水泥行业SCR SNCR 低氮燃烧器脱硝方案选择分析
- 格式:docx
- 大小:562.73 KB
- 文档页数:16
低氮燃烧及脱硝等减排技术知识讲解一、脱氮技术原理:水泥熟料生产线上氮氧化物生产示意图分级燃烧脱氮的基本原理是在烟室和分解炉之间建立还原燃烧区,将原分解炉用煤的一部分均布到该区域内,使其缺氧燃烧以便产生CO、CH4、H2、HCN 和固定碳等还原剂。
这些还原剂与窑尾烟气中的NOx发生反应,将NOx还原成N2等无污染的惰性气体。
此外,煤粉在缺氧条件下燃烧也抑制了自身燃料型NOx产生,从而实现水泥生产过程中的NOx减排。
其主要反应如下:2CO +2 NO →N2+ 2CO2NH+NH →N2+H22H2+2NO →N2+2H2O二、技改简介:1、该技术是对现有分解炉及燃烧方式进行改造,使煤粉在分解炉内分级燃烧,在分解炉锥部形成还原区,将窑内产生的NOx还原为N2,并抑制分解炉内NOx的生成。
根据池州海螺3#天津院设计的TDF分解炉结构,技改方案采用川崎公司窑尾新型燃烧器,并在分解炉锥部新增两个喂煤点,最大限度形成还原区,提高脱氮效率。
改造整体示意图2、窑尾缩口由圆形改成方形,高度改为1600mm,并设置跳台,防止分解炉塌料现象发生,通过在分解炉锥部增设喷煤点,在分解炉锥部形成还原区。
改造前锥部改造后锥部3、对窑尾烟室入炉烟气进行整流,将上升烟道改造成方形,同时,将上升烟道的直段延长,使窑内烟气入炉流场稳定,降低入炉风速。
其次在分解炉锥部设计脱氮还原区,将分解炉煤粉分4点、上下2层喂入,增加了燃烧空间。
在保证煤粉充分燃烧的同时,适当增加分解炉锥部的煤粉喂入比例,保证缺氧燃烧产生的还原气氛,从而在分解炉锥部区域形成一个“还原区”,部分生成的氮氧化物在该区域被还原分解,降低系统氮氧化物浓度。
改造前窑尾燃烧器改造后窑尾燃烧器三、SNCR脱硝技术基本原理SNCR选择性非催化还原是指无催化剂的作用下,在适合脱硝反应的“温度窗口”内喷入含有NHx基的还原剂将烟气中的氮氧化物还原为无害的氮气和水。
该项目技术采用炉内喷氨水(浓度20-25%)作为还原剂还原分解炉内烟气中的NOx。
水泥厂脱硝方案1. 背景介绍水泥生产过程中,燃烧炉排放的烟气中含有大量的氮氧化物(NOx)排放。
氮氧化物的排放不仅对大气环境造成直接的污染,还会产生臭氧和颗粒物等二次污染物,对人体健康和生态环境产生重大影响。
因此,对水泥生产过程中的氮氧化物排放进行有效的脱硝是水泥厂环境保护的重要课题。
本文将介绍一种水泥厂脱硝方案,以减少氮氧化物的排放,并提高水泥厂的环境保护水平。
2. 脱硝技术选择在水泥厂脱硝过程中,常用的脱硝技术包括选择性催化还原脱硝技术(SCR)和选择性非催化还原脱硝技术(SNCR)。
2.1 选择性催化还原脱硝技术(SCR)SCR技术利用催化剂将烟气中的氮氧化物与尿素或氨水反应,将氮氧化物还原为氮和水。
该技术具有高效、稳定、可靠的特点,可以将氮氧化物的排放浓度降低到较低的水平。
2.2 选择性非催化还原脱硝技术(SNCR)SNCR技术利用特定的还原剂(如氨气或尿素溶液)在烟气中进行非催化反应,将氮氧化物还原为氮和水。
该技术相对于SCR技术来说,成本较低,但脱硝效率相对较低。
综合考虑水泥厂的产业特点和经济成本,本方案选择SCR技术进行水泥厂的脱硝过程。
3. 脱硝系统设计3.1 SCR脱硝反应器脱硝反应器是SCR技术中最关键的组件,其主要功能是将烟气中的氮氧化物与尿素或氨水进行催化反应。
SCR脱硝反应器采用立式结构,以便于氨水和烟气的均匀混合。
反应器内部配备多层催化剂,以提高反应效率。
3.2 尿素溶液供应系统尿素溶液供应系统是SCR脱硝过程中的重要组成部分,主要用于供应尿素溶液作为反应剂。
尿素溶液通过泵送系统连接到脱硝反应器中,确保反应器内的尿素溶液供应充足和稳定。
3.3 氨水后处理系统脱硝反应后,烟气中会残留一定量的氨水。
