高中数学 第二章推理与证明检测题 新人教A版选修2-2
- 格式:doc
- 大小:198.00 KB
- 文档页数:3
人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
第二章 推理与证明综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.锐角三角形的面积等于底乘高的一半; 直角三角形的面积等于底乘高的一半; 钝角三角形的面积等于底乘高的一半; 所以,凡是三角形的面积都等于底乘高的一半. 以上推理运用的推理规则是( ) A .三段论推理 B .假言推理 C .关系推理 D .完全归纳推理 [答案] D[解析] 所有三角形按角分,只有锐角三角形、Rt 三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.2.数列1,3,6,10,15,…的递推公式可能是( )A.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +n (n ∈N *)B.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+n (n ∈N *,n ≥2)C.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +(n -1)(n ∈N *)D.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+(n -1)(n ∈N *,n ≥2)[答案] B[解析] 记数列为{a n },由已知观察规律:a 2比a 1多2,a 3比a 2多3,a 4比a 3多4,…,可知当n ≥2时,a n 比a n -1多n ,可得递推关系⎩⎪⎨⎪⎧a 1=1,a n -a n -1=n (n ≥2,n ∈N *).3.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误 [答案] C[解析] 大小前提都正确,其推理形式错误.故应选C. 4.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4 [答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D.5.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 都成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12[答案] C[解析] 类比题目所给运算的形式,得到不等式(x -a )⊗(x +a )<1的简化形式,再求其恒成立时a 的取值范围.(x -a )⊗(x +a )<1⇔(x -a )(1-x -a )<1 即x 2-x -a 2+a +1>0 不等式恒成立的充要条件是 Δ=1-4(-a 2+a +1)<0 即4a 2-4a -3<0 解得-12<a <32.故应选C.6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14[答案] D[解析] 项数为n 2-(n -1)=n 2-n +1,故应选D. 7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0 D .不大于0 [答案] D[解析] 解法1:∵a +b +c =0, ∴a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +ac +bc =-a 2+b 2+c 22≤0.解法2:令c =0,若b =0,则ab +bc +ac =0,否则a 、b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.8.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( )A .a >bB .a <bC .a =bD .a 、b 大小不定 [答案] B[解析] a =c +1-c =1c +1+c ,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b .9.若凸k 边形的内角和为f (k ),则凸(k +1)边形的内角和f (k +1)(k ≥3且k ∈N *)等于( )A .f (k )+π2B .f (k )+πC .f (k )+32πD .f (k )+2π [答案] B[解析] 由凸k 边形到凸(k +1)边形,增加了一个三角形,故f (k +1)=f (k )+π.10.若sin A a =cos B b =cos C c,则△ABC 是( )A .等边三角形B .有一个内角是30°的直角三角形C .等腰直角三角形D .有一个内角是30°的等腰三角形 [答案] C[解析] ∵sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin C c ,∴sin B b =cos B b =cos C c =sin Cc,∴sin B =cos B ,sin C =cos C ,∴∠B =∠C =45°, ∴△ABC 是等腰直角三角形.11.若a >0,b >0,则p =(ab )a +b2与q =a b ·b a 的大小关系是( ) A .p ≥q B .p ≤q C .p >q D .p <q [答案] A若a >b ,则a b >1,a -b >0,∴pq >1;若0<a <b ,则0<a b <1,a -b <0,∴pq >1;若a =b ,则pq=1,∴p ≥q .12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2011=( )A.1 B .2 C .4 D .5 [答案] C[解析] x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2011=x 3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr .①①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于①式的式子:______________________________,你所写的式子可用语言叙述为__________________________.[答案] ⎝ ⎛⎭⎪⎫43πR 3′=4πR 2;球的体积函数的导数等于球的表面积函数.14.已知f (n )=1+12+13+…+1n(n ∈N *),用数学归纳法证明f (2n)>n2时,f (2k +1)-f (2k )=________.[答案] 12k +1+12k +2+…+12k +1[解析] f (2k +1)=1+12+13+…+12k +1f (2k)=1+12+13+…+12kf (2k +1)-f (2k)=12k +1+12k +2+…+12k +1.15.观察①sin 210°+cos 240°+sin10°cos40°=34;②si n 26°+cos 236°+sin6°cos36°=34.两式的结构特点可提出一个猜想的等式为________________.[答案] sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34[解析] 观察40°-10°=30°,36°-6°=30°, 由此猜想:sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.可以证明此结论是正确的,证明如下:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=1-cos2α2+1+cos(60°+2α)2+12[sin(30°+2α)-sin30°]=1+12[cos(60°+2α)-cos2α]+12sin(30°+2α)-12=1+12[-2sin(30°+2α)sin30°]+12sin(30°+2α)-12=34-12si n(30°+2α)+12sin(30°+2α)=34. 16.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ③④[解析] 考查阅读理解、分析等学习能力.①整数a =2,b =4,ab不是整数;②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ;③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知:a 、b 、c ∈R ,且a +b +c =1. 求证:a 2+b 2+c 2≥13.[证明] 由a 2+b 2≥2ab ,及b 2+c 2≥2bc ,c 2+a 2≥2ca . 三式相加得a 2+b 2+c 2≥ab +bc +ca .∴3(a 2+b 2+c 2)≥(a 2+b 2+c 2)+2(ab +bc +ca )=(a +b +c )2. 由a +b +c =1,得3(a 2+b 2+c 2)≥1, 即a 2+b 2+c 2≥13.18.(本题满分12分)证明下列等式,并从中归纳出一个一般性的结论.2cos π4=2,2cos π8=2+2,2cos π16=2+2+2,……[证明] 2cos π4=2·22= 22cos π8=21+cosπ42=2·1+222=2+ 2 2cos π16=21+cosπ82=21+122+22=2+2+ 2…19.(本题满分12分)已知数列{a n }满足a 1=3,a n ·a n -1=2·a n -1-1.(1)求a 2、a 3、a 4;(2)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并写出数列{a n }的一个通项公式.[解析] (1)由a n ·a n -1=2·a n -1-1得a n =2-1a n -1,代入a 1=3,n 依次取值2,3,4,得 a 2=2-13=53,a 3=2-35=75,a 4=2-57=97.(2)证明:由a n ·a n -1=2·a n -1-1变形,得 (a n -1)·(a n -1-1)=-(a n -1)+(a n -1-1), 即1a n -1-1a n -1-1=1, 所以{1a n -1}是等差数列.由1a 1-1=12,所以1a n -1=12+n -1, 变形得a n -1=22n -1,所以a n =2n +12n -1为数列{a n }的一个通项公式.20.(本题满分12分)已知函数f (x )=a x+x -2x +1(a >1).(1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负根.[解析] (1)证法1:任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,且a x 1>0,又∵x 1+1>0,x 2+1>0,∴f (x 2)-f (x 1)=x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0,于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,故函数f (x )在(-1,+∞)上为增函数.证法2:f ′(x )=a xln a +x +1-(x -2)(x +1)2=a x ln a +3(x +1)2∵a >1,∴ln a >0,∴a xln a +3(x +1)2>0,f ′(x )>0在(-1,+∞)上恒成立,即f (x )在(-1,+∞)上为增函数.(2)解法1:设存在x 0<0(x 0≠-1)满足f (x 0)=0则a x 0=-x 0-2x 0+1,且0<ax 0<1.∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0矛盾.故方程f (x )=0没有负数根. 解法2:设x 0<0(x 0≠-1)①若-1<x 0<0,则x 0-2x 0+1<-2,a x 0<1,∴f (x 0)<-1.②若x 0<-1则x 0-2x 0+1>0,a x 0>0, ∴f (x 0)>0.综上,x <0(x ≠-1)时,f (x )<-1或f (x )>0,即方程f (x )=0无负根.21.(本题满分12分)我们知道,在△ABC 中,若c 2=a 2+b 2,则△ABC 是直角三角形.现在请你研究:若c n =a n +b n (n >2),问△ABC 为何种三角形?为什么?[解析] 锐角三角形 ∵c n =a n +b n (n >2),∴c >a, c >b , 由c 是△ABC 的最大边,所以要证△ABC 是锐角三角形,只需证角C 为锐角,即证cos C >0.∵cos C =a 2+b 2-c 22ab,∴要证cos C >0,只要证a 2+b 2>c 2,① 注意到条件:a n +b n =c n ,于是将①等价变形为:(a 2+b 2)c n -2>c n .② ∵c >a ,c >b ,n >2,∴c n -2>a n -2,c n -2>b n -2, 即c n -2-a n -2>0,c n -2-b n -2>0, 从而(a 2+b 2)c n -2-c n =(a 2+b 2)c n -2-a n -b n =a 2(c n -2-a n -2)+b 2(c n -2-b n -2)>0, 这说明②式成立,从而①式也成立.故cos C >0,C 是锐角,△ABC 为锐角三角形.22.(本题满分14分)(2010·安徽理,20)设数列a 1,a 2,…a n ,…中的每一项都不为0.证明{a n }为等差数列的充分必要条件是:对任何n ∈N +,都有1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1. [分析] 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.解题思路是利用裂项求和法证必要性,再用数学归纳法或综合法证明充分性.[证明] 先证必要性.设数列{a n }的公差为d .若d =0,则所述等式显然成立. 若d ≠0,则 1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎝ ⎛⎭⎪⎫a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1 =1d ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n-1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d a n +1-a 1a 1a n +1=n a 1a n +1. 再证充分性.证法1:(数学归纳法)设所述的等式对一切n ∈N +都成立.首先,在等式1a 1a 2+1a 2a 3=2a 1a 3两端同乘a 1a 2a 3,即得a 1+a 3=2a 2,所以a 1,a 2,a 3成等差数列,记公差为d ,则a 2=a 1+d .假设a k =a 1+(k -1)d ,当n =k +1时,观察如下两个等式1a 1a 2+1a 2a 3+…+1a k -1a k =k -1a 1a k,① 1a 1a 2+1a 2a 3+…+1a k -1a k +1a k a k +1=k a 1a k +1② 将①代入②,得k -1a 1a k +1a k a k +1=ka 1a k +1, 在该式两端同乘a 1a k a k +1,得(k -1)a k +1+a 1=ka k . 将a k =a 1+(k -1)d 代入其中,整理后,得a k +1=a 1+kd . 由数学归纳法原理知,对一切n ∈N ,都有a n =a 1+(n -1)d ,所以{a n }是公差为d 的等差数列.证法2:(直接证法)依题意有1 a1a2+1a2a3+…+1a n a n+1=na1a n+1,①1 a1a2+1a2a3+…+1a n a n+1+1a n+1a n+2=n+1a1a n+1.②②-①得1a n+1a n+2=n+1a1a n+2-na1a n+1,在上式两端同乘a1a n+1a n+2,得a1=(n+1)a n+1-na n+2.③同理可得a1=na n-(n-1)a n+1(n≥2)④③-④得2na n+1=n(a n+2+a n)即a n+2-a n+1=a n+1-a n,由证法1知a3-a2=a2-a1,故上式对任意n∈N*均成立.所以{a n}是等差数列.。
2016-2017学年高中数学第二章推理与证明测试理新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章推理与证明测试理新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章推理与证明测试理新人教A版选修2-2的全部内容。
第二章 推理与证明微测试1 2。
1。
