第一章 制冷空调原理与制冷系统的基本结构
- 格式:ppt
- 大小:760.50 KB
- 文档页数:162
制冷原理与空调基础一、理论制冷循环单级蒸气压缩制冷系统的理论制冷循环在压焓图上如图1-1所示,循环路线是由两条等压线、一条等熵线和一条等焓线组成。
这说明制冷剂在蒸发器和冷凝器内流动没有阻力;制冷剂在压缩机中的压缩过程为可逆等熵过程;制冷剂离开蒸发器的状态和压缩机的吸气状态均为饱和蒸气,制冷剂离开冷凝器和节流前的状态均为饱和液体。
图1-1上1点表示压缩机的吸气状态,它位于蒸发温度te对应的蒸发压力Pe的等压线和饱和蒸发的交点上。
过程线1-2表示制冷剂在压缩机中的等熵压缩过程,点2可由通过点1的等熵线和冷凝温度T C对应的冷凝压力P C的等压线的交点来确定。
点2处于过蒸气状态。
点3表示制冷剂出冷凝器时的状态,也是进节流阀时的状态。
它是冷凝压力Pe对应的饱和液体,位于等压线P C与饱和液体线的交点。
过程线2-2’-3表示制冷剂在冷凝器内冷却(2-2’)和冷凝(2’-3)过程。
点4表示制冷剂出节流阀的状态。
过程线3-4表示制冷剂通过节流阀的节流过程。
由于节流前后制冷剂的比焓不变。
点4是过点3的等焓线和等压线Pe的交点。
由于节流过程为不可逆过程,所以过程3-4往往用虚线表示。
过程线4-1表示制冷剂在蒸发器中的气化过程,制冷剂吸取被冷却物体的热量而不断气化,制冷剂的状态沿等压线Pe向干度增大的方向进行,直到全部变成饱和蒸气为止。
这样,制冷剂的状态又重新回到进入压缩机前的状态,从而完成了一个理论制冷循环。
图1-1图1-2二、实际制冷循环事实上,家用中央空调的实际制冷循环不可避免与理论制冷循环之间存在许多差别,如流动阻力、换热温差、压缩机偏离等熵压缩、冷凝器中有制冷剂过冷、蒸发器中有制冷剂过热、制热剂液体管和气体管间有回热等情况。
这些差别将对制冷循环性能产生不同的影响。
1、液体过冷对循环性能的影响在实际循环中,饱和液体在冷凝器和节流阀之间的管路流动时,会因流动阻力引起的压力降低使制冷剂部分气化,这种现象将影响节流阀工作的稳定性,因此需要液态制冷剂进入节流阀前有一定的过冷。
空调的结构和原理
空调主要由以下几个部分构成:
1. 制冷剂循环系统:包括压缩机、冷凝器、膨胀阀和蒸发器。
制冷剂在循环中起到传热和吸收释放热量的作用。
2. 压缩机:将制冷剂压缩成高温高压气体,增加其温度和压力。
3. 冷凝器:将高温高压制冷剂通过传热与周围环境交换热量,使其冷却变成高温高压液体。
4. 膨胀阀:是冷凝器和蒸发器之间的节流装置,通过限制制冷剂的流量和降低压力,使其变成低温低压液体。
5. 蒸发器:通过吸热原理,将低温低压液体制冷剂与空气或水接触,在吸热过程中吸收空气或水中的热量,从而冷却空气或水。
空调的工作原理如下:
1. 压缩机吸入低温低压气体制冷剂,通过机械压缩将其压缩成高温高压气体。
2. 高温高压气体制冷剂进入冷凝器,与外部环境进行热交换,散发热量,使制冷剂冷却成高温高压液体。
3. 高温高压液体制冷剂通过膨胀阀节流,压力降低,变成低温低压液体。
4. 低温低压液体制冷剂进入蒸发器,在与室内空气或水接触的过程中吸热,制冷剂自身从液体状态转变为气体状态。
5. 制冷剂经过蒸发后,再次被压缩机吸入,循环往复,实现空调系统的制冷效果。