氨水后处理系统用于处理这些残留的氨水,以避免对环境和设备造成污染。
氨水经过除雾器后,通过一系列的处理设备进行处理,最终达到排放标准。
4. 运行管理与优化4.1 运行管理为了确保脱硝系统的正常运行,需要进行定期的巡检和维护保养工作。
4000t/d新型干法水泥生产线分级燃烧+SNCR烟气脱硝技术方案目录1、减排氮氧化物社会效益 (3)2、本项目脱硝工艺描述 (5)2.1、分级燃烧技术 (5)2.2、SNCR脱氮技术 (8)①卸氨系统 (9)②罐区 (9)③加压泵及其控制系统 (9)④混合系统 (9)⑤分配和调节系统 (10)⑥喷雾系统 (10)⑦水电气供给 (10)⑧控制系统 (11)⑨SNCR主要设备与设施 (11)3、氮氧化物目前排放量 (12)4、总体性能指标 (12)(1)窑尾分级燃烧脱氮技术(单独使用) (12)(2)SNCR脱氮技术(单独使用) (13)(3)分级燃烧和SNCR结合的脱氮集成技术 (13)5、主要技术经济指标 (13)6、经济效益评价 (14)6.1单位成本分析 (14)6.2 运行成本分析 (15)6.3 环境及社会效益分析 (16)1、减排氮氧化物社会效益氮氧化物(NOx)是大气的主要污染物之一,包括NO、NO2、N2O、N2O3、N2O5等多种氮的氧化物,燃煤窑炉排放的NOx 中绝大部分是NO。
NO的毒性不是很大,但是在大气中NO可以氧化生成NO2。
NO2比较稳定,其毒性是NO的4~5倍。
空气中NO2的含量在3.5×10‐6(体积分数)持续1h,就开始对人体有影响;含量为(20~50)×10‐6时,对人眼有刺激作用。
含量达到150×10‐6时,对人体器官产生强烈的刺激作用。
此外,NOx 还导致光化学烟雾和酸雨的形成。
由于大气的氧化性,NOx 在大气中可形成硝酸(HNO3)和硝酸盐细颗粒物,同硫酸(H2SO4)和硫酸盐颗粒物一起,易加速区域性酸雨的恶化。
随着我国工业的持续发展,由氮氧化物等污染物引起的臭氧和细粒子污染问题日益突出,严重威胁着人民群众的身体健康,成为当前迫切需要解决的环境问题。
2011年全国人大审议通过了“十二五”规划纲要,提出将氮氧化物首次列入约束性指标体系,要求“十二五”期间工业氮氧化物排放减少10%,氮氧化物减排已经成为我国下一阶段污染治理和减排的重点。
浅谈SCR和SNCR在燃煤锅炉烟气脱硝中的应用摘要:SCR和SNCR是目前锅炉脱硝采用的主要工艺,各自具有其优缺点。
SCR脱硝效率高,但是结构复杂,建设及运行费用较高,对锅炉空气预热器有影响,且环境风险较大;SNCR结构简单,建设及后期费用较低,但是脱硝效率低。
分析比较了SCR和SNCR的原理和优缺点,给出在实际环评工作及环境管理中如何选择的建议。
应结合项目实际情况综合考虑其投资、工程量、脱硝效率、操作可行性等因素,不能以偏概全的只追求脱硝效率或者只追求节省投资,而忽略了脱硝工程的可行性及稳定性。
关键词:锅炉 SCR SNCR 脱硝环保TK229 A 1672-3791(2015)05(b)-0108-02近几年,随着国民经济的飞速发展,人民群众对于环境保护的认识不断提高,环境保护工作逐渐被推上了舆论的风口浪尖。
特别是近年愈演愈烈的大气雾霾关注,将群众对环境空气的污染治理视为重中之重。
而在各种环境空气污染源中,燃煤锅炉扮演了重要角色,燃煤燃烧过程会产生SO2、NOX和烟尘等污染物,在锅炉烟气的治理研究方面,SO2和烟尘起步较早,目前也已经发展的较为成熟完善。
而NOX治理起步相对较晚,目前采取的治理工艺通常为炉内控制+炉外脱硝处理。
炉内控制方法相对单一,通常采用低氮燃烧的方式,其原理是改变传统的锅炉燃烧方式,包括降低锅炉燃烧温度、降低氧浓度、炉膛内设立再燃区等,一般在锅炉安装时由锅炉制造厂家一并设计提供。