1合情推理一、选择题:本大题共4小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.某小朋友按如下规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,7中指,8食指,9大拇指,10食指,...,一直数到2017时,对应的指头是A .小指B .中指C .食指D .大拇指2.已知下列等式:222233+=,333388+=44441515+=55552424+=,1010a a b b+=, 则推测=+b a A .109 B .1033 C .199D .293.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…用你所发现的规律可得20172的末位数字是 A .2 B .4 C .6D .84.设ABC △的三边长分别为a ,b ,c ,ABC △的面积为S ,内切圆半径为r ,则2Sr a b c=++;类比这个结论可知:四面体P ABC -的四个面的面积分别为1S ,2S ,3S ,4S ,内切球的半径为r ,四面体P ABC -的体积为V ,则r = ABCD二、填空题:本大题共3小题,将正确的答案填在题中的横线上.5.在一项田径比赛中,甲、乙、丙三人的夺冠呼声最高.观众A B C 、、做了一项预测:A 说:“我认为冠军不会是甲,也不会是乙”.B 说:“我觉得冠军不会是甲,冠军会是丙”.C 说:“我认为冠军不会是丙,而是甲”.比赛结果出来后,发现A B C 、、三人中有一人的两个判断都对,一人的两个判断都错,还有一人的两个判断一对一错,根据以上情况可判断冠军是_____________. 6.观察下列各式:2251233++<;222111712344+++<;……照此规律,当n ∈*N 时,1(1)n +++. 7.设a ,b ,c 是直角三角形的三边长,斜边上的高为h ,c 为斜边长,则给出四个命题: ①a b c h +>+; ②2222a b c h +<+; ③3333a b c h +>+; ④4444a b c h +<+.其中真命题的序号是_____________,进一步类比得到的一般结论是_____________. 三、解答题:本大题共2小题,解答须写出文字说明、证明过程或演算步骤.8.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为2(1)11222n n n n +=+.记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:正方形数:2(,4)N n n =;六边形数:2(,6)2N n n n =-;……由此推测(,)(3)N n k k ≥的表达式,并求(10,24)N 的值.9.(1)试计算下列各式:(只需写出计算结果,不需写出计算过程)222sin 45sin 105sin 165︒+︒+︒=_____________; 222sin 30sin 90sin 150︒+︒+︒=_____________; 222sin 15sin 75sin 135︒+︒+︒=_____________.(2)通过观察上述各式的计算规律,请你写出一般性的命题,并给出你的证明.1.D 【解析】由题意得,大拇指对应的数是18n +,其中n ∈N ,因为201725281=⨯+,所以数到2017时,对应的指头是大拇指.故选D .2.A 【解析】分析所给的等式,可归纳出等式22(2,)11n n n n n n n n +=≥∈--*N ,在1010a ab b+=中,10a =,210199b =-=,于是109a b +=.故选A . 3.A 【解析】通过观察可知,末尾数字周期为4,201745041=⨯+,故20172的末位数字是2.故选A .4.C 【解析】ABC △的三条边长a ,b ,c 类比为四面体P ABC -的四个面的面积1S ,2S ,3S ,4S ,三角形面积公式中的系12类比为三棱锥体积公式中的系13,从而可知12343VS S r S S +++=.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V ,则123411113333V S r S r S r S r =+++,故12343V S S r S S +++=.故选C . 5.甲 【解析】由题知B 、C 的预测截然相反,必一对一错,因为只有一个对,不论B 、C 谁对,A 必是一对一错,假设B 的预测是对的,则丙是冠军,那么A 说冠军也不会是乙也对,这与题目中“还有一人的两个判断一对一错”相矛盾,即假设不成立,所以B 的预测是错误的,则C 的预测是对的,所以甲是冠军.故填甲.6.211n n ++ 【解析】观察所给的几个不等式的左右两边可以看出:不等式的右边的分子是21n +的形式,分母是1n +的形式,故由归纳推理的模式可得该不等式的右边是211n n ++.故填211n n ++.7.②④ ()n n n n a b c h n +<+∈*N 【解析】在直角三角形ABC 中,sin a c A =,cos b c A =,ab ch =,所以sin cos h c A A =.于是(sin cos )n n n n n a b c A A +=+,(1sin cos )n n n n n c h c A A +=+.因为(sin cos 1sin cos )sin 1)1cos )0n n n n n n n n n nn n a b c h c A A A A c A A +--=+--=--<((, 所以n n n n a b c h +<+.891cos(2)1cos(2)1cos 233222ααα---+-=++ 3122[cos(2)cos 2cos(2)]2233αααππ=--+++ 3.2=微测试2 2。
第二章推理与证明综合检测一、选择题1.自然数都是整数,4是自然数,所以4是整数.以上“三段论”推理().A.正确B.推理形式不正确C.两个“自然数”概念不一致D.“两个整数”概念不一致【解析】“三段论”中的大前提,小前提及推理形式都是正确的.【答案】A2.余弦函数是偶函数,f(x)=cos(x+1)是余弦函数,因此f(x)=cos(x+1)是偶函数,以上推理().A.结论正确B.大前提不正确C.小前提不正确D.全不正确【解析】因为f(x)=cos(x+1)不是余弦函数,所以小前提错误.【答案】C3.下列推理不是合情推理的是().A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】A是类比推理,B、D是归纳推理,C不是合情推理.【答案】C4.若f(n)=1+++…+(n∈N*),则当n=2时,f(n)等于().A.1+B.C.1++++D.均不正确【解析】∵f(n)=1+++…+,分子是1,分母是1,2,3,…,2n+1,故当n=2时,f(n)=1+++…+=1++++.【答案】C5.下列推理是归纳推理的是().A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则点P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积S=πr2,猜想出椭圆+=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由S1,S2,S3猜想出数列的前n项和S n的表达式,是从特殊到一般的推理,所以选项B中的推理是归纳推理,故选B.【答案】B6.函数y=f(x)的定义域为D,若对任意的x1,x2∈D都有|f(x1)-f(x2)|<1,则称函数y=f(x)为“Storm”函数.那么下列函数是“Storm”函数的是().A.f(x)=x2(x∈[-1,2])B.f(x)=x3(x∈[0,1])C.f(x)=-2x+1(x∈[-1,0])D.f(x)=(x∈[1,3])【解析】由定义知|f(x1)-f(x2)|小于等于函数f(x)的最大值与最小值之差的绝对值,故要判断一个函数是否为“Storm”函数,只需看这个函数的最值之差的绝对值是否小于1即可.在选项D中,因为f(x)=在x∈[1,3]上是减函数,所以令m=f(3)=,M=f(1)=1,所以|M-m|==<1,所以该函数是“Storm”函数.【答案】D7.下列推理正确的是().A.把a(b+c)与log a(x+y)进行类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)进行类比,则有sin(x+y)=sin x+sin yC.把(ab)n与(a+b)n进行类比,则有(x+y)n=x n+y nD.把(a+b)+c与(xy)z进行类比,则有(xy)z=x(yz)【答案】D8.用数学归纳法证明:12+22+…+(n-1)2+n2+(n-1)2+…+22+12=.从n=k到n=k+1,等式左边应添加的式子是().A.(k-1)2+2k2B.(k+1)2+k2C.(k+1)2D.(k+1)[2(k+1)2+1]【解析】当n=k时,左边=12+22+…+(k-1)2+k2+(k-1)2+…+22+12;当n=k+1时,左边=12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12.所以从n=k到n=k+1,左边应添加的式子为(k+1)2+k2.【答案】B9.如表所示,若数列{x n}满足x0=5,且对任何自然数均有x n+1=f(x n),则x2019=().x 1 2 3 4 5f(x) 4 1 3 5 2A.1B.2C.4D.5【解析】因为x1=f(x0)=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,所以数列{x n}是周期为4的数列,所以x2019=x3=4.故选C.【答案】C10.在△ABC中,角A,B,C分别为边a,b,c所对的角.若a,b,c成等差数列,则角B的取值范围是().A. B.C. D.【解析】∵a,b,c成等差数列,∴a+c=2b,∴cos B===-≥-=.又∵余弦函数y=cos x在区间内单调递减,∴0<B≤.故选B.【答案】B11.观察数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行……………………第一列第二列第三列第四列根据数表所反映的规律,第n行第n列交叉点上的数应为().A.2n-1B.2n+1C.n2-1D.n2【答案】A12.若△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则().A.△A1B1C1和△A2B2C2都是锐角三角形B.△A1B1C1和△A2B2C2都是钝角三角形C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形【解析】由条件知,△A1B1C1的三个内角的余弦值均大于0,故△A1B1C1是锐角三角形.假设△A2B2C2是锐角三角形,由得故A2+B2+C2=,这与三角形内角和为π相矛盾,所以假设不成立.又由已知可得△A2B2C2不是直角三角形,所以△A2B2C2是钝角三角形.【答案】D二、填空题13.已知x,y∈R,且x+y<2,则x,y中至多有一个大于1.在用反证法证明时,假设应为.【解析】“x,y中至多有一个大于1”包括“x,y都不大于1”和“x,y有且仅有一个大于1”,故假设应为“x,y都大于1”.【答案】x,y都大于114.观察下列等式:×=1-,×+×=1-,×+×+×=1-,…,由以上等式推测得到一个一般的结论:对于任何n∈N*,×+×+…+×= .【解析】由已知的等式得对于任何n∈N*,×+×+…+×=1-.【答案】1-15.如图,若对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:则由此规律,52的“分裂”中最大的数是,53的“分裂”中最小的数是.【解析】由题意可知,因此52的“分裂”中最大的数为9,53的“分裂”中最小的数为21.【答案】92116.已知在数列{a n}中,a1=1,且S n,S n+1,2S1成等差数列(S n表示数列{a n}的前n项和),则S2,S3,S4分别为,由此猜想S n= .【解析】由S n,S n+1,2S1成等差数列得2S n+1=S n+2S1.∵S1=a1=1,∴2S n+1=S n+2.令n=1,则2S2=S1+2=1+2=3⇒S2=.同理分别令n=2,n=3,可求得S3=,S4=.由S1=1=,S2==,S3==,S4==, 猜想S n=(n∈N*).【答案】,,(n∈N*)三、解答题17.实数a,b,c,d满足a+b=c+d=1,ac+bd>1,求证:a,b,c,d至少有一个负数.【解析】假设a,b,c,d都是非负数,则1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd,这与已知ac+bd>1矛盾.故a,b,c,d至少有一个负数.18.已知A,B都是锐角,且A+B≠90°,(1+tan A)(1+tan B)=2.求证:A+B=45°.【解析】∵(1+tan A)(1+tan B)=2,∴tan A+tan B=1-tan A tan B.∵A+B≠90°,∴tan(A+B)==1.∵A,B都是锐角,∴0°<A+B<180°.∴A+B=45°.19.已知a>0,b>0,2c>a+b,求证:c-<a<c+.【解析】要证c-<a<c+,只需证-<a-c<,即证|a-c|<,只需证(a-c)2<()2,只需证a2-2ac+c2<c2-ab,即证2ac>a2+ab.因为a>0,所以只需证2c>a+b.又因为2c>a+b成立.所以原不等式成立.20.已知△ABC的三边长都是有理数,求证:(1)cos A是有理数;(2)对任何正整数n,cos nA和sin A·sin nA都是有理数.【解析】(1)由AB,BC,AC的长为有理数及余弦定理知,cos A=是有理数.(2)用数学归纳法证明cos nA和sin A·sin nA都是有理数.①当n=1时,由(1)知cos A是有理数,从而有sin A·sin A=1-cos2A也是有理数.②假设当n=k(k≥1,k∈N*)时,cos kA和sin A·sin kA都是有理数,那么当n=k+1时,cos(k+1)A=cos A·cos kA-sin A·sin kA,sin A·sin(k+1)A=sin A·(sin A·cos kA+cos A·sin kA)=(sin A·sin A)·cos kA+(sin A·sin kA)·cos A,由①和归纳假设知,cos(k+1)A和sin A·sin(k+1)A都是有理数.即当n=k+1时,结论成立.综合①②可知,对任何正整数n,cos nA和sin A·sin nA都是有理数.21.如图,已知在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,且PA=AB=BC=2,D为线段AC 的中点,E为线段PC上一点.(1)求证:PA⊥BD.(2)求证:平面BDE⊥平面PAC.(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.【解析】(1)∵PA⊥AB,PA⊥BC,且AB∩BC=B,∴PA⊥平面ABC.又∵BD⊂平面ABC,∴PA⊥BD.(2)∵AB=BC,D为线段AC的中点,∴在△ABC中,BD⊥AC.又由(1)知,PA⊥BD,PA∩AC=A,∴BD⊥平面PAC.又∵BD⊂平面BDE,∴平面BDE⊥平面PAC.(3)当PA∥平面BDE时,由D是AC的中点知,E为PC的中点.因此ED=PA=1,ED⊥平面BDC.由AB=BC=2,AB⊥BC,D为AC的中点知,BD=CD=.又由BD⊥AC知,BD⊥DC,即∠BDC=90°.因此V E-BCD=S△BCD·ED=××××1=.22.已知数列{a n}的前n项和S n满足S n=+-1,且a n>0,n∈N*.(1)求a1,a2,a3;(2)猜想{a n}的通项公式,并用数学归纳法证明.【解析】(1)a1=S1=+-1,即+2a1-2=0,∵a n>0,∴a1=-1.S2=a1+a2=+-1,即+2a2-2=0,∴a2=-.S3=a1+a2+a3=+-1,即+2a3-2=0,∴a3=-.(2)由(1)猜想a n=-,n∈N*.下面用数学归纳法证明:当n=1时,由(1)知a1=-1,猜想成立;假设当n=k(k∈N*)时,a k=-, 猜想成立,那么当n=k+1时,a k+1=S k+1-S k=-=+-.∴+2a k+1-2=0.∴a k+1=-,即当n=k+1时猜想也成立.综上可知,对任何n∈N*猜想都成立.。
第二章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1数列2,5,11,20,x,47,…中的x等于()A.28B.32C.33D.27解析由5-2=3,11-5=6,20-11=9,x-20=12,得x=32.答案B2用反证法证明一个命题时,下列说法正确的是()A.将结论与条件同时否定,推出矛盾B.肯定条件,否定结论,推出矛盾C.将被否定的结论当条件,经过推理得出的结论只与原题条件矛盾,才是反证法的正确运用D.将被否定的结论当条件,原题的条件不能当条件答案B3由“正三角形的内切圆切于三边的中点”可类比猜想“正四面体的内切球切于四个面”.()A.各正三角形内一点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点解析正三角形的边对应正四面体的面,即正三角形所在的正四面体的面,所以边的中点对应的就是正四面体各正三角形的中心.故选C.答案C4已知c>1,a=,b=,则正确的结论是()A.a>bB.a<bC.a=bD.a,b大小不定解析∵a=,b=,而,∴a<b.答案B5下列结论正确的是()A.当x>0,且x≠1时,lg x+≥2B.当x>0时,≥2C.当x≥2时,x+的最小值为2D.当0<x≤2时,x-无最大值解析选项A错在lg x的正负不明确;选项C错在等号成立的条件不存在;根据函数f(x)=x-的单调性,当x=2时,f(x)取最大值,故选项D错误.答案B6观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199解析利用归纳法:a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18= 47,a9+b9=47+29=76,a10+b10=76+47=123.规律为从第三组开始,其结果为前两组结果的和.答案C7设x i,a i(i=1,2,3)均为正实数,甲、乙两位同学由命题“若x1+x2=1,则≤()2”分别推理得出了新命题:甲:若x1+x2+x3=1,则≤()2;乙:若x1+x2+x3+x4=1,则≤()2.。
