LLC电路的MOS管失效模式分析
- 格式:pdf
- 大小:1.09 MB
- 文档页数:45
功率MOS管的五种损坏模式详解第一种:雪崩破坏如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。
在介质负载的开关运行断开时产生的回扫电压,或者由漏磁电感产生的尖峰电压超出功率MOSFET的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩破坏。
典型电路:第二种:器件发热损坏由超出安全区域引起发热而导致的。
发热的原因分为直流功率和瞬态功率两种。
直流功率原因:外加直流功率而导致的损耗引起的发热●导通电阻RDS(on)损耗(高温时RDS(on)增大,导致一定电流下,功耗增加)●由漏电流IDSS引起的损耗(和其他损耗相比极小)瞬态功率原因:外加单触发脉冲●负载短路●开关损耗(接通、断开) *(与温度和工作频率是相关的)●内置二极管的trr损耗(上下桥臂短路损耗)(与温度和工作频率是相关的)器件正常运行时不发生的负载短路等引起的过电流,造成瞬时局部发热而导致破坏。
另外,由于热量不相配或开关频率太高使芯片不能正常散热时,持续的发热使温度超出沟道温度导致热击穿的破坏。
第三种:内置二极管破坏在DS端间构成的寄生二极管运行时,由于在Flyback时功率MOSFET的寄生双极晶体管运行,导致此二极管破坏的模式。
第四种:由寄生振荡导致的破坏此破坏方式在并联时尤其容易发生在并联功率MOS FET时未插入栅极电阻而直接连接时发生的栅极寄生振荡。
高速反复接通、断开漏极-源极电压时,在由栅极-漏极电容Cgd(Crss)和栅极引脚电感Lg形成的谐振电路上发生此寄生振荡。
当谐振条件(ωL=1/ωC)成立时,在栅极-源极间外加远远大于驱动电压Vgs(in)的振动电压,由于超出栅极-源极间额定电压导致栅极破坏,或者接通、断开漏极-源极间电压时的振动电压通过栅极-漏极电容Cgd和Vgs波形重叠导致正向反馈,因此可能会由于误动作引起振荡破坏。
MOSFET失效原因深度分析,附:失效预防措施作为开关电源工程师,会经常碰到电源板上MOSFET无法正常工作,首先,要正确测试判断MOSFET是否失效,然后关键是要找到失效背后的原因,并避免再犯同样的错误,本文整理了常见的MOSFET 失效的几大原因,以及如何避免失效的具体措施。
用万用表简单检测MOS管是否完好测试MOS好坏用指针式万用表方便点,测试时选择欧姆R×10K 档,这时电压可达10.5V,红笔是负电位,黑笔是正电位。
测试步骤:MOS管的检测主要是判断MOS管漏电、短路、断路、放大。
其步骤如下:1、把红笔接到MOS的源极S上,黑笔接到MOS管的漏极上,好的表针指示应该是无穷大。
如果有阻值没被测MOS管有漏电现象。
2、用一只100KΩ-200KΩ的电阻连在栅极和源极上,然后把红笔接到MOS的源极S上,黑笔接到MOS管的漏极上,这时表针指示的值一般是0,这时是下电荷通过这个电阻对MOS管的栅极充电,产生栅极电场,由于电场产生导致导电沟道致使漏极和源极导通,故万用表指针偏转,偏转的角度大,放电性越好。
3、把连接栅极和源极的电阻移开,万用表红黑笔不变,如果移开电阻后表针慢慢逐步退回到高阻或无穷大,则MOS管漏电,不变则完好。
4、然后一根导线把MOS管的栅极和源极连接起来,如果指针立即返回无穷大,则MOS完好。
----------------------------MOSFET失效的六大原因1:雪崩失效(电压失效),也就是我们常说的漏源间的BVdss电压超过MOSFET的额定电压,并且超过达到了一定的能力从而导致MOSFET失效。
2:SOA失效(电流失效),既超出MOSFET安全工作区引起失效,分为Id超出器件规格失效以及Id过大,损耗过高器件长时间热积累而导致的失效。
3:体二极管失效:在桥式、LLC等有用到体二极管进行续流的拓扑结构中,由于体二极管遭受破坏而导致的失效。
4:谐振失效:在并联使用的过程中,栅极及电路寄生参数导致震荡引起的失效。
三电平全桥LLC电路原理详解三相模块的母线电压可以达到800V,如果(DC)DC仍然采用传统的两电平拓扑,那么DC MOS管必须采用1200V耐压的MOS管。
而目前市场上这样的MOS管型号非常少,而且很贵。
如果采用三电平拓扑,就可以继续采用600V的MOS管了,型号丰富,成本也低。
三电平PWM控制已经得到了成熟应用,但是传统的PWM拓扑整体效率低,所以在三电平的基础上,又采用了LLC拓扑,该拓扑从成本、效率等方面都得到了很好的兼顾。
三电平全桥LLC主电路拓扑电路说明:1、谐振电感和谐振(电容)做成两边平衡的方式,是因为项目组在实验过程中发现如果是单Lr, Cr模式,MOS驱动(信号)容易受干扰,拆成两边对称放置以后,驱动可靠性提高;三电平全桥LLC电路拓扑示意图如图(图五‑3)所示,有8个开关管S1~S8,需要8路驱动信号来完成PFM(调频)、PWM(调宽)控制,S1~S8对应的高精度驱动信号编号为PWM1~PWM8。
注:PWM并不单指控制策略采用PWM方式时的开关信号,也包括PFM方式时的开关信号。
三电平LLC电路拓扑框图在此三电平LLC电路控制中,设计8路驱动信号PWM1~PWM8,从(图五‑4)的发波时序图来看,这8路驱动有下面的关系:1) PWM1和PWM4,PWM2和PWM3,PWM5和PWM8,PWM6和PWM7相位互补(不考虑死区时间Td2和提前关断时间Td1);2) PWM1比PWM2提前Td1关断,PWM4比PWM3提前Td1关断,PWM5比PWM6提前Td1关断,PWM8比PWM7提前Td1关断;根据控制策略需要,PWM1~PWM8可以实现高精度PFM/PWM/PSM(或者同时实现其中两个状态,如PFM+PWM),在三种控制状态(PFM/PSM/PWM)下PWM1~PWM8在一个开关周期内的输出波形如图(图五‑4)所示,以高电平(或者为低电平)为有效电平,当PWMx(x=1~8)为高时通过相应的(驱动电路)使得Sx 导通,当PWMx为低时通过相应的驱动电路使得Sx断开。
MOSFET的失效模式分析:dV/dt失效和雪崩失效当向MOSFET施加高于绝对最大额定值BVDSS的电压时,会造成击穿并引发雪崩击穿。
发生雪崩击穿时,会流过大电流,存在MOSFET失效的危险。
MOSFET雪崩失效包括短路造成的失效和热量造成的失效。
dV/dt失效是MOSFET关断时流经寄生电容Cds的充电电流流过基极电阻RB,使寄生双极晶体管导通而引起短路从而造成失效的现象。
dV/dt是单位时间内的电压变化量,VDS的上升坡度越陡,越容易发生MOSFET的dV/dt失效问题。
一般来说,反向恢复特性越差,dV/dt的坡度越陡,越容易产生MOSFET的dV/dt失效。
什么是雪崩击穿当向MOSFET施加高于绝对最大额定值BVDSS的电压时,就会发生击穿。
当施加高于BVDSS的高电场时,自由电子被加速并带有很大的能量。
这会导致碰撞电离,从而产生电子-空穴对。
这种电子-空穴对呈雪崩式增加的现象称为“雪崩击穿”。
在这种雪崩击穿期间,与MOSFET内部二极管电流呈反方向流动的电流称为“雪崩电流IAS”,参见下图(1)。
MOSFET的雪崩失效电流路径示意图(红色部分)雪崩失效:短路造成的失效如上图所示,IAS会流经MOSFET的基极寄生电阻RB。
此时,寄生双极型晶体管的基极和发射极之间会产生电位差VBE,如果该电位差较大,则寄生双极晶体管可能会变为导通状态。
一旦这个寄生双极晶体管导通,就会流过大电流,MOSFET可能会因短路而失效。
雪崩失效:热量造成的失效在雪崩击穿期间,不仅会发生由雪崩电流导致寄生双极晶体管误导通而造成的短路和损坏,还会发生由传导损耗带来的热量造成的损坏。
如前所述,当MOSFET处于击穿状态时会流过雪崩电流。
在这种状态下,BVDSS被施加到MOSFET并且流过雪崩电流,它们的乘积成为功率损耗。
这种功率损耗称为“雪崩能量EAS”。
雪崩测试电路及其测试结果的波形如下图所示。
此外,雪崩能量可以通过公式(1)来表示。
llc同步整流 mos管发热后电流波形不正常下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!LLC同步整流MOS管发热后电流波形不正常。
MOS失效的原因分析总结MOS管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。
MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。
在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。
这样的器件被认为是对称的。
目前在市场应用方面,排名第一的是消费类电子电源适配器产品。
而MOS管的应用领域排名第二的是计算机主板、NB、计算机类适配器、LCD显示器等产品,随着国情的发展计算机主板、计算机类适配器、LCD显示器对MOS管的需求有要超过消费类电子电源适配器的现象了。
第三的就属网络通信、工业控制、汽车电子以及电力设备领域了,这些产品对于MOS管的需求也是很大的,特别是现在汽车电子对于MOS管的需求直追消费类电子了。
下面对MOS失效的原因总结以下六点,然后对1,2重点进行分析:1:雪崩失效(电压失效),也就是我们常说的漏源间的BVdss电压超过MOSFET的额定电压,并且超过达到了一定的能力从而导致MOSFET失效。
2:SOA失效(电流失效),既超出MOSFET安全工作区引起失效,分为Id超出器件规格失效以及Id过大,损耗过高器件长时间热积累而导致的失效。
3:体二极管失效:在桥式、LLC等有用到体二极管进行续流的拓扑结构中,由于体二极管遭受破坏而导致的失效。
4:谐振失效:在并联使用的过程中,栅极及电路寄生参数导致震荡引起的失效。
5:静电失效:在秋冬季节,由于人体及设备静电而导致的器件失效。
6:栅极电压失效:由于栅极遭受异常电压尖峰,而导致栅极栅氧层失效。
雪崩失效分析(电压失效)到底什么是雪崩失效呢,简单来说MOSFET在电源板上由于母线电压、变压器反射电压、漏感尖峰电压等等系统电压叠加在MOSFET漏源之间,导致的一种失效模式。
简而言之就是由于就是MOSFET漏源极的电压超过其规定电压值并达到一定的能量限度而导致的一种常见的失效模式。
LLC谐振变换器中MOSFET失效模式分析1 摘要提高功率密度已经成为电源变换器的发展趋势。
为达到这个目标,需要提高开关频率,从而降低功率损耗、系统整体尺寸以及重量。
对于当今的开关电源(SMPS)而言,具有高可靠性也是非常重要的。
零电压开关(ZVS) 或零电流开关(ZCS) 拓扑允许采用高频开关技术,可以大限度地降低开关损耗。
ZVS拓扑允许工作在高频开关下,能够改善效率,能够降低应用的尺寸,还能够降低功率开关的应力,因此可以改善系统的可靠性。
LLC 谐振半桥变换器因其自身具有的多种优势逐渐成为一种主流拓扑。
这种拓扑得到了广泛的应用,包括高端服务器、平板显示器电源的应用。
但是,包含有LLC谐振半桥的ZVS 桥式拓扑,需要一个带有反向快速恢复体二极管的MOSFET,才能获得更高的可靠性。
在功率变换市场中,尤其对于通信/服务器电源应用,不断提高功率密度和追求更高效率已经成为具挑战性的议题。
对于功率密度的提高,普遍方法就是提高开关频率,以便降低无源器件的尺寸。
零电压开关(ZVS)拓扑因具有极低的开关损耗、较低的器件应力而允许采用高开关频率以及较小的外形,从而越来越受到青睐。
这些谐振变换器以正弦方式对能量进行处理,开关器件可实现软开闭,因此可以大大地降低开关损耗和噪声。
在这些拓扑中,相移ZVS全桥拓扑在中、高功率应用中得到了广泛采用,因为借助功率MOSFET的等效输出电容和变压器的漏感可以使所有的开关工作在ZVS 状态下,无需额外附加辅助开关。
然而,ZVS范围非常窄,续流电流消耗很高的循环能量。
近来,出现了关于相移全桥拓扑中功率MOSFET失效问题的讨论。
这种失效的主要原因是:在低反向电压下,MSOFET体二极管的反向恢复较慢。
另一失效原因是:空载或轻载情况下,出现Cdv/dt直通。
在LLC谐振变换器中的一个潜在失效模式与由于体二极管反向恢复特性较差引起的直通电流相关。
即使功率MOSFET的电压和电流处于安全工作区域,反向恢复dv/dt和击穿dv/dt也会在如启动、过载和输出短路的情况下发生。
MOSFETs are w ell know n to be prone to inexplicable failures - to the effect that the alternativ e expansion of the MOSFET acrony m is 'M agically O bliterated, S moke and F ire E mitting T ransistor'. The truth is that MOSFETs are incredibly robust - but that they fail v er y fast indeed if any of their rating are exceeded. There are a few ratings w hich are v er y difficult to get sensible info rmation on, and w hich can cause problems. This page (w hich can nev er be complete) is a start on try ing to explain some of these.Failure modesIt is alw ay s v er y difficult to be certain of exactly w hat caused any one failure: the problem is that failures are v er y difficult to promote in any w ell designed controller, and customers a re not usually aw are of exactly w hat happened to cause the failure. F urthermo re oncea MOSFET fails - it is now dud and w ill not w ork properly so it promptly goes into another failure mode, oblite rating the o riginalev idence. The examples here should be treated as helpful examples o nly - do not assume that, because y our MOSFET looks just likea particular e xample, then that is w hat caused the failure!Here are a few of the failure modes that can occur:1.Avalanche failure2.dV/dt failure (Motor brush noise)1.C auses and cures of motor noise2.A typical dV/dT failureExcess pow er dissipationExcess C urrent'F oreign' objects.Jammed (or blocked) moto rRapid acceleration/decele rationShort-circuited loadDud battery2Avalanche failureIf the maximum operating v oltage of a MOSFET is exceeded, it goes into Avalanche breakdow n. This is not necessarily destructi v e. The MOSFET specifications w ill state a maximum energy the MOSFET can take in av alanche mode. Energy is 1/2LI2 w here L is the inductance and I is the current. F ortunately, in most circuits, the energy the MOSFET may have to clamp is that contained in th e rather small (lumped) inductance of the batte ry and its leads. See the article on PWM controllers in the 4Q D TEC archives.If the energy contained in the transient ov er-v oltage is abov e the rated Av alanche energy level, then the MOSFET w ill fail. The dev ice fails short circuit, initially, w ith no externally v isible signs.The problem w ith this failure mode is that, once it o ccurs, there is likely to be a chain reaction w hich w ill probably disintegrate the MOSFET, obliterating the ev idence and probably blow ing other dev ices to boot. So it's of vital importance to report exactly w hat ev ents occurred at the point of failure.The controlle rs in no rmal use are gene rally incapable of generating spikes of enough ene rgy to blow them. So the necessa ry high energyspikes are usually generated by external events. These can be things such as:(1) C ontactors or re lay s sw itching (2) F uses blow ingTo prevent such failure, y ou need to understand not only how transients are generated, but also how they may trav el from gene ration point to the controlle r.dV/dt failureThis effect is probably the least understood and most my sterious of all MOSFET failures. It is also probably the biggest caus e of all those otherw ise inexplicable failures that let out the "Magic Smoke and F ire"! It is also one of the hardest failures to study as it is an extremely high-speed failure, so require s v er y expensiv e transient capture equipment. The good new s is that, as MOSFET technology improv es, it seems to be getting more ra re than once it w as!It is also a failure mode w hich is probably more common on industrial control sy stems. These tend to be w ired for neatness and appearance, so w ires tend to be longer than is ideal and routing tends to be bad. There are also sources of noise other than the motor, such as relay s and contacto rs. See the page on machine w iring.The cause of this failure is a v er y high v oltage, ver y fast transient spike (w hich may be positiv e or negative going). If such a spike gets onto the drain of a MOSFET, it gets coupled through the MOSFETs internal capacitance to the gate. If enough energy gets couple d, the v oltage on the gate rises abov e the maximum allow able lev el - and the MOSFET dies instantaneously. The process less than anano-second! The initial spike destroy s the gate-body insulatio n, so that the gate is co nnected to the body. O nce that has happene d, the MOSFET explodes in a cloud of flame and black smoke. We have one documented case w here the batter y w ire w orked loose, ca using a spark. It must have been this that caused the gate breakdow n for the explosion of flame and smoke did not happen until the ba ttery w ire w as re-connected some time later! Which demonstrates how v er y difficult cause and effect can be to connect!So w here can such a spike come from? Noise. Noise is generated by an arc - Marconi used an arc and a tuned circuit to first transmit a radio signal across the A tlantic ocean. A rcs are v er y good generators of w ide-band (random) noise. Random noise f rom an arc has a statistical probability of containing an e nergy spike of just the right parameters to blow a MOSFET. Whatev er y ou do - there is still a statistical probability, but y ou can reduce it to near v anishing point!Motor commutators and brush gear are arc genera tors: look at the brush gear on any motor and y ou w ill almost certainly see it arcing. May be you w onder how a motor controller ca n ev er w ork?Motors are probably at their noisiest w hen regenerating!How ev er much noise the motor