5.5应用二元一次方程组--里程碑上的数练习题
- 格式:doc
- 大小:95.50 KB
- 文档页数:2
5.5 应用二元一次方程组--里程碑上的数一.选择题1.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,商品的价格为y,依题意可列方程组为()A.B.C.D.2.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.3.在端午节来临之际,某商店订购了A型和B型两种粽子,其中A型粽子28元/千克,B 型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,且购进两种粽子共用了2560元.设购进A型粽子x千克,B型粽子y千克,则可列方程为()A.B.C.D.4.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺栓22个或螺母16个,若分配x名工人生产螺栓,y名工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.B.C.D.5.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表:捐款(元)35810人数2■■31表格中捐款5元和8元的人数不小心技墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组()A.B.C.D.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可建立方程为()A.B.C.D.7.甲、乙两种盐水,若分别取甲种盐水240g,乙种盐水120g,混合后,制成的盐水浓度为8%;若分别取甲种盐水80g,乙种盐水160g,混合后,制成的盐水浓度为10%,求甲、乙两种盐水的浓度各是多少?如果设甲种盐水的浓度为x,乙种盐水浓度为y,根据题意,可列出下方程组是()A.B.C.D.8.用一根长80cm的绳子围成一个长方形,且这个长方形的长比宽多10cm.设这个长方形的长为xcm、宽为ycm,列出关于x、y的二元一次方程组,下列正确的是()A.B.C.D.9.一道来自课本的习题:甲乙两人相距27km.若两人同时出发相向而行,则出发1.5h相遇;若两人仍是相向而行,但甲比乙先出发30min,则乙出发70min后两人相遇,求甲乙两人的速度.嘉琪将这个实际问题转化为二元一次方程组问题,设甲乙两人的速度分别为x、ykm/h,已经列出一个方程1.5x+1.5y=27,则另一个方程是()A.0.3x+0.7y=27B.x+y=27C.x+y=27D.x+y=2710.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x棵,y棵,可列方程组为()A.B.C.D.11.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km 12.《算法统宗》中有如下的类似问题:“哑子来买肉,难言钱数目,一斤少二十五,八两多十五,试问能算者,合与多少肉”,意思是一个哑巴来买肉,说不出钱的数目,买一斤(16两)还差二十五文钱,买八两多十五文钱,问钱数和肉价各是多少?则该问题中,哑巴所带的钱共能买到的肉为()A.10两B.11两C.12两D.13两13.如图,有四个相同的小长方形和两个相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.B.﹣C.D.2m﹣3n14.同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km15.小林去超市帮妈妈买回一批规格一样的纸杯.如图,他把3个纸杯叠在一起高度是9cm,把8个纸杯叠在一起高度是14cm,若把50个纸杯叠在一起时,它的高度约是()cm.A.150cm B.56cm C.57cm D.81cm二.填空题16.街道为环卫工人发放口罩,如果每人发5个,还剩下3个,如果每人发6个,还缺5个,则一共有名环卫工人.17.如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,已知B(﹣8,5),则点A的坐标是.18.某图书馆分两次购进一批图书.第一次购买了A、B两种经典名著若干本,用去5890元;第二次购买了C、D两种现代文学若干本,用去3770元,其中A、B两种图书的数量分别与C、D两种图书的数量相等,且A种图书与D种图书的进价相同,B种图书与C种图书的进价相同.若A、B两种图书的进价之和为105元,则该图书馆购进的这一批图书共有本.19.甲、乙二人都以不变的速度在环形路上跑步,如果甲乙同时同地出发,反向而行,每隔2分钟相遇一次;如果甲乙同时同地出发,同向而行,每隔6分钟相遇一次.则甲每分钟跑圈.20.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AD=12cm,BE=4cm,则一个小长方形的面积为.21.方程术是《九章算术》最高的数学成就,其中“盈不足”一章中曾记载“今有大器五小器一容三斛(“斛”是古代的一种容量单位),大器一小器五容二斛,问大小器各容几何?”译文:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,问1个大桶和1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,依题意,可列二元一次方程组为.22.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是.23.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x立方米,每辆乙车每次运土y立方米,则可列方程组.24.一个两位数的十位数字与个位数字的和是13,把这个两位数减去27,结果恰好成为数字对调后组成的两位数,则这个两位数为.25.解古算题:今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.则甲带了钱.三.解答题26.某景点的门票价格如下表:购票人数(人)1~5051~99100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?27.哈美加在疫情期间决定往灾区捐赠物资,租用了甲和乙两种型号的货车,将已经装箱的药品、食品、日用品运往灾区,每辆车中均装有药品、食品、日用品,其中甲货车总共装箱400箱,药品的箱数占甲车总箱数的.(1)甲货车中药品多少箱?(2)若乙货车的总箱数比甲货车的总箱数多,且乙货车中食品箱数占乙货车总箱数的一半,求乙货车中食品有多少箱?(3)在(1)、(2)的条件下,甲货车中日用品的箱数是乙货车中日用品的箱数的,到灾区两车救灾物资在一起,此时日用品的箱数占两车总箱数的,求甲货车中食品有多少箱?28.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价;(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降m(m>0)元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.29.某商店决定购进A、B两种纪念品出售,若购进A种纪念品10件,B种纪念品5件,需要215元;若购进A种纪念品5件,B种纪念品10件,需要205元.(1)求A、B两种纪念品的购进单价;(2)已知商店购进两种纪念品(A、B都要有)共花费750元,那么该商店购进这A、B 两种纪念品有几种可行的方案,并写出具体的购买方案.30.如图,在平面直角坐标系中,点O是坐标原点,点A在y轴的正半轴上,坐标为(0,a),点B在x轴的负半轴上,坐标为(b,0),同时a、b满足.连接AB,且AB=10.点D是x轴正半轴上的一个动点,点E是线段AB上的一个动点,连接DE.(1)求A、B两点坐标;(2)若∠BED=90°,点D的横坐标为x,线段DE的长为d,请用含x的式子表示d;(3)若∠BED=100°,AF、DF分别平分∠BAO、∠BDE相交于点F,求∠F的度数.参考答案一.选择题1.解:设有x人,商品的价格为y,依题意,得.故选:D.2.解:由题意可得,,故选:A.3.解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,故选:D.4.解:设分配x名工人生产螺栓,y名工人生产螺母,因为一个螺栓套两个螺母,每人每天生产螺栓22个或螺母16个,所以可得方程组:.故选:D.5.解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:,即.故选:A.6.解:设每枚黄金重x两,每枚白银重y两,依题意,得:.故选:C.7.解:甲种盐水的浓度为x,乙种盐水的浓度为y,依题意有,故选:A.8.解:设这个长方形的长为xcm、宽为ycm,由“这个长方形的长比宽多10cm”得到方程:x﹣y=10.由长方形的周长是80cm得到方程:2x+2y=80.所以由题意可得方程组,,故选:B.9.解:设甲乙两人的速度分别为x、ykm/h,已经列出一个方程1.5x+1.5y=27,则另一个方程是:(+)x+y=27,整理得:x+y=27.故选:C.10.解:设现有桃树和杏树分别为x棵,y棵,根据题意得:,故选:B.11.解:设飞机无风时的平均速度是akm/h,风速为bkm/h,,解得,,即飞机无风时的速度为750km/h,故选:B.12.解:设肉价为x文/两,哑巴所带的钱数为y文,依题意,得:,解得:,∴==11.故选:B.13.解:设小长方形的长为x,宽为y,根据题意得:m+y﹣x=n+x﹣y,即2x﹣2y=m﹣n,整理得:x﹣y=.则小长方形的长与宽的差是.故选:C.14.解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.或者:设AC=ykm即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C回到A.从A到C,甲、乙两车都行驶了AC,即乙车耗油量为ykm,也即甲车注入燃料量为ykm,注入后甲车剩余ykm(刚好返回A地),所以对于甲车,y+y+y=210,所以y=70.从乙车角度,从C出发是满燃料,所以AB(105+70)÷2=140(km).故选:B.15.解:设1个纸杯的高度为xcm,每叠加1个纸杯高度增加ycm,依题意,得:,解得:,∴x+(50﹣1)y=56.故选:B.二.填空题(16.解:设一共有x名环卫工人,要发放的口罩共有y个,依题意,得:,解得:.故答案为:8.17.解:设长方形纸片的长为x,宽为y,依题意,得:,解得:,∴x﹣y=3,x+2y=6,∴点A的坐标为(﹣3,6).故答案为:(﹣3,6).18.