以上就是空调的结构和工作原理,通过循环往复的制冷剂流动和热量交换,实现对室内空气或水的冷却。
制冷与空调技术手册1. 简介制冷与空调技术是现代社会中不可或缺的一项技术。
随着科技的进步和人们对舒适生活需求的增长,制冷与空调技术在各个领域都扮演着重要的角色。
本手册将为读者介绍制冷与空调技术的基本原理、常用设备和操作维护等内容。
2. 制冷原理制冷是通过抽取空气中的热量来降低温度的过程。
常见的制冷原理包括蒸发制冷和压缩制冷。
蒸发制冷利用液体的蒸发过程吸热来降低温度,而压缩制冷则通过压缩制冷剂使其冷却,再通过膨胀释放热量,从而实现降温效果。
3. 常用设备(1)制冷系统组成:制冷系统主要由压缩机、冷凝器、蒸发器和节流装置组成。
压缩机用于压缩制冷剂,使其形成高压高温的气体。
冷凝器通过散热将高温气体冷却成高压液体。
蒸发器通过蒸发制冷剂来吸热,实现冷却效果。
节流装置用于控制制冷剂的流速和压力,进一步实现制冷效果。
(2)空调设备:空调设备通常包括室内机、室外机、管道和控制系统等。
室内机通过风扇将冷空气输送到室内,实现降温效果。
室外机则通过制冷系统将热量排出室外。
管道用于连接室内机和室外机,传输制冷剂和空气流动。
控制系统用于调节空调设备的工作模式和温度等参数。
4. 操作维护(1)操作要点:正确使用空调设备,避免频繁开关和过度制冷。
在设定温度时,应根据需要进行合理调整,以节约能源。
同时,定期清洁过滤网和检查设备的运行状况,及时处理故障。
(2)维护措施:定期清洁和更换设备中的过滤网,以保持空气流通畅。
定期检查制冷系统中的制冷剂是否泄漏,如有问题应及时处理。
另外,定期检查和维护压缩机、冷凝器和蒸发器等关键部件,确保其正常运行。
5. 应用领域制冷与空调技术广泛应用于工业、商业和家庭等领域。
在工业领域,制冷技术用于冷冻食品、医药物品和化学试剂等的储存和运输。
在商业领域,空调技术用于商场、办公楼等场所,提供舒适的工作和购物环境。
在家庭中,空调技术为人们提供舒适的室内温度,提高生活品质。
6. 环保与节能随着对环境保护和能源消耗的关注,制冷与空调技术在不断发展中也注重环保和节能。
空调的工作原理空调是一种常见的家电产品,它通过制冷或加热的方式来改变室内空气的温度和湿度,为人们创造一个舒适的室内环境。
那么空调是如何工作的呢?本文将详细介绍空调的工作原理。
一、制冷循环系统空调的核心部分是制冷循环系统,它包括四个基本组件:压缩机、蒸发器、冷凝器和节流装置。
制冷循环系统通过改变制冷剂的压力和温度来实现制冷效果。
当空调开始工作时,压缩机会抽取低温低压的制冷剂(通常为氟利昂)并将其压缩成高温高压的气体。
此时,制冷剂会进入冷凝器,散发热量并变成高温高压的液体。
接下来,液体制冷剂通过节流装置进入蒸发器,此时压力和温度均下降。
制冷剂在蒸发器中吸收室内的热量,并变成低温低压的气体。
最后,低温低压的气体制冷剂再次进入压缩机,循环往复。
二、空气循环系统除了制冷循环系统,空调还包括一个空气循环系统,用于循环和调节室内空气。
空气循环系统由风扇、过滤器和送风口等组件组成。
当空调工作时,风扇会吸取室内空气,并通过过滤器去除其中的灰尘和微粒等杂质。
经过处理后的空气会被送入蒸发器,与制冷剂接触,从而降低室内温度。