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.第二章 推理与证明本章练测建议用时 实际用时满分 实际得分120分钟150分一、 选择题(本题共8小题,每小题7分,共56分) 1.已知p 是q 的充分不必要条件,则q ⌝是p ⌝的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件 2.设a 、b 、c 都是正数,则1a b +,1b c +,1c a+三个数( )A.都大于2B.至少有一个大于2C.至少有一个不大于2D.至少有一个不小于23.在△ABC 中,,,A B C 所对的边分别为,,a b c ,且cos cos a bA B=,则△ABC 一定是( ) A. 等腰三角形 B. 直角三角形 C.等边三角形 D. 等腰直角三角形4.给定正整数n(n ≥2)按下图方式构成三角形数表;第一行依次写上数1,2,3,…,n ,在下面一行的每相邻两个数的正中间上方写上这两个数之和,得到上面一行的数(比下一行少一个数),依次类推,最后一行(第n 行)只有一个数.例如n=6时数表如图所示,则当n=2 007时最后一行的数是( )A .251×22 007 B.2 007×22 006 C.251×22 008 D.2 007×22 005 5.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则 a 2 009+a 2 010+a 2 011等于( )A.1 003B.1 005C.1 006D.2 0116.平面内有4个圆和1条抛物线,它们可将平面分成的区域的个数最多是( )A.29B.30C.31D.32 7.下面使用类比推理正确的是A .“若33,a b ⋅=⋅则a b =”类推出“若00a b ⋅=⋅,则a b =B .“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C .“若()a b c ac bc +=+”类推出“(0)a b a bc c c c+=+≠”D .“()nn nab a b =”类推出“()nnna b a b +=+ 8.已知函数()y f x =的定义域为D ,若对于任意的1212,()x x D x x ∈≠,都有1212()()()22x x f x f x f ++<,则称()y f x =为D 上的凹函数.由此可得下列函数中的凹函数为( )A.2log y x = B.y x =C.2y x =D.3y x =二、填空题(本题共4小题,每小题5分,共20分) 9.对于等差数列{}n a 有如下命题:“若{}n a 是等差数列,01=a ,t s 、是互不相等的正整数,则有011=---s t a t a s )()(”。
2.2直接证明与间接证明2.2.1综合法和分析法第1课时综合法课时过关·能力提升基础巩固1设a,b∈R,若a-|b|>0,则下列不等式正确的是()A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0解析∵a-|b|>0,∴|b|<a,∴a>0,∴-a<b<a,∴b+a>0.答案D2函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)解析f'(x)=(x-3)'e x+(x-3)·(e x)'=(x-2)e x,令f'(x)>0,解得x>2,故选D.答案D3已知在等差数列{a n}中,a5+a11=16,a4=1,则a12的值是()A.15B.30C.31D.64解析已知在等差数列{a n }中,a 5+a 11=16,又a 5+a 11=2a 8,所以a 8=8.又2a 8=a 4+a 12,所以a 12=15.故选A. 答案A4已知a ≥0,b ≥0,且a+b=2,则( )A.ab ≤12B.ab ≥12C.a 2+b 2≥2D.a 2+b 2≤3解析由a+b=2,可得ab ≤1,当且仅当a=b=1时取等号.又a 2+b 2=4-2ab ,∴a 2+b 2≥2. 答案C5已知实数a ≠0,且函数f (x )=a (x 2+1)-(2x +1a )有最小值-1,则a= .解析f (x )=ax 2-2x+a-1a 有最小值,则a>0,对称轴为x=1a ,f (x )min =f (1a)=-1,即f (1a )=a ·(1a )2-2×1a +a-1a =-1,即a-2a =-1,所以a 2+a-2=0(a>0),解得a=1. 答案16设p ,q 均为实数,则“q<0”是“关于x 的方程x 2+px+q=0有一个正实根和一个负实根”的 条件.(填“充要”“必要不充分”“充分不必要”或“既不充分也不必要”)解析因为q<0,所以Δ=p 2-4q>0.所以“方程x 2+px+q=0有一个正实根和一个负实根”成立.因为“方程x 2+px+q=0有一个正实根和一个负实根”,所以q<0.答案充要7设a ,b ,c 为不全相等的正数,且abc=1,求证:1a+1b+1c>√a +√b +√c . 分析解答本题可先把abc=1代入,再利用基本不等式进行推证. 证明因为a ,b ,c 为不全相等的正数,且abc=1,所以1a+1b+1c=bc+ca+ab.又bc+ca ≥2√bc ·√ca =2√c ,ca+ab ≥2√ca ·√ab =2√a ,ab+bc ≥2√ab ·√bc =2√b ,且a ,b ,c 不全相等,所以上述三个不等式中的“=”不能同时成立.所以2(bc+ca+ab )>2(√c +√a +√b ), 即bc+ca+ab>√a +√b +√c . 故1a +1b +1c >√a +√b +√c .8在△ABC 中,三边a ,b ,c 成等比数列.求证:a cos 2C 2+c cos 2A 2≥32b. 证明∵a ,b ,c 成等比数列,∴b 2=ac. ∵左边=a (1+cosC )2+c (1+cosA )2=12(a+c )+12(a cos C+c cos A )=12(a+c )+12(a ·a 2+b 2-c 22ab+c ·b 2+c 2-a 22bc)=12(a+c )+12b ≥√ac +b 2=b+b 2=32b=右边,当且仅当a=c 时,等号成立,∴a cos 2C2+c cos 2A2≥32b.9若a ,b ,c 是不全相等的正数,求证:lga+b 2+lg b+c 2+lg c+a2>lg a+lg b+lg c. 证明∵a ,b ,c ∈(0,+∞),∴a+b2≥√ab >0,b+c2≥√bc >0,a+c2≥√ac >0.又a ,b ,c 是不全相等的正数,故上述三个不等式中等号不能同时成立.∴a+b 2·b+c 2·c+a2>abc 成立. 上式两边同时取常用对数,得lg (a+b 2·b+c 2·c+a2)>lg(abc ),∴lga+b 2+lg b+c 2+lg c+a2>lg a+lg b+lg c. 能力提升1若a ,b ,c 是常数,则“a>0,且b 2-4ac<0”是“对任意x ∈R ,有ax 2+bx+c>0”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析因为a>0,且b 2-4ac<0⇒ax 2+bx+c>0对任意x ∈R 恒成立.反之,ax 2+bx+c>0对任意x ∈R 恒成立不能推出a>0,且b 2-4ac<0,反例为:当a=b=0,且c>0时也有ax 2+bx+c>0对任意x ∈R 恒成立,所以“a>0,且b 2-4ac<0”是“对任意x ∈R ,有ax 2+bx+c>0”的充分不必要条件. 答案A2在面积为S (S 为定值)的扇形中,弧所对的圆心角为θ,半径为r ,当扇形的周长p 最小时,θ,r 的值分别是( ) A.θ=1,r=√S B.θ=2,r=√S 4C.θ=2,r=√S 3D.θ=2,r=√S解析因为S=12θr 2,所以θ=2S r2.又扇形周长为p=2r+θr=2(r +Sr)≥4√S ,所以当r=S r,即r=√S 时,p 取最小值,此时θ=2. 故选D. 答案D★3若O 是平面上的定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗ |),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.外心 B.内心 C.重心D.垂心解析因为OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗ |),所以AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|). 所以AP 是△ABC 中∠BAC 的内角平分线.故动点P 的轨迹一定通过△ABC 的内心. 答案B4已知sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,则cos(α-β)的值为 . 解析∵sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,∴{sinα+sinβ=-sinγ,cosα+cosβ=-cosγ.以上两式两边平方相加,得2+2(sin αsin β+cos αcos β)=1,∴cos(α-β)=-12.答案-125已知q 和n 均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x 1+x 2q+…+x n q n-1,x i∈M ,i=1,2,…,n }. (1)当q=2,n=3时,用列举法表示集合A ;(2)设s ,t ∈A ,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,其中a i ,b i ∈M ,i=1,2,…,n.证明:若a n <b n ,则s<t. (1)解当q=2,n=3时,M={0,1},A={x|x=x 1+x 2·2+x 3·22,x i ∈M ,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)证明由s ,t ∈A ,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,a i ,b i ∈M ,i=1,2,…,n 及a n <b n ,可得s-t=(a 1-b 1)+(a 2-b 2)q+…+(a n-1-b n-1)·q n-2+(a n -b n )q n-1 ≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q -1)(1-q n -1)1-q-q n-1=-1<0. 所以,s<t.6已知数列{a n }满足a 1=1,a n+1=3a n +1.(1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.证明(1)由a n+1=3a n +1得a n+1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n 2,因此{a n }的通项公式为a n =3n -12. (2)由(1)知1a n=23n-1. 因为当n ≥1时,3n -1≥2×3n-1,所以13n-1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n)<32.所以1a 1+1a 2+…+1a n <32.★7设f n (x )是等比数列1,x ,x 2,…,x n 的各项和,其中x>0,n ∈N ,n ≥2.(1)证明:函数F n (x )=f n (x )-2在(12,1)内有且仅有一个零点(记为x n ),且x n =12+12x n n+1;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x ),比较f n (x )和g n (x )的大小,并加以证明.(1)证明F n (x )=f n (x )-2=1+x+x 2+…+x n -2,则F n (1)=n-1>0,F n (12)=1+12+(12)2+…+(12)n-2=1-(12)n+11-12-2=-12n <0,所以F n (x )在(12,1)内至少存在一个零点.又F n '(x )=1+2x+…+nx n-1>0,故F n (x )在(12,1)内单调递增,所以F n (x )在(12,1)内有且仅有一个零点x n . 因为x n 是F n (x )的零点,所以F n (x n )=0,即1-x n n+11-x n-2=0,故x n =12+12x n n+1.(2)解当x=1时,f n (x )=g n (x );当x ≠1时,f n (x )<g n (x ). 证明如下:由假设,g n (x )=(n+1)(1+x n )2. 设h (x )=f n (x )-g n (x )=1+x+x 2+…+x n -(n+1)(1+x n )2,x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,h'(x )=1+2x+…+nx n-1-n (n+1)x n -12. 若0<x<1,h'(x )>x n-1+2x n-1+…+nx n-1-n (n+1)2x n-1=n (n+1)2x n-1-n (n+1)2x n-1=0. 若x>1,h'(x )<x n-1+2x n-1+…+nx n-1-n (n+1)2x n-1 =n (n+1)2x n-1-n (n+1)2x n-1=0.所以h (x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以h (x )<h (1)=0,即f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x );当x≠1时,f n(x)<g n(x).。
2019-2020年高中数学第二章推理与证明测评B 新人教A版选修2-2 一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(xx·山东高考)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析:因为至少有一个的反面为一个也没有,所以要做的假设是方程x3+ax+b=0没有实根.答案:A2.(xx·北京高考)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人解析:用A,B,C分别表示优秀、及格和不及格.显然,语文成绩得A的学生最多只有一人,语文成绩得B的也最多只有1人,得C的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.答案:B3.(xx·湖北高考)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.解析:由题意可知:L=2πr,即r=,圆锥体积V=Sh=πr2h=π·h=L2h≈L2h,故,π≈,故选B.答案:B4.(xx·广东高考)设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析:如图,在正方体A1B1C1D1-ABCD中,对于A,设l为AA1,平面B1BCC1,平面DCC1D1为α,β.A1A∥平面B1BCC1,A1A∥平面DCC1D1,而平面B1BCC1∩平面DCC1D1=C1C;对于C,设l为A1A,平面ABCD为α,平面DCC1D1为β.A1A⊥平面ABCD,A1A∥平面DCC1D1,而平面ABCD∩平面DCC1D1=DC;对于D,设平面A1ABB1为α,平面ABCD为β,直线l为D1C1,平面A1ABB1⊥平面ABCD,D1C1∥平面A1ABB1,而D1C1∥平面ABCD.故A,C,D都是错误的.而对于B,根据垂直于同一直线的两平面平行,知B正确.答案:B5.(xx·辽宁高考)已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有()A.b=a3B.b=a3+C.(b-a3)=0D.|b-a3|+=0解析:若∠OBA为直角,则=0,即a2+(a3-b)·a3=0,又a≠0,故b=a3+;若∠OAB为直角时,则=0,即b(a3-b)=0,得b=a3;若∠AOB为直角,则不可能.所以b-a3-=0或b-a3=0,故选C.答案:C6.(xx·浙江高考)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a,b,c,d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2解析:由题意知,运算“∧”为两数中取小,运算“∨”为两数中取大,由ab≥4知,正数a,b中至少有一个大于等于2.由c+d≤4知,c,d中至少有一个小于等于2,故选C.答案:C7.(xx·陕西高考)设[x]表示不大于x的最大整数,则对任意实数x,有()A.[-x]=-[x]B.=[x]C.[2x]=2[x]D.[x]+=[2x]解析:令x=1.1,[-1.1]=-2,而-[1.1]=-1,所以A错;令x=-=0,=-1,所以B错;令x=0.5,[2x]=1,2[x]=0,所以C错;故选D.答案:D8.(xx·四川高考)设函数f(x)=(a∈R,e为自然对数的底数),若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是()A.[1,e]B.[1,1+e]C.[e,1+e]D.[0,1]解析:当a=0时,f(x)=为增函数,∴b∈[0,1]时,f(b)∈[1,].∴f(f(b))≥>1.∴不存在b∈[0,1]使f(f(b))=b成立,故D错;当a=e+1时,f(x)=,当b∈[0,1]时,只有b=1时,f(x)才有意义,而f(1)=0,∴f(f(1))=f(0),显然无意义,故B,C错.故选A.答案:A9.(xx·浙江高考)设a>0,b>0,e是自然对数的底数,()A.