解:设购进A种图书x本,B种图书y本,A种图书的单价为a元,则购进C种图书x 本,D种图书y本,B种图书的单价为(105﹣a)元,C种图书的单价为(105﹣a)元,D种图书的单价为a元,依题意,得:,由①+②,得:105(x+y)=5890+3770,∴x+y=92,∴2(x+y)=184.故答案为:184.19.解:设甲的速度为x圈/分钟,乙的速度为y圈/分钟,依题意,得:或,解得:或.故答案为:或.20.解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴小长方形的面积=2×6=12(cm2).故答案为:12cm2.21.解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,依题意,可列二元一次方程组,故答案为:.22.解:根据题意,得.故答案为:.23.解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,故答案为:.24.解:设这个两位数的十位数字为x,个位数字为y,依题意,得:,解得:,∴10x+y=85.故答案为85.25.解:设甲原有的钱数为x,乙原有的钱数为y,根据题意,得,解得:故答案为:36.三.解答题26.解:(1)设七年级1有x名学生,2班有y名学生,由题意得:,解得:,答:七年级1有49名学生,2班有53名学生;(2)设八年级报名x人,九年级报名y人,分两种情况:①若x+y<100,由题意得:,解得:,(不合题意舍去);②若x+y≥100,由题意得:,,解得:,符合题意;答:八年级报名48人,九年级报名58人.27.解:(1)400×=100(箱),答:甲货车中药品100箱;(2)400×(1+)=600(箱),600×=300(箱),答:乙货车中食品有300箱;(3)甲货车和乙货车共有:400+600=1000(箱),1000×=280(箱),设甲货车中日用品为x箱,乙货车中日用品为y箱,由题意得:,解得:,即甲货车中日用品为120箱,则甲货车中食品的箱数为:400﹣100﹣120=180(箱),答:甲货车中食品有180箱.28.解:(1)设甲款积木的进价为每盒x元,乙款积木的进价为每盒y元,则,解得:,答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元;(2)由题可得:(80﹣m)(40+2m)+24×40=5760,解得m1=20,m2=40.因为顾客能获取更多的优惠,所以m=40.29.解:(1)设A种纪念品的购进单价为x元,B种纪念品的购进单价为y元,依题意,得:,解得:.答:A种纪念品的购进单价为15元,B种纪念品的购进单价为13元.(2)设购进A种纪念品m件,B种纪念品n件,依题意,得:15x+13y=750,∴x=50﹣y.∵x,y均为正整数,∴y为15的倍数,∴或或,∴该商店共有3种进货方案,方案1:购进37件A种纪念品,15件B种纪念品;方案2:购进24件A种纪念品,30件B种纪念品;方案3:购进11件A种纪念品,45件B种纪念品.30.解:(1)∵a、b满足,∴解方程组得,,∴点A坐标为(0,8),点B坐标为(﹣6,0);(2)如图1,连接AD,∵A(0,8),B(﹣6,0),∴OA=8,OB=6,在Rt△AOB中,由勾股定理可得AB=10.∵点D是x轴正半轴上的一个动点,点D的横坐标为x,∴OD=x,∴BD=6+x,∵AB=10,DE=d,∠BED=90°,∴S△BAD=AB•DE=BD•OA,∴10d=8(6+x),∴d=x+(x>0);(3)如图2,延长AF,交BD于点C,∵AF、DF分别平分∠BAO、∠BDE,∴∠CAO=∠BAO,∠CDF=∠BDE,∵∠BED=100°,∠BOA=90°,∴∠ABD=180°﹣∠BED﹣∠BDE=80°﹣∠BDE,又∵∠ABD=90°﹣∠BAO,∴80°﹣∠BDE=90°﹣∠BAO,∴∠BAO﹣∠BDE=10°,∵∠ACD=90°﹣∠CAO=90°﹣∠BAO,∴∠AFD=180°﹣∠CFD=∠ACD+∠CDF=90°﹣∠BAO+∠BDE=90°﹣(∠BAO﹣∠BDE)=90°﹣×10°=85°.。
5.5 应用二元一次方程组---里程碑上的数一.选择题(共10小题)1.(2020春•仁寿县期中)一个两位数,个位数比十位数大2,若把各位数字和十位数字对调,则所得的新的两位数比原数的两倍少17.若设原数的个位数为x ,十位数字为y ,则下列方程组正确的是( )A .{x −y =2yx =2xy −17B .{x +y =2xy =2yx −17C .{x =y +210x +y =2(10y +x)−17D .{x =y +210y +x =2(10x +y)−172.(2019•福田区一模)一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x ,十位上的数字为y ,根据题意,可列方程为( )A .{x −y =110x +y =10y +x +9B .{x −y =110y +x =10x +y +9C .{y −x =110x +y =10y +x +9D .{y −x =110y +x =10x +y +93.(2020秋•盐田区期末)佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:时刻12:00 13:00 14:00 里程碑上的数 是一个两位数,数字之和为7 十位数字与个位数字相比12:00时看到的刚好颠倒 比12:00看到的两位数中间多了个0则12:00时看到的两位数是( )A .16B .25C .34D .524.(2019秋•滕州市期末)一个两位数,减去它的各位数之和的3倍,结果是13,这个两位数除以它的各位数之和,商是4,余数是6,则这个两位数是( )A .56B .45C .41D .345.(2019春•雁江区期末)一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是( )千米/小时.A .35B .40C .45D .506.(2019•澧县模拟)已知一个两位数,它的十位上的数字x 比个位上的数字y 大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是( )A .{x −y =1(x +y)−(y −x)=9B .{x =y +110x +y =y +x +9C .{x =y +110x +y =10y +x −9D .{x =y +110x +y =10y +x +97.(2020秋•章丘区期末)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”这一章里,二元一次方程组是由算筹(算筹是中国古代用来记数、列式和进行演算的一种工具)来记录的.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示两位数时,个位用立式,十位用卧式.如图(1),从左到右列出的算筹数分别表示x 、y 的系数与相应的常数项,根据图(1)可列出方程组{3x +y =177x +4y =23,则根据图(2)列出的方程组是( )A .{x +5y =32x +2y =14B .{x +5y =112x +4y =9C .{x +5y =212x +2y =9D .{x +5y =12x +2y =9 8.(2020秋•青羊区校级期末)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的速度是250米/分钟,步行的速度是80米/分钟.他家离学校的距离是2900米.若他骑车和步行的时间分别为x 分钟和y 分钟,则列出的方程组是( )A .{x +y =14250x +80y =2900B .{x +y =1580x +250y =2900C .{x +y =15250x +80y =2900D .{x +y =1480x +250y =29009.(2020秋•武侯区期末)《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23.类似地,图2所示的算筹图我们可以表述为( )A .{2x +y =114x +3y =27B .{2x +y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2710.(2020•梧州一模)在西江上,一艘江轮航行在相距76km 的两地港口,顺流而行需4h ,逆流而行需4.7h ,设江轮在静水中的速度为xkm /h ,水流速度是ykm /h ,则下面所列的方程组中,正确的是( )A .{4x +4y =764.7x −4.7y =76B .{4x +4.7y =764.7x −4y =76C .{4.7(x +y)=764(x −y)=76D .{4x +76=4y 4.7x −76=4.7y二.填空题(共5小题)11.(2021•郫都区校级模拟)已知一个两位数,它的十位上的数字x 比个位上的数字y 大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这两位数所列的方程组是 .12.(2020秋•郓城县期中)一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大18,这样的两位数共有 个.13.(2020•浙江自主招生)小甬的爸爸骑着摩托车带着小甬在公路上匀速行驶,小甬每隔一段时间看到的里程碑上的数如表:时刻12:00 13:00 14:00碑上的数是一个两位数,数字之积为6十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是.14.(2020春•梁平区期末)小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程表上的数如下:时刻12:0013:0014:30里程表上的数是一个两位数,数字之和为6十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00看到的两位数是.15.(2019春•广饶县期中)小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:12:00时是一个两位数,数字之和为7;13:00时十位与个位数字与12:00时所看到的正好互换了;14:00时比12:00时看到的两位数中间多出一个0.如果设小明在12:00看到的数的十位数字是x,个位数字是y,根据题意可列方程组为.三.解答题(共5小题)16.(2020•河北模拟)一个两位自然数,其个位数字大于十位数字.现将其个位数字与十位数字调换位置,得到一个新数,且原数与新数的平均数为33.(1)求原数的最小值;(2)若原数的平方与新数的差为534,求原数与新数之积.17.(2020春•新泰市期末)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数.18.