14
B .
12
C .1
D .2
【答案】B
6 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x , y 满足约束条件360,20,
30,x y y x y ≥--≤+-⎧-≤⎪
⎨⎪⎩
则目标函数z = y -2x 的最小值为 ( ) A .-7 B .-4 C .1 D .2 【答案】A 7 .(2013年高考湖北卷(理))一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度
()25
731v t t t
=-+
+(t 的单位:s ,v 的单位:/m s )行驶至停止.在此期间汽车继续行驶的距离(单位;m )是
( )
A .125ln 5+
B .11825ln
3
+ C .425ln 5+ D .450ln 2+
【答案】C
8 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知一元二次不等式()<0f x 的
解集为{}1
|<-1>2
x x x 或,则(10)>0x f 的解集为
( )
A .{}|<-1>lg2x x x 或
B .{}|-1<<lg2x x
C .{}|>-lg2
x x D .{}|<-lg2
x x
【答案】D
9 .(2013年上海市春季高考数学试卷(含答案))如果0a b <<,那么下列不等式成立的是
( )
A .
11
a b
< B .2
ab b <
C .2
ab a -<-
D .11a b
-
<- 【答案】D
10.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))在平面直角坐标系xoy 中,M 为不
等式组
220,
210,380,x y x y x y --≥⎧⎪
+-≥⎨⎪+-≤⎩
所表示的区域上一动点,则直线OM 斜率的最小值为
( )
A .2
B .1
C .13-
D .12-
【答案】C
11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设
357log 6,log 10,log 14a b c ===,则
( )
A .c b a >>
B .b c a >>
C .a c b >>
D .a b c >>
【答案】
12.(2013年高考北京卷(理))设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪
+<⎨⎪->⎩
表示的平面区域内存在点P (x 0,y 0),
满足x 0-2y 0=2,求得m 的取值范围是
( )
A .4,
3⎛⎫-∞ ⎪⎝⎭
B .1,3⎛⎫-∞ ⎪⎝⎭
C .2,3⎛⎫-∞- ⎪⎝⎭
D .5,3⎛⎫-∞- ⎪⎝⎭
【答案】C 二、填空题
13.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))记不等式组0,34,
34,x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
所表示的平面区域为D ,若直线()1y a x =+与D 公共点,则a 的取值范围是______.
【答案】1
[
,4]2
14.(2013年高考陕西卷(理))若点(x , y )位于曲线|1|y x =-与y =2所围成的封闭区域, 则2x -y 的最小值
为___-4_____.
【答案】- 4
15.(2013年高考四川卷(理))已知()f x 是定义域为R 的偶函数,当x ≥0时,2
()4f x x x =-,那么,不等
式(2)5f x +<的解集是____________.
【答案】(7,3)-
16.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))给定区域D :44
40
x y x y x +≥⎧⎪
+≤⎨⎪≥⎩,令点
集
()()
000000{,|,,,T x y D x y Z x y =∈∈,是z x y =+在D 上取得最大值或最小值的点},则T 中的
点共确定______条不同的直线.
【答案】6
17.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设y kx z +=,其中实数y x ,满足
⎪⎩
⎪
⎨⎧≤--≥+-≥-+0420420
2y x y x y x ,若z 的最大值为12,则实数=k ________ 【答案】2
18.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设a + b = 2, b >0, 则当a = ______
时,
1||
2||a a b
+
取得最小值. 【答案】2-
19.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))不等式2
20x x +-<的解集为
___________.
【答案】
()2,1-
20.(2013年高考湖南卷(理))已知2
2
2
,,,236,49a b c a b c a b c ∈++=++则的最小值为______.
【答案】12 三、解答题
21.(2013年上海市春季高考数学试卷(含答案))如图,某校有一块形如直角三角形ABC 的空地,其中B ∠为
直角,AB 长40米, BC 长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B 为矩形的
一个顶点,求该健身房的最大占地面积.
【答案】[解]如图,设矩形为EBFP , FP 长为x 米,其中040x <<,
健身房占地面积为y 平方米.因为CFP ∆∽CBA ∆,
以
FP CF BA CB =,504050x BF -=
,求得5
504
BF x =-, 从而255(50)5044y BF FP x x x x =⋅=-=-+2
5(20)5005004
x =--+≤,
当且仅当20x =时,等号成立.
答:该健身房的最大占地面积为500平方米. 22.(2013年高考上海卷(理))(6分+8分)甲厂以x
千克/小时的速度运输生产某种产品(生产条件要
求110x ≤≤),每小时可获得利润是3100(51)x x
+-元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.
【答案】(1)根据题意,33
200(51)30005140x x x x
+-
≥⇒--≥ 又110x ≤≤,可解得310x ≤≤ (2)设利润为y 元,则4290031161100(51)910[3()]612
y x x x x =
⋅+-=⨯--+ 故6x =时,max 457500y =元.
A
B
C F
P E A
B
C。