actually generates, for it to cause damage the w iring has to be such that it can transmit a v er y fast (i.e. v er y high frequency) transient. Properly designed w iring w ill not do this but bad w iring can - if y ou are unlucky - act as a transmission line deliv ering the w hole energy of he transient back to the controller!Do not ov er-react here. Statistics are such that a properly designed motor controlle r can go on w orking continuously for y ears w ithout such a transient occurring. With production machines, the maker is using new, good condition motors. Noise is much le ss likel y here.5But may be it's y our controller that's next! Especially if (like many of our retail customers) y ou are using a second hand motor - w hich is much more likely to be w orn and noisy! Know ledge of w hat happens can help y ou reduce the probability!Causes and cures of motor noiseSince dV/dt failure is gene rally caused by noise generated by the motor brush gear, w hat faults and effects in the motor caus e no ise, and how can y ou reduce the problem?The follow ing problems cause or make motor noise w orse:∙Worn brushes and commutatorIf brush pressure is low or unev en, arcing w ill be greatly increased. A lw ay s make sure the motor commutator and brushes are in good condition.∙Dirt, especially metallic dirtDirt can get betw een commutator and brush, causing a rcing. Metallic particles espe cially are harmful as they can also short out segments of the commutator causing v er y bad arcing. So mask off the motor's v entilation w hile w orking on or near the machine and make sure dirt cannot ente r.∙Blocking the motorA blocked motor bounces and causes the brushes to behav e unpredictably.∙Over-revv ing the motor.C ommutators are mechanical sw itching dev ices. Depending on the motor's design (and other factors such as humidity andtemperature), there is a maximum f requency at w hich the design can sw itch. If y ou ov er-rev the motor (by apply ing an excess v oltage to it) the commutation w ill break dow n and a huge plasma field can be set up, short-circuiting the armature by way of an arc. This of course ca n easily destroy the controller! It w ill also not do the motor any good.Good things to do are:∙Take care in assemblingMotors are magnetic and can attract sw arf and metal dust. If this, or any abrasiv e dirt (for instance, fibreglass) gets into the motor, it w ill cause arcing and w ear. Seal any motor v ents w hile assembling the machine.∙Take care of the motor and general maintenance.A w ell cared for and maintained sy stem is alw ay s going to be more reliable. In particular, keep the motor and ele ctricsclean and dry and make sure the motor brushgea r and armature a re not w orn.∙Motor noise suppression.F it a 10n ceramic capacitors across the moto r brushes. This capacitor w ants to be a fairly high v oltage one as it w ill h av ea 20kHz squarew ave across it. This motor capacito r should be as close to the moto r's commutator as possible, ideally insidethe motor itself. If the motor is multi pole, fit (if y ou can) a separate capa citor across each pair of brushes. If y ou are h av ing these motors made for y ou, contact the motor manufacture r w ho may w ell offer such a capacitor as a productio n option. See also Radio C ontrolled Machines. General w iring hints.