(2019秋•北碚区校级期末)阅读理解:材料一:对于一个两位数M,交换它的个位和十位数字得到的新数N叫这个两位数M的“倒序数”如:23的倒序数是32,50的倒序数是05.材料二:对于一个两位数M,若它的个位数字与十位数字的和小于等于9,则把个位数字与十位数字的和插入到这个两位数中间得到的新数叫这个两位数M的“凸数”如23的凸数是253.(1)请求出42的“倒序数”与“凸数”;38有“凸数”吗?为什么?(2)若一个两位数与它的“倒序数”的和的4倍比这个两位数的“凸数”小132,请求出这个两位数.19.(2020春•邵阳县期末)某县在创建省级卫生文明县城中,对县城内的河道进行整治.现有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治8米,乙工程队每天整治12米,共用时20天.要求整治任务完成后甲、乙工程队分别整治河道的长度.(1)小明、小华两位同学提出的解题思路如下:小明同学:设整治任务完成后甲工程队整治河道x 米,乙工程队整治河道y 米.根据题意,得{x +y =()()+()=20小华同学:设整治任务完成后,m 表示 ,n 表示 ;得{m +n =20()+()=()请你补全小明、小华两位同学的解题思路.(2)求甲、乙两工程队分别整治河道多少米?请从中任选一个方程组求解.(写出完整的解答过程)20.(2019春•金乡县期末)为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁A 、B 两种车型接送师生往返,若租用A 型车3辆,B 型车6辆,则空余15个座位;若租用A 型车5辆,B 型车4辆,则15人没座位.(1)求A 、B 两种车型各有多少个座位?(2)若A 型车日租金为350元,B 型车日租金为400元,且租车公司最多能提供7辆B 型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.。
5.5 应用二元二次方程组——里程碑上的数一、选择题1.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,由题意可得方程组( )A.⎩⎨⎧==+y x y x 3442B.⎩⎨⎧==+y x y x 4342 C.⎪⎩⎪⎨⎧==-443420y y x D.⎩⎨⎧=-=+04342y x x y 2.甲、乙两条绳共长17 m,如果甲绳减去51,乙绳增加1 m,两条绳长相等,求甲、乙两条绳各长多少?若设甲绳长x m,乙绳长y m,则得方程组( ) A.⎪⎩⎪⎨⎧+=-=+15117y x y x B.⎪⎩⎪⎨⎧-=+=+1511y x y x C.⎪⎩⎪⎨⎧+=-=+15117y x x y x D.⎪⎩⎪⎨⎧-=+=+15117y x x y x 3.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是( )A.3∶1B.2∶1C.1∶1D.5∶24.甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个数.如果甲数为x ,乙数为y ,则得方程组是( )A.⎩⎨⎧=+++=+x x y y x y x 2011001188100100 B.⎩⎨⎧++=+=+1188100100201100y x x y x y x C.⎩⎨⎧=+-+=+y x y y x y x 2011001188100100 D.⎩⎨⎧-+=+=+1188100100201100y x x y y y x 5.学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3张信笺.结果,总务处用掉了所有的信封,但余下50张信笺;而教务处用掉了所有信笺,但余下50个信封.则两处所领的信笺张数、信封个数分别为( )A.150,100B.125,75C.120,70D.100,150二、填空题6.两数之差为7,又知此两数各扩大3倍后的和为45,则这样的两个数分别为________.7.武炜购买8分与10分邮票共16枚,花了一元四角六分,购买8分和10分的邮票的枚数分别为_________.8.在1996年全国足球甲级A 组的前11轮(场)比赛中,大连万达队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了________场.9.某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12只或螺母18只,要求一个螺栓配两个螺母,应分配______人生产螺栓,____人生产螺母,才能使螺栓与螺母恰好配套.10.已知甲、乙两人从相距18千米的两地同时出发,相向而行,154小时相遇.如果甲比乙先走32小时,那么在乙出发后23小时两人相遇.设甲、乙两人速度分别为每小时x 千米和y 千米,则x =________,y =________.三、解答题11.(我国古代问题)有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛(斛,音hu,是古代的一种容积单位)米,1个大桶加上5个小桶可以盛2斛米.那么1个大桶、1个小桶分别可以盛多少斛米?12.去年甲、乙两人总收入之比是8∶7,总支出之比是18∶17,已知在这一年里甲结余了1200元,乙结余了800元,求甲、乙两人去年的总收入各是多少?13.一个两位数的十位上的数与个位上的数的和是5,如果这个两位数减去27,则恰好等于十位上的数与个位上的数对调后组成的两位数,求这个两位数.14.据报道,2000年一季度我国对外贸易进出口总额达980亿美元,比1999年同期增长40%,其中出口增长39%,进口增长41%.1999年一季度我国对外贸易出口多少亿美元?进口多少亿美元?5.里程碑上的数一、1.B 2.C 3.B 4.D 5.A二、6. 11,4 7. 7,9 8. 6 9. 12,16 10. 4.5,5.5三、11.2413 247 12.4800 4200 13.41 14.350 3507.4 平行线的性质1.如图,DE ∥BC ,分别交AB 、AC 于点D 、E ,求证:BCDE AC AE AB AD ==。
5 应用二元一次方程组——里程碑上的数班级:________ 姓名:________小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数.小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.” 那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!参考答案设小明和小华取出的两个数字分别为x 、y第一次拼成的两位数为10x +y ,第二次拼成的两位数为10y +x .根据题意得:⎩⎨⎧+=-+=+yx x y y x 109109由②得:y -x =1 ③①+③得:y =5,则x =4所以他们取出的两张卡片上的数字分别是4、5,第一次他们拼成的两位数为45,第二次拼成的两位数是54.(1)如果一个两位数的十位数字与个位数字之和为6,那么这样的两位数的个数是( )A.3B.6C.5D.4(2)已知有含盐20%与含盐5%的盐水,若配制含盐14%的盐水200千克,设需含盐20%的盐水x 千克,含盐5%的盐水y 千克,则下列方程组中正确的是( )A.⎩⎨⎧=+=+%14%5%20200y x y xB.⎩⎨⎧=+=+200%5%20200y x y x ①②C.⎩⎨⎧⨯=+=+%14200%5%20200y x y xD.⎩⎨⎧⨯=+=+%14200%20%5200y x y x (3)甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A.⎩⎨⎧=-=+360)(24360)(18y x y x B.⎩⎨⎧=+=+360)(24360)(18y x y x C.⎩⎨⎧=-=-360)(24360)(18y x y xD.⎩⎨⎧=+=-360)(24360)(18y x y x (4)请你算一算:松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问这几天中有几天晴天,几天是雨天?(5)有一个两位数和一个一位数,如果在这个一位数后面多写一个0,则它与这个两位数的和是146,如果用这个两位数除以这个一位数,则商6余2,求这个两位数.参考答案(1)C (2)C (3)A(4)设这几天中有x 天晴,y 天有雨 根据题意得⎪⎩⎪⎨⎧=+=+141121121220y x y x 解得⎩⎨⎧==62y x 答:这几天中共有2天晴天,6天雨天.(5)设这个两位数为x ,这个一位数为y ,⎩⎨⎧+==+2661410y x y x ,解得⎩⎨⎧==956y x 答:这个两位数为56.。
应用二元一次方程组——里程碑上的数【教材训练】 5分钟1.用代数式表示多位数一个两位数,个位数字是a,十位数字是b,则这个两位数用代数式表示为10b+a;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为10a+b.2.行程问题(1)行程问题的基本数量关系:路程=速度×时间.(2)水路问题的基本数量关系:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.3.判断训练(打“√”或“×”)(1)如果一个两位数的十位数字与个位数字之和为6,那么这样的两位数有7个.(×)(2)已知有含盐20%与含盐5%的盐水,若配制含盐14%的盐水200千克,设需含盐20%的盐水x千克,含盐5%的盐水y千克,则列方程组(×) (3)已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x,乙数为y,由题意可得方程组(√)【课堂达标】 20分钟训练点一:数字问题1.(3分)已知一个三位数,个位数字是a,十位数字是b,百位数字是c,则这个三位数可表示为( )A.100a+10b+cB.100b+10a+cC.100c+10b+aD.100b+10c+a【解析】选C.三位数应是百位数字乘以100,加上十位数字乘以10,再加上个位数字.因此可表示为100c+10b+a.2.(3分)已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是( )A. B.C. D.【解析】选D.根据十位上的数字x比个位上的数字y大1,得方程x=y+1;根据对调个位与十位上的数字,得到的新数比原数小9,得方程10x+y=10y+x+9.列方程组为3.(3分)一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为把个位数字和十位数字对调后组成的数,那么这个两位数是( )A.16B.25C.52D.61【解析】选A.