冷却后的空气会再次通过风扇吹入室内,形成一个循环。
三、控制系统为了提高空调的智能化和便利性,现代空调通常配备有控制系统。
控制系统由温度传感器、控制面板和电路板等组成。
温度传感器用于感知室内温度,并将信息传输给控制面板。
根据用户设定的温度要求,控制面板会调节制冷循环系统和空气循环系统的工作,以达到室内温度的升降。
电路板则负责实现各个组件之间的联动和调节。
总结:空调的工作原理可以简单概括为制冷循环系统和空气循环系统相互配合,通过制冷剂的压缩、蒸发和冷凝,实现室内温度的调节。
而控制系统则提供了更加智能化和便捷的控制方式,使得人们可以轻松调节和享受舒适的室内环境。
通过以上对空调工作原理的介绍,相信读者对空调的工作原理有了更深入的了解。
空调不仅在家庭中得到广泛应用,也在办公室、商场等许多场所发挥着重要作用,为人们创造舒适的生活和工作环境。
制冷空调原理与空调零部件系统详述制冷:从低于环境的物体中吸取热量,并将其转移给环境介质的过程。
由于热量只能⾃动地从⾼温物体传给低温物体,因此实现制冷必须包括消耗能量的补偿过程。
制冷机的基本原理:利⽤某种⼯质的状态变化,从较低温度的热源吸取⼀定的热量Q0,通过⼀个消耗功W的补偿过程,向较⾼温度的热源放出热量Qk。
在这⼀过程中,由能量守恒得 Qk=Q0+W。
简单理解为下图:压缩机:将低温低压⽓体压缩成⾼温⾼压⽓体。
四通阀:制冷、制热时换向。
冷凝器:制冷时,向环境散热,制热时,从环境吸热;蒸发器:制冷时,从室内吸热,制热时,向室内散热;⽑细管:节流元件。
⽓液分离器:保护压缩机。
空调主要零部件:1、制冷系统主要零部件有:压缩机、四通阀、压⼒开关、电磁阀、节流部件、过滤器、截⽌阀、单向阀、油分离器、热交换器、储液筒、汽液分离器。
2、电⽓系统主要零部件有:主板、风机、排⽓温控器、温度传感器、冷凝⽔泵、⽔位开关、电容、变压器、接触器、继电器、电抗器等。
压缩机:压缩机是制冷装置中最重要的组成部分,⼈们形象地称之为制冷装置的⼼脏。
它在电动机的带动下,输送和压缩制冷蒸⽓,使制冷剂在系统中进⾏制冷循环。
⼩型制冷压缩机选型:选择压缩机的额定电压、频率、相数(1HP、3HP)以及额定能⼒值。
单冷机:空调器能⼒=压缩机额定能⼒×90~95%。
冷暖机:空调器能⼒=压缩机额定能⼒×85%按驱动⽅式分为:定频压缩机、变频压缩机(交流变频、直流变频);按使⽤电源分为:单相压缩机、三相压缩机。
压缩机接线⽅式:压缩机常见故障判断⽅法:1)单相电源不能启动a.检查电⽓连线是否正确,有⽆松脱;b.检测端⼦间电压是否正常,⽤万⽤表测量接线端⼦柱间C-R、C-S的电阻,RS=SC+RC(常见故障是主、副绕组接错,导致副绕组烧坏,阻值下降;当内置过载保护器动作时为⽆穷⼤;温度⾼时,阻值会上升);c.检查运⾏电容是否损坏;d.外置过载保护器时,⽤万⽤表测量过载保护器是否导通;2)三相电源不能启动a、检测端⼦间电阻是否正常,⽤万⽤表测量接线端⼦柱U、V、W间的电阻,正常时,三个阻值应⼀致(异常为短路、断路或者阻值异常;当过载保护器动作时阻值为⽆穷⼤;温度⾼时,阻值会上升)。
空调系统制冷原理及各部分结构图解在说制冷原理之前,首先我们来看一些生活中与制冷相关的常见现象:将酒精擦到皮肤上,会感到凉爽,说明通过蒸发能制冷。