∙Good w iringProper lay out of w iring can help prev ent noise trav elling back from the motor to the controller. This is a large subject but there isa page on machine w iring.A typical dV/dT failure2 l j8 T; Z: p% ~3 d/ d& R4 qNCC01A ty pical dV/dT failure is show n in the 95kByte photo y ou get by clicking on the thumbnail, right. Note the black sooty deposit w here the MOSFET has 'flamed out' in a flash of flame and sooty smoke. You can see the erupted epoxy of the MOSFET. This controlle r w as returned to us w ith the statement "I had an ov erload on the motor". How ev er - it looks exactly like arc damage and it w as probably caused w hen the motor lead w as pulled off the motor terminal. There is clearly v isible melting of the motor term inal at bottom right, w hich can only hav e been done by the arc as the terminal w as pulled off, presumably in response to the motor getting jammed. It was this disconne ction that caused the failure rather than the stalled moto r.Excess power dissipation2 G+ i! H& W: q" n/ rExactly w hat happens depends on how excess the pow er is. It may be a sustained cooking. In this case, the MOSFET gets hot enough to literally unsolder itself. Much of the MO SFET heating at high currents is in the leads - w hich can quite easily unsolder themselv es w ithout the MOSFET failing! If the heat is generated in the chip, then it w ill get hot - but its maximum temperature is usually not silicon-restricted, but restricted by the fabrication. The silico n chip is bonded to the substrate by soft solder and it is quite easy to melt this and hav e it ooze betw een the epoxy and the metal of the body, forming solder droplets. This may w ell not destroy the chi p!3 c) f" B* L3 b- S& |Excess Cur rent+ f/ l1 l) Z5 ?+ `8 R; z1 _9 R% J+ |2 A, ?/ H/ k& {/ \Yes - if y ou put too much current through a MOSFET - it w ill fail. Exactly how it fails w ill depend on how high the excess current is and for how long it flow s and on the exact circumstances at the time. h5 N( k4 f* w2 h" jA ll controllers made by 4QD hav e a fast-acting current limit: this turns the speed dow n (or up if it's e xcess rege n braking current) so that the MOSF ET current is alw ay s w ell w ithin their safe handling ability.& {- i2 A* r$ M' ?6 u% G5 }+ Y- r, T) a P+ BPow er dissipation due to current is I2R - the current times the current times the resistance. But the heat dissipated is the pow er times the time, so I2R.t, there t is the time.If y ou slightly ov erload the MOSFET - it w ill get v er y hot. If y ou don't remov e the heat - the MOSFET w ill, quite literally, melt. At 60 amps, the leads on a TO220 (the commonest MOSFET housing) w ill literally unsolder themselv es. Though the current needed for t his depends on how long the leads are and how big an area of track they are soldered too. 4QD boards all hav e extra thick copper to act as a heatsink for the F ET leads.Then there is the inside of the MOSFET. The silicon chip can get v er y hot. It is bonded to the MOSFET's case w ith - soft solder. If you get the MOSFET hot enough, this solder bonding literally melts and oozes out betw een epox y of the case and the metal insert of the base. The MOSFET can easily be w orking after this - but of course its the rmal perfo rmance is shot as the soft solde r bond is damaged.Then if you really put too much current through, the internal bond w ires (w hich carry current from the external leads to the chip) fuse in a flash and explo de - probably forcing a chunk of epo xy into space a high speed. C ratered MOSFETs are not uncommon, but it's difficult to tell if this is from bond w ire explosion or the chip has exploded - both seem to occur pretty much in unison.For eign object failur eThe circuit of a controller does not and cannot include the effects of w ater, dirt, metal filing, stray nuts and