设这个两位数的个位、十位数字分别为x,y,根据题意得解这个方程组,得4.(5分)有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之和的4倍刚好等于这个两位数.求这个两位数.【解析】设个位数为x,十位数为y,则解得即这个两位数是24.训练点二:行程问题1.(3分)甲、乙两地相距360km,一轮船往返于甲、乙两地之间,顺水行船用18h,逆水行船用24h,若设船在静水中的速度为xkm/h,水流速度为ykm/h,则下列方程组中正确的是( )A. B.C. D.【解析】选A.由题意得,轮船顺水航行的速度为(x+y)km/h,逆水航行的速度为(x-y)km/h,所以18(x+y)=360,24(x-y)=360.故选项A符合题意.2.(3分)甲、乙两人分别从相距40km的两地同时出发,若同向而行,则5h后,甲追上乙;若相向而行,则2小时后,两人相遇,那么两人速度(单位:km/h)分别是( )A.14和6B.24和16C.28和12D.30和10【解析】选A.设甲、乙两人的速度分别是xkm/h,ykm/h,根据题意得解得3.(5分)某学校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;原路返回时,汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h.问平路和坡路各有多长?【解析】设平路xkm,坡路ykm,根据题意,得即解得答:平路150km,坡路120km.4.(5分)甲、乙二人相距8km,二人同时出发,同向而行,甲2.5h可追上乙;相向而行,1h相遇,甲、乙二人的平均速度各是多少?【解析】设甲的平均速度为xkm/h,乙的平均速度为ykm/h.解得答:甲、乙二人的平均速度各是5.6km/h,2.4km/h.【课后作业】 30分钟一、选择题(每小题4分,共12分)1.小颖家离学校1200m,其中有一段为上坡路,另一段为下坡路.她去学校共用了16min.假设小颖上坡路的平均速度是3km/h,下坡路的平均速度是5km/h.若设小颖上坡用了xmin,下坡用了ymin,根据题意可列方程组为( )A. B.C. D.【解析】选B.第一个等量关系为x+y=1.2,第二个等量关系为x+y=16,构成方程组2.一个两位数,个位数字与十位数字的和是9,如果各位数字对调后所得的两位数比原来的两位数大9,那么原两位数是( )A.54B.27C.72D.45【解析】选D.设个位、十位数字分别为x,y,根据题意,得解得所以原两位数是45.3.甲、乙二人赛跑,如果乙比甲先跑8 m,那么甲跑4s就能追上乙;如果甲让乙先跑1s,那么甲跑3s就能追上乙,设甲、乙每秒分别跑xm和ym,则可列出的方程组是( )A. B.C. D.【解析】选A.两个等量关系:①甲跑4s的路程=乙跑4s的路程+8;②甲跑3s的路程=乙跑4s 的路程.根据这两个等量关系即可列出方程组二、填空题(每小题4分,共12分)4.有一个两位数,个位数上的数比十位数上的数大5,如果把两个数字的位置对换,那么所得的新数与原数的和是143,则这个两位数为________.【解析】设这个两位数的十位数字为x,个位数字为y,则原数、新数可列表表示如下:十位数字个位数字大小原数x y 10x+y新数y x 10y+x等量关系:个位数字-十位数字=5,新数+原数=143.列方程组为解得所以这个两位数是49.答案:495.有一个两位数和一个一位数,如果在这个一位数后面多写一个0,则它与这个两位数的和是146,如果用这个两位数除以这个一位数,则商6余2,这个两位数是________.【解析】设两位数为x,一位数为y,由题意得:解得答案:566.一列客车和一列货车在平行轨道上同向行驶,客车长220m,货车长320m,客车与货车速度和为40m/s.现客车从后面赶上货车,如果两车交叉时间为1min,设客车速度为xm/s,货车速度为ym/s,则列出的方程组为________.【解析】1min=60s,由题意可得两个等量关系:客车速度+货车速度=40,60(客车速度-货车速度)=两车的车长和.可得方程组:答案:三、解答题(共26分)7.(8分)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.3 4 x-2 y a2y-x c b备用图(1)求x,y的值.(2)在备用图中完成此方阵图.【解析】(1)根据表格中的数据,列出方程组解得(2)如图3 4 -1-2 2 65 0 18.(8分)从甲地到乙地的路有一段平路与一段上坡路,如果骑自行车保持平路每小时行15km,上坡每小时行10km,下坡每小时行18km,那么从甲地到乙地需29分钟,从乙地到甲地需25分钟,从甲地到乙地全程是多少?【解析】设从甲地到乙地平路为xkm,坡路为ykm,全程为(x+y)km.按题意即解这个方程组得x+y=6.5.答:从甲地到乙地全程是6.5km.9.(10分)(能力拔高题)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A 地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.【解析】答案不唯一方法一:问题:普通公路和高速公路各为多少km?解:设普通公路长为xkm,高速公路长为ykm.根据题意,得解得答:普通公路长为60km,高速公路长为120km.方法二:问题:汽车在普通公路和高速公路上各行驶了多少h?解:设汽车在普通公路上行驶了xh,高速公路上行驶了yh.根据题意,得解得答:汽车在普通公路上行驶了1h,高速公路上行驶了1.2h.方法三:问题:普通公路和两地公路总长各为多少km?解:设普通公路长xkm,两地公路总长ykm.根据题意,得解得答:普通公路长60km,两地公路总长180km.方法四:问题:普通公路有多少千米,汽车在普通公路上行驶了多少h? 解:设普通公路长xkm,汽车在普通公路上行驶了yh.根据题意,得解得答:普通公路长60km,汽车在普通公路上行驶了1h.。
应用二元一次方程组—里程碑上的数练习一、选择题1.对于非零的两个实数m,n,定义一种新运算,规定m∗n=am−bn,若2∗(−3)=8,5∗3=−1,则(−3)∗(−2)的值为()A. 1B. −1C. −6D. 62.爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下9:00时看到的两位数是()A. 54B. 45C. 36D. 273.小明和小莉出生于2000年12月份,他们的生日不是同一天,但都是星期一,且小明比小莉出生早,两人出生日期和是22,那么小莉的生日是()A. 15号B. 16号C. 17号D. 18号4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y尺,则可列二元一次方程组为()A. {y−x=4.5y−12x=1B. {x−y=4.5y−12x=1C. {x−y=4.512x−y=1D. {y−x=4.512x−y=15.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()A. 50B. 60C. 70D. 806. 我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x 人,小和尚有y 人.则下列方程或方程组中: ①{x +y =10013x +3y =100;②{x +y =1003x +13y =100;③3x +13(100−x)=100;④13(100−y)+3y =100 正确的是( )A. ①③B. ①④C. ②③D. ②④7. 《九章算术》是我国古代数学的经典著作,书中有一问题:“金有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A. {9x =11y(10y +x)−(8x +y)=13 B. {9x =11y(8x +y)−(10y +x)=13 C. {10y +x =8x +y9x +13=11yD. {11x =9y(10y +x)−(8x +y)=138. 已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为( )A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元9. 一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x3+y4=5460,则另一个方程正确的是( )A. x 4+y 3=4260B. x 5+y 4=4260C. x 4+y 5=4260D. x 3+y 4=426010. 初一1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A. {x +y =225x =6yB. {x +y =226x =5yC. {x +y =223x =10yD. {x +y =2210x =3y11. 某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表: 捐款(元) 3 5810 人数2■■31表格中捐款5元和8元的人数不小心技墨水污染看不清楚.若设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得方程组( )A. {x +y =125x +8y =84 B. {x +y =125x +8y =400 C. {x +y =455x +8y =84D. {x +y =455x +8y =40012. 如图,在长方形ABCD 中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为( )A. 44cm2B. 36cm2C. 96cm2D. 84cm213.《孙子算经》中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”若设人数为x,车数为y,所列方程组正确的是()A. {x3−y=2,x−2y=9.B. {y−x3=2,2y−x=9.C. {x3−y=2,2y−x=9.D. {y−x3=2,x−2y=9.二、填空题14.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,小亮说:“甲超市销售额今年比去年增加10%小颖说:“乙超市销售额今年比去年增加20%根据他们的对话,得出今年甲超市销售额为______万元15.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x,乙持钱数为y,可列方程组为______.16.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是______cm2.17.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为______.18.