但是低氮燃烧方式脱氮效率较低,绝大多数锅炉生产厂家提供的低氮燃烧技术通常只能将NOX浓度控制在300 mg/Nm3(以NO2计)以内。
而目前国家关于燃煤锅炉NOX控制标准愈加严格,部分省份也出台了更加严格的排放标准,如《山东省火电厂大气污染物排放标准》(DB37/664-2013)中就规定,重点控制地区燃煤锅炉NOX排放标准为100 mg/Nm3,这就要求对锅炉烟气进行炉外脱硝,也就是加装烟气净化装置,通常采用的脱硝方式有SCR 和SNCR。
建材发展导向2019年第19期水泥行业SNCR 脱硝技术存在问题及解决方案伍定坤柳艳莉(冀东水泥铜川有限公司,陕西铜川727100)摘要:随着水泥行业氮氧化物排放浓度标准越来越严格,排放值越来越低,仅仅采用SNCR 脱硝技术已经不能满足排放要求,保留现有SNCR 脱硝设施,通过增加分级燃烧,同时新增脱硝位置,可以有效控制氮氧化物排放值,达到排放要求。
关键词:氮氧化物;SNCR ;脱硝;分级燃烧;氨水2018年我国水泥产量占世界产量的44%,随之而来的污染问题也越来越突出,氮氧化物是水泥行业大气排放的主要污染成分之一。
减少NOx 排放已经到了刻不容缓的地步,国家对水泥行业NOx 排放要求越来越严格,多省市连续出台水泥工业大气污染物特别排放值实施计划,要求1~2年内水泥行业全部完成超低排放改造,氮氧化物排放浓度要分别不高于100mg/m 3。
1水泥产业NOx 的产生水泥行业NOx 产生主要在水泥熟料的煅烧过程中,按其来源划分主要取决于原、燃料中氮的含量、燃烧温度的高低和燃料类型。
这些氮氧化物主要是NO 和NO 2,其中NO 约占90%以上,而NO 2只有5%~10%。
1.1水泥熟料原、燃料产生NOx水泥生产使用的原燃料均来自于自然界,其中不可避免的会含有一定量有机物和低分子含氮化合物,由该部分氮元素直接转化的NOx 称为原、燃NOx 。
原料中的氮主要来源于矿石沉积的含氮化合物,其含氮量一般在20~100ppm (百万分之20~100)。
燃料中的氮主要为有机氮,属于胺族(N-H 和N-C 链)或氰化物族(C=N 链)等,其含量一般在0.5%~2.5%。
1.2热力型NOx热力型NOx 由空气中的氮气和氧气在高温下发生化学反应而来,其生成速度与温度的关系是由捷里道维奇提出来的,因此称为捷里道维奇机理。
当燃烧温度低于1500℃时,几乎观测不到NOx 的生成,在距窑头约14m 处,气体温度达到最高值,约为1760℃,物料温度约为1465℃,随后气体和物料温度沿窑长逐渐下降,到达窑尾处时分别降至约1028℃和856℃,当温度高于1500℃时,温度每升高100℃,反应速率将增大6~7倍。
SNCR-SCR烟气脱硝技术及其应用分析发布时间:2023-05-15T07:48:30.450Z 来源:《福光技术》2023年6期作者:王家福[导读] 选择性催化还原法就是在催化剂存在的条件下,使各种还原性气体(如H2、CO、烃类、NH3)与NOx发生反应,将NOx转化为N2。
目前SCR已成为世界上应用最广泛、最为成熟且最有成效的一种烟气脱硝技术。
大唐阳城电厂有限责任公司山西晋城 048000摘要:燃煤电厂机组运行过程中,排放的烟气中含有大量的NOx,造成严重的环境污染,影响空气质量。
为降低烟气中NOx的排放量,加强环境保护,各燃煤电厂陆续开始增设脱硝装置。
目前,成熟的燃煤电厂NOx控制技术主要包括燃烧中脱硝技术和烟气脱硝技术,燃烧中脱硝技术是指低氮燃烧技术(LNB),烟气脱硝技术包括选择性催化还原(SCR)、选择性非催化还原(SNCR)和SNCR/SCR联用技术等。
本文主要介绍SNCR/SCR联用烟气脱硝技术。
关键词:SNCR-SCR;烟气脱硝技术;技术应用1选择性催化还原(SCR)技术选择性催化还原法就是在催化剂存在的条件下,使各种还原性气体(如H2、CO、烃类、NH3)与NOx发生反应,将NOx转化为N2。