若e a+2a=e b+3b,则a>bB.若e a+2a=e b+3b,则a<bC.若e a-2a=e b-3b,则a>bD.若e a-2a=e b-3b,则a<b解析:考查函数y=e x+2x为单调增函数,若e a+2a=e b+2b,则a=b;若e a+2a=e b+3b,∴a>b.故选A.答案:A10.(xx·江西高考)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为()A.76B.80C.86D.92解析:由已知条件得,|x|+|y|=n(n∈N*)的不同整数解(x,y)的个数为4n,所以|x|+|y|=20的不同整数解(x,y)的个数为80,故选B.答案:B第Ⅱ卷(非选择题共70分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.(xx·陕西高考)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱5 6 9五棱锥6 6 10立方体6 8 12猜想一般凸多面体中F,V,E所满足的等式是.解析:因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F+V-E=2.答案:F+V-E=212.(xx·课标全国Ⅰ高考)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.解析:根据甲、乙、丙说的可列表得A B C甲√×√乙√××丙√答案:A13.(xx·山东高考)观察下列各式:=40;=41;=42;=43;……照此规律,当n∈N*时,+…+=.解析:观察各式有如下规律:等号左侧第n个式子有n项,且上标分别为0,1,2,…,n-1,第n行每项的下标均为2n-1.等号右侧指数规律为0,1,2,…,n-1.所以第n个式子为+…+=4n-1.答案:4n-114.(xx·陕西高考)已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N*,则f2 014(x)的表达式为.解析:依题意,f1(x)=f(x)=,f2(x)=f(f1(x))=f,f3(x)=f(f2(x))=f,…,由此可猜测f n(x)=,故f2 014(x)=.答案:15.(xx·福建高考)一个二元码是由0和1组成的数字串x1x2…x n(n∈N*),其中x k(k=1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x1x2…x7的码元满足如下校验方程组:其中运算 义为:00=0,01=1,10=1,11=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于.解析:若1≤k≤3,则x4=1,x5=1,x6=0,x7=1,不满足x4x5x6x7=0;若k=4,则二元码为1100101,不满足x1x3x5x7=0;若k=5,则二元码为1101001,满足方程组,故k=5.答案:5三、解答题(本大题共5小题,共50分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题8分)(xx·安徽高考)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=,证明:T n≥.(1)解:y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-.(2)证明:由题设和(1)中的计算结果知T n=.当n=1时,T1=.当n≥2时,因为,所以T n>×…×.综上可得对任意的n∈N*,均有T n≥.17.(本小题8分)(xx·山东高考)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{a n}的通项公式;(2)设b n=,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解:(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知b n==n(n+1),所以T n=-1×2+2×3-3×4+…+(-1)n n·(n+1).因为b n+1-b n=2(n+1),可得当n为偶数时,T n=(-b1+b2)+(-b3+b4)+…+(-b n-1+b n)=4+8+12+…+2n=,当n为奇数时,T n=T n-1+(-b n)=-n(n+1)=-.所以T n=18.(本小题10分)(xx·北京高考)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)解:因为AA1=AC=2,BC=1,AB⊥BC,所以AB=.所以三棱锥E-ABC的体积V=S△ABC·AA1=×1×2=.19.(本小题12分)(xx·江苏高考)已知集合X={1,2,3},Y n={1,2,3,…,n}(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,b∈Y n}.令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.解:(1)f(6)=13.(2)当n≥6时,f(n)=(t∈N*).下面用数学归纳法证明:①当n=6时,f(6)=6+2+=13,结论成立;②假设n=k(k≥6)时结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2++3=(k+1)+2+,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2++1=(k+1)+2+,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2++1=(k+1)+2+,结论成立.综上所述,结论对满足n≥6的自然数n均成立.20.(本小题12分)(xx·陕西高考)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1++…+-2=-2=-<0,所以F n(x)在内至少存在一个零点.又F n'(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n.因为x n是F n(x)的零点,所以F n(x n)=0,即-2=0,故x n=.(2)解法一:由假设,g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0.当x=1时,f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1-.若0<x<1,h'(x)>x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.若x>1,h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).解法二:由题设,f n(x)=1+x+x2+…+x n,g n(x)=,x>0.当x=1时,f n(x)=g n(x).当x≠1时,用数学归纳法可以证明f n(x)<g n(x).①当n=2时,f2(x)-g2(x)=-(1-x)2<0,所以f2(x)<g2(x)成立.②假设n=k(k≥2)时,不等式成立,即f k(x)<g k(x).那么,当n=k+1时,f k+1(x)=f k(x)+x k+1<g k(x)+x k+1=+x k+1=.又g k+1(x)-=,令h k(x)=kx k+1-(k+1)x k+1(x>0),则h k'(x)=k(k+1)x k-k(k+1)x k-1=k(k+1)x k-1(x-1).所以,当0<x<1时,h k'(x)<0,h k(x)在(0,1)上递减;当x>1时,h k'(x)>0,h k(x)在(1,+∞)上递增.所以h k(x)>h k(1)=0,从而g k+1(x)>.故f k+1(x)<g k+1(x),即n=k+1时不等式也成立.由①和②知,对一切n≥2的整数,都有f n(x)<g n(x).解法三:由已知,记等差数列为{a k},等比数列为{b k},k=1,2,…,n+1.则a1=b1=1,a n+1=b n+1=x n,所以a k=1+(k-1)·(2≤k≤n),b k=x k-1(2≤k≤n),令m k(x)=a k-b k=1+-x k-1,x>0(2≤k≤n),当x=1时,a k=b k,所以f n(x)=g n(x).当x≠1时,m k'(x)=·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1).而2≤k≤n,所以k-1>0,n-k+1≥1.若0<x<1,x n-k+1<1,m k'(x)<0;若x>1,x n-k+1>1,m k'(x)>0,从而m k(x)在(0,1)上递减,在(1,+∞)上递增, 所以m k(x)>m k(1)=0.所以当m>0且m≠1时,a k>b k(2≤k≤n),又a1=b1,a n+1=b n+1,故f n(x)<g n(x).综上所述,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).2019-2020年高中数学第二章 推理与证明章末小结 新人教A 版选修1-2合情推理与演绎推理运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳、类比的方法进行探索,提出猜想;最后用演绎推理的方法进行验证.观察下图中各正方形图案,每条边上有n (n ≥2)个点,第n 个图案中圆点的总数是S n .••••, • • •• •• • •, • • • •• •• •• • • •,… n =2,S 2=4;n =3,S 3=8;n =4,S 4=12;…,按此规律,推出S n 与n 的关系式为________.解析:依图的构造规律可以看出:S 2=2×4-4, S 3=3×4-4,S 4=4×4-4(正方形四个顶点重复计算一次,应减去).…猜想:S n =4n -4(n ≥2,n ∈N *).答案:S n =4n -4(n ≥2,n ∈N *)若数列{a n }是等比数列,且a n >0,则有数列b n =na 1·a 2·…·a n (n ∈N *)也为等比数列,类比上述性质,相应地,数列{c n }是等差数列,则有d n =________也是等差数列.解析:类比猜想可得d n =c 1+c 2+…+c nn也成等差数列,若设等差数列{c n }的公差为x ,则d n =c 1+c 2+…+c nn=nc 1+n (n -1)2xn=c 1+(n -1)·x2.可见{d n }是一个以c 1为首项,x2为公差的等差数列,故猜想是正确的.答案:c 1+c 2+…+c nn已知函数f (x )=x 13-x -135,g (x )=x 13+x -135.(1)证明f (x )是奇函数,并求f (x )的单调区间;(2)分别计算f (4)-5f (2)·g (2)和f (9)-5f (3)·g (3)的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明.(1)证明:函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又f (-x )=(-x )13-(-x )-135=-x 13-x -135=-f (x ),∴f (x )是奇函数.任取x 1,x 2∈(0,+∞),设x 1<x 2,f (x 1)-f (x 2)=x 131-x -1315-x 132-x -1325=15(x 131-x 132)⎝⎛⎭⎪⎪⎫1+1x 131·x 132. ∵x 131-x 132<0,1+1x 131·x 132>0,∴f (x 1)-f (x 2)<0.∴f (x )在(0,+∞)上单调递增.∴f (x )的单调递增区间为(-∞,0)和(0,+∞).(2)解析:计算得f (4)-5f (2)·g (2)=0,f (9)-5f (3)·g (3)=0. 由此概括出对所有不等于零的实数x 有f (x 2)-5f (x )·g (x )=0.∵f (x 2)-5f (x )·g (x )=x 23-x -235-5·x 13-x -135·x 13+x -135=15(x 23-x -23)-15(x 23-x -23)=0, ∴该等式成立.点评:问题(1)的大前提为函数奇偶性和单调性的定义.问题(2)实际上是合情推理在高考中的体现,有一定的创新性.►变式训练1.已知数列{a n }的相邻两项a 2k -1,a 2k 是关于x 的方程x 2-(3k +2k )x +3k ·2k=0的两个根且a 2k -1≤a 2k (k =1,2,3,…).(1)求a 1,a 3,a 5,a 7及a 2n (n ≥4),不必证明; (2)求数列{a n }的前2n 项和S 2n .解析:(1)方程x 2-(3k +2k )x +3k ·2k =0的两根为x 1=3k ,x 2=2k.当k =1时,x 1=3,x 2=2,∴a 1=2; 当k =2时,x 1=6,x 2=4,∴a 3=4; 当k =3时,x 1=9,x 2=8,∴a 5=8; 当k =4时,x 1=12,x 2=16,∴a 7=12. ∵当n ≥4时,2n>3n ,∴a 2n =2n(n ≥4).(2)S 2n =a 1+a 2+…+a 2n=(3+6+9+…+3n )+(2+22+ (2))=3n 2+3n 2+2n +1-2.直接证明综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题常用的思维方式.如果从解题的切入点的角度细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等.应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法综合起来使用.设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8.证明:证法一(综合法) ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab≥4. 又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4, ∴1a +1b +1ab≥8. 证法二(分析法)∵a >0,b >0,a +b =1,∴要证1a +1b +1ab≥8, 只需证⎝ ⎛⎭⎪⎫1a +1b +a +b ab≥8, 即证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8, 即证1a +1b≥4,即证a +b a +a +b b≥4, 即证b a +a b ≥2. 由基本不等式可知,当a >0,b >0时,b a +a b≥2成立,∴原不等式成立.如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .证明:(1)设AC 与BD 交于点G .∵EF ∥AG ,且EF =1,AG =12AC =1, ∴四边形AGEF 为平行四边形.∴AF ∥EG .∵EG ⊂平面BDE ,AF ⊄平面BDE ,∴AF ∥平面BDE .(2)连接FG ,∵EF ∥CG ,EF =CG =1,且CE =1,∴四边形CEFG 为菱形,∴CF ⊥EG .∵四边形ABCD 为正方形,∴BD ⊥AC .又∵平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC ,∴BD ⊥平面ACEF ,∴CF ⊥BD .又BD ∩EG =G .∴CF ⊥平面BDE .►变式训练2.在等差数列{a n }中,首项a 1=1,数列{b n }满足b n =⎝ ⎛⎭⎪⎫12a n ,且b 1·b 2·b 3=164. (1)求数列{a n }的通项公式;(2)求证:a 1b 1+a 2b 2+…+a n b n <2.(1)解析:设等差数列{a n }的公差为d ,因为a 1=1,b n =⎝ ⎛⎭⎪⎫12an , 所以b 1=12,b 2=⎝ ⎛⎭⎪⎫121+d ,b 3=⎝ ⎛⎭⎪⎫121+2d . 由b 1b 2b 3=164,解得d =1, 所以a n =1+(n -1)·1=n . (2)证明:由(1)得b n =⎝ ⎛⎭⎪⎫12n . 设T n =a 1b 1+a 2b 2+…+a n b n =1×12+2×⎝ ⎛⎭⎪⎫122+3×⎝ ⎛⎭⎪⎫123+…+n ·⎝ ⎛⎭⎪⎫12n ,① 则12T n =1×⎝ ⎛⎭⎪⎫122+2×⎝ ⎛⎭⎪⎫123+3×⎝ ⎛⎭⎪⎫124+…+n ·⎝ ⎛⎭⎪⎫12n +1.② ①-②得12T n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -n ·⎝ ⎛⎭⎪⎫12n +1. 所以T n =2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-2n ·⎝ ⎛⎭⎪⎫12n +1 =2-12n -1-n 2n , 又因为2-12n -1-n2n <2,所以a 1b 1+a 2b 2+…+a n b n <2.点评:本题考查了等差数列的性质以及利用综合法证题的过程.反证法反证法的理论基础是互为逆否命题的等价性,从逻辑的角度看,命题:“若p 则q ”的否定是“若p 则¬q ”由此进行推理,如果发生矛盾,那么就说明“若p 则¬q ”为假,从而可以导出“若p 则q ”为真,从而达到证明的目的,反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现,它所反映出的“正难则反”的解决问题的思想方法更为重要。