某商店准备用每千克19元的A糖果和每千克10元的B糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A糖果x千克,B糖果y千克,根据题意可列二元一次方程组:______.三、解答题(本大题共5小题,共40.0分)19.某村在推进美丽乡村的活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调查,获取信息如下:如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖1000块,蓝色地砖3500块,需付款99000元.则红色地砖与蓝色地砖的单价各为多少元?20.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.21.近年来,小明家的木耳通过网络商店(简称网店)迅速销往全国,小明对木耳进行分级包装销售,相关信息如下表所示:木耳种类一级二级包装规格(kg/盒)0.250.5利润(元/盒)2520(1)若小明家今年五月份售出两种等级木耳共180千克,获得利润9600元,求五月份小明家销售一级木耳多少盒.(2)根据之前的销售情况,估计小明家今年六月份能售出两种规格木耳共200千克,一级木耳的产量不多于80千克,设销售一级木耳x(kg),销售完两种等级木耳获得的总利润为y(元),求出y与x之间的函数关系式,并求小明家销售完六月份生产的两种木耳最多获利多少元?请说明理由.22.在长方形ABCD中,放入5个形状大小相同的小长方形,其中AB=5cm,BC=7cm.(1)求小长方形的长和宽;(2)求阴影部分图形的总面积.23.某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?答案和解析1.【答案】A【解答】 解:根据题意可得{2a −(−3)b =85a −3b =−1, 解得:{a =1b =2, 即m ∗n =am −bn =m −2n ,则(−3)∗(−2)=(−3)−2×(−2)=−3+4=1. 故选A .2.【答案】D【解答】解:设小明9时看到的两位数,十位数为x ,个位数为y ,即为10x +y ;则9:45时看到的两位数为x +10y ,9:00~9:45时行驶的里程数为:(10y +x)−(10x +y);则12:00时看到的数为100x +y ,9:45~12:00时行驶的里程数为:(100x +y)−(10y +x);由题意列方程组得:{x +y =910y+x−(10x+y)34=100x+y−(10y+x)94,解得:{x =2y =7,所以9:00时看到的两位数是27, 故选:D .3.【答案】D【解答】解:设小明的生日是12月份的x 号,小莉的生日是12月份的y 号, 则{y −x =7,y +x =22或{y −x =14,y +x =22或{y −x =21,y +x =22或{y −x =28,y +x =22,解得{x =7.5,y =14.5(不是整数,舍去)或{x =4,y =18或{x =0.5,y =21.5(不是整数,舍去)或{x =−3,y =25(不合题意,舍去).综上所述,小莉的生日是18号.故选D .4.【答案】B【解析】解:设绳长x 尺,长木为y 尺, 依题意得{x −y =4.5y −12x =1, 5.【答案】B【解析】解:设小长方形的长为x ,宽为y , 根据题意得:{3x =5yx +2=2y ,解得:{x =10y =6,∴xy =10×6=60.6.【答案】C【解析】解:设大和尚有x 人,小和尚有y 人, 依题意,得:{x +y =1003x +13y =100, ∴y =100−x ,∴3x +13(100−x)=100. ∴②③正确.7.【答案】A【解析】解:设每枚黄金重x 两,每枚白银重y 两, 根据题意得:{9x =11y(10y +x)−(8x +y)=13.8.【答案】D【解答】解:设甲种商品的定价分别为x 元,则乙种商品的定价分别为y 元. 根据题意得:{0.8x +0.6y =1500.6x +0.8y =130,解得:{x =150y =50.故选D .9.【答案】B【解析】解:设未知数x ,y ,已经列出一个方程x 3+y 4=5460,则另一个方程正确的是:x 5+y 4=4260.10.【答案】A【解析】解:设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张, 根据题意得:{x +y =225x =2×3y.11.【答案】A【解析】解:设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得:{x +y =45−2−312×3+5x +8y +10×31=400, 即{x +y =125x +8y =84. 12.【答案】A【解析】解:设小长方形的长为xcm ,宽为ycm , 依题意,得:{x +3y =14x +y −2y =6,解得:{x =8y =2,∴14×(6+2×2)−6×8×2=44(cm 2).13.【答案】D【解答】解:设人数为x ,车数为y ,由题意可得: {y −x3=2x −2y =9. 故选D .14.【答案】110【解析】解:设甲超市去年销售额为x 万元,乙超市去年销售额为y 万元, 根据题意,得10%=0.1,20%=0.2{x +y =150(1+0.1)x +(1+0.2)y =170解得{x =100y =50所以今年甲超市销售额为100(1+0.1)=110. 故答案为110.15.【答案】{x +y 2=5023x +y =50【解析】解:由题意可得,{x +y 2=5023x +y =50, 故答案为:{x +y 2=5023x +y =50. 16.【答案】44【解析】解:设小长方形的长、宽分别为xcm ,ycm ,依题意得{x −2y +y =6x +3y =14, 解得{x =8y =2,∴小长方形的长、宽分别为8cm ,2cm ,∴S 阴影部分=S 四边形ABCD −6×S 小长方形=14×10−6×2×8=44cm 2.设小长方形的长、宽分别为xcm ,ycm ,根据图示可以列出方程组{x −2y +y =6x +3y =14,然后解这个方程组即可求出小长方形的面积,接着就可以求出图中阴影部分的面积. 本题考查了二元一次方程组的应用,要求学生会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.17.【答案】{4x +6y =28x =y +2【解析】解:由题意可得,{4x +6y =28x =y +2, 故答案为:{4x +6y =28x =y +2. 18.【答案】{x +y =15019x +10y =16×150【解析】解:设需要每千克19元的糖果x 千克,每千克10元糖果y 千克,根据题意可得:{x +y =15019x +10y =16×150, 故答案为:{x +y =15019x +10y =16×150. 设需要每千克19元的糖果x 千克,每千克10元糖果y 千克,根据题意可得:糖果150千克;混合后糖果的价格是每千克16元;据此列方程组解答即可.19.【答案】解:设红色地砖每块a 元,蓝色地砖每块b 元,由题意可得: {4000a +6000b ×0.9=8600010000a ×0.8+3500b =99000, 解得:{a =8b =10, 答:红色地砖每块8元,蓝色地砖每块10元.20.【答案】解:(1)根据题意得:{3+4+x =3−2+2y −x3+4+x =x +y +2y −x ,解得:{x =−1y =2. (2)∵x =−1,y =2,∴3+4+x =6,2y −x =5.∵每行的3个数、每列的3个数、斜对角的3个数之和均相等,∴6−(−2)−y =6;6−4−y =0;6−3−y =1.完成方阵图,如图所示. 21.【答案】解:(1)设五月份小明家销售一级木耳m 盒,二级木耳n 盒,则根据题意可得:{0.25m +0.5n =18025m +50n =9600解得{m =160n =280答:五月份小明家销售一级木耳160盒.(2)根据题意可得y =25x +20×200−0.25x 0.5即y =25x +40(200−0.25x)=25x +800−10x=15x +800(080)∵15>0∴y 随着的增大而增大∴当x =80时,y 最大,最大值为15×80+8000=9200元.答:小明家销售完六月份生产的两种木耳最多获利9200元. 22.【答案】解:(1)设小长方形的长为x cm ,宽为y cm ,依题意,得:{x +3y =7x +y =5, 解得:{x =4y =1.答:小长方形的长为4cm ,宽为1cm .(2)7×5−5×4×1=15(cm 2).答:阴影部分图形的总面积为15cm 2.23.【答案】解:设农场去年计划生产玉米x 吨,小麦y 吨,根据题意可得:,解得:{x =50y =150, 则去年实际生产玉米=50×(1+5%)=52.5(吨),去年实际生产小麦=150×(1+15%)=172.5(吨),答:农场去年实际生产玉米52.5吨,小麦172.5吨.。
北师大版八年级数学上册第五章《5.应用二元一次方程组-里程碑上的数》课时练习题(含答案)一、单选题1.一个两位数,十位数字比个位数字大4;将这个两位数的十位数字与个位数字对调后,比原数减少了36,求原两位数.若设原两位数十位数字是x ,个位数字是y ,则列出方程组为( )A .4101036x y x y y x -=⎧⎨+=+-⎩B .4101036x y x y y x +=⎧⎨+=+-⎩C .4103610x y x y y x-=⎧⎨+-=+⎩D .4103610y x x y y x-=⎧⎨+-=+⎩2.如图,AB ⊥BC ,∠ABC 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x °,y °,那么下面可以求出这两个角的度数的方程组是( ).A .9015x y x y +=⎧⎨=-⎩B .90215x y x y +=⎧⎨=+⎩C .90152x y x y +=⎧⎨=-⎩D .90215x y x y +=⎧⎨=-⎩3.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩4.《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x只羊,乙有y只羊,根据题意列出二元一次方程组为()A.()929,99.x yy x⎧-=+⎨+=-⎩B.()929,99.x yy x⎧+=-⎨+=-⎩C.92,9.x yy x+=⎧⎨+=⎩D.92,99.x yy x-=⎧⎨+=-⎩5.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.8374y xy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩6.