bolts etc.Since the electrical propertie s of such o bjects cannot be defined, no r ca n their position in the circuit, it is v ery likely t hat any such extraneous material w ill cause malfunction and/or death of the controller.Since the MOSFETs do most of the w ork in the controller, they are the components most likely to suffer from such abuse!You must therefore house the contro ller to prev ent such occurrences. F urthermore, if 4Q D suspect such a ca use of failure, w e may not be prepared to se rv ice the controller.Jammed (or blocked) motorBlocking a motor is suddenly jamming it by means of a mechanical seizure or failure such that a rotating motor is v er y sudden ly stopped.O f course, y ou cannot bring a mechanical load, such as a rotating motor, to a sudden halt. Ev en if y ou throw a crow bar suddenly in the gears, much more happens than a sudden sto p! There w ill be bounce in the sy stem and the armature w ill certainly bounce. Probably the brushes w ill rock in their holders - there is alw ay s some clearance!A sudden increase on the ele ctrica l load as w ould be cause d by a straightforw ard, non-bouncy, seizure w ill simply engage the controlle r's current limit. Yes - the controller w ill quickly get hot, but y ou should have time to turn dow n the speed.A ny failure caused by blocking is likely to come because of the armature bounce: this w ill (of course) be at high current and w ill be accompanied by arcing at the commutator, so it w ill generate lots of ele ctrical noise. See dV/dt failure. Because this noise occurs at full current limit, it w ill likely be of high energy, so dangerous. Much depends on the motor, brush and commutator and the m echanics as w ell as the w iring.If y ou've read the ty pical dV/dT failure, abov e, you w ill also realise that the w orst thing y ou can do in the ev ent of a sudden jam is to pull off a motor lead! Turn dow n the speed, turn of the ignitio n, or if y ou must, disconnect the batte ry lead. Nev er disconne ct the motor lead!If y ou are making a machine w hich has mechanical travel limits - y ou hav e, of course, got electrical 'end stops' w hich slow the motor and stop it before it hits any mechanical limit...Rapid acceler ation/decelerationIf failure from blocking the motor occurs because of armature bounce, it must also be dangerous to apply too fast an accelera tion to a motor. A ny mechanical sy stem has a response time. If y ou tr y to accelerate the sy stem faster tha n this response time, y ou are 'shocking' it into a state w here there may w ell be a 'bounce'. This is one of the reasons w hy a controller alw ay s has an acce leration and deceleration ramp: for smooth take-up the pow er must alw ay s be applied to a mechanical sy stem slightly slow er than the sy stem can respo nd. A pply pow er faster than the sy stem's response time and y ou are, in effect, shock e xciting it! How ever - in most applications, the controller's current limit w ill engage if the acceleration is too fast, and this w ill apply an effectiv e ramp. So w e'v e nev er seen a failure that w e w ould care to attribute to this fault!Dud batteryIf the batter y voltage ev er falls too low, controller internal v oltage may fail and the sw itching may get confused. Of course controllers are designed not to do this unde r conceiv able and testable low voltage conditions.How ev er - batteries can sometimes fail in unpredictable w ay s. We hav e seen ones w ith faulty cells that go open circuit abov e a particula r curre nt. O f course, the current then falls to zero (as the cell is