选修2-2第二章《推理与证明》单元测试题一.选择题: (以下题目从4项答案中选出一项,每小题5分,共50分) 1. 集合P ={1, 4, 9, 16…},若a ∈P , b ∈P 则a ⊕b ∈P ,则运算⊕可能是( ) A .加法 B .减法 C .除法 D .乘法2. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是( ) A .直角梯形 B .矩形 C .正方形 D .菱形3.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a,b b a b a R =⇒=-∈0,则”类比推出“若a,b b a b a C =⇒=-∈0,则”; ②“若a,b,c,d d b c a di c bi a R ==⇒+=+∈,,则复数”类比推出“若a,b,c,d ,Q ∈ 则d b c a d c b a ==⇒+=+,22”;③“若a,b b a b a R >⇒>-∈0,则” 类比推出“若a,b b a b a C >⇒>-∈0,则”; 其中类比结论正确的个数是( ) (A)0 (B)1 (C)2(D)34.平面向量也叫二维向量,二维向量的坐标表示及其运算可以推广到(3)n n ≥维向量,n 维向量可用 123(,,,,)n x x x x 表示.设123(,,,,)n a a a a a =,123(,,,,)n b b b b b =,规定向量a 与b 夹角θ的余弦为∑∑∑====n i ni i i ni ii b a ba 11221))((cos θ.当(1,1,1,1)a =,(1,1,1,1)b =--时,cos θ=( )A .n n 1- B .nn 3- C .n n 2- D .n n 4- 5. 下列函数中,在区间02π⎛⎫⎪⎝⎭,上为增函数且以π为周期的函数是( )A .sin2xy = B . sin y x = C . tan y x =- D . cos 2y x =- 6. 若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为 y =x 2、值域为{0,4}的“同族函数”共有( )个. A. 2 B. 3 C. 4 D.无数7.对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+的上确界,若 ,,1a b R a b +∈+=且,则122a b--的上确界为( ) A .92 B .92- C .41D .4- 8.如图,圆周上按顺时针方向标有1,2,3,4,5五个点。
第二章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若实数a ,b 满足b >a >0,且a +b =1,则下列四个数最大的是( )A .a 2+b 2B .2ab C.12 D .a答案 A2.下面用“三段论”形式写出的演练推理:因为指数函数y =a x (a >0,且a ≠1)在(0,+∞)上是增函数,y =(12)x 是指数函数,所以y =(12)x在(0,+∞)上是增函数.该结论显然是错误的,其原因是( )A .大前提错误B .小前提错误C .推理形式错误D .以上都可能解析 大前提是:指数函数y =a x (a >0,且a ≠1)在(0,+∞)上是增函数,这是错误的.答案 A3.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( )A .a >bB .a <bC .a =bD .a ,b 大小不定解析 a =c +1-c =1c +1+c ,b =c -c -1=1c +c -1,∵c +1+c >c +c -1,∴a <b .答案 B4.下面使用类比推理正确的是( )A .“若a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )·c =ac +bc ”类比推出“(a ·b )·c =ac ·bc ”C .“(a +b )·c =ac +bc ”类比推出“a +b c =a c +b c(c ≠0)”D .“(ab )n =a n b n ”类比推出“(a +b )n =a n +b n ” 解析 由类比出的结果应正确知选C. 答案 C5.函数y =ax 2+1的图像与直线y =x 相切,则a =( ) A.18B.14C.12D .1解析 ∵y =ax 2+1,∴y ′=2ax ,设切点为(x 0,y 0),则⎩⎪⎨⎪⎧2ax 0=1,y 0=x 0,y 0=ax 2+1,⇒a =14.答案 B6.已知f (x )=sin(x +1)π3-3cos(x +1)π3,则f (1)+f (2)+f (3)+…+f (2011)=( )A .2 3 B. 3 C .- 3D .0解析 f (x )=2[12sin(x +1)π3-32cos(x +1)π3]=2sin π3x ,∴周期T =6,且f (1)+f (2)+…+f (6)=2(32+32+0-32-32+0)=0,∴f (2011)=f (6×335+1)=f (1)=2sin π3= 3.答案 B7.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,且n >1),由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项数为( )A .2k -1B .2k +1C .2k -1D .2k解析 当n =k +1时,左边=1+12+13+…+12k -1+12k +12k +1+…+12k+1-1,所以增加的项数为(2k+1-1)-2k+1=2k+1-2k=2k.答案 D8.若数列{a n}是等比数列,则数列{a n+a n+1}( )A.一定是等比数列B.一定是等差数列C.可能是等比数列也可能是等差数列D.一定不是等比数列解析设等比数列{a n}的公比为q,则a n+a n+1=a n(1+q).∴当q≠-1时,{a n+a n+1}一定是等比数列;当q=-1时,a n+a n+1=0,此时为等差数列.答案 C9.已知数列{a n},{b n}的通项公式分别为:a n=an+2,b n=bn +1(a,b是常数,且a>b),那么两个数列中序号与数值均相同的项的个数是( )A.0个B.1个C.2个D.无穷多个解析假设存在相同的项是第n项,即an+2=bn+1,∴(a-b)n=-1(a>b,n∈N*),矛盾.答案 A10.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理出一个结论,则这个结论是( )A.平行四边形的对角线相等B.正方形的对角线相等C.正方形是平行四边形D.以上都不是解析大前提②,小前提③,结论①.答案 B11.观察下表:1 2 3 4……第一行2345……第二行3456……第三行4567……第四行⋮⋮⋮⋮⋮⋮⋮⋮第一列第二列第三列第四列根据数表所反映的规律,第n行第n列交叉点上的数应为( ) A.2n-1 B.2n+1C.n2-1 D.n2解析观察数表可知,第n行第n列交叉点上的数依次为1,3,5,7,…,2n-1.答案 A12.对于任意的两个实数对(a,b)和(c,d),规定:(a,b)=(c,d)当且仅当a=c,b=d;运算“⊗”为:(a,b)⊗(c,d)=(ac-bd,bc+ad);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d).设p,q ∈R,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)等于( ) A.(4,0) B.(2,0)C.(0,2) D.(0,-4)解析 由(1,2)⊗(p ,q )=(5,0),得⎩⎪⎨⎪⎧p -2q =5,2p +q =0,⇒⎩⎪⎨⎪⎧p =1,q =-2.所以(1,2)⊕(p ,q )=(1,2)⊕(1,-2)=(2,0). 答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a >0,b >0,m =lg a +b2,n =lga +b2,则m ,n 的大小关系是________.解析 ab >0⇒ab >0⇒a +b +2ab >a +b ⇒(a +b )2>(a +b )2⇒a +b >a +b ⇒a +b 2>a +b2⇒lga +b2>lga +b2.答案 m >n14.从1=12,2+3+4=32,3+4+5+6+7=52中,可得到一般规律为________.解析 等式左边从n 项起共有(2n -1)项相加,右边为(2n -1)2,∴n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案 n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 15.若数列{a n }是等差数列,则有数列{b n }⎝ ⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也是等差数列.类比上述性质,相应地,若数列{c n }为等比数列,且c n >0(n ∈N *),则d n =________时,{d n }也是等比数列.答案nc 1c 2…c n16.对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“_______________________________________”.答案 如果两个二面角的两个半平面分别对应垂直,那么这两个二面角相等或互补三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知0<a <1,求证:1a +41-a ≥9.证法1 (分析法) 要证1a +41-a ≥9,∵0<a <1,∴1-a >0,∴只需证1-a +4a ≥9a (1-a ), 即证1+3a ≥9a (1-a ), 即证9a 2-6a +1≥0, 即证(3a -1)2≥0, 上式显然成立. ∴原命题成立. 证法2 (综合法) ∵(3a -1)2≥0, 即9a 2-6a +1≥0, ∴1+3a ≥9a (1-a ). ∵0<a <1,∴1+3a a (1-a )≥9, 即1-a +4aa (1-a )≥9,即1a +41-a ≥9. 证法3 (反证法) 假设1a +41-a <9,即1a +41-a -9<0, 即1-a +4a -9a (1-a )a (1-a )<0,即9a 2-6a +1a (1-a )<0,即(3a -1)2a (1-a )<0, 而0<a <1,∴a (1-a )>0,∴(3a -1)2<0,与(3a -1)2≥0相矛盾, ∴原命题成立.18.(12分)下列推理是否正确?若不正确,指出错误之处. (1)求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2)已知2和3都是无理数,试证:2+3也是无理数. 证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3)已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实数.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根.解 (1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形.(2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.19.(12分)已知数列{a n }和{b n }是公比不相等的两个等比数列,c n =a n +b n .求证:数列{c n }不是等比数列.证明 假设{c n }是等比数列,则c 1,c 2,c 3成等比数列.设{a n },{b n }的公比分别为p 和q ,且p ≠q ,则a 2=a 1p ,a 3=a 1p 2,b 2=b 1q ,b 3=b 1q 2.∵c 1,c 2,c 3成等比数列, ∴c 22=c 1·c 3,即(a2+b2)2=(a1+b1)(a3+b3).∴(a1p+b1q)2=(a1+b1)(a1p2+b1q2).∴2a1b1pq=a1b1p2+a1b1q2.∴2pq=p2+q2,∴(p-q)2=0.∴p=q与已知p≠q矛盾.∴数列{c n}不是等比数列.20.(12分)证明:若a>0,则a2+1a2-2≥a+1a-2.证明∵a>0,要证a2+1a2-2≥a+1a-2,只需证a2+1a2+2≥a+1a+2,只需证(a2+1a2+2)2≥(a+1a+2)2,即证a2+1a2+4+4a2+1a2≥a2+1a2+4+22(a+1a),即证a2+1a2≥22(a+1a),即证a2+1a2≥12(a2+1a2+2),即证a2+1a2≥2,即证(a-1a)2≥0,该不等式显然成立.∴a2+1a2-2≥a+1a-2.21.(12分)如右图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC =2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.解(1)证明:∵P,Q分别为AE,AB的中点,∴PQ∥EB,又DC∥EB.∴PQ∥DC,而PQ⊄平面ACD,DC⊂平面ACD,∴PQ∥平面ACD.(2)如图,连接CQ,DP,∵Q 为AB 的中点,且AC =BC ,∴CQ ⊥AB .∵DC ⊥平面ABC ,EB ∥DC ,∴EB ⊥平面ABC .∴CQ ⊥EB ,故CQ ⊥平面ABE .由(1)知,PQ ∥DC ,又PQ =12EB =DC , ∴四边形CQPD 为平行四边形.∴DP ⊥平面ABE .故∠DAP 为AD 与平面ABE 所成角.在Rt △DAP 中,AD =5,DP =1,∴sin ∠DAP =55. 因此AD 与平面ABE 所成角的正弦值为55. 22.(12分)已知f (x )=bx +1(ax +1)2(x ≠-1a,a >0),且f (1)=log 162,f (-2)=1.(1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =(1-f (1))(1-f (2))…(1-f (n )),试求x 1,x 2,x 3,x 4;(3)猜想{x n }的通项公式,并用数学归纳法证明.解 (1)把f (1)=log 162=14,f (-2)=1,代入函数表达式得 ⎩⎪⎨⎪⎧ b +1(a +1)2=14,-2b +1(1-2a )2=1,即⎩⎪⎨⎪⎧ 4b +4=a 2+2a +1,-2b +1=4a 2-4a +1,解得⎩⎪⎨⎪⎧ a =1,b =0,(舍去a =-13<0),∴f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=(1-f (1))(1-f (2))=34×(1-19)=23,x 3=23(1-f (3))=23×(1-116)=58,x 4=58×(1-125)=35.(3)由(2)知,x 1=34,x 2=23=46,x 3=58,x 4=35=610,…,由此可以猜想x n =n +22n +2. 证明:①当n =1时,∵x 1=34,而1+22(1+1)=34,∴猜想成立. ②假设当n =k (k ∈N *)时,x n =n +22(n +1)成立,即x k =k +22(k +1),则n =k +1时,x k +1=(1-f (1))(1-f (2))…(1-f (k ))·(1-f (k +1))=x k ·(1-f (k +1))=k +22(k +1)·[1-1(k +1+1)2]=k +22(k +1)·(k +1)(k +3)(k +2)2=12·k+3k +2=(k +1)+22[(k +1)+1].∴当n =k +1时,猜想也成立,根据①②可知,对一切n ∈N *,猜想x n =n +22(n +1)都成立.。