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9 B.10 C.11 D.127.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题9.《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛、1个小桶可以盛酒y 斛.根据题意,可列方程组为__________.10.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x 钱,乙持钱数为y 钱,列出关于x ,y 的二元一次方程组是______. 11.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出3.2万元利息.已知甲种贷款每年的利率为4.5%,乙种贷款每年的利率为5%,则该公司申请的甲种贷款的数额为_____万元.12.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的,写出题中被墨水污染的条件和第一个方程,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,由于该商场开展“五一”促销活动,同样的电视打八折销售,于是小东在促销期间购买了同样的电视一台,空调两台,共花费7200元,求“五一”前同样的电视和空调每台各多少元?解:设“五一”的同样的电视每台x 元,空调每台y 元,根据题意,得()0.824007200x y ⎧⎪⎨+-=⎪⎩■■■■①②. 被墨水污染的条件是:_________________;被墨水污染的第一个方程是:___________. 三、解答题13.2022年北京冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”深受国内外广大朋友的喜爱,北京奥组委官方也推出了许多与吉祥物相关的商品,其中有A 型冰墩墩和B 型雪容融两种商品.已知购买1个A 型商品和1个B 型商品共需要220元,购买3个A 型商吕和2个B 型商品共需要560元,求每个A 型商品的售价.14.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?15.如图,在33⨯的方格内,填写了一些代数式和数.(1)在图1中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值; (2)把满足(1)的其它6个数填入图2中的方格内.16.5月19日是“中国旅游日”,为拓宽学生视野,某校组织去井冈山开展研学旅行活动.在此次活动中,小明、小亮等同学随家长一同到某游乐园游玩.已知成人票每张35元,学生票按成人票五折优惠.他们一共12人,门票共需350元. (1)小明他们一共去了几个成人,几个学生?(2)如果团体票(16人或16人以上)按成人票六折优惠,请你帮助小明算一算,用哪种方式购票更省钱?17.如果一个自然数N 的个位数字不为0,且能分解成A ×B ,其中A 与B 都是两位数,A 的十位数字比B 的十位数字大2,A 、B 的个位数字之和为10,则称数N 为“美好数”,并把数N 分解成N A B =⨯的过程,称为“美好分解”.例如:∵2989 6149=⨯,61的十位数字比49的十位数字大2,且61、49的个位数字之和为10,∴2989是“美好数”;又如:∵6053519=⨯,35的十位数字比19的十位数字大2,但个位数字之和不等于10,∴605不是“美好数”.(1)判断525,1148是否是“美好数”?并说明理由;(2)把一个大于4000的四位“美好数”N 进行“美好分解”,即分解成N A B =⨯,A 的各个数位数字之和的2倍与B 的各个数位数字之和的和能被7整除,求出所有满足条件的N .18.如图,在数轴上有A ,B 两点,其中点A 在点B 的左侧,已知点B 对应的数为4,点A 对应的数为a .(1)若7113372663145a ⎛⎫=⨯-⨯÷⨯ ⎪⎝⎭,则线段AB 的长为______(直接写出结果);(2)若点C 在射线AB 上(不与A ,B 重合),且236AC BC -=,求点C 对应的数;(结果用含a 的式子表示)(3)若点M 在线段AB 之间,点N 在点A 的左侧(M 、N 均不与A 、B 重合),且2AM BM -=,当3AMAN =,6BN BM =时,求a 的值。
应用二元一次方程组—里程碑上的数练习一、选择题1.对于非零的两个实数m,n,定义一种新运算,规定,若,,则的值为A. 1B.C.D. 62.爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下时看到的两位数是A. 54B. 45C. 36D. 273.小明和小莉出生于2000年12月份,他们的生日不是同一天,但都是星期一,且小明比小莉出生早,两人出生日期和是22,那么小莉的生日是A. 15号B. 16号C. 17号D. 18号4.孙子算经中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为A. B. C. D.5.现有八个大小相同的长方形,可拼成如图、所示的图形,在拼图时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是A. 50B. 60C. 70D. 806.我国明代数学家程大位所著算法统宗中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中:;;;正确的是A. B. C. D.7.九章算术是我国古代数学的经典著作,书中有一问题:“金有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚每枚黄金重量相同,乙袋中装有白银11枚每枚白银重量相同,称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两袋子重量忽略不计问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得A. B.C. D.8.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元9.一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程,则另一个方程正确的是A. B. C. D.10.初一1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形每个图形由两个三角形和一个圆形组成,已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为A. B. C. D.11.某中学八班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表:捐款元35810人数231表格中捐款5元和8元的人数不小心技墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组A. B.C. D.12.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为A. B. C. D.13.孙子算经中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何”若设人数为x,车数为y,所列方程组正确的是A. B. C. D.二、填空题14.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,小亮说:“甲超市销售额今年比去年增加小颖说:“乙超市销售额今年比去年增加根据他们的对话,得出今年甲超市销售额为______万元15.九章算术中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为问甲、乙各有多少钱?”设甲持钱数为x,乙持钱数为y,可列方程组为______.16.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是______.17.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为______.18.某商店准备用每千克19元的A糖果和每千克10元的B糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A糖果x千克,B糖果y千克,根据题意可列二元一次方程组:______.三、解答题(本大题共5小题,共40.0分)19.某村在推进美丽乡村的活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调查,获取信息如下:购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖1000块,蓝色地砖3500块,需付款99000元.则红色地砖与蓝色地砖的单价各为多少元?20.如图,在的方阵图中,填写了一些数和代数式其中每个代数式都表示一个数,使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.求x,y的值;在备用图中完成此方阵图.21.近年来,小明家的木耳通过网络商店简称网店迅速销往全国,小明对木耳进行分级包装销售,相关信息如下表所示:若小明家今年五月份售出两种等级木耳共180千克,获得利润9600元,求五月份小明家销售一级木耳多少盒.根据之前的销售情况,估计小明家今年六月份能售出两种规格木耳共200千克,一级木耳的产量不多于80千克,设销售一级木耳,销售完两种等级木耳获得的总利润为元,求出y与x之间的函数关系式,并求小明家销售完六月份生产的两种木耳最多获利多少元?请说明理由.22.在长方形ABCD中,放入5个形状大小相同的小长方形,其中,.求小长方形的长和宽;求阴影部分图形的总面积.23.某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产,小麦超产,该农场去年实际生产玉米、小麦各多少吨?答案和解析1.【答案】A【解答】解:根据题意可得解得:即,则.故选A.2.【答案】D【解答】解:设小明9时看到的两位数,十位数为x,个位数为y,即为;则9:45时看到的两位数为,9::45时行驶的里程数为:;则12:00时看到的数为,9::00时行驶的里程数为:;由题意列方程组得:,解得:,所以9:00时看到的两位数是27,故选:D.3.【答案】D【解答】解:设小明的生日是12月份的x号,小莉的生日是12月份的y号,则或或或解得不是整数,舍去或或不是整数,舍去或不合题意,舍去.综上所述,小莉的生日是18号.故选D.4.【答案】B【解析】解:设绳长x尺,长木为y尺,依题意得,5.