open-circuit) so the cell starts to oscillate.This sort of unpredictable battery fault is - unpredictable. So how to predict and test that it w on't damage the controller?So if y ou have problems, alw ay s get your battery properly tested at high discharge current. It should be able to supply more current than the controller's moto r current limit, w ithout show ing distress.Shor t-cir cuited loadIf the load is short-circuited, the current w ill rise and the curre nt limit w ill engage, so immediate failure w ill be prev ented. How ever - w e do not guarantee the co ntrolle rs are safe against sho rt circuits, for if the sho rt is sustained and is 'too short' - failure can ev entually occur.The current limit engages after about 2µSeconds. During these tw o microseconds, the MOSFET is sw itching on and 'feeling' the load. It is a period of extreme dissipation for the MOSFET. The MOSFET can sur v iv e this stress quite happily- but it gets extremely hot. If the load is too small, the MOSFET's insides w ill get hot enough that the heat cannot get out quickly enough and the soft-solder use d inside the package to bond it together w ill melt and ooze out betw een the base of the MOSFET and the insulator (y ou can usual ly see it on the insulato r afterw ards). The MOSFET w ill then fail.The time to failure is entirely dependant on the sev erity of the short-circuit, but is quite long enough for a human to react (30 secondsto sev eral minutes). How ev er the current and v oltage conditio ns in the MO SFET are entirely dependant on the w iring (both moto r and battery) as the motor is shorted o ut, so the time is comple tely unpredictableA uthor: Richard Torrens from 4Q D(1998-2013)F irst published: 26th F ebruary 2002.Last modified: 2013。
LLC电路的MOS管失效模式分析LLC电路(电容-电感-电容)是一种常用于高效率直流-直流转换器的拓扑结构。
该电路中的MOS管起着关键的作用,但在长时间运行过程中,MOS管也可能出现故障。
本文将分析LLC电路中MOS管可能出现的失效模式,并对其原因进行分析。
失效模式一:温度过高LLC电路中的MOS管工作在高效率转换器中,常常要承受高频高压的工作环境。
高频工作会引起MOS管大量的开关动作,从而增加MOS管的损耗,导致温度过高。
此外,电路中的布局、散热设计等也会对MOS管的温度产生影响。
当MOS管的温度超过了其额定工作温度范围,会导致内部材料的热老化,引起导通能力下降、开关速度下降等问题。
失效模式二:击穿失效在LLC电路的高压开关环境下,MOS管容易受到电压冲击。
若电压超过MOS管的击穿电压,就可能引起击穿失效。
击穿失效表现为MOS管失去开关功能,电流无法通过MOS管,从而影响电路的正常工作。
击穿失效的主要原因是电路设计中没有考虑到击穿保护措施,电压峰值超过了MOS管能够承受的范围。
失效模式三:电压应力过大LLC电路中的MOS管常常承受高电压应力。
高电压工作会引起MOS管的漏极电场过高,导致介电层击穿。
此外,电路中的电感、电容元件的阻抗变化也会导致电压应力的增加。
当电压应力过大时,MOS管可能会出现结构损坏、绝缘击穿等失效模式。
失效模式四:电流应力过大LLC电路中的MOS管在开关过程中会承受大电流进行导通或截止。
这些大电流会引起MOS管内部的功率损耗,从而产生热效应。
当电流应力过大时,会导致MOS管的局部热点,使局部材料失效,如导通能力下降、开关速度变慢等。
失效模式五:电压偏置失效综上所述,LLC电路中的MOS管失效模式多种多样,如温度过高、击穿失效、电压应力过大、电流应力过大和电压偏置失效等。
这些失效模式的出现与电路工作环境、设计问题、驱动器误差等因素有关。
为了提高LLC电路的可靠性,应合理设计电路、选择合适的MOS管,并进行适当的散热和保护措施,以减少MOS管的失效风险。
MOS管驱动设计及不良分析MOS管驱动设计一般认为MOSFET是电压驱动的,不需要驱动电流。
然而,在MOS的G、S两级之间有结电容存在,这个电容会让驱动MOS变的不那么简单。
如果不考虑纹波和EMI等要求的话,MOS管开关速度越快越好,因为开关时间越短,开关损耗越小,而在开关电源中开关损耗占总损耗的很大一部分,因此MOS管驱动电路的好坏直接决定了电源的效率。
对于一个MOS管,如果把GS之间的电压从0拉到管子的开启电压所用的时间越短,那么MOS管开启的速度就会越快。
与此类似,如果把MOS管的GS电压从开启电压降到0V 的时间越短,那么MOS管关断的速度也就越快。
由此我们可以知道,如果想在更短的时间内把GS电压拉高或者拉低,就要给MOS管栅极更大的瞬间驱动电流。
大家常用的PWM芯片输出直接驱动MOS或者用三极管放大后再驱动MOS的方法,其实在瞬间驱动电流这块是有很大缺陷的。
比较好的方法是使用专用的MOSFET驱动芯片,这类的芯片一般有很大的瞬间输出电流,而且还兼容TTL电平输入,MOSFET驱动芯片的内部结构。
需要注意因为驱动线路走线会有寄生电感,而寄生电感和MOS管的结电容会组成一个LC振荡电路,如果直接把驱动芯片的输出端接到MOS管栅极的话,在PWM波的上升下降沿会产生很大的震荡,导致MOS管急剧发热甚至爆炸,一般的解决方法是在栅极串联10欧左右的电阻,降低LC振荡电路的Q值,使震荡迅速衰减掉。
因为MOS管栅极高输入阻抗的特性,一点点静电或者干扰都可能导致MOS管误导通,所以建议在MOS管G S之间并联一个10K的电阻以降低输入阻抗。
如果担心附近功率线路上的干扰耦合过来产生瞬间高压击穿MOS管的话,可以在GS之间再并联一个18V左右的TVS瞬态抑制二极管,TVS可以认为是一个反应速度很快的稳压管,其瞬间可以承受的功率高达几百至上千瓦,可以用来吸收瞬间的干扰脉冲。
MOS管驱动不良分析布线设计MOS管驱动线路的环路面积要尽可能小,否则可能会引入外来的电磁干扰,驱动芯片的旁路电容要尽量靠近驱动芯片的VCC和GND引脚,否则走线的电感会很大程度上影响芯片的瞬间输出电流。
MOS 管失效原因分析摘要: MOS 管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。
MOS 管的source 和drain 是可以对调的,他们都是在P 型backgate 中形成的N 型区。
在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。
这样的器件被认为是对称的。
目前在市场应用方面,排名第一的是...MOS 管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。
MOS 管的source 和drain 是可以对调的,他们都是在P 型backgate 中形成的N 型区。
在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。
这样的器件被认为是对称的。
目前在市场应用方面,排名第一的是消费类电子电源适配器产品。
而MOS 管的应用领域排名第二的是计算机主板、NB、计算机类适配器、LCD显示器等产品,随着国情的发展计算机主板、计算机类适配器、LCD 显示器对MOS 管的需求有要超过消费类电子电源适配器的现象了。
第三的就属网络通信、工业控制、汽车电子以及电力设备领域了,这些产品对于MOS 管的需求也是很大的,特别是现在汽车电子对于MOS 管的需求直追消费类电子了。
下面对MOS 失效的原因总结以下六点,然后对1,2 重点进行分析:1:雪崩失效(电压失效),也就是我们常说的漏源间的BVdss 电压超过MOSFET 的额定电压,并且超过达到了一定的能力从而导致MOSFET 失效。
2:SOA 失效(电流失效),既超出MOSFET 安全工作区引起失效,分为Id 超出器件规格失效以及Id 过大,损耗过高器件长时间热积累而导致的失效。
3:体二极管失效:在桥式、LLC 等有用到体二极管进行续流的拓扑结构中,由于体二极管遭受破坏而导致的失效。
确定变压器匝比计算负载等效电阻计算励磁电感(死区期间寄生电容充放电能量守恒)计算输出电压增益计算电感系数和品质因数(1.L n Q 与励磁电感的关系2.Ln 、Q 与最大增益的关系)得到谐振参数图1.LLC 主电路参数计算步骤表1是按照上面图2所示步骤得到的计算值与实际电路中使用的数值的比较,从表1的对比可以发现计算值与实际值之间的误差较大。
表1.LLC 主电路参数计算值和实际值电路参数计算值实际值谐振电感L r 5.45uH 23uH 谐振电容C r 464.77nF 99nF 励磁电感L m 1.29mH260uH变压器变比n0.518(390/753.6)0.525(21/40)由于励磁电感的计算会导致后续谐振电感参数和谐振电容参数的误差,因此,为了找到计算的来源,首先得分析励磁电感计算的正确与否。
下面是对励磁电感计算的方法。
为了保证原边开关管完全实现零电压开通,在死区时间内励磁电流的峰值需要满足维持开关管寄生电容充放电所需要的能量,因此有max 4dead rss inLLCi t C U 上式中i max 是励磁电流最大值,t dead 是开关管的死区时间,Crss 是MOSFET 的寄生电容,U in-LLC 是LLC 谐振变换器的输入电压。
当LLC 谐振变换器的工作频率等于谐振频率时,谐振电流可以简化为正弦波,而励磁电流则简化为三角波,由于在一个开关周期内励磁电感充放电能量相等,对T/4时间内积分可以得到励磁电流最大值max4Lm mU T i L 上式中U Lm 是励磁电感电压,当其被输出电压钳位时有U Lm =n (U o +2U D ),由零电压开通条件表达式和励磁电流最大值表达式可以得到励磁电感的取值上限16dead mrssTt L C 代入数字计算得L m (max )=1.29mH上面的计算方法中原理和公式都没有错误,可能存在问题的地方是励磁电感上限计算公式代入的数值有误。
开关电源中MOSFET失效案例分析开关电源是一种将输入电能转换为所需输出电能的电力转换装置。
其中MOSFET是开关电源中最常用的器件之一、然而,由于各种因素导致,MOSFET在开关电源中有时会出现失效的情况。
本文将通过分析一个MOSFET失效案例来探讨其原因和解决方案。
在一个500W的开关电源中,MOSFET失效的情况是输入电压正常,但输出电压为零。
这是一个很常见的问题,可能的原因有多种,例如过载、过热、短路等。
首先,我们需要检查MOSFET的工作环境和电气性能。
1.检查过载情况:运行过载可能导致MOSFET过热并失效。
通过测量输出电流,可以确定是否存在过载问题。
如果输出电流超过了MOSFET能承受的最大电流,就需要考虑增加散热措施或升级MOSFET。
2.检查温度:高温也是MOSFET失效的一个常见原因。
检查MOSFET的散热器是否正常工作,确保温度在安全范围内。
若温度过高,可以考虑改善散热条件或选用具有更低导通电阻的MOSFET。
3.检查电压:MOSFET工作在高电压环境下时容易出现失效。
检查输入电压是否超过了MOSFET的额定电压。
如果是,应该采取相应的措施,如增加电压稳定器来降低输入电压。
4.检查电流波形:电流波形不正常也可能导致MOSFET失效。
使用示波器观察输入和输出电流的波形,找出异常之处。
例如,波形不稳定、波形扭曲等问题可能表明其他元件故障。
5.检查驱动电路:MOSFET的驱动电路不当也可能导致失效。
检查驱动电路是否设计合理,驱动电流是否足够,输入电压是否达到要求等。
一旦确定了MOSFET失效的原因,就可以采取相应的解决方案。
例如,如果是因为过载导致的失效,可以考虑增加散热措施、降低负载电流、升级MOSFET等。
如果是因为温度过高导致的失效,可以增加散热器、改善散热条件等。
如果是因为电压问题导致的失效,可以增加电压稳定器、更换适合的MOSFET等。
此外,在设计和选择MOSFET时,应该考虑到工作环境、电气性能和可靠性等因素。
MOSFET的短路失效模式是最坏的情况,可能会导致MOSFET导通电流变得非常高(理论上无限高),同时频率也会降低。
在短路时,MOSFET的导通电流和反向恢复电流都可能非常大,这可能会导致MOSFET被击穿,从而引发短路失效。
此外,如果使用的MOSFET体二极管的反向恢复特性较差,这种失效机理可能会更加严重。
在短路状态下,谐振回路中的Lm被旁路,使得LLC谐振变换器可以简化为由Cr和Lr组成的谐振电路。
因此,为了防止MOSFET的短路失效,需要选择具有良好反向恢复特性的MOSFET体二极管,并采取措施防止发生短路情况。
与传统PWM(脉宽调节)变换器不同,LLC是一种通过控制开关频率(频率调节)来实现输出电压恒定的谐振电路。
它的优点是:实现原边两个主MOS开关的零电压开通(ZVS)和副边整流二极管的零电流关断(ZCS),通过软开关技术,可以降低电源的开关损耗,提高功率变换器的效率和功率密度。
学习并理解LLC,我们必须首先弄清楚以下两个基本问题: 1.什么是软开关;2.LLC 电路是如何实现软开关的。
由于普通的拓扑电路的开关管是硬开关的,在导通和关断时MOS管的Vds电压和电流会产生交叠,电压与电流交叠的区域即MOS管的导通损耗和关断损耗。
如图所示:为了降低开关管的开关损耗,提高电源的效率,有零电压开关(ZVS) 和零电流开关(ZCS)两种软开关办法。
1.零电压开关 (ZVS):开关管的电压在导通前降到零,在关断时保持为零。
2.零电流开关(ZCS):使开关管的电流在导通时保持在零,在关断前使电流降到零。
由于开关损耗与流过开关管的电流和开关管上的电压的成绩(V*I)有关,当采用零电压ZVS导通时,开关管上的电压几乎为零,所以导通损耗非常低。
● Vin为直流母线电压,S1,S2为主开关MOS管(其中Sc1和Sc2分别为MOS管S1和S2的结电容,并联在Vds上的二极管分别为MOS管S1和S2的体二极管),一起受控产生方波电压;● 谐振电容Cr 、谐振电杆Lr 、励磁电杆Lm一起构成谐振网络;● np,ns为理想变压器原副边线圈;● 二极管D1, 二极管D2,输出电容Co一起构成输出整流滤波网络。
那么LLC电路是怎么实现软开关的呢?要实现零电压开关,开关管的电流必须滞后于电压,使谐振槽路工作在感性状态。
LLC 开关管在导通前,电流先从开关MOS管的体二极管(S到D)内流过,开关MOS管D-S之间电压被箝位在接近0V(二极管压降),此时让开关MOS管导通,可以实现零电压导通;在关断前,由于D-S 间的电容电压为0V而且不能突变,因此也近似于零电压关断(实际也为硬关断)。