目前SCR已成为世界上应用最广泛、最为成熟且最有成效的一种烟气脱硝技术。
1.1催化剂对SCR脱硝技术的影响催化剂是整个SCR系统的关键因素,催化剂的设计和选择要考虑NOx脱除率、NH3的逃逸率和催化剂体积等因素。
种类主要有以下3种:①金属催化剂,主要是Rh和Pd等,有较高的活性且反应温度较低,但价格昂贵;②金属氧化物类催化剂,主要是V2O5,Fe2O3,CuO 等;③沸石分子筛型,主要是采用离子交换方法制成的金属离子交换沸石。
形式主要有板式、蜂窝式和波纹板式3种。
1.2反应温度对SCR脱硝技术的影响由于催化剂种类繁多,对于不同的催化剂,其适宜的反应温度也各有差异。
如果温度太低,催化剂的活性较低,脱硝效率下降,达不到最佳的脱硝效果;相反,如果反应温度过高,会使催化剂材料发生相变,导致催化剂活性退化。
脱硝工程方案一、脱硝工程方案的基本原理脱硝工程主要利用催化剂或者还原剂将 NOx 进行催化还原分解,使其转化成氮气和水蒸气,达到减少 NOx 排放的目的。
常见的脱硝技术包括选择性催化还原(SCR)、非选择性催化还原(SNCR)和氨水湿法脱硝等。
二、脱硝工程方案的技术选型1. SCR 技术SCR 技术是目前应用最为广泛的脱硝技术之一,其基本原理是利用催化剂将还原剂(一般为氨气)与 NOx 进行催化还原反应,将其转化成氮气和水蒸气。
SCR 技术具有高脱硝效率、适用范围广、操作灵活等优点,但是需要额外投入催化剂和还原剂,成本较高。
2. SNCR 技术SNCR 技术是利用还原剂(一般为氨气或尿素溶液)在高温条件下与燃料中的 NOx 进行非选择性催化还原反应,将其转化成氮气和水蒸气。
这种技术适用于燃煤锅炉、焚烧炉等高温燃烧设备,其脱硝效率和操作稳定性较好,但对温度和还原剂的投加量有一定要求。
3. 氨水湿法脱硝氨水湿法脱硝是利用氨水溶液和烟气直接接触,在一定温度下将 NOx 还原成氮气和水蒸气。
它适用于低温燃烧设备脱硝,具有设备简单、投资和运营成本低的优势,但对氨水的投加量和温度控制有一定要求。
根据实际情况,选择适合的脱硝技术是进行脱硝工程方案的基础。
三、脱硝工程方案的设计方案脱硝工程的设计方案需要充分考虑设备的选型、布局、控制方式等多个方面,以确保脱硝效率和设备运行的稳定性。
1. 设备选型根据脱硝工艺的选型,选择适合的反应器、催化剂、脱硝剂和其他辅助设备。
对于 SCR 技术可选用蜂窝催化剂,对于 SNCR 技术可选用高温喷雾式还原装置,对于氨水湿法脱硝可选用塔式吸收器等。
2. 布局设计根据工厂现场的实际情况和空间限制,合理布局脱硝设备,确保设备整体运行效率和人员的便捷操作。
3. 控制系统脱硝工程方案还需要结合自动控制系统,对脱硝设备的运行工艺参数、投加量、温度等进行实时监控和调节,以保证脱硝效率和设备的安全运行。
3水泥行业脱硝技术标题:水泥行业脱硝技术研究与应用摘要:随着环境保护的不断提高和力度加大,水泥行业脱硝技术的研究和应用得到了广泛关注。
本文从水泥行业的污染情况出发,介绍了常见的脱硝技术,并对其优缺点进行了分析。
同时,还对水泥行业脱硝技术的发展趋势进行了探讨。
一、引言随着我国经济的快速发展和城市化进程的加快,水泥行业的规模不断扩大,相关污染问题逐渐凸显。
其中,氮氧化物排放是水泥行业主要的大气污染物之一、因此,开展水泥行业脱硝技术的研究与应用具有重要意义。
二、水泥行业氮氧化物排放情况水泥生产过程中,煤燃烧是主要的排放源,氮氧化物的生成与燃料中的氮含量和燃烧温度有关。
其中,全氧燃烧和过量空气燃烧是导致氮氧化物排放的主要原因。
水泥行业排放的氮氧化物主要以NOx的形式存在,其中以NO2含量较低,排放量较大。
1.选择性催化还原(SCR)技术:SCR技术是目前应用最广泛的水泥行业脱硝技术之一、该技术通过在催化剂的作用下,将NOx还原成无害的氮气和水。
它具有高效、稳定等特点,但对催化剂的选择和催化剂的成本较高。
2.选择性非催化还原(SNCR)技术:SNCR技术通过添加还原剂,如氨水或尿素水,直接在燃烧区进行还原反应,将NOx转化为无害物质。
该技术较SCR技术成本更低,但其脱硝效率受温度、氨水投入量等因素的影响较大。
3.再生热解法:该方法利用水泥窑烟气中的CO和二氧化碳对NOx进行还原。
但该方法存在处理效果不稳定以及热解产物对环境影响的问题。
四、脱硝技术的优缺点分析1.SCR技术优点:高效、稳定,能够实现高脱硝效率;缺点:催化剂成本高、对氨水质量要求高。
2.SNCR技术优点:成本相对较低、适用范围广;缺点:脱硝效率不稳定,受影响因素多。
3.再生热解法优点:资源利用,无需额外还原剂;缺点:处理效果不稳定,热解产物对环境影响。
五、水泥行业脱硝技术的发展趋势1.传统脱硝技术的改进与完善:如提高SCR技术催化剂的活性、降低成本;优化SNCR技术还原剂的投加方式和量。
SCR、SNCR法烟气脱硝技术对比分析本文简要介绍了目前我国对于火电机组氮氧化物排放控制要求,燃煤机组烟气脱硝技术背景及两种烟气脱硝主流技术SCR(选择性催化还原法)、SNCR(选择性非催化还原法)脱硝技术的技术原理、性能特点和工艺流程。
分别对以液氨、尿素为原料的SCR、SNCR、SCR+SNCR脱硝技术方案工艺参数、工程投资、运行成本等进行对比分析。
对不同工况、场合烟气脱硝技术方案选择提供参考。
标签:SCR;SNCR;烟气脱硝1 概述随着我国经济的发展,在能源消费中带来的环境污染也越来越严重。
其中,大气烟尘、酸雨、温室效应和臭氧层的破坏已成为危害人类生存的四大杀手。
燃煤烟气所含的烟尘、二氧化硫、氮氧化物等有害物质是造成大气污染、酸雨和温室效应的主要根源。
在我国,二氧化硫、氮氧化物等有害物质主要是由燃煤过程产生的。
为了应对日趋严重的大气环境污染。
新的环保标准出台,《火电厂大气污染物排放标准》GB 13223-2011 2012年1月1日开始实施,环保标准超越欧美现行标准。
从2012年1月1日开始,所有新建火电机组氮氧化物排放量限值为100毫克/立方米;从2014年1月1日开始,所有火电投运机组氮氧化物排放限值为100毫克/立方米,2003年12 月31日以前投产或通过建设项目环境影响报告书审批的燃煤锅炉的排放限值为200毫克/立方米。
我国烟气脱硝项目起步较晚,目前国内运行的烟气脱硝项目所采用的工艺也是引进欧、美、日等发达国家和地区烟气脱硝技术,目前发展迅速。
2 烟气脱硝技术简介火电厂烟气脱硝装置用于脱除烟气中氮氧化物(NOx),目前国内主流的烟气后处理脱硝路线主要包括SCR(选择性催化还原法)和SNCR (选择性非催化还原法)。
该类技术通过将氨(NH3)或其衍生物(如尿素等)作为还原剂喷入烟气中,使还原剂与烟气中的NOx发生还原反应,生成无害的氮气(N2)和水(H2O),从而达到脱除氮氧化物的目的。
水泥厂烟气脱硝技术及应用一、水泥厂烟气脱硝技术概述水泥生产过程中,烟气排放中含有大量的氮氧化物(NOx),这些氮氧化物对环境和人体健康都有严重的影响,因此烟气脱硝技术的应用成为水泥工业中的一项重要任务。
目前,水泥厂烟气脱硝技术主要有选择性催化还原法(SCR)、非选择性催化还原法(SNCR)和氨基酸法等。
其中,SCR技术是目前应用最广泛的烟气脱硝技术之一。
二、水泥厂烟气脱硝技术的应用1.选择性催化还原法SCR技术是一种利用催化剂将NOx转化为水和氮的技术。
该技术的原理是将NH3溶液喷入烟气中与NOx反应,生成氮和水。
SCR技术的优点是脱硝效率高、能耗低、适用范围广。
但是,SCR技术的缺点是设备成本高、运行维护成本高、对催化剂的要求高。
2.非选择性催化还原法SNCR技术是一种将氨气喷入烟气中与NOx反应,生成氮和水的技术。
该技术的优点是设备简单、运行维护成本低、适用范围广。
但是,SNCR技术的缺点是脱硝效率低、对氨气的喷射量要求高、易产生二次污染。
3.氨基酸法氨基酸法是一种将氨基酸喷入烟气中与NOx反应,生成氮和水的技术。
该技术的优点是脱硝效率高、对催化剂的要求低、不易产生二次污染。
但是,氨基酸法的缺点是设备成本高、氨基酸喷射量要求高、对水质有一定的要求。
三、水泥厂烟气脱硝技术的应用案例以某水泥厂为例,该厂使用SCR技术进行烟气脱硝。
具体实施方案如下:1.催化剂的选择该厂选择的催化剂为V2O5-WO3/TiO2,该催化剂具有催化活性高、化学稳定性好、耐热性强等优点。
该催化剂的使用寿命约为3-5年。
2.氨水的储存和喷射该厂将氨水储存在专门的储罐中,通过泵送系统将氨水喷入烟气中。
氨水的使用量由控制系统自动调节。
3.控制系统的设计该厂使用DCS控制系统,实现对SCR系统的自动控制。
控制系统实时监测烟气中的NOx含量,根据设定值自动调节氨水的喷射量,以达到最优的脱硝效果。
4.运行维护该厂每年定期对SCR系统进行维护保养,包括更换催化剂、清洗喷嘴、检查管道等。
一,超低排放的演化目前,水泥生产的大气污染物排放国家标准,仍然执行GB 4915-2013。
标准要求新建企业自2014年03月01日、现有企业自2015年07月01日起,一般地区按表1执行,重点地区按表2执行。
由表1、表2可见,多数企业牵涉的控制指标有“颗粒物、二氧化硫、氮氧化物、氨”四项。
实际上,国家标准为最低标准,这个要求不算太高,可以说现有生产企业已经全部实现。
在生态文明和绿色发展的大背景下,鉴于国内环保意识的增强和环保力度的加大,特别是近年来治理雾霾的压力要求,以及严重的产能过剩,各地方政府对国家的环保政策给予了积极响应,相继出台了自己的特别排放值实施计划,不但严格执行了国家的环保标准,而且因地制宜地制定了更加严格的地方标准,并达到了很好的落实。
值得一提的是,为了响应国家环保治理和供给侧改革的经济大局,水泥行业在水泥协会的主导下化危机为机遇,转化产能过剩于错峰生产、利用协同保价支撑环保治理,作出了很大贡献、取得了很好的业绩,既缓解了产能过剩、维护了行业的稳定、又促进了环保治理。
处于京津冀大气污染传输通道上的“2+26”城市覆盖了京、津及晋豫鲁三省,全部按国家重点地区标准执行,水泥行业对上述地区的雾霾治理作出了贡献。
不完全统计部分地区的严控标准见表3。
表3目前,我们建材行业的排放量,在全国工业系统中位列前二至前三位,其中二氧化硫占到全国排放总量的10%左右,氮氧化物占到全国排放总量的14%,烟尘排放占到全国排放总量的16%左右,废弃物排放总量占全国排放总量的13%左右。
虽然近些年我们作了很大努力,采取了很多措施,各项指标有明显的进步,但是各行各业都在进步,所以总的比例没有发生显著的变化。
2019年10月29日,建材联合会的乔龙德会长,在芜湖给我们提出了新的要求:无论是今天的减排目标,还是此前提出的10、50、100指标,都是过渡性目标,不是最终目标,行业必须朝着更低的和无污染的排放目标而奋斗,彻底改变与扭转社会各界对行业的认识和评价。
二,超低排放的难题严格的要求需要相应的技术支撑,否则就是一句空话。
就超低排放控制的四个指标“颗粒物、二氧化硫、氮氧化物、逃逸氨”来讲,覆盖所有企业的是颗粒物、氮氧化物,二氧化硫只是部分原燃材料含硫高的企业,氨逃逸则主要来自于二氧化硫、氮氧化物的治理措施。
在粉尘治理上,超低排放没有难度。
概念性已经不存在技术难题,只是一个投入的问题、一个投入产出比问题、一个环保方面的机会成本问题。
实际上,从上世纪80年代我们引进一系列环保治理设备和技术以来,确实取得了长足的进步,但仔细分析就会发现,除了技术的先进性以外,关键是过滤风速的大幅度降低。
过滤风速的降低意味着装备的加大、投资的加大,这只不过是一个重视程度的问题。
关于二氧化硫的排放,原来在地域分布上不太均衡,水泥窑本身就是很好的脱硫工艺,北方的原燃材料含硫不高,脱硫问题主要在南方的一些水泥企业;但随着原料资源的不断贫化、低价位高硫煤的部分应用、以及已经热化起来的协同处理,需要脱硫的水泥企业迅速增多。
但总体上讲,二氧化硫的超低排放还不是难题,只要给予一定的投入,采用相应的脱硫措施,还是能够实现的,无非是一次性投资和运行成本问题。
水泥行业超低排放的最大难题是氮氧化物,这与行业特点有关。
要达到氮氧化物的超低排放,包括其他行业,就成熟的技术来讲,目前最有效也是唯一的措施就是SCR脱硝。
在水泥行业大致有三种路径:①高温高尘,脱硝效率虽高,但易造成催化剂堵塞、中毒、磨损;②中温中尘,虽然对催化剂的堵塞、中毒、磨损有所缓解,但脱硝效率很难保证;③低温低尘,虽然解决了催化剂的堵塞、中毒、磨损问题,但脱离了催化剂的温度窗口,需要加热、运行成本很高。
恩格斯曾经说过:“社会上一旦有技术上的需要,则这种需要会比十所大学更能把科学推向前进。
” 这句话到现在依然有效,一定的压力、特别是自加的压力,往往能转化为动力。
水泥行业的生产企业、装备行业、研究单位,以及大专院校,正是在这种压力促使下,积极的开始了适应性改进、甚至是颠覆性创新,已经有不少成果开始了工业试验。
三,现行NOx超低排放技术评述由于时间的关系,这里仅根据技术特点,选择一部分有代表性的技术方案作一个简单的评述,井底刍议、仅供参考。
为什么是刍议,各个企业、甚至每条线的环境和工况都不相同,就需要不同的技术共存发展。
不存在哪种技术是最好的,而是哪种技术最适合自己,最适合的才是最好的。
这里只谈已经有应用业绩、至少在工业试验上获得验证的技术:1,以精准喷氨为代表的上海万澄目前水泥窑的SNCR空间上设在分解炉,然而分解炉的温度场不是均匀分布的、而且不是固定不变的。
喷氨脱硝有一个温度窗口,在窗口以外的喷氨不但是无效的,而且会造成氨逃逸、形成氨污染,这就是造成SNCR脱硝效率不高的根本原因。
因此,智能控制精准喷氨就成为提高SNCR效率的有效措施。
上海万澄环保科技有限公司,在这方面的研究就取得了突破,其提出的“智能优化控制+SNCR”技术,经四川国大、四川德胜、四川利森三条5000t/d线的实施验证,均取得了NOx排放浓度稳定控制在低于50mg/m³以下的效果。
其原理主要是采用分层级安装可独立控制的喷枪组,利用智能实时优化控制系统对NOx排放进行预测,对生产工况的变化实时跟随,根据工况及时调整并分别控制氨水的喷射位置及喷射量,从而达到提高脱硝效率、减少氨水用量、降低氨逃逸的目的。
优点:一次性投资很小,管理维护方便;问题:氨水消耗量较大、运行成本较高,对烧成工况波动较大的生产线难以适应。
比如在某厂进行的6天试验,结果如下:① NOx控制在200mg/Nm³时,氨水实际用量为742L/h; ② NOx控制在100mg/Nm³时,氨水实际用量为1169L/h; ③ NOx控制在50mg/Nm³时,氨水实际用量为1356L/h。
2,多项脱硝措施组合增效的上海三融面对NOx排放愈来愈严的要求,采用多项成熟技术的组合增效,不失为一种简单有效的方法,上海三融公司就集合组成了“分级燃烧+SNCR+蒸汽催化燃烧”脱硝技术。
该技术试验的厂家比较多,积累了不少经验,为水泥行业脱硝事业作出了积极贡献。
典型的代表是在江苏信宁新型建材有限公司5000t/d线上的试验。
优点:一次性投资较小,管理维护简单;问题:分料、分煤过于复杂,特别给工况波动时的操作调整带来一定困难,较大的工况波动将影响脱硝效果,氨水消耗量较大、运行成本较高。
3,保留SNCR的高温中尘SCR 西矿环保西矿环保公司的“SNCR+高温电除尘+SCR”方案,充分利用SNCR的经济性和SCR 的高效性,以高温保证催化剂效率,以除尘缓解催化剂的堵塞、中毒、磨损问题,以并用SNCR减轻SCR的负担,较好的适应了水泥行业的特点,并成功应用于河南登封宏昌的脱硝项目。
宏昌项目投资约4000万元,改造工期约4个月,2018年9月份投运,系统阻力1000Pa左右,温度降低10℃左右,原SNCR还原剂消耗量降低。
2018年10月14日通过专家组验收,NOx排放浓度可稳定实现50mg/Nm³以下,脱硝率可达90%以上,氨逃逸小于3ppm。
该项目的成功受到了各级政府、以及整个水泥行业的重视。
2019年06月20日,国家生态环境部科技与财务司司长邹首民等,曾亲临现场调研指导。
优点:高温保证了稳定的脱硝效率,高温避开了硫酸氢铵的粘结堵塞,除尘缓解了催化剂的堵塞、中毒、磨损问题;问题:一次性投资较大,催化剂的更换费用较高,催化剂的寿命还有待进一步观察,环节较多管理相对复杂,特别是高温、高空电除尘器的运行维护。
4,高温高尘SCR 蒂森克虏伯蒂森、克虏伯、伯力鸠斯,这几个都是世界上很牛的公司,现在又组合成一家了!关于水泥行业的高尘特点,他们认为没有问题,高尘反而有利于缓解催化剂中毒;至于堵塞问题,他们有有效的清灰手段。
因此,他们直接采用高温高尘的SCR工艺,据说他们有成熟的经验,在德国的几条线也是这么干的,而且都运行良好。
据介绍,蒂森克虏伯在水泥行业已有13年以上的催化剂脱硝运行经验,其成熟的技术是世界范围内高尘SCR应用最多的解决方案,多年的经验表明高尘SCR是降低NOx 最经济的方案。
他们已经掌握了相关的清灰工艺,并在多个工厂得到了验证。
与标准陶瓷蜂窝催化剂相比,公司对催化剂进行了关键改进,大幅增加了催化剂的使用寿命,自2013年8月以来,其所有SCR项目全年运行率都超过了95%。
对于一般的5000t/d生产线,目前为双塔方案,设备采购时间约5~6个月,现场安装和对接时间约2个月,项目投资在4000万元左右。
该公司正在针对5000t/d线开发单塔方案,下一步采用单塔方案、以及催化剂国产化后,总投资有望降到3000万元左右。
根据他们已有十余条生产线十几年的运行经验,大致可以做到2-3年换一层催化剂,一般设计为4层催化剂,一层催化剂基本可以用到10年左右。
当然,催化剂寿命与烟气及粉尘组份有关,具体的使用寿命将根据项目的具体情况提供一个预期的寿命管理。
正是人以类聚、物以群分,牛人找牛人。
在大家一脸茫然之际,中国水泥最牛的海螺水泥选择了蒂森克虏伯的脱硝技术,而且一干就是两条线。
目前,海螺济宁已经投运,中国水泥厂也正在调试即将投运。
济宁海螺项目济宁海螺项目于2019年08月21日投产运行,整个系统阻力不到400Pa,高温风机电耗增加不多。
SNCR已经停用,目前只使用SCR系统,进口NOx浓度在600~700mg/Nm³, 出口浓度在50~60mg/Nm³,氨水(20%浓度)使用量在600kg/h 左右,氨逃逸稳定在2~3mg/Nm³左右。
全面实现了NOx排放≤100 mg/Nm³,氨逃逸≤8mg/Nm³的目标。
需要说明的是,尽管改造的目标是NOx排放≤100 mg/Nm³,但还是安排了更高目标的试验,短时间运行了几个小时,可以将NOx排放稳定控制在20~27mg/Nm³。
中国水泥厂项目优点:高温保证了稳定的脱硝效率,高温避开了硫酸氢铵的粘结堵塞,系统流程简化方便了管理、减小了维护量;问题:一次性投资较大,催化剂的更换费用较高,在高尘状态下催化剂的寿命还有待进一步观察。
分解炉直喷脱硝技术南工大SCR是目前脱硝超低排放技术的顶梁柱,其技术核心是脱硝催化剂,遗憾的是,目前国内外商用的脱硝催化剂均为V2O5/TiO2体系,而美国、欧盟环境署、中国国家环保部都已将V2O5定为剧毒污染物。
SCR的催化剂不仅在使用中存在堵塞、中毒问题,在已有生产线的改造设计上存在空间布局的困难,而且还存在催化剂老化后的保管、回收问题。
南京工业大学材料化学工程国家重点实验室的祝社民团队,在有关部门的同力支持下,毅然另辟蹊径、放弃了SCR技术,转向研发了一种稀土基直喷脱硝剂,而且脱硝性能初步试验达到了国际领先水平。