【答案】B【解析】解:设小长方形的长为x,宽为y,根据题意得:,解得:,.6.【答案】C【解析】解:设大和尚有x人,小和尚有y人,依题意,得:,,.正确.7.【答案】A【解析】解:设每枚黄金重x两,每枚白银重y两,根据题意得:.8.【答案】D【解答】解:设甲种商品的定价分别为x元,则乙种商品的定价分别为y元.根据题意得:,解得:.故选D.9.【答案】B【解析】解:设未知数x,y,已经列出一个方程,则另一个方程正确的是:.10.【答案】A【解析】解:设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:.11.【答案】A【解析】解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:即.12.【答案】A【解析】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,13.【答案】D【解答】解:设人数为x,车数为y,由题意可得:.故选D.14.【答案】110【解析】解:设甲超市去年销售额为x万元,乙超市去年销售额为y万元,根据题意,得,解得所以今年甲超市销售额为.故答案为110.15.【答案】【解析】解:由题意可得,,故答案为:.16.【答案】44【解析】解:设小长方形的长、宽分别为xcm,ycm,依题意得解得小长方形的长、宽分别为8cm,2cm,.设小长方形的长、宽分别为xcm,ycm,根据图示可以列出方程组,然后解这个方程组即可求出小长方形的面积,接着就可以求出图中阴影部分的面积.本题考查了二元一次方程组的应用,要求学生会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.17.【答案】【解析】解:由题意可得,,故答案为:.18.【答案】【解析】解:设需要每千克19元的糖果x千克,每千克10元糖果y千克,根据题意可得:,故答案为:.设需要每千克19元的糖果x千克,每千克10元糖果y千克,根据题意可得:糖果150千克;混合后糖果的价格是每千克16元;据此列方程组解答即可.19.【答案】解:设红色地砖每块a元,蓝色地砖每块b元,由题意可得:,解得:,答:红色地砖每块8元,蓝色地砖每块10元.20.【答案】解:根据题意得:,解得:.,,,.每行的3个数、每列的3个数、斜对角的3个数之和均相等,;;.完成方阵图,如图所示.21.【答案】解:设五月份小明家销售一级木耳m盒,二级木耳n盒,则根据题意可得:解得答:五月份小明家销售一级木耳160盒.根据题意可得即随着的增大而增大当时,y最大,最大值为元.答:小明家销售完六月份生产的两种木耳最多获利9200元.22.【答案】解:设小长方形的长为,宽为,依题意,得:,解得:.答:小长方形的长为4cm,宽为1cm.答:阴影部分图形的总面积为.23.【答案】解:设农场去年计划生产玉米x吨,小麦y吨,根据题意可得:,解得:,则去年实际生产玉米吨,去年实际生产小麦吨,答:农场去年实际生产玉米吨,小麦吨.。
5 应用二元一次方程组——里程碑上的数1.数字问题(1)多位数字表示问题两位数=十位数字×10+个位数字.三位数=百位数字×100+十位数字×10+个位数字.如:一个两位数,个位数字是a ,十位数字是b ,所以这个两位数是b 个10和a 个1的和,那么这个数可表示为10b +a ;如果交换个位和十位上的数字,得到一个新的两位数可表示为10a +b .(2)数位变换后多位数的表示两位数x 放在两位数y 的左边,组成一个四位数,这时,x 的个位数就变成了百位,十位数就变成了千位,因此这个四位数里含有x 个100,而两位数y 在四位数中数位没有变化,因此这个四位数中还含有y 个1.因此用x ,y 表示这个四位数为100x +y .同理,如果将x 放在y 的右边,得到一个新的四位数为100y +x .一个两位数,个位上的数是m ,十位上的数是n ,如果在它们之间添上零,十位上的n 便成了百位上的数.因此这个三位数是由n 个100,0个10,m 个1组成的,用代数式表示这个三位数即为100n +m .【例1】 一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数.分析:用下表表示(这个两位数的十位数字为x ,个位数字为y ) 十位数字 个位数字 两位数原两位数 x y 10x +y新两位数 y x 10y +x相等关系:(1)个位数字+十位数字=7;(2)原来的两位数+45=对调后组成的两位数.解:设这个两位数的十位数字为x ,个位数字为y ,由题意,得⎩⎪⎨⎪⎧ x +y =7,10x +y +45=10y +x .解得⎩⎪⎨⎪⎧x =1,y =6.所以原两位数是16.析规律 数字与数位的关系 解决此类问题,关键是从实际问题中确定相等关系,根据相等关系的个数确定列方程还是列方程组,当问题中涉及两个相等关系时,列方程组解决问题比较简单.2.行程问题(1)行程问题:路程=速度×时间①追击问题:一般特征:同地、同向、不同时,抓路程之间的关系建立等量关系. ②相遇问题:一般特征:同时、相向、不同地,常用的关系:路程和=全程. ③航行问题:顺水航行的速度=船在静水中的速度+水速;逆水航行的速度=船在静水中的速度-水速.(2)行程问题的应用:借助图示解答【例2】 已知某一铁路桥长1 000 m ,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1 min ,整列火车完全在桥上的时间为40 s ,求火车的长度和速度. 分析:解此类问题的关键是分析好火车“开始上桥到完全过桥”与“整列火车完全在桥上”的含义,可根据“路程”与“速度”找等式.解:设火车的长度为x m ,火车的速度为y m/s ,则根据题意,得⎩⎪⎨⎪⎧ 1 000+x =60y ,1 000-x =40y .解得⎩⎪⎨⎪⎧ x =200,y =20.所以火车的长度为200 m ,火车的速度为20 m/s.3.怎么解答图形信息题在近几年的中考试题中,出现了一类有趣的图形信息题,即根据日常生活和生产中的实际应用问题绘出图形,让同学们看图分析,捕捉图中提供的数学信息,然后求解.这类问题,大多可用列二元一次方程组的方法求解.图形信息题作为一种新型的中考试题,越来越受到命题者青睐,一类和二元一次方程组有关的图形信息题,不仅考查了同学们从图形中获取信息的能力,而且还考查了根据所得信息列出方程组的能力.图形信息题就是根据文字、图表、图形、图象等给出的数据信息,通过整理、加工、处理等手段去解决实际问题的一类题.解答信息题时,首先要仔细阅读题目所提供的材料,从中捕捉有关信息(如数据间的关系与规律图象的形状特点、变化趋势等),然后对这些信息进行加工处理,并联系相关数学知识,从而实现信息的转换,使问题顺利获解.【例3】 根据图中提供的信息,可知一个杯子的价格是( ).A .51元B .35元C .8元D .7.5元 解析:本题以实物图形给出信息,从图中可以知道,一个水壶和一个杯子共43元,两个水壶和三个杯子共94元,因此可设杯子的单价为x 元,水壶的单价为y 元,根据图形信息,得⎩⎪⎨⎪⎧ x +y =43,3x +2y =94.解得⎩⎪⎨⎪⎧ x =8,y =35.所以一个杯子的价格是8元,选C.答案:C谈重点 审清题意列方程组列二元一次方程组解实际问题,重点在于正确找出实际问题中的两个等量关系,并把它们表示成两个方程.难点是一些难度较大的题目,有迷惑人的因素存在,等量关系隐蔽,往往不易找到或容易找错.解题时必须弄懂题中奥妙,突破解题瓶颈,理清数量之间的内在联系.4.用方程组解决与图形有关的问题用二元一次方程组解图形中的问题,是一种重要的解题方法,这种解题思想就是重要的数形结合思想.利用数形结合思想解决问题,需要认真观察,分析图形性质中隐含的相等关系.列二元一次方程组解决图形问题,需要从图形中找出数量关系,设出恰当的未知数,列出方程.这类问题的相等关系一般隐含在图形中,掌握图形的特征,从隐含条件中发现相等关系是解决问题的关键.【例4】 用8块相同的矩形地砖拼成一块大的矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.分析:列二元一次方程组解决图形问题,需要从图形中找出数量关系,设出恰当的未知数,列出方程.解:设每块地砖的长为x cm ,宽为y cm ,根据题意,得⎩⎪⎨⎪⎧ x +y =60,2x =x +3y . 解得⎩⎪⎨⎪⎧ x =45,y =15.所以每块地砖的长为45 cm ,宽为15 cm.。
5.5 应用二元一次方程组——里程碑上的数学习目标知识与技术用二元一次方程组解决风趣场景中的数字问题和行程问题,概括用方程(组)解决实际问题的一般步骤.过程与方法1.经过设置问题串,让学生领会剖析复杂问题的思虑方法.2.让学生进一步经历和体验列方程组解决实质问题的过程,领会方程组是刻画现实世界的有效数学模型.感情态度与价值观在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培育学生战胜困难的意志和勇气,建立自信心,并鼓舞学生合作沟通,培育学生的团队精神.学习要点1.初步领会列方程组解决实质问题的步骤.2.学会用图表剖析较复杂的数目关系问题。
学习难点将实质问题转变成二元一次方程组的数学模型;会用图表剖析数目关系。
学习准备:教具:教材,课件,电脑(视频播放器)学具:教材,练习本学习过程第一环节:复习发问( 5 分钟,学生口答)内容:填空:( 1)一个两位数,个位数字是,十位数字是,则这个两位数用代数式表示为;若互换个位和十位上的数字获得一个新的两位数,用代数式表示为.( 2)一个两位数,个位上的数为x ,十位上的数为y ,假如在它们之间添上一个0,就获得一个三位数,这个三位数用代数式能够表示为.( 3)有两个两位数 a 和 b ,假如将 a 放在 b 的左侧,就获得一个四位数,那么这个四位数用代数式表示为;假如将 a 放在 b 的右侧,将获得一个新的四位数,那么这个四位数用代数式可表示为.第二环节:情境引入(10 分钟,学生动脑思虑,全班沟通)内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,以下图是小明每隔1 小时看到的里程状况.你能确立小明在12:00 时看到的里程碑上的数吗?是一个两位数字,它的两个数字之和为 7.十位与个位数字比12:00 时看与 12:00 时所看到的两位数中到的正好颠倒了..间多了个 0假如设小明在12: 00 时看到的数的十位数字是x ,个位数字是y,那么(1) 12: 00 时小明看到的数可表示为,依据两个数字和是7,可列出方程;(2) 13:00 时小明看到的数可表示为,12:00~13:00间摩托车行驶的行程是;(3) 14: 00 时小明看到的数可表示为,13:00~14:00间摩托车行驶的行程是;(4) 12:00~ 13:00 与 13:00~ 14:00 两段时间内摩托车的行驶行程有什么关系?你能列出相应的方程吗?第三环节:合作学习(10 分钟,小组议论,找等量关系,解决问题)内容:例 1两个两位数的和是68,在较大的两位数的右侧接着写较小的两位数,获得一个四位数;在较大的两位数的左侧写上较小的两位数,也获得一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.学生先独立思虑例1,在此基础上,教师依据学生思虑状况组织沟通与议论.第四环节:稳固练习(10 分钟,学生试试独立解决问题,全班沟通)内容:练习1.一个两位数,减去它的各位数字之和的 3 倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1.这个两位数是多少?2.一个两位数是另一个两位数的 3 倍,假如把这个两位数放在另一个两位数的左边与放在右侧所得的数之和为8484.求这个两位数.第五环节:讲堂小结( 5 分钟,教师指引学生总结一般步骤)内容:1.教师发问:本节课我们学习了那些内容,对这些内容你有什么领会和想法?请与同伴沟通.2.师生相互沟通总结出列方程(组)解决实质问题的一般步骤.第六环节:部署作业内容:习题A 组(优等生) 2 , 3, 4B 组(中等生) 2、 3C组(后三分之一世) 2学习反省数据的失散程度【预习展现】1、达成课本 149 页引例2、一组数据中 _______与 __________的差,称为极差,是刻画数据失散程度的一个统计量。