把水抹到皮肤上,也有凉意,没有酒精明显。
因为酒精比水更容易蒸发,蒸发得更快,说明蒸发越快制冷越好。
洗晒的衣服,夏天比冬天容易干,因为夏天温度高,蒸发得快。
说明温度越高蒸发越快。
在青藏高原烧水,90度就沸腾蒸发了。
因为青藏高原地势高,压力低。
说明压力越低蒸发越快。
温度、压力对蒸发、冷凝影响一、制冷循环系统由压缩机、冷凝器、蒸发器、膨胀阀四个基本部件组成。
我们用一张图来表现它们制冷剂状态的变化:我们可以大概归纳总结为:两个控制,两个转换。
1、压缩机:吸入蒸发器内蒸气,维持其低温低压;压缩出高压、高温蒸气。
为什么要压缩?因为制冷剂要回收再利用。
如不压缩,直接排入冷凝器。
常温已高于制冷剂沸点温度,无法冷却、冷凝成液体。
[压力越高,沸点越高;压力越低,沸点越低]。
只有通过提高制冷剂的压力,使制冷剂的凝结点(沸点)高于室外温度,才能让制冷剂向室外散热,温度降低,制冷剂凝结成液体。
2、冷凝器:将压缩机排出的高温高压蒸气冷却成液体;释放出的热量被水或空气带走。
可分为水冷式、空气冷却式、水和空气混合冷却式三种类型。
空调冷凝器大多采用翅片盘管式结构,为提高换热效率常将铝合金翅片压成各种形状,以增加换热面积。
3、节流装置:当制冷剂流体通过一小孔时,一部分静压力转变为动压力,流速急剧增大,成为湍流流动,流体发生扰动,摩擦阻力增加,静压下降。
节流阀主要作用:节流降压;调节流量,使流体达到降压调节流量的目的。
3.1、毛细管特点:无运动件、结构简单;无储液器,充入的制冷剂量小;停机后的高低压基本相同,便于启动;工作的准确程度差;小型空调或冰箱上运用。
缺点:供液量不能随工况变动而调节。
热力膨胀阀结构3.2、热力膨胀阀特点:又称感温式膨胀阀,接在蒸发器的进口上,器感温包紧贴蒸发器的出口管上。
制冷空调系统的设计和原理空调作为现代家庭和商业环境必须的设备,每天为我们带来舒适的生活和工作环境,但是很少有人知道空调背后的原理和工作机制究竟是什么。
本文将从制冷空调系统的设计和原理方面进行探讨,帮助读者更深入地了解空调。
制冷空调系统的组成制冷空调系统是由四部分组成的:压缩机、冷凝器、膨胀阀和蒸发器。
压缩机的作用是将低温低压的气体压缩成高温高压的气体,冷凝器将高温高压的气体冷却成高压液态制冷剂,膨胀阀将高压液态制冷剂膨胀成低温低压的蒸气,蒸发器则将低温低压的蒸气吸入并与空气接触,将空气中的热量吸收,同时将蒸气转化为高温低压的气体并送回压缩机。
压缩机的工作原理压缩机是制冷空调系统中最关键的部分,它的作用相当于人类心脏的作用。
压缩机的工作原理是通过电机驱动涡旋制造的叶轮转动,增加气体分子的碰撞频率和速度,使气体的温度和压力上升。
当气体的压力上升到一定程度时,压力会使气体中的制冷剂液体变成气体,这是因为随着压力的增加,制冷剂分子之间的距离变小,相互作用力增强,从而使分子不断碰撞并增加它们自身的动能。
在空调系统中,压缩机的输出气体与制冷剂发生热交换后变为高温高压的气体,进入冷凝器。
冷凝器的工作原理冷凝器的主要作用是将气体中的热量冷却掉,使气体变为高压液态制冷剂。
在冷凝器中,高温高压的气体通过黄铜管散热器散发出热量,被冷凝器中的制冷剂吸收,并在过程中放出热量。
因为制冷剂在这种情况下处于满负荷状态,因此高热大量释放,空气与制冷剂之间的热传递效率非常高。
随着制冷剂在冷凝器中的温度降低,它的状态也会从气态变为液态,并在冷凝器的底部积累。
这时,制冷剂是高压液体,准备经过膨胀阀进入蒸发器。
膨胀阀的工作原理膨胀阀是制冷空调系统中的限制性部分,其主要作用是将高压液态制冷剂允许进入蒸发器的压力限制在一定的范围内,并控制流速,从而使高压液化制冷剂进入到低温低检的蒸发器中时快速膨胀成低压蒸气。
这一过程通过膨胀阀组件内部的孔径限制来实现。
制冷系统工作原理制冷系统是一种能够将热量从一个地方转移到另一个地方的系统。
它的工作原理基于热力学的一些基本原理,通过循环流体来实现热量的转移和降温。
在这篇文档中,我们将深入探讨制冷系统的工作原理,包括其基本组成部分和工作过程。
首先,我们来了解一下制冷系统的基本组成部分。
制冷系统通常由压缩机、冷凝器、膨胀阀和蒸发器组成。
压缩机负责将低温低压的蒸汽压缩成高温高压的蒸汽,冷凝器则将高温高压的蒸汽冷却成高压液体,膨胀阀用来控制液体的流量和压力,蒸发器则将高压液体蒸发成低温低压的蒸汽。
这些组成部分共同协作,实现了制冷系统的工作。
其次,让我们来了解一下制冷系统的工作过程。
首先,制冷系统中的压缩机会将低温低压的蒸汽吸入,并将其压缩成高温高压的蒸汽。
接下来,高温高压的蒸汽会通过冷凝器,被冷却成高压液体。
然后,高压液体会通过膨胀阀,流入蒸发器,蒸发器中的高压液体会蒸发成低温低压的蒸汽。
最后,这些低温低压的蒸汽会被吸入压缩机,循环往复,实现了制冷系统的工作。
在制冷系统的工作过程中,热量的转移是至关重要的。
通过不断的循环流体,制冷系统能够将热量从一个地方转移到另一个地方,实现降温的效果。
这种热量的转移是基于热力学的一些基本原理,比如热传导、热对流和热辐射等。
制冷系统的工作原理正是基于这些热力学原理,通过不断地循环流体,实现了热量的转移和降温。
总的来说,制冷系统是一种能够将热量从一个地方转移到另一个地方的系统,其工作原理基于热力学的一些基本原理,通过循环流体来实现热量的转移和降温。
制冷系统的基本组成部分包括压缩机、冷凝器、膨胀阀和蒸发器,这些部分共同协作,实现了制冷系统的工作。
在制冷系统的工作过程中,热量的转移是至关重要的,通过不断的循环流体,制冷系统能够将热量从一个地方转移到另一个地方,实现降温的效果。
希望通过本文的介绍,读者对制冷系统的工作原理有了更深入的了解。
检查空调的制冷的原理空调的制冷原理主要是通过热力学和热传导原理来实现的。
简单来说,空调的制冷过程是通过吸收空气中的热量,然后通过制冷剂的循环往复实现的。
首先,我们来了解一下空调系统的工作原理。
空调系统主要由四个部分组成:压缩机、冷凝器、膨胀阀和蒸发器。
制冷剂在这四个部分中不断循环,完成制冷过程。
制冷的原理如下:1. 蒸发器:制冷剂从蒸发器中流过,蒸发器位于室内机内。
蒸发器内有一个扇叶,将室内空气吹过蒸发器。
室内空气中的热量通过传热的方式转移到制冷剂上,使得制冷剂蒸发。
在这个过程中,室内空气的温度下降。
2. 压缩机:压缩机是整个空调系统的核心组件之一。
蒸发器中蒸发的制冷剂被压缩机吸入,压缩机将制冷剂的温度和压力提高,同时使其流动。
在压缩机的作用下,制冷剂的温度和压力大幅提升。
3. 冷凝器:制冷剂在压缩机中被压缩后,进入冷凝器。
冷凝器位于室外机内,通常是一根绕圈的铜管。
这时,制冷剂通过与外部环境对流,放出热量,温度迅速下降。
实际上,冷凝器就是一个热交换器,将制冷剂的热量传递给空气,使得制冷剂冷却成为液体。
4. 膨胀阀:调节制冷剂流量的膨胀阀将液态制冷剂从高压状态下释放出来,使其压力迅速降低。
在这个过程中,制冷剂的温度也随之下降。
通过以上四个步骤的循环,将制冷剂由液态转变为气态,然后由气态再转变为液态,制冷剂的温度迅速下降。
而制冷剂通过蒸发器吸收室内的热量,然后在冷凝器中释放出去,形成了制冷循环。
需要注意的是,制冷剂在整个过程中起到了非常重要的作用。
制冷剂的选择要具备一定的特性,例如:低沸点、低冰点、热导率较高等。
常见的制冷剂有氟利昂、氨、碳二氧化等。
这些制冷剂具有良好的热传导性能,并且能够在制冷过程中稳定地循环。
总结起来,空调的制冷原理是通过制冷剂的循环流动,实现了对室内空气中热量的吸收和排出,从而达到降低室内温度的目的。
制冷剂在蒸发器中吸收热量,然后通过压缩机将制冷剂的温度和压力提高,再通过冷凝器释放热量,最后通过膨胀阀将制冷剂的压力降低,使得制冷剂的温度迅速下降。
制冷与空调制冷和空调是现代生活中不可或缺的一部分。
无论是在居住环境中还是在商业场所,制冷和空调都起着重要的作用。
它们不仅可以提供舒适的室温,还可以保持食物的新鲜和延长货物的保质期。
本文将介绍制冷与空调的原理、应用和发展趋势。
一、制冷的原理制冷的原理基于热力学第二定律,即热能自高温物体传递到低温物体。
制冷系统中包含了压缩机、冷凝器、膨胀阀和蒸发器等关键组件。
首先,制冷剂通过压缩机被压缩成高温高压气体,然后通过冷凝器散发热量,变成高温高压液体。
接下来,通过膨胀阀的作用,制冷剂在蒸发器中膨胀成低温低压气体,并吸收周围环境的热量。
最后,制冷剂再次进入压缩机进行循环。
二、空调的原理空调系统是基于制冷原理构建的。
与制冷系统相比,空调系统还包含了空气循环和湿度控制的功能。
空调系统通过冷却和加热空气,调节室内的温度和湿度,同时通过空气过滤器过滤空气中的污染物,提供优质的室内环境。
空调系统通常包括室外机、室内机、风道和控制系统等组件。
三、制冷与空调的应用制冷与空调广泛应用于家庭、商业和工业领域。
在家庭中,制冷和空调系统可以为人们提供舒适的居住环境,无论是炎热的夏季还是寒冷的冬季,都能够保持室内的温度在一个舒适的范围内。
在商业场所,制冷和空调系统对于保持商品的新鲜和提供舒适的购物环境至关重要。
在工业领域,制冷和空调系统可以用于控制生产过程中的温度和湿度,以确保产品的质量和稳定性。
四、制冷与空调的发展趋势随着人们对室内环境质量的要求越来越高,制冷和空调技术也在不断发展。
一方面,制冷与空调系统正朝着更高效能和更环保的方向发展。
采用新型制冷剂和节能设备可以提高能源利用率,减少对环境的影响。
另一方面,智能控制技术的应用使得制冷与空调系统更加智能化和自动化。
人们可以通过智能手机或者其他终端设备远程控制室内温度和湿度,实现个性化的舒适体验。
总结:制冷与空调是现代生活中必不可少的一部分。
制冷通过热力学第二定律实现了从高温到低温的热能传递,而空调系统在此基础上增加了空气循环和湿度控制功能。