高中数学第二章推理与证明综合检测新人教A版选修2-2时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( )A.10 B.14C.13 D.100[答案] B[解析] 设n∈N*,则数字n共有n个,所以n n+12≤100即n(n+1)≤200,又因为n∈N*,所以n=13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.2.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两名是对的,则获奖的歌手是( ) A.甲B.乙C.丙D.丁[答案] C[解析] 若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.3.(2015·枣庄一模)用数学归纳法证明“1+12+13+…+12n-1<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是( ) A.2k-1B.2k-1C.2k D.2k+1[答案] C[解析] 左边的特点是分母逐渐增加1,末项为12n-1;由n=k时,末项为12k-1到n=k+1时末项为12k+1-1=12k-1+2k,∴应增加的项数为2k.故选C.[点评] 本题是基础题,考查用数学归纳法证明问题的第二步,项数增加多少问题,注意表达式的形式特点,找出规律是关键.4.下列说法正确的是( )A.“a<b”是“am2<bm2”的充要条件B.命题“∀x∈R,x3-x2-1≤0”的否定是“∃x∈R,x3-x2-1≤0”C.“若a、b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a、b不都是奇数”D.若p∧q为假命题,则p、q均为假命题[答案] C[解析] A中“a<b”是“am2<bm2”的必要不充分条件,故A错;B中“∀x∈R,x3-x2-1≤0”的否定是“∃x∈R,x3-x2-1>0”,故B错;C正确;D中p∧q为假命题,则p、q中至少有一个为假命题,故D错.5.(2014·东北三校模拟) 下列代数式(其中k∈N*)能被9整除的是( ) A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)[答案] D[解析] 特值法:当k=1时,显然只有3(2+7k)能被9整除,故选D.证明如下:当k=1时,已验证结论成立,假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.∵3(2+7n)能被9整除,36能被9整除,∴21(2+7n)-36能被9整除,这就是说,k=n+1时命题也成立.故命题对任何k∈N*都成立.6.已知f(n)=1n+1n+1+1n+2+…+1n2,则( )A.f(n)中共有n项,当n=2时,f(2)=12+13B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14C.f(n)中共有n2-n项,当n=2时,f(2)=12+13D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14[答案] D[解析] 项数为n2-(n-1)=n2-n+1,故应选D. 7.已知a+b+c=0,则ab+bc+ca的值( ) A.大于0 B.小于0 C.不小于0 D.不大于0 [答案] D[解析] 解法1:∵a+b+c=0,∴a2+b2+c2+2ab+2ac+2bc=0,∴ab+ac+bc=-a2+b2+c22≤0.解法2:令c =0,若b =0,则ab +bc +ac =0,否则a 、b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.8.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a 、b 大小不定[答案] B[解析] a =c +1-c =1c +1+c ,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b .9.定义一种运算“*”;对于自然数n 满足以下运算性质:( ) (i)1]B.n +1 C .n -1 D .n 2[答案] A[解析] 令a n =n *1,则由(ii)得,a n +1=a n +1,由(i)得,a 1=1, ∴{a n }是首项a 1=1,公差为1的等差数列,∴a n =n ,即n *1=n ,故选A. 10.已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A.13 B .43C .2D .83[答案] B[解析] 由f ′(x )的图象知,f ′(x )=2x +2,设f (x )=x 2+2x +c ,由f (0)=0知,c =0,∴f (x )=x 2+2x , 由x 2+2x =0得x =0或-2.故所求面积S =-⎠⎛-20 (x 2+2x )d x =⎪⎪⎪13x 3+x 20-2=43. 11.已知1+2×3+3×32+4×32+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a 、b 、c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a 、b 、c [答案] A [解析]令n =1、2、3,得{ 3a -bc =192a -bc =7273a -bc =34.所以a =12,b =c =14.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2011=( )A.1 C .4 D .5[答案] C[解析] x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2011=x 3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.在△ABC中,D为边BC的中点,则AD→=12(AB→+AC→).将上述命题类比到四面体中去,得到一个类比命题:_________________________________________________________________ _______.[答案] 在四面体A-BCD中,G为△BCD的重心,则AG→=13(AB→+AC→+AD→)14.设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))=________________.[答案]x2n-1x+2n[解析] 观察f1(x)、f2(x)、f3(x)、f4(x)的表达式可见,f n(x)的分子为x,分母中x的系数比常数项小1,常数项依次为2,4,8,16……2n.故f n(x)=x2n-1x+2n.15.(2014~2015·厦门六中高二期中)在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有c2=a2+b2.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1、S2、S3表示三个侧面面积,S表示截面面积,那么类比得到的结论是________________.[答案] S2=S21+S22+S23[解析] 类比如下: 正方形↔正方体;截下直角三角形↔截下三侧面两两垂直的三棱锥;直角三角形斜边平方↔三棱锥底面面积的平方;直角三角形两直角边平方和↔三棱锥三个侧面面积的平方和,结论S 2=S 21+S 22+S 23.证明如下:如图,作OE ⊥平面LMN ,垂足为E ,连接LE 并延长交MN 于F , ∵LO ⊥OM ,LO ⊥ON ,∴LO ⊥平面MON , ∵MN ⊂平面MON ,∴LO ⊥MN ,∵OE ⊥MN ,∴MN ⊥平面OFL ,∴S △OMN =12MN ·OF ,S △MNE =12MN ·FE ,S △MNL =12MN ·LF ,OF 2=FE ·FL ,∴S 2△OMN =(12MN ·OF )2=(12MN ·FE )·(12MN ·FL )=S △MNE ·S △MNL ,同理S 2△OML =S △MLE ·S △MNL ,S 2△ONL =S △NLE ·S △MNL ,∴S 2△OMN +S 2△OML +S 2△ONL =(S △MNE +S △MLE +S △NLE )·S △MNL=S 2△MNL ,即S 21+S 22+S 23=S 2.16.(2014~2015·洛阳部分重点中学质量检测)观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,……,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n n +1×12n =________________. [答案] 1-1n +12n[解析] 由已知中的等式:31×2×12=1-122 31×2×12+42×3×122=1-13×22,3 1×2×12+42×3×122+53×4×123=1-14×23,…,所以对于n∈N*,31×2×12+42×3×122+…+n+2n n+1×12n=1-1n+12n.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)已知:a、b、c∈R,且a+b+c=1.求证:a2+b2+c2≥1 3 .[证明] 由a2+b2≥2ab,及b2+c2≥2bc,c2+a2≥2ca.三式相加得a2+b2+c2≥ab+bc+ca.∴3(a2+b2+c2)≥(a2+b2+c2)+2(ab+bc+ca)=(a+b+c)2. 由a+b+c=1,得3(a2+b2+c2)≥1,即a2+b2+c2≥1 3 .18.(本题满分12分)我们知道,在△ABC中,若c2=a2+b2,则△ABC是直角三角形.现在请你研究:若c n=a n+b n(n>2),问△ABC为何种三角形?为什么?[解析] 锐角三角形∵c n=a n+b n (n>2),∴c>a, c>b,由c是△ABC 的最大边,所以要证△ABC是锐角三角形,只需证角C为锐角,即证cos C>0.∵cos C=a2+b2-c22ab,∴要证cos C>0,只要证a2+b2>c2,①注意到条件:a n+b n=c n,于是将①等价变形为:(a2+b2)c n-2>c n.②∵c>a,c>b,n>2,∴c n-2>a n-2,c n-2>b n-2,即c n-2-a n-2>0,c n-2-b n-2>0,从而(a2+b2)c n-2-c n=(a2+b2)c n-2-a n-b n=a 2(c n -2-a n -2)+b 2(c n -2-b n -2)>0, 这说明②式成立,从而①式也成立.故cos C >0,C 是锐角,△ABC 为锐角三角形.19.(本题满分12分)(2015·吉林市实验中学高二期中)椭圆与双曲线有许多优美的对称性质.对于椭圆x 2a 2+y 2b 2=1(a >b >0)有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2为定值.那么对于双曲线x 2a 2-y 2b 2=1(a >0,b >0),则有命题:AB 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,猜想k OM ·k AB 的值,并证明.[解析]设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则有⎩⎪⎨⎪⎧x 0=x 1+x22,y 0=y 1+y 22.k OM =y 0x 0=y 1+y 2x 1+x 2,k AB =y 1-y 2x 1-x 2,即k OM ·k AB =y 1-y 2y 1+y 2x 1-x 2x 1+x 2=y 21-y 22x 21-x 22.将A 、B 坐标代入双曲线方程x 2a 2-y 2b 2=1中可得:x 21a 2-y 21b 2=1① x 22a 2-y 22b2=1② ①-②得:x 21-x 22a 2=y 21-y 22b 2,∴y 21-y 22x 21-x 22=b 2a 2,即k OM ·k AB =b 2a 2.20.(本题满分12分)若x>0,y>0,用分析法证明:(x2+y2)12 >(x3+y3)13 .[证明] 要证(x2+y2)12 >(x3+y3)13 ,只需证(x2+y2)3>(x3+y3)2,即证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,即证3x4y2+3y4x2>2x3y3.又因为x>0,y>0,所以x2y2>0,故只需证3x2+3y2>2xy.而3x2+3y2>x2+y2≥2xy成立,所以(x2+y2)12 >(x3+y3)13 成立.21.(本题满分12分)已知函数f(x)=a x+x-2x+1(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明方程f(x)=0没有负数根.[解析] (1)证法1:任取x1、x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,ax2-x1>1且ax1>0,∴ax2-ax1=ax1(ax2-x1-1)>0,又∵x1+1>0,x2+1>0,∴x2-2x2+1-x1-2x1+1=x2-2x1+1x1-2x2+1x1+1x2+1=3x2-x1x 1+1x2+1>0,于是f(x2)-f(x1)=ax2-ax1+x2-2x2+1-x1-2x1+1>0,故函数f(x)在(-1,+∞)上为增函数.证法2:f′(x)=a x ln a+x+1x-2x +12=a x ln a+3x+12∵a >1,∴ln a >0,∴a xln a +3x +12>0,f ′(x )>0在(-1,+∞)上恒成立, 即f (x )在(-1,+∞)上为增函数.(2)解法1:设存在x 0<0(x 0≠-1)满足f (x 0)=0, 则ax 0=-x 0-2x 0+1,且0<ax 0<1. ∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0矛盾. 故方程f (x )=0没有负数根. 解法2:设x 0<0(x 0≠-1), ①若-1<x 0<0,则x 0-2x 0+1<-2,ax 0<1,∴f (x 0)<-1. ②若x 0<-1则x 0-2x 0+1>0,ax 0>0,∴f (x 0)>0. 综上,x <0(x ≠-1)时,f (x )<-1或f (x )>0,即方程f (x )=0无负数根. 22.(本题满分14分)设数列a 1,a 2,…a n ,…中的每一项都不为0.证明{a n }为等差数列的充分必要条件是:对任何n ∈N +,都有1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1. [分析] 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.解题思路是利用裂项求和法证必要性,再用数学归纳法或综合法证明充分性.[证明] 先证必要性.设数列{a n }的公差为d .若d =0,则所述等式显然成立. 若d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎝⎛⎭⎪⎫a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1=1d⎝⎛⎭⎪⎫⎝⎛⎭⎪⎫1a1-1a2+⎝⎛⎭⎪⎫1a2-1a3+…+⎝⎛⎭⎪⎫1an-1an+1=1d⎝⎛⎭⎪⎫1a1-1an+1=1dan+1-a1a1an+1=na1an+1.再证充分性.证法1:(数学归纳法)设所述的等式对一切n∈N+都成立.首先,在等式1 a1 a2+1a 2a3=2a1a3两端同乘a1a2a3,即得a1+a3=2a2,所以a1,a2,a3成等差数列,记公差为d,则a2=a1+d.假设a k=a1+(k-1)d,当n=k+1时,观察如下两个等式1a 1a2+1a2a3+…+1ak-1ak=k-1a1ak,①1a 1a2+1a2a3+…+1ak-1ak+1akak+1=ka1ak+1②将①代入②,得k-1a1ak+1akak+1=ka1ak+1,在该式两端同乘a1a k a k+1,得(k-1)a k+1+a1=ka k.将a k=a1+(k-1)d代入其中,整理后,得a k+1=a1+kd.由数学归纳法原理知,对一切n∈N,都有a n=a1+(n-1)d,所以{a n}是公差为d的等差数列.证法2:(直接证法)依题意有1a 1a2+1a2a3+…+1anan+1=na1an+1,①1a 1a2+1a2a3+…+1anan+1+1an+1an+2=n+1a1an+2.②②-①得1an+1an+2=n+1a1an+2-na1an+1,在上式两端同乘a1a n+1a n+2,得a1=(n+1)a n+1-na n+2.③同理可得a1=na n-(n-1)a n+1(n≥2)④③-④得2na n+1=n(a n+2+a n)即a n+2-a n+1=a n+1-a n,由证法1知a3-a2=a2-a1,故上式对任意n∈N*均成立.所以{a n}是等差数列.。
2.2.2 反证法一、选择题1.用反证法证明命题:“三角形的内角至少有一个不大于60度”时,反设正确的是()A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度【答案】B【解析】由反证法的证明命题的格式和语言可知答案B 是正确的,所以选B.2.用反证法证明“如果a b >>A =<=C D =<【答案】D【解析】>反证法需假设结论的反面,应为小于或等于,=<3.用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()A .方程02=++b ax x 没有实根B .方程02=++b ax x 至多有一个实根C .方程02=++b ax x 至多有两个实根D .方程02=++b ax x 恰好有两个实根【答案】A【解析】方程02=++b ax x 至少有一个实根的否定是方程02=++b ax x 没有实根,∴用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是方程02=++b ax x 没有实根.故选A .4.用反证法证明命题“a b ∈N ,,如果ab 可以被5整除,那么a ,b 至少有1个能被5整除.”假设的内容是()A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除【答案】B【解析】用反证法证明时,要假设所要证明的结论的反面成立,本题中应反设a ,b 都不能被5整除.5.用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为()A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,,中至少有两个偶数D .自然数c b a ,,中至少有两个偶数或都是奇数【答案】D【解析】反证法证明时应假设所要证明的结论的反面成立,本题需反设为自然数c b a ,,中至少有两个偶数或都是奇数.6.设椭圆22221x y a b +=(a >b >0)的离心率为e =12,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2上B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=2内D .以上三种情形都有可能【答案】C 【解析】∵12c e a ==,∴a =2c ,∴b 2=a 2-c 2=3c 2.假设点P (x 1,x 2)不在圆 x 2+y 2=2内,则22122x x +≥,但()222212121222b c x x x x x x a a ⎛⎫+=+-=-+ ⎪⎝⎭ 223272424c c c c =+=<,矛盾.∴假设不成立.∴点P 必在圆x 2+y 2=2内.故选C.二、填空题7.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是.【答案】方程x 3+ax +b =0没有实根【解析】因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根个数大于或等于1”,所以假设是“方程x 3+ax +b =0没有实根”.8.用反证法证明命题“若210x -=,则1x =-或1x =”时,应假设.【答案】1-≠x 且1≠x【解析】反证法的反设只否定结论,或的否定是且,所以是1-≠x 且1≠x .9.用反证法证明命题:“设实数a 、b 、c 满足a +b +c =1,则a 、b 、c 中至少有一个数不小于31”时,第一步应写:假设.【答案】c b a ,,都小于31 【解析】反证法第一步是否定结论,a 、b 、c 中至少有一个数不小于31的否定是c b a ,,都小于31. 10.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.【答案】③①②【解析】由反证法证明数学命题的步骤可知,步骤的顺序应为③①②.。
第二章 推理与证明综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.锐角三角形的面积等于底乘高的一半; 直角三角形的面积等于底乘高的一半; 钝角三角形的面积等于底乘高的一半; 所以,凡是三角形的面积都等于底乘高的一半. 以上推理运用的推理规则是( ) A .三段论推理 B .假言推理 C .关系推理 D .完全归纳推理 [答案] D[解析] 所有三角形按角分,只有锐角三角形、Rt 三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.2.数列1,3,6,10,15,…的递推公式可能是( ) A.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +n (n ∈N *)B.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+n (n ∈N *,n ≥2)C.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +(n -1)(n ∈N *)D.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+(n -1)(n ∈N *,n ≥2)[答案] B[解析] 记数列为{a n },由已知观察规律:a 2比a 1多2,a 3比a 2多3,a 4比a 3多4,…,可知当n ≥2时,a n 比a n -1多n ,可得递推关系⎩⎪⎨⎪⎧a 1=1,a n -a n -1=n(n ≥2,n ∈N *).3.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误 [答案] C[解析] 大小前提都正确,其推理形式错误.故应选C.4.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4 [答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D.5.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 都成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12[答案] C[解析] 类比题目所给运算的形式,得到不等式(x -a )⊗(x +a )<1的简化形式,再求其恒成立时a 的取值范围.(x -a )⊗(x +a )<1⇔(x -a )(1-x -a )<1 即x 2-x -a 2+a +1>0 不等式恒成立的充要条件是 Δ=1-4(-a 2+a +1)<0 即4a 2-4a -3<0 解得-12<a <32.故应选C.6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14[答案] D[解析] 项数为n 2-(n -1)=n 2-n +1,故应选D. 7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0 D .不大于0 [答案] D[解析] 解法1:∵a +b +c =0, ∴a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +ac +bc =-a 2+b 2+c 22≤0.解法2:令c =0,若b =0,则ab +bc +ac =0,否则a 、b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.8.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <b C .a =b D .a 、b 大小不定 [答案] B[解析] a =c +1-c =1c +1+c,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b .9.若凸k 边形的内角和为f (k ),则凸(k +1)边形的内角和f (k +1)(k ≥3且k ∈N *)等于( )A .f (k )+π2B .f (k )+πC .f (k )+32πD .f (k )+2π [答案] B[解析] 由凸k 边形到凸(k +1)边形,增加了一个三角形,故f (k +1)=f (k )+π. 10.若sin A a =cos B b =cos C c,则△ABC 是( )A .等边三角形B .有一个内角是30°的直角三角形C .等腰直角三角形D .有一个内角是30°的等腰三角形 [答案] C[解析] ∵sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin C c ,∴sin B b =cos B b =cos C c =sin Cc,∴sin B =cos B ,sin C =cos C ,∴∠B =∠C =45°, ∴△ABC 是等腰直角三角形.11.若a >0,b >0,则p =(ab )a +b2与q =a b ·b a的大小关系是( )A .p ≥qB .p ≤qC .p >qD .p <q [答案] A若a >b ,则ab >1,a -b >0,∴p q>1; 若0<a <b ,则0<a b <1,a -b <0,∴p q>1; 若a =b ,则p q=1,∴p ≥q .12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2011=( )A.1 B .2 C .4 D .5 [答案] C[解析] x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2011=x 3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr .①①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于①式的式子:______________________________,你所写的式子可用语言叙述为__________________________.[答案] ⎝ ⎛⎭⎪⎫43πR 3′=4πR 2;球的体积函数的导数等于球的表面积函数.14.已知f (n )=1+12+13+…+1n (n ∈N *),用数学归纳法证明f (2n )>n 2时,f (2k +1)-f (2k)=________.[答案]12k+1+12k +2+…+12k +1 [解析] f (2k +1)=1+12+13+…+12k +1f (2k )=1+12+13+…+12k f (2k +1)-f (2k )=12k+1+12k +2+…+12k +1. 15.观察①sin 210°+cos 240°+sin10°cos40°=34;②sin 26°+cos 236°+sin6°cos36°=34.两式的结构特点可提出一个猜想的等式为________________.[答案] sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34[解析] 观察40°-10°=30°,36°-6°=30°, 由此猜想:sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.可以证明此结论是正确的,证明如下:sin 2α+cos 2(30°+α)+sin α·cos(30°+α) =1-cos2α2+1+cos(60°+2α)2+12[sin(30°+2α)-sin30°]=1+12[cos(60°+2α)-cos2α]+12sin(30°+2α)-12=1+12[-2sin(30°+2α)sin30°]+12sin(30°+2α)-12=34-12sin (30°+2α)+12sin(30°+2α)=34. 16.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案] ③④[解析] 考查阅读理解、分析等学习能力. ①整数a =2,b =4,ab不是整数;②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ;③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知:a 、b 、c ∈R ,且a +b +c =1. 求证:a 2+b 2+c 2≥13.[证明] 由a 2+b 2≥2ab ,及b 2+c 2≥2bc ,c 2+a 2≥2ca . 三式相加得a 2+b 2+c 2≥ab +bc +ca .∴3(a 2+b 2+c 2)≥(a 2+b 2+c 2)+2(ab +bc +ca )=(a +b +c )2. 由a +b +c =1,得3(a 2+b 2+c 2)≥1, 即a 2+b 2+c 2≥13.18.(本题满分12分)证明下列等式,并从中归纳出一个一般性的结论. 2cos π4=2,2cos π8=2+2,2cos π16=2+2+2,……[证明] 2cos π4=2·22= 22cos π8=21+cosπ42=2·1+222=2+ 22cos π16=21+cosπ82=21+122+22=2+2+ 2…19.(本题满分12分)已知数列{a n }满足a 1=3,a n ·a n -1=2·a n -1-1. (1)求a 2、a 3、a 4; (2)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并写出数列{a n }的一个通项公式. [解析] (1)由a n ·a n -1=2·a n -1-1得a n =2-1a n -1,代入a 1=3,n 依次取值2,3,4,得a 2=2-13=53,a 3=2-35=75,a 4=2-57=97.(2)证明:由a n ·a n -1=2·a n -1-1变形,得 (a n -1)·(a n -1-1)=-(a n -1)+(a n -1-1), 即1a n -1-1a n -1-1=1, 所以{1a n -1}是等差数列. 由1a 1-1=12,所以1a n -1=12+n -1, 变形得a n -1=22n -1,所以a n =2n +12n -1为数列{a n }的一个通项公式.20.(本题满分12分)已知函数f (x )=a x+x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负根.[解析] (1)证法1:任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,且a x 1>0,又∵x 1+1>0,x 2+1>0, ∴f (x 2)-f (x 1)=x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0,于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数. 证法2:f ′(x )=a xln a +x +1-(x -2)(x +1)2=a x ln a +3(x +1)2∵a >1,∴ln a >0,∴a xln a +3(x +1)2>0, f ′(x )>0在(-1,+∞)上恒成立,即f (x )在(-1,+∞)上为增函数.(2)解法1:设存在x 0<0(x 0≠-1)满足f (x 0)=0 则a x 0=-x 0-2x 0+1,且0<ax 0<1. ∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0矛盾. 故方程f (x )=0没有负数根. 解法2:设x 0<0(x 0≠-1) ①若-1<x 0<0,则x 0-2x 0+1<-2,a x 0<1,∴f (x 0)<-1. ②若x 0<-1则x 0-2x 0+1>0,a x 0>0, ∴f (x 0)>0.综上,x <0(x ≠-1)时,f (x )<-1或f (x )>0,即方程f (x )=0无负根.21.(本题满分12分)我们知道,在△ABC 中,若c 2=a 2+b 2,则△ABC 是直角三角形.现在请你研究:若c n=a n+b n(n >2),问△ABC 为何种三角形?为什么?[解析] 锐角三角形 ∵c n=a n+b n(n >2),∴c >a, c >b ,由c 是△ABC 的最大边,所以要证△ABC 是锐角三角形,只需证角C 为锐角,即证cos C >0.∵cos C =a 2+b 2-c 22ab,∴要证cos C >0,只要证a 2+b 2>c 2,① 注意到条件:a n +b n =c n, 于是将①等价变形为:(a 2+b 2)c n -2>c n.② ∵c >a ,c >b ,n >2,∴c n -2>an -2,cn -2>bn -2,即cn -2-an -2>0,cn -2-bn -2>0,从而(a 2+b 2)c n -2-c n =(a 2+b 2)cn -2-a n -b n=a 2(cn -2-an -2)+b 2(cn -2-bn -2)>0,这说明②式成立,从而①式也成立.故cos C >0,C 是锐角,△ABC 为锐角三角形.22.(本题满分14分)(2010·安徽理,20)设数列a 1,a 2,…a n ,…中的每一项都不为0. 证明{a n }为等差数列的充分必要条件是:对任何n ∈N +,都有1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1. [分析] 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.解题思路是利用裂项求和法证必要性,再用数学归纳法或综合法证明充分性. [证明] 先证必要性.设数列{a n }的公差为d .若d =0,则所述等式显然成立. 若d ≠0,则 1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎝ ⎛⎭⎪⎫a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1=1d ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d a n +1-a 1a 1a n +1 =n a 1a n +1. 再证充分性.证法1:(数学归纳法)设所述的等式对一切n ∈N +都成立.首先,在等式1a 1a 2+1a 2a 3=2a 1a 3两端同乘a 1a 2a 3,即得a 1+a 3=2a 2,所以a 1,a 2,a 3成等差数列,记公差为d ,则a 2=a 1+d .假设a k =a 1+(k -1)d ,当n =k +1时,观察如下两个等式 1a 1a 2+1a 2a 3+…+1a k -1a k=k -1a 1a k,① 1a 1a 2+1a 2a 3+…+1a k -1a k +1a k a k +1=ka 1a k +1② 将①代入②,得k -1a 1a k +1a k a k +1=ka 1a k +1, 在该式两端同乘a 1a k a k +1,得(k -1)a k +1+a 1=ka k . 将a k =a 1+(k -1)d 代入其中,整理后,得a k +1=a 1+kd .由数学归纳法原理知,对一切n ∈N ,都有a n =a 1+(n -1)d ,所以{a n }是公差为d 的等差数列.证法2:(直接证法)依题意有1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1,① 1a 1a 2+1a 2a 3+…+1a n a n +1+1a n +1a n +2=n +1a 1a n +1.② ②-①得1a n +1a n +2=n +1a 1a n +2-n a 1a n +1, 在上式两端同乘a 1a n +1a n +2,得a 1=(n +1)a n +1-na n +2.③ 同理可得a 1=na n -(n -1)a n +1(n ≥2)④ ③-④得2na n +1=n (a n +2+a n ) 即a n +2-a n +1=a n +1-a n ,由证法1知a 3-a 2=a 2-a 1,故上式对任意n ∈N *均成立.所以{a n }是等差数列.。
第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。
第二章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列说法正确的有()①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个解析演绎推理只有大前提、小前提和推理形式都正确才能保证结论正确,故②错误,其他都正确.故选C.答案C2有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b⊄平面α,a⊂平面α,直线b∥平面α,则直线b∥直线a”,这显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析“直线平行于平面,则该直线平行于平面内所有直线”是错误的,即大前提是错误的.故选A.答案A3(1)已知p3+q3=2,求证:p+q≤2.用反证法证明此命题时可假设p+q≥2;(2)已知a,b∈R,|a|+|b|<1,求证:关于x的方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明此命题时可假设方程至少有一根的绝对值大于或等于1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确,(2)的假设错误D.(1)的假设错误,(2)的假设正确解析反证法证明问题的第一步是“假设命题的结论不成立,即假设结论的反面成立”,而命题(1)结论的反面应为“p+q>2”;对命题(2),其结论的反面为“方程x2+ax+b=0的两根的绝对值至少有一个大于或等于1”.故选D.答案D4如图,4个小动物换座位,开始时鼠、猴、兔、猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,第4次左右列动物互换座位,……这样交替进行下去,那么第2 017次互换座位后,小兔所坐的座位号为()A.1B.2C.3D.4解析由题意得第4次互换座位后,4个小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,而2 017=4×504+1,所以第2 017次互换座位后结果与第1次互换座位结果相同,故小兔坐在1号座位上,故选A.答案A5若f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),…,f n+1(x)=f n'(x),n∈N*,则f2 017(x)等于()A.sin xB.-sin xC.cos xD.-cos x解析由题意可知,函数f n(x)的表达式是呈周期性变化的,周期为4,而2 017=4×504+1, 故f2 017(x)=f1(x)=cos x,故选C.答案C6观察式子:1+,1+,1+,……,则可归纳出一般式子为()A.1++…+(n≥2,n∈N)B.1++…+(n≥2,n∈N)C.1++…+(n≥2,n∈N)D.1++…+(n≥2,n∈N)答案C7已知a,b为两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析对于选项A,直线a,b有可能相交或异面;对于选项B,直线a,b有可能相交或异面;对于选项C,平面α,β有可能相交;对于选项D,若a⊥α,b⊥β,当a⊂β时,有b⊥a,当a⊄β时,因为α⊥β,所以a∥β,所以b⊥a,故选D.答案D8对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},……,则每组内奇数之和S n与其所在组的编号数n的关系是()A.S n=n2B.S n=n3C.S n=n4D.S n=n(n+1)解析当n=1时,S1=1;当n=2时,S2=8=23;当n=3时,S3=27=33;故归纳猜想S n=n3,故选B.答案B9古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:①②他们研究过图①中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图②中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数,又是正方形数的是()A.289B.1 024C.1 225D.1 378解析根据图形的规律可知,第n个三角形数为a n=,第n个正方形数为b n=n2,由此可排除选项D(1 378不是平方数),将选项A,B,C中的数代入到三角形数与正方形数表达式中检验可知,符合题意的是选项C,故选C.答案C10六个面都是平行四边形的四棱柱称为平行六面体.如图①所示,在平行四边形ABCD中,有AC2+BD2=2(AB2+AD2),在如图②所示的平行六面体ABCD-A1B1C1D1中,A+B+C+D等于()A.2(AB2+AD2+A)B.3(AB2+AD2+A)C.4(AB2+AD2+A)D.4(AB2+AD2)解析如图,连接A1C1,AC,则四边形AA1C1C是平行四边形,故A1C2+A=2(A+AC2).连接BD,B1D1,则四边形BB1D1D是平行四边形,∴B+D=2(B+BD2).又在▱ABCD中,AC2+BD2=2(AB2+AD2).∵A=B,∴A+B+C+D=2(A+AC2)+2(B+BD2)=2(AC2+BD2+B+A)=2[2(AB2+AD2)+2A]=4(A B2+AD2+A).故选C.答案C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11用三段论证明f(x)=x3+sin x(x∈R)为奇函数的步骤为.答案对定义域内的任意x,若满足f(-x)=-f(x),则函数f(x)为奇函数, 大前提因为x∈R,则-x∈R,f(-x)=(-x)3+sin(-x)=-x3-sin x=-f(x), 小前提所以函数f(x)=x3+sin x(x∈R)为奇函数.结论12观察分析下表中的数据:猜想一般凸多面体中F,V,E所满足的等式是.解析因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F+V-E=2.答案F+V-E=213为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密的原理如下:明文密文密文明文已知加密为y=a x-2(x为明文,y为密文),明文“3”通过加密后得到的密文为“6”,再发送,接收方通过解密得到明文“3”,若接收方收到的密文为“14”,则原发送的明文为.解析由题意知,当x=3时,函数y=a x-2的函数值为6,即6=a3-2,∴a3=8,∴a=2.∴y=2x-2.则当y=14时,有14=2x-2,∴2x=16.∴x=4,故原发送的明文为4.答案414观察图象,第行的各数之和等于2 0172.解析观察知,题图中的第n行的各数构成一个首项为n,公差为1,共(2n-1)项的等差数列,其各项和为:S n=(2n-1)n+=(2n-1)n+(2n-1)(n-1)=(2n-1)2.令(2n-1)2=2 0172,得2n-1=2 017,∴n=1 009.答案1 00915蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看做是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数,则用n表示的f(n)=.解析由于f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,推测当n≥2时,有f(n)-f(n-1)=6(n-1),∴f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+[f(n-2)-f(n-3)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.又f(1)=1=3×12-3×1+1,∴f(n)=3n2-3n+1.答案3n2-3n+1三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)实数的乘法与向量的数量积有以下类似的性质:a·b=b·a,a·b=b·a,(a+b)·c=a·c+b·c,(a+b)·c=a·c+b·c.则由①(a·b)·c=a·(b·c),②若a≠0,a·c=a·b,则b=c,猜想对于向量的数量积有什么样的结论,猜想是否正确?解猜想:①(a·b)·c=a·(b·c),②若a≠0,a·c=a·b,则b=c.这两个结论都不正确.①式左边表示与c共线的向量,右边表示与a共线的向量,c与a不一定共线,故等式不一定成立.②设a与c的夹角为α,a与b的夹角为β,由a·c=a·b,得|a||c|cos α=|a||b|cos β,可得|c|cos α=|b|cos β,则c,b在a方向上的投影相等,b,c不一定相等.故等式不一定成立.17(8分)已知△ABC的三边a,b,c的倒数成等差数列,证明角B为锐角.分析在△ABC中,要证角B为锐角,只要证cos B>0,结合余弦定理可解决问题.证明要证明角B为锐角,只需证cos B>0.又因为cos B=,所以只需证明a2+c2-b2>0,即a2+c2>b2.因为a2+c2≥2ac,所以只需证明2ac>b2.由已知,得,即2ac=b(a+c).所以只需证明b(a+c)>b2,即只需证明a+c>b.而已知a,b,c为△ABC的三边,即a+c>b成立,所以角B为锐角.18(9分)设{a n},{b n}是公比不相等的两个等比数列,c n=a n+b n,证明数列{c n}不是等比数列.分析假设数列{c n}是等比数列,利用{a n},{b n}是公比不相等的等比数列的条件推出矛盾,即知假设不成立.证明假设数列{c n}是等比数列,则当n≥2时,(a n+b n)2=(a n-1+b n-1)(a n+1+b n+1).①因为{a n},{b n}是公比不相等的两个等比数列,设公比分别为p,q,所以=a n-1a n+1,=b n-1b n+1.代入①并整理,得2a n b n=a n+1b n-1+a n-1b n+1=a n b n,即2=.②当p,q异号时,<0,与②相矛盾;当p,q同号时,因为p≠q,所以>2,与②相矛盾.故数列{c n}不是等比数列.19(10分)已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A,B.(1)若|AB|=,求k的值;(2)求证:不论k取何值,以AB为直径的圆恒过点M.(1)解由题意知,b=1.由a2=b2+c2可得c=b=1,a=,所以椭圆的方程为+y2=1.由消去y得(2k2+1)x2-kx-=0.Δ=k2-4(2k2+1)×=16k2+>0恒成立.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=-.所以|AB|=·|x1-x2|=,化简得23k4-13k2-10=0,即(k2-1)(23k2+10)=0,解得k=±1.(2)证明因为=(x1,y1-1),=(x2,y2-1),所以=x1x2+(y1-1)(y2-1)=(1+k2)x1x2-k(x1+x2)+=-=0.所以不论k取何值,以AB为直径的圆恒过点M.20(10分)已知数列{a n}的各项均为正数,b n=n a n(n∈N*),e为自然对数的底数.(1)求函数f(x)=1+x-e x的单调区间,并比较与e的大小;(2)计算,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n,数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<e S n.解(1)f(x)的定义域为(-∞,+∞),f'(x)=1-e x.当f'(x)>0,即x<0时,f(x)单调递增;当f'(x)<0,即x>0时,f(x)单调递减.故f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).当x>0时,f(x)<f(0)=0,即1+x<e x.令x=,得1+,即<e.①(2)=1·=1+1=2;=2·2=(2+1)2=32;=32·3=(3+1)3=43.由此推测:=(n+1)n.②下面用数学归纳法证明②.(ⅰ)当n=1时,左边=右边=2,②成立.(ⅱ)假设当n=k时,②成立,即=(k+1)k.当n=k+1时,b k+1=(k+1)a k+1,由归纳假设可得=(k+1)k(k+1)=(k+2)k+1.所以当n=k+1时,②也成立.根据(ⅰ)(ⅱ),可知②对一切正整数n都成立.(3)由c n的定义、②、算术-几何平均值不等式、b n的定义及①得T n=c1+c2+c3+…+c n=(a1+(a1a2+(a1a2a3+…+(a1a2…a n=+…+≤+…+=b1+b2+…++…+b n·=b1+b2+…+b n+…+a1+a2+…+a n<e a1+e a2+…+e a n=e S n,即T n<e S n.。
理科(选修2-2)第二章推理与证明检测题
班级 姓名 分数
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、下列推理不是合情推理的是( )
A 、由圆的性质类比推出球的有关性质
B 、由等边三角形、等腰直角三角形的内角和是180 ,归纳出所有三角形的内角和都是180 。
C 、某次考试小明的数学成绩是满分,由此推出其各科成绩都是满分
D 、金、银、铜导是导电,金银、铜是金属,所以金属都是导电
2 )
A B
C D
3、数列2,5,11,20,x ,47……中的x 等于( )
A 、28
B 、32、
C 、33、
D 、27
4、有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )
A 、大前提错误
B 、小前提错误
C 、推理形式错误
D 、非以上错误
5、在ABC 中。
E 、F 分别为AB 、AC 的中点,则EF BC 有,这个问题的大前提为( )
A 、三角形的中们线平行于第三边
B 、EF 为中位线
C 、三角形的中位线等于第三边的一半
D 、EF BC
6、由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面( )
A 、各正三角形内任一点
B 、各正三角形的某高线上的点
C 、各正三角形的中心
D 、各正三角形外的某点
7、对“a,b,c ”是不全相等的正数,给出下列判断:①222()()()0a b b c c a -+-+-≠②a=b 与b=c 及a=c 中至少有一个成立;③,,,a c b c a b ≠≠≠不能同时成立。
其中判断正确的个数是( )
A 、0个
B 、1个
C 、2个
D 、3个
8、我们把平面几何里相似形的概念推广到空间;如果两个几何体大小不一定相等,但形状完全相同,就把它们中做相似体,下列几何体中,一定属于相似体的有( )
①两个球全;②两个长方体;③两个正四面全;④ 两个正三棱体⑤两个正四棱锥
A 、4个
B 、3个
C 、2个
D 、1个
9、数列{}n a 满足1111,12n n
a a a +==-,则2010a 等于( )
A 、12
B 、-1
C 、2
D 、3 10、观察下列等式,332123+=,33321236++=,33332123410+++=根据上述规律,
333333123456+++++=( )
A 、219
B 、220
C 、221
D 、222
11、已知0a >,不等式12x x +
≥,243x x +≥,3274x x +≥,可推广为11n x n x +≥+,则a 的值为( )
A 、2n
B 、n n
C 、2n
D 、232
n - 12、定义在R 上的函数()f x 满足()(4)f x f x -=-+,且()f x 在()2,+∞上为增函数,已知124x x +<且()()12220x x --<,则12()()f x f x +的值( )
A 、恒大于0
B 、恒小于0
C 、可能等于0
D 、可正也可负
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)
13,写出该数例的一个通项公式n a =
14、对于平面几何中的图形“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“ 。
”
这个类命题的真假性是 。
15、用数学归纳法证明:11121121231231
n n n +++⋅⋅⋅=+++++++时,由n=k 到n=k+1左边需要添加的项是 。
16、(08云南理16)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,利用类比推理,请写出一个四棱柱为平行六面体的两个充要条件。
充要条件:① 。
充要条件:② 。
三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或深处步骤)
17、(本小题满分12分)已知等差数列{}n a 的公差为d ,前项n 和为{},n n S a 有如下性质: (,,,)M N P Q N ∈ ①通项()n m a a n m d =+-②若m+n=p+q ,则m n p q a a a a +=+③若2m n p +=则2m n p a a a +=④232,,n n n n n S S S S S --构成等差数列;类比上述性质,在等比数列{}n b 中,写出相关似的性质。
18、(本小题满分12分)定义“等和数例”在一个数列里,如果每一项与它的后一项和各都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列{}n a 是等和数列,且12a =,公和为5,求18a 和21S 。
19、(本小题满分12分)在锐角三角形ABC 中,证明:tan tan 1A B ∙>
20、(本小题满分12分)已知,a>0,b>0,a+b=1,2≤。
21、(本小题满分12分)(本小题满分12分)设()f x =2x ax b ++,求证:(1)f 、(2)f 、
(3)f 中至少有一个小于12
22、(本小题满分14分)在各项为正的数列{}n a 中,数列的前n 项和n S 满足112n n n S a a =(+
) (1)求1a ,2a ,3a
(2),由(1)猜想到数列{}n a 的通项公式,并用数学归纳法证明你的猜想。