北师大版八年级上册5.5应用二元一次方程组——里程碑上的数同步练习题(无答案)里程碑上的数考点一、利用二元一次方程组解决行程问题例1、A、B两地相距20km,甲从A地向B地前进,同时乙从B地向A地前进,2h后二人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2km,求甲、乙二人的速度.变式:如图所示,一列快车长70m,一列慢车长80m,若两车同向而行,快车从追上慢车车尾到完全超过慢车所用的时间为20s;若两车相向而行,则两车从相遇到完全离开所用的时间为4s.求两车的速度.练习:1、已知一座铁桥长1000米,一列火车从桥上通过,测得火车从开始上桥到车身完全通过桥共用60s,而整列火车在桥上的时间是40s,则火车的长度为____米,火车的速度为____。
2、甲、乙两人相距50千米,若同向而行,乙10小时可追上甲;若相向而行,2小时两人相遇。
设甲、乙两人每小时分别走x千米、y 千米,则可列出方程组是3、一汽艇顺流航行36千米与逆流航行24千米的时间都是3小时,如果设汽艇在静水中的速度为每小时x千米,水流速度为每小时1 / 11y千米,可列出方程组是4、某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车。
如果反向而行,那么他们每隔30秒相遇一次。
如果同向而行,那么每隔80秒乙就追上甲一次。
甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y 米/秒。
则列出的方程组是___.5、甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行。
如果乙先走20km,那么甲用1小时就能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,求甲、乙二人的速度。
6、某船顺流航行48km用了4小时,逆流航行32km也用了4小时,求船在静水中的速度、水流的速度各是多少?7、甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行。
如果乙先走20km,那么甲用1小时就能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,求甲、乙二人的速度。
应用二元一次方程---里程碑上的数班级:___________姓名:___________得分:__________一. 选择题(每小题7分,28分)1.三角形的周长长18cm ,第一边与第二边的长度和等于第三边长度的2倍,而它们长度的差等于第三条边长的13,这个三角形的各边长为_____A.7、5、8 B. 7、5、6 C. 7、1、9 D. 7、8、42.一个两位数,个位数字比十数字大4,如果把这个数的十位、个位数字对调,那么所得的新数与原来的和是154,原来的两位数是_______.A.59 B. 78C.60 D.453. 已知:4:3=甲乙,2:5=丙乙:,则甲:乙:丙=_________A. 4:3:2B. 2:5:4C. 5:4:3D. 8:6:154. 已知一个两位数,它的十位上的数字x 比个位上的数字y 大1.若颠倒个位与十位数字的位置,得到的新数比原数小9,求这两个数所列的方程组正确的是______ A.1()()9x y x y y x -=⎧⎨+++=⎩, B.1109x y x y y x =+⎧⎨+=++⎩, C.110109x y x y y x =+⎧⎨+=+-⎩, D.110109x y x y y x =+⎧⎨+=++⎩ 二、解答题(每小题12分,72分)1. 1.小丽和小华给大家出了个难题,小丽让个位上的数比十位上的数大5,小华把这个数的位置对换,那么所得的新数与原来的和是143, 他们问大家,这个两位数是多少?2、 有一对父子,他们的年龄都是一个两位数,爸爸说:“我们俩的年龄之和是68岁哦。
”儿子说:“若把你的年龄写在我的年龄的左边,得到一个四位数;若把你的年龄写在我的右边,同样得到一个四位数。
”爸爸说:“已知前一个四位数比后一个四位数大2178,那么我们俩的年龄各是多少?”3、一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左边与放在右边所得的数之和为8484.求这两个两位数.4、有大小两个两位数,在大数的右边写上一个0之后再写上小的数,得到一个五位数;在小数的右边写上大数,然后再写上一个0,也得到一个五位数,第一个五位数除以第二个五位数得到的商为2,余数为590.此外,二倍大数与三倍小数的和是72,求这两个两位数.5、据报道,2000年第一季度我国对外贸易进出口总额达980亿美元,比1999年同期增长40%,其中出口增长39%,进口增长41%,2000年第一季度我国对外贸易出口是多少亿美元?进口是多少亿美元?6、汽车在上坡的速度为28km/h,下坡时的速度为42km/h,从甲地到乙地用了143h,返回时用了243h,从甲地到乙地上、下坡各是多少千数?参考答案一. 选择题1. B【解析】设第一条边x cm ,第二条边y cm .则2(18)1(18).3x y x y x y x y +=--⎧⎪⎨-=--⎪⎩, 解得75.x y =⎧⎨=⎩,2.A【解析】解:设原两位数十位数字为x ,个位数为y ,根据题意得 4(10)(10)154.y x x y y x =+⎧⎨+++=⎩,化简得414y x x y =+⎧⎨+=⎩, 解之得59.x y =⎧⎨=⎩,答:原来的两位数为59.3. D【解析】找到两个比值中的乙的最小公倍数甲:乙=4:3=8:6乙:丙=2:5=6:15所以,甲:乙:丙=8:6:154. D【解析】等量关系:(1)十位上的数字x =个位上的数字y +1(2)原数=新数+9二、解答题1. 解:设个位数字为x,十位数字为y ,则x-y=510y+x+10x+y=143解得: x=9y=44×10+9=49答:这个两位数是49.2.解:设爸爸的年龄为x ,儿子的年龄为y ,依题意得:⎩⎨⎧=+-+=+2178)100()100(68x y y x y x⎩⎨⎧=-=+2268即y x y x⎩⎨⎧==2345解该方程组,得y x答:爸爸的年龄为45,儿子的年龄为23.3、解:设这个两位数为x ,另一个为y ,由题意,得⎩⎨⎧=+++=.8484)100()100(,3x y y x y x解这个方程组得⎩⎨⎧==.21,63y x答:这个两位数是63,另一个两位数是21.4. 解:设大的两位数是x ,小的两位数是y ,则第一个五位数是1000x +y ,第二个五位数是1000y +10x ,由题意,得⎩⎨⎧=+++=+.7232,590)101000(21000y x x y y x解得⎩⎨⎧==.10,21y x答:这两个两位数分别为21和10.5、解:设1999年第一季度我国对外贸易出口是x 亿美元,进口x 亿美元, 根据题意得980140%(139%)(141%)980.x y x y ⎧+=⎪+⎨⎪+++=⎩, 解之得350350.x y =⎧⎨=⎩,350 1.41493.5350 1.39486.5==×,×.答:2000年出口额为486.5亿美元,进口额为493.5亿美元.6、答案:解:设从甲地到乙地上、下坡路分别为x km 、y km ,由题意得: 1428422404.422860x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得7084.x y =⎧⎨=⎩,答:上坡路70 km ,下坡路84 km .。
5.5应用二元一次方程组—里程碑上的数练习题
1、如果一个两位数的十位数字与个位数字之和为6,那么这样的两位数的个数是( )
A.3
B.6
C.5
D.4
2、已知有含盐20%与含盐5%的盐水,若配制含盐14%的盐水200千克,设需含盐20%的盐水x 千克,含盐5%的盐水y 千克,则下列方程组中正确的是( )
A.⎩⎨⎧=+=+%14%5%20200y x y x
B.⎩
⎨⎧=+=+200%5%20200y x y x C.⎩⎨⎧⨯=+=+%14200%5%20200y x y x
D.⎩⎨⎧⨯=+=+%14200%20%5200y x y x
3、甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )
A.⎩
⎨⎧=-=+360)(24360)(18y x y x B.⎩⎨⎧=+=+360)(24360)(18y x y x C.⎩⎨⎧=-=-360)(24360)(18y x y x
D.⎩⎨⎧=+=-360)(24360)(18y x y x
4、请你算一算:
松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一
连几天采了112个松子,平均每天采14个,问这几天中有几天晴天,几
天是雨天?
5、有一个两位数和一个一位数,如果在这个一位数后面多写一个0,则它与这个两位数的和是146,如果用这个两位数除以这个一位数,则商6余2,求这个两位数.
6、小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数.小明说:“哇!
这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”
那么,你能回答以下问题吗?
(1)他们取出的两张卡片上的数字分别是几?
(2)第一次,他们拼出的两位数是多少?
(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑。