正弦逆变器控制软件设计
- 格式:doc
- 大小:555.50 KB
- 文档页数:8
纯正弦波逆变器电路图大全(数字式/自举电容/光耦
隔离反馈电路图详解)
纯正弦波逆变器电路图(一)
基于高性能全数字式正弦波逆变电源的设计方案
逆变电源硬件结构如图2所示。
主要包括直流推挽升压电路、正弦逆变电路、输出滤波电路、驱动电路、采样电路、主控制器和点阵液晶构成。
其中,直流升压部分将输入电压升高至输出正弦交流电的峰值以上的母线直流电压,正弦逆变部分将母线直流电压逆变后经输出滤波电路得到正弦式交流电,采样电路则对母线电压、母线电流、输出电压、输出电流、输入电压进行采样,以实现短路保护、过压欠压保护、过流保护、闭环稳压等功能。
驱动电路的功能是将驱动信号的逻辑电平进行匹配放大,以满足驱动功率管的要求。
控制电路的功能是产生驱动信号,并对采样信号进行处理,以实现复杂的系统功能。
点阵液晶的功能是显示系统工作信息,如果输出电压、电流以及保护信息等。
图2
1)主控制器。
1. 本产品可适用冰箱,洗衣机,手电钻等感性负载。
2. 超低的待机功耗,待机功率仅为0.3W3. 输入电压可适用12V 或者24V (只能任选一种).4. 多种安全保护及声音报警.5. 具有电池优化功能,让你的蓄电池更耐用5. 内置太阳能充电控制器(充电逆变一体机)1. 不正确的安装会导致设备的损坏,造成功能不良或者对用户潜在的危害2. 逆变器工作是会产生高压,如果接触有电部分会导致致命危险,因此,针对逆变器的任何操作,必须小心。
3. 不允许用户操作逆变器内部的任何部分。
4. 不要将任何产生电流或电压的发生装置(比如公共电网,发电机等)接到逆变器的输出端,会将产品烧毁。
5. 本产品充电适用于铅酸蓄电池或者胶体电池。
6. 远离未授权接触产品的人,特别是儿童。
正弦波逆变器充电逆变一体机使用说明书感谢你使用奥林斯产品,在使用产品之前,请仔细阅读本产品说明书1. 安装位置: 请安装在干燥的地方(最大湿度95%),不能直接 安放在蓄电池上面。
周围通风必须通畅,产品各个方向最少 保留10CM 的空间,便于散热。
不要将易燃易爆的物品放在产品 周围。
2. 使用M 5螺丝把逆变器固定在不易燃烧的平面上,螺丝不随机配送。
1. 负载连接逆变器的接线必须非常小心,首先要接负载,当有交流电输出的时候 避免任何接触。
一旦接上负载,在逆变器连接蓄电池前,请确保其 处于关闭状态。
2 蓄电池连接.●在蓄电池端上必须安装保险丝● 蓄电池接线时仔细观察端子的颜色,区分正负极。
正负极接 反,会导致产品烧坏。
● 蓄电池连接请参考以下颜色区分: 黑色接线端子: 负极(-) 红色接线端子: 正极(+)注意: 当接通蓄电池时会有火花产生,属于正常现象。
(给内部 的滤波电容充电)●请尽可能的不要延长蓄电池电缆,会引起压降损耗,造成逆变器 误操作, 建议线长不要超过2米 线经推荐: 500W /600W :6mm 300W /400W :4mm注意事项:连接方法22以下情况逆变器具有声音报警过热: 当温度差3℃达到高温保护值时,蜂鸣器响,如果此时减小负载电流,温度恢复到正常水平,逆变器输出电压不会被中断蓄电池低电压: 蓄电池低电压切断逆变器输出前蜂鸣1分钟,如果蓄电池电压上升,可以避免逆变器低压保护按开关启动逆变器: 长鸣2秒钟,马上有电压输出注: 声音报警功能可以设置关闭3. 输出电压闪变报警当关闭了声音报警或者无法听到报警声时,此方式可以提醒用户因为过热或者蓄电池低电压造成逆变器即将停机, 如果开启这个功能,输出电压将会闪变,导致灯的亮度闪变,用来提示用户蓄电池即将没电,这时,用户可以减小负载功率来保证优先负载的供电(例如照明)4. 待机功能本逆变器具有独特的待机功能,当检测到没有负载时,通过间歇地关闭逆变器来节省能量,在这个模式下LED1闪烁,表示间歇性的输出电压每一秒钟输出一个正弦波. 逆变器进入待机模式时候,待机功耗仅为0.4W出厂默认负载探测值:5W. 当负载功率小于5W时候. 没有电压输出. 当负载>5W时,立刻有电压输出.注: 出厂默认待机功率可根据用户需求来调整,订货时候请向工厂注明需求功能开启和关闭用户可以对逆变器的以下功能进行自由的开启或关闭1. 逆变器即将停机前声音报警2. 蓄电池优化程序3. 逆变器即将停机前输出电压闪变设置方法按住ON/OFF键持续特定的时间(对应每个功能,参考下表),蜂鸣器指示相应的功能是处于开启或关闭状态一声短蜂鸣声(嘀) = 功能开启二声短蜂鸣声(嘀嘀) = 功能关闭听到蜂鸣声后, 两秒内释放ON/OFF键, 功能的状态将会改变(翻转). 如果不希望改变设置而了解功能状态,用户可一直按住ON/OFF键. 当超过20秒,将会听到持续的蜂鸣声,至少顺序的结束,松开按键声音会停止, 将不会影响或者改变功能的设置.1. 逆变器具有电子保护电路。
基于STM32的单相正弦波逆变器设计李加升;李稳国;宋歌【摘要】考虑当前光伏发电、风力发电等新能源逆变入网的需要,在比较了现有逆变器的基础上,针对低压小功率的逆变,设计了一种基于STM32的单相正弦波逆变器.该逆变器主要由控制模块、全桥式逆变模块、同步BOOST电路、信号采集与调理模块、信息显示模块、欠压过流保护模块等构成.逆变器采用SPWM正弦脉宽调制,经过IR2104产生两路反相的SPWM波,驱动4个开关管IRF540工作,并利用STM32完成电流/电压采样、调试和液晶显示的数据处理.经实际测式,该逆变器获得了较高的转换效率,较低的输出电压/电流误差.【期刊名称】《湖南城市学院学报(自然科学版)》【年(卷),期】2017(026)003【总页数】4页(P54-57)【关键词】全桥逆变;同步BOOST;SPWM控制【作者】李加升;李稳国;宋歌【作者单位】湖南城市学院信息与电子工程学院,湖南益阳 413000;湖南城市学院信息与电子工程学院,湖南益阳 413000;湖南城市学院信息与电子工程学院,湖南益阳 413000【正文语种】中文【中图分类】TM464在光伏发电、风力发电等新电源被广泛应用的今天,逆变技术的研究被广泛关注,而低压小功率的逆变电源是电子设备必不可少的部分.随着电力电子技术的发展和对电气设备在性能上的要求,以及不同应用领域对电源的技术要求,各行业对逆变电源的要求也在不断提高.在许多的电子设备中,要求逆变电源系统可靠性高、稳定度好、调节特性优良,而且体积小、重量轻[1-2].而控制信号产生电路是逆变器的核心,其性能优劣将直接影响整个逆变器的好坏.正弦波脉宽调制(SPWM)是逆变电路的核心技术,目前SPWM的产生方法有很多种,最基本的方法就是利用分立元件,采用模拟、数字混合电路产生SPWM[3-4].文献[5]提出了一种用数、模硬件电路产生SPWM的方法,此方法硬件电路复杂;文献[6]采用SPWM专用芯片SA828系列与微处理器直接连接生成SPWM,此方法生成的SPWM波形参数受专用芯片限制;文献[7]利用FPGA来生成SPWM波,虽然生成的SPWM波质量性能较好,可以灵活改变输出波形参数,但成本也相对较高.本文采用ARM 公司的32位单片机STM32作为主控芯片对单相正弦波逆变器进行了设计.基于STM32的单相正弦波逆变器方框图见图1.系统主要由STM32主控模块、驱动模块、同步BOOST模块、全桥逆变模块、信息采集模块、欠压过流保护模块及键盘显示模块组成,同步BOOST电路和全桥逆变模块组成系统的主电路.系统由单片机产生一路PWM,经驱动模块功率放大后,变为两路反相带死区的PWM,控制同步BUCK中的两个开关管,实现直流电输出升压.全桥逆变电路由单片机产生的2路反相SPWM波,经过驱动模块后生成的4路SPWM波信号控制.SPWM波控制逆变电路4个开关管的通断,将升压后的直流电转换为交流电[8].系统采用互感采样将交流输出电压电流反馈给单片机进行PID调节,实现稳压功能.将交流电压信号经过过零比较器后得到同频率的方波,再由单片机进行频率采样显示在液晶屏上,并可通过按键设定交流电输出频率,与采样频率比较后,进行PID调节,实现频率可调.通过控制欠压过流保护模块中的继电器通断,可以实现欠压过流保护.控制模块由STM32芯片及外围电路构成的最小系统,主要用于信号的采集和发出控制信号;数据采样模块以ADS1115芯片为核心,电压互感器和电流互感器采集输出端电压电流并通过BOOST输出[9];由过零比较器为主要核心构成的定时器捕获模块是为了得到交流输出频率和功率因子;同步BOOST电路使用开关管取代BOOST电路的续流二极管,并用两路反相的PWM驱动;全桥逆变模块通过单片机产生SPWM波控制4个开关管构成全桥式滤波电路,可提高效率;LCD12864模块显示电源的相关主要参数;过流欠压保护模块用于增强电路的安全性,通过检测电源的电压电流,从而控制继电器对整个电路进行保护.STM32单片机拥有512 KB的系统内可编程Flash、112个的快速I/O端口、11个定时器、实时时钟RTC、2个12位的us级的A/D转换器(16通道)、SPI串行端口,以及3种可以通过软件选择的省电模式.单片机主要起到电流电压采样、功率因数测量、信息显示以及过流欠压保护的作用,STM32最小系统部分由晶振电路、复位电路、显示电路组成.单片机最小系统需晶振电路来产生时钟频率.STM32电路采用8 MHz的晶振,CPU最高工作频率可达72 MHz.LCD12864带中文字库的12864内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块,其分辨率为128×64,内置8 192个16*16点汉字,和128个16*8点ASCII字符集,利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面.可以显示8×4行16×16点阵的汉字,也可完成图形显示.主电路由同步BOOST电路和全桥逆变电路组成,见图2.系统通过单片机产生PWM波控制BOOST电路升压,将BOOOST输出电压输送到逆变电路,同时利用正弦脉宽调制技术产生SPWM波给逆变电路实现DC-AC.STM32单片机产生1路PWM,经过I2104后变为两路反相带死区的PWM,控制同步BOOST电路中开关管的通断,由电感周期性充放电和后级电容滤波,使电压输出升高.利用电阻取样法将输出电压采集,反馈给单片机与设定值比较得到误差值,再根据误差值进行稳压调节.逆变部分则是由单片机产生两路反相的SPWM波,经过驱动芯片IR2104驱动后变成4路SPWM波分别驱动全桥的4个开关管,通过单片机的定时器功能每隔50 us取正弦波对应的1个占空比值,1个正弦波分为400个点,则逆变后的波形的周期T =50 us*400=20 000 us=20 ms,频率为f =1/T =50 Hz.由此可实现固定输出50 Hz的交流电.为了提高输出电压、电流控制精度,信号采集模块选用16位采样芯片ADS1115进行采样.系统首先通过电压互感器和电流互感器分别将输出电压、电流成比例缩小,再输入AD637将交流输出换算为真有效值后,由ADS1115采样后反馈给单片机.AD采样电路图见图3.欠压过流保护采用继电器控制电路的通断实现保护.单片机将反馈的电压值和电流值与设定值相比较,当电压低于20±0.5 V或高于28±0.5 V、电流超过1.7±0.1A时,单片机的PA.2口发出一个电平,通过对继电器开关的控制来实现对电路的保护,通过软件控制欠压过流保护具有自恢复功能.AD及继电器保护电路图如图4所示.开启总电源,系统进入初始化状态.然后,对输入电流、电压进行采样,若输出电压大于28 V或低于20 V、电流值大于1.7 A,则驱动继电器断开主回路,完成过流保护,5 s后控制继电器使电路正常工作.若电压电流值在正常范围内,则进行稳压调节,并通过液晶显示.本系统的主程序流程图如图5所示.在输入直流电压Us=21.5 ~26.5 V的条件下,使用数字万用表测量交流电压输出,用示波器测量输出电压波形及频率,测量结果见表1.负载采用50 Ω/50 W 可调滑线变阻器,在直流输入电压Us=24 V、负载为5 Ω时,调整输出交流电压为36 V,然后将负载电阻为10 Ω,测量输出电压的变化范围,具体数据参见表3,经计算最大变化范围为0.283 V.负载采用50 Ω/50 W,调整输出电压测出输入输出电压和电流,并计算出效率,具体数据见表3.由表3数据可知,输出效率最低时为83.1%.逆变系统设计时,设计的功能是当检测到当电压低于20±0.5 V或高于28±0.5 V、电流超过1.7±0.1 A时,继电器断开,以实现保护的目的.经实际测试,当电流为1.7±0.05 A时,继电器断开,具备过流保护及自恢复功能.本文设计了一种基于STM32的正弦波逆变器,主要通过BOOST升压,经全桥逆变后,结合SPWM的控制转换为交流电,再进行PID调节,实现稳压功能.结合STM32和LCD12864液晶显示器,实现友好的人机交互界面.利用了过流欠压保护技术,为逆变器提供了有力的安全保障.经组装和测试后,该逆变器能够实现输入直流电压Ui=21.5~26.5 V范围时,输出频率为f0=50±0.5 Hz的交流电压U0=36±0.5 V,输出可调频率20~80 Hz,电能转换效率达83%以上,其他各项指标均达到较为满意的效果.【相关文献】[1]王兆安, 刘进军. 电力电子技术[M]. 5版. 北京: 机械工业出版社, 2013.[2]张凯, 王祥. 基于STM32的新型SPWM逆变电源[J]. 电气自动化, 2012, 34(3): 52-54.[3]吕小涛. 基于DSP的正弦波逆变电源研究[D]. 武汉: 武汉理工大学, 2009.[4]王小龙, 陈畅, 龚敏. 一种新型过流保护电路的设计[J]. 电子与封装, 2010, 87(7): 16-19.[5]罗秦. 基于STM32的DC-AC电源设计与研究[D]. 天津: 天津理工大学, 2015.[6]宗荣芳. 基于protel DXP的电路设计仿真[J]. 电子工程师,2005, 31(1): 41-47.[7]江国栋, 徐丽萍. 基于AD型单片机的中功率升压开关稳压电源设计[J]. 南京工业职业技术学院学报, 2009, 9(2): 12-13.[8]高玉峰, 胡旭杰, 陈涛, 等. 开关电源模块并联均流系统的研究[J]. 电子工程, 2011(02): 210-212.[9]付运旭. 高频全桥逆变电源设计与测试[D]. 济南: 山东大学,2012.。
基于EG8010-SPWM纯正弦波逆变器设计摘要:为满足风力发电系统对纯正弦波逆变器的要求,设计了一种以EG8010-SPWM为核心的逆变器。
主电路采用升压斩波电路和单相全桥逆变电路,降低了噪声,提高了效率。
控制电路采用EG8010-SPWM纯正弦波逆变发生器芯片,简单可靠、易于调试。
实验表明该逆变器输出电源稳定、安全、波形失真小,具有很好的应用前景。
引言普通逆变器一般包括方波逆变器和修正正弦波逆变,它们输出的电能谐波含量大、带负载能力差。
本文介绍一种基于EG8010的户用风力发电系统纯正弦波逆变器的设计。
逆变器的额定功率为300W,额定的输入电压为直流24V,输出为单向标准纯正弦电压220V±5%,频率范围50Hz±0.5%,具有过热、过载保护和输出过压保护。
系统整体方案设计户用风力发电系统纯正弦波逆变器主要由DC/DC转换电路、DC/AC逆变电路、输出电路、控制电路、驱动电路、辅助电源等构成,同时系统中还要对输出的电流和系统的温度进行反馈,监控过压、过流、欠压和过温情况,系统结构框图如图1所示。
工作原理叙述下:24V的直流电源通过DC/DC转换电路调制成所需要的高频直流电压和电流,为后面的逆变提供足够的功率。
利用EG8010-SPWM纯正弦波逆变器控制芯片电路产生的SPWM信号通过驱动电路控制功率器件的导通和关断,配合逆变电路,完成逆变过程,将直流电转化为220V/50Hz纯正弦波交流电。
保护电路实现过压欠压保护、过流和短路保护、过温保护和过载保护等。
辅助电源是将逆变器的输入电压变换成控制电路和驱动电路工作的。
正弦逆变器控制软件设计摘要:介绍单相全桥逆变器的工作原理,阐述产生SPWM波和实现PI控制的算法,给出以DSP(数字信号处理器)实现控制的软件流程。
实验表明利用软件完成逆变器控制是可行的。
关键词:正弦逆变器;控制;SPWM;PI;DSP目前,正弦逆变器的控制通常采用模拟电路或数字电路实现。
由于硬件的固有缺点和不能实施先进的控制策略,致使逆变器的性能不能极大的提高。
随着高速微处理器的问世,特别是具有高速运算、处理和控制能力的DSP的出现,使得对正弦逆变器采用新的控制方法成为可能。
文中将重点介绍采用DSP实现正弦逆变器控制的方法。
1 全桥正弦逆变器图1示出单相全桥逆变器的原理电路及波形。
其中H桥和滤波电路完成直流到交流的变换,滤去谐波,获得交流电;控制电路完成对H桥中开关管的控制,并使输出交流电的电压、频率和波形稳定。
SPWM的生成原理及波形如图2所示。
由于采用正弦波调制波(Ussintωs t)与三角波载波(幅值为Uc的正三角波,频率为ωc)相交来获得SPWM波,因此,基波频率为调制波的频率,基波幅值与调制比M(M=Us/Uc)成正比关系,谐波含量少。
正弦逆变器常采用SPW M控制,利用调制波控制输出波形频率,调整M来控制输出电压幅值。
工作时,H桥中Vl、V4在前半周期内以图2中的SPWM信号闭合,V2、V3断开;在后半周期内V1、V4断开,V2、V3以SPWM信号闭合。
故在整个周期内H桥输出波形如图1(b)所示。
这样,对该波形进行滤波,即可获得频率为ωs。
,幅值正比M与调制比M 的正弦交流电。
2 H桥控制方案和信号的数字化2.1 控制方案对逆变器的控制主要包括对SPWM的控制(即H桥开关管开关方式)和对SPWM脉宽的控制(即调整M,使输出电压稳定的反馈控制,一般采用平均电压控制技术,即PI控制)二部分。
SPWM的控制方式可分为单极性和双极性二种。
在传统的单极性或双极性控制方式中,开关管均工作在高频条件下,这样虽然可以得到较理想的正弦输出电压波形,但也产生了较大的开关损耗,且频率越高,损耗越大。
基于TDS2285的正弦波逆变器设计作者:陈萍刘西安来源:《电脑知识与技术》2018年第02期摘要:针对无线电能传输设备对逆变器更加严谨的需求,设计了一种性价比较高的正弦波逆变器。
采用纯硬件电路,其推挽升压电路是由SG3525芯片生成PWM信号来控制的,全桥逆变电路是由TDS2285输出SPWM信号来控制。
该设计与传统的逆变器比较,具备控制电路设计简单、成本较低且逆变波形完美、电流畸变率低等优点。
关键词:逆变器;PWM;SPWM中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2018)02-0034-02逆变器,英文名称为Inverter,主要工作功能是把直流电转换成交流电。
随着电力电子技术的不断发展,逆变器也广泛应用于日常生活中,如空调、电脑、电视、风扇、照明、录像机等设备。
与此同时,电源质量的指标要求也不断的提高。
为了满足这种需求,研制了一种由纯硬件来实现的正弦波逆变器。
与软硬件结合的一般逆变器相比,省去了编程环节,具有性能稳定,反应迅速,不会死机的特点。
按照先用升压斩波电路将直流电压转换为另一种直流电压,再利用H桥逆变器电路将得到的新直流电压逆成为所需要的正弦波交流这种工作原理。
采用PWM控制芯片 SG3525 作为主控芯片,来控制升压斩波电路。
采用纯正正弦波逆变控制TDS2285 作为主控芯片来调节H桥逆变电路。
并对装置的所有功能需求做了相应的设计,使逆变器运行安全高效。
1 系统组成升压和逆变是逆变电源最主要的两个功率变换环节,主要有两种形式可以实现此性能:一种是先进行全桥逆变输出,再进行隔离升压输出,为此得加一个工频变压器,相对增加了电路的体积、重量和设计成本,且其噪声影响较大。
另一种是采用两级式级联结构,输入直流电压经过整流升压变换后再进行逆变输出,与第一种方式相比,由于省去了工频变压器,相对减小了系统的体积、重量和噪声污染,并且其转换效率比第一种方式高,因此装置选用第二种实现方式。
单相纯正正弦波逆变控制芯片TDS2285以下为用改芯片打造的24V-2000W机器最后来张空载波形:这么看波形倒是很好,不过要是有带载2kw的波形就更好了2KW的要看什么负载,其实波形的失真与否输出和芯片关系不大,主要是滤波器的设置我们可以用到,我们公司有一款产品正是需1000W的类似产品,不知道你是卖芯片还是卖这个产品,你这个图很复杂吧,用了那么多运放,另外想问一下你这个成本是多少,太贵了就不行了,现在成本控制的比较厉害,另外想问一下,这个在带2000W时的波形变形厉害不,效率有多少对于象我这样不懂单片机编程的爱好者来说,要设计一个SPWM电路,首先肯定会想到用纯硬件方案,我在去年就花了大约半年时间来研究纯硬件SPWM的驱动电路,做出了很多版本的实验板,但没有一块是令人满意的。
总结一下整个过程,我觉得要做出一款性能指标比较好的纯硬件电路,有以下三难:一是:设计一个性能稳定,波形良好的基准源有点难。
一般常用的文氏电桥振荡器,虽然电路简单、起振容易,但有一个很头痛的问题,就是输出的幅度有温漂,且波形的失真度也较高,一般在 1.7-2.5%之间。
我也试过用函数块8038的振荡器,8038虽然输出比较稳定,但要把它的失真度做小,外围元器件也不算少了,更何况要几十元一个的高昂价格;二是:要设计一个速度快且线性很好的调制器也不容易,我曾试过用3525做调制器的,也试过用LM339做调制器,总觉得不是电路复杂就是指标不高;三是:设计一个大反馈稳压电路难。
纯硬件方案中,做稳压反馈,一般是用误差放大器,如果放大器的增益过低,则稳压控制范围就不够大,稳压效果很差,如果放大器增益高了,又很容易自激;更有甚者,信号通过各级LC电路后,多多少少会有相移,所以在电路中还要做各种补偿。
所以,要做出一款性能指标都不错的纯硬件SPWM驱动,需要有很强的电路设计能力,很好的电路基础知识,钟工就有一款很不错的纯硬件驱动,/topic/180615。
300w正弦波逆变器毕业设计毕业设计是大学生在校期间最后一个重要的学习任务,学生需要通过毕业设计来检验自己所学专业知识的掌握情况,并展示自己的综合能力。
在电气工程专业中,一些学生选择设计一个正弦波逆变器作为毕业设计是比较有挑战性的。
正弦波逆变器是一种电子电路设备,它能够将直流电源转换成交流电源,其输出的交流电压和频率可以很好地模拟正弦波形。
毕业设计的主题是“300w正弦波逆变器”,这是一个挑战性的课题,需要综合运用电路理论、电子器件、控制系统等多方面的知识。
我们来看一下300w正弦波逆变器的设计要求和参数,然后再探讨一下具体的设计方案和实现过程。
设计要求:1. 输出功率:300w;2. 输出电压:220V交流;3. 输出波形:正弦波;4. 效率要求:尽量高;5. 控制方式:PWM控制。
300w正弦波逆变器的设计需要考虑的内容非常多,比如电源电路、控制电路、输出滤波等。
我们需要设计一个合适的电源电路,将输入的直流电源转换成高频交流电源,然后再通过变压器降压变频,最终输出所需的220V交流电压。
在这个过程中,需要考虑电路的损耗问题,以及如何提高整个系统的效率。
我们需要设计一个PWM控制电路,用来精确控制逆变器的输出电压和频率,以确保输出的交流电压是符合要求的正弦波。
为了减小谐波等干扰,还需要设计一个合适的输出滤波电路,让输出的交流电压更加纯净稳定。
在300w正弦波逆变器的毕业设计中,学生不仅需要理论知识的扎实运用,还需要动手实际搭建电路,并进行调试。
在这个过程中,可能会碰到各种各样的问题,需要学生具备一定的动手能力和问题解决能力。
总结来说,300w正弦波逆变器的毕业设计是一个综合性的项目,需要学生充分发挥自己的创造力和动手能力。
通过这样的设计,学生不仅可以加深对电力电子领域知识的理解,还能锻炼自己的实际动手能力和解决问题的能力。
希望学生可以在毕业设计中取得成功,为自己的未来工作打下坚实的基础。
电气工程专业的学生通常需要在毕业设计中展现他们所学专业知识的掌握情况,并展示自己的综合能力。
逆变器建议删除该贴!! | 收藏| 回复| 2008-03-15 12:18:15楼主搞正弦波,难度最大的就是要生产稳定的SPWM波,还有就是要有合理的电压调整电流,电流检测.很多在网上都介绍些用单片机,分立元件等.其实不用哪么麻烦的.主要一个U3990加一个IR2110,4 个IRF460,两个滤波器就可以做成一款精度误差为2%的纯正弦波电源.在这里详细原理图我就不发了,我发一些提示性的东西给大家;U3990:U3988是数字化的、功能完善的正弦波单相逆变电源 / UPS 主控芯片,它不仅可以输出高精度的SPWM正弦波脉冲序列,还可以实现稳压、保护、市电/逆变自动切换、充电控制等功能,并且具备LED指示灯驱动、蜂鸣器控制、逆变桥控制引脚,从而可以利用该芯片组成一个完整的逆变电源/UPS系统,用该芯片控制的逆变桥输出,既可以是传统的工频变压器结构,也可以是高频升压后的直接逆变结构.为方便生产过程中的调试,该芯片还具备测试模式,在该模式下,所有的保护功能、市电切换、充电控制均不起作用,仅工作在可以稳压的逆变状态,为最基本的调试和测试提供了方便.U3988 的内部构成主要有:正弦波发生器、双极性调制脉冲产生逻辑、50Hz(或 60Hz) 时基、电压反馈/短路检测、正弦波峰值调压稳压单元、外部扩展的保护响应逻辑、市电过零脉冲过滤、市电电压测量、电池电压测量、逆变控制、充电控制、指示灯控制、蜂鸣器控制、抗干扰自恢复单元构成.整个电路封装成一个18引脚IC(DIP18),其内部结构框图如图一所示:图二是U3988的引脚图.VDD是芯片的电源引脚,接单一+5V;GND是地;OSC1、OSC2是时钟引脚,接20MHz晶振;OUTA、OUTB是正弦波SPWM脉冲序列的输出引脚,这两个引脚输出的信号一般要通过死区控制电路才能送到逆变桥;OUTG是逆变桥使能控制输出,该引脚输出低电平时允许逆变桥工作,输出高电平时则禁止逆变桥工作;AV_CK是逆变输出电压反馈引脚,该引脚接受的是模拟量输入,逆变桥最终输出的正弦波交流电压通过反馈电路送到该引脚,由芯片对逆变输出电压实现稳压、调压和短路检测;BT_CK是电池电压测量引脚,是模拟量输入引脚,电池电压经过电阻降压送到该引脚,由芯片对电池实现欠压保护、充电检测,若不需要使用该引脚,可以直接接+5V;AC_CK是市电电压测量引脚,这也是模拟量输入引脚,市电电压经过降压、整流、滤波、电阻分压后,送到该引脚,芯片会根据该引脚电压的变化,判断市电是否异常,并决定是否进行市电/逆变切换;若不需要使用该引脚,也可以直接接+5V;ACPLUS引脚是市电检测输入,芯片由此引脚的高低电平判断市电的有无;有市电时要将该引脚拉成低电平,对于检测市电的电路,如果为了提高响应速度而不采用滤波电容,也是允许的,虽然在该引脚的低电平信号中含有过零脉冲,但并不会使U3988频繁地进入逆变状态,因为在芯片的内部有过零脉过滤逻辑;AC/DC引脚是市电/逆变控制输出,输出高电平时为市电,输出低电平时为逆变;CHARG引脚是充电控制输出,高电平有效;LED_L引脚是逆变/欠压指示输出,低电平时表示逆变状态,闪烁时表示欠压;LED_P引脚是保护指示输出,当检测到短路或者外部的扩展保护时,芯片停止逆变,进入保护状态,此时指示灯闪烁;PROT引脚是扩展保护输入引脚,高电平有效,用户可以通过外部的或门逻辑实现过流、过温等保护输入 ,该引脚在逆变和市电状态都可以响应外部的保护请求;BEEP/TEST是双向引脚,正常工作时是蜂鸣器控制输出引脚,通过三极管驱动电磁式蜂鸣器,当在芯片加电的瞬间,该引脚是输入引脚,用来检测外部TEST跳线的状态;关于该引脚的详细用法,将在后面介绍;NC引脚是空余的引脚,一定要接到高电平.在逆变状态下,OUTA、OUTB引脚输出的是双极性的SPWM脉冲序列,见图三所示:OUTA 输出的SPWM脉冲序列,经过逆变后对应正弦波的正半周;OUTB输出的SPWM脉冲序列,对应正弦波的负半周.逆变输出电压反馈引脚的作用是测量逆变输出的交流电压,根据测量值计算输出电压的误差并对输出电压值作出调整.当输出电压升高时,该引脚的电压也随之升高,芯片内部的调压电路会降低输出电压,反之,当该引脚的电压降低时,芯片会升高输出电压.该引脚采用的峰值电压取样法,如图四所示:图中的虚线标识就是芯片的取样点,峰值取样的优点是测量值准确、对电压变化反应迅速.在大多数情况下对于发生偏离的输出电压,芯片可以在1-5个交流电周期内调整完毕,为了降低正弦波形的失真度、保证波形的完整性,这种调整是在下一个交流电周期起作用的.该引脚也可以测量整流滤波后的直流电压(平均值),只是因为滤波电容的存在,使芯片对输出电压的变化反应迟钝.加在AV_CK 引脚上的电压必须是实时的,不能是静态的电压.例如:在某一应用中为了能够调节逆变输出电压,在该引脚施加了一个固定的直流电压,这个电压是可以调节的,但不是输出电压的反馈,这种情况是不允许的(但不会损坏芯片),因为这个电压不是反馈回来的,芯片始终会认为这个值偏高(或偏低),从而会一直做出相反的调整,直到把输出电压调到了最低(或最高),才会停止.芯片的调压 / 稳压范围大约是最高输出电压的50%-100%.该引脚能够测量的电压范围是 0-5V,为了保护该引脚不会因为过压而损坏,要在该引脚串接一只10K的电阻(特别重要).该引脚是以4.5V作为稳压基准的.AV_CK引脚同时还要检测输出电压的短路情况,短路检测的周期是100uS检测一次,同时检测的还有扩展保护引脚,但是在输出电压过零点的前后10度范围内不进行上述检测,在这段时间内,芯片要检测电池电压和市电电压以及市电状态.BT_CK引脚对电池电压检测的动作阀值:该引脚的电压低于1.9V为欠压保护;低于2V为欠压告警;低于2.4V时开始充电(在有市电时),高于2.8V时停止充电.充电控制引脚CHARG的动作带有10秒钟的延迟.并且每次上电芯片都尝试对电池进行充电.AC_CK引脚对市电电压检测的动作阀值:该引脚电压低于1.9V或者高于2.4V表示市电异常,芯片会自动转入逆变;该引脚带有施密特触发特性,在市电高于2V或者低于2.3V时,芯片才认为市电正常.蜂鸣器控制引脚BEEP/TEST是具有两个功能的双向引脚,它的外围电路建议如图五所示:正常情况下,跳线器TEST是断开的,由BEEP/TEST引脚输出的蜂鸣信号通过R3、C1、D1、Q1驱动电磁蜂鸣器发声;在芯片加电启动的过程中,若芯片检测到TEST跳线短接,就会进入测试状态.在测试状态,芯片不理会各种保护信号和市电状态,始终处在可以稳压、调压的逆变状态.图五中的R1为TEST跳线提供高电平上拉,R2是为了及时释放掉C3上的电压,保证跳线未短接时BEEP/TEST引脚是低电平.改变跳线后要对芯片重新加电.蜂鸣器采用不同长度的发声来代表芯片的状态:市电/逆变切换时短鸣一声;电池欠压告警时以3秒钟的间隔短鸣;欠压、短路、扩展保护时以1秒的间隔短鸣;进入测试状态时短鸣两声. PCB布线时要注意的问题:一.时钟引脚要接一20MHz的普通晶振,晶体的两个引脚还要各接一只外部电容,尽管没有外部电容C,振荡电路也能起振,但为了工作稳定和避免干扰,最好采用15-30PF的电容; 二.三个模拟量测量引脚BT_CK、AC_CK、AV_CK的线条要尽可能短,并且能与地平行或者被地包围,以减小干扰;三.U3988的+5V供电和地线要单独到走电源,不要从其它的电路单元分支过来,这样可以把芯片受到的干扰降到最低程度;U3988芯片有两个系列:50Hz和60Hz.每个系列又有不同的版本变化,用户可以从芯片型号的后缀字符加以区分.如:U3988T5-50表示50Hz系列的T5版本,U3988T5-60表示60Hz系列的T5版本.目前U3988提供的版本是T8.RI2110;在功率变换装置中,根据主电路的结构,起功率开关器件一般采用直接驱动和隔离驱动两种方式.美国IR公司生产的IR2110驱动器,兼有光耦隔离和电磁隔离的优点,是中小功率变换装置中驱动器件的首选.IR2110引脚功能及特点简介内部功能如图4.18所示:LO(引脚1):低端输出COM(引脚2):公共端Vcc(引脚3):低端固定电源电压Nc(引脚4): 空端Vs(引脚5):高端浮置电源偏移电压VB (引脚6):高端浮置电源电压HO(引脚7):高端输出Nc(引脚8): 空端VDD(引脚9):逻辑电源电压HIN(引脚10): 逻辑高端输入SD(引脚11):关断LIN(引脚12):逻辑低端输入Vss(引脚13):逻辑电路地电位端,其值可以为0VNc(引脚14):空端IR2110的特点:(1)具有独立的低端和高端输入通道.(2)悬浮电源采用自举电路,其高端工作电压可达500V.(3)输出的电源端(脚3)的电压范围为10—20V.(4)逻辑电源的输入范围(脚9)5—15V,可方便的与TTL,CMOS电平相匹配,而且逻辑电源地和功率电源地之间允许有 V的便移量.(5)工作频率高,可达500KHz.(6)开通、关断延迟小,分别为120ns和94ns.(7)图腾柱输出峰值电流2A.桥电路驱动原理IR2110内部功能由三部分组成:逻辑输入;电平平移及输出保护.如上所述IR2110的特点,可以为装置的设计带来许多方便.尤其是高端悬浮自举电源的设计,可以大大减少驱动电源的数目,即一组电源即可实现对上下端的控制.高端侧悬浮驱动的自举原理:IR2110驱动半桥的电路如图所示,其中C1,VD1分别为自举电容和自举二极管,C2为VCC 的滤波电容.假定在S1关断期间C1已经充到足够的电压(VC1 VCC).当HIN为高电平时如图4.19 :VM1开通,VM2关断,VC1加到S1的栅极和源极之间,C1通过VM1,Rg1和栅极和源极形成回路放电,这时C1就相当于一个电压源,从而使S1导通.由于LIN与HIN是一对互补输入信号,所以此时LIN为低电平,VM3关断,VM4导通,这时聚集在S2栅极和源极的电荷在芯片内部通过Rg2迅速对地放电,由于死区时间影响使S2在S1开通之前迅速关断.当HIN为低电平时如图4.20:VM1关断,VM2导通,这时聚集在S1栅极和源极的电荷在芯片内部通过Rg1迅速放电使S1关断.经过短暂的死区时间LIN为高电平,VM3导通,VM4关断使VCC经过Rg2和S2的栅极和源极形成回路,使S2开通.在此同时VCC经自举二极管,C1和S2形成回路,对C1进行充电,迅速为C1补充能量,如此循环反复./play/4356/1.html/html/zipaitoupai/list_5_6.html。
现代电子技术Modern Electronics TechniqueJun.2023Vol.46No.122023年6月15日第46卷第12期0引言逆变器是一种能把直流电源转变成定频定压或调频调压交流电源的转换器,广泛应用于家用电器设备、照明、电动工具等场所。
纯正弦波逆变器是通过控制半导体功率开关器件的导通和关断,将直流电能转化为交流电能。
如晶闸管(SCR )、可关断晶闸管(GTO )、大功率晶体管(GTR )、绝缘双极性晶体管(IGBT )和功率场效应管(MOSFET )等电力电子器件,较多用于此类电路。
纯正弦波逆变器的波形类似交流电源,以平滑的线上升和下降,虽然价格比普通的逆变器更昂贵,但它们在给精密电子设备仪器供电方面,可靠性和稳定性更好[1]。
改型波逆变器产生类似于上下楼梯的波形,以模仿纯交流电的波形,并且可以运行大多数家用小工具,但可能会遇到诸如“电子噪声”之类的问题,这些问题可能导致某些项目无法满负荷运行。
更重要的是,敏感的电子设备需要纯正弦波才能正常工作,如果尝试使用修改后的波来运行它们,可能会造成永久性损坏。
1设计与研究基础逆变技术的研究源于1931年。
第一台感应加热逆变器诞生于1948年,由美国西屋电气公司研制生产。
晶闸管(SCR )的发明为正弦波逆变器提供了更好的发展空间。
从20世纪70年代起,GTO 、BJT 、MOSFET 、DOI :10.16652/j.issn.1004⁃373x.2023.12.019引用格式:夏威,刘文胜.基于STM32的正弦波逆变器设计与研究[J].现代电子技术,2023,46(12):109⁃116.基于STM32的正弦波逆变器设计与研究夏威,刘文胜(惠州市技师学院电子工程系,广东惠州516003)摘要:逆变器是一种能把直流电源转变成定频定压或调频调压交流电源的转换器,广泛应用于家用电器设备、照明、电动工具等方面。
文中设计一种基于STM32的纯正弦波逆变器,并分析用于系统控制部分的正弦脉冲宽度调制(SPWM )技术。
正弦波逆变器设计方案一、引言正弦波逆变器是一种将直流电转换为交流电的电力转换设备,在各类电力应用领域广泛应用。
在许多应用中,需要高质量的交流电源,如电子设备、家用电器、医疗设备等。
本文将讨论正弦波逆变器的设计方案,以提供稳定、高质量的交流电。
二、基本原理正弦波逆变器的基本原理是将直流电通过逆变器电路转换为交流电。
其主要组成部分包括直流输入电源、逆变电路和输出滤波电路。
直流输入电源提供逆变器的输入电压,逆变电路将直流电转换为交流电,并通过输出滤波电路来滤波输出波形。
三、逆变电路设计1. 调制技术选择逆变电路的调制技术决定了输出波形的质量。
常见的调制技术有PWM(脉宽调制)和SPWM(正弦波调制)。
在正弦波逆变器中,选择SPWM调制技术可以获得更接近纯正弦波的输出。
2. 逆变器拓扑选择常见的逆变器拓扑有单相桥式逆变器、三相桥式逆变器等。
根据实际需求选择逆变器拓扑,单相桥式逆变器适用于单相负载,而三相桥式逆变器适用于三相负载。
3. 电路元件选择逆变电路中的元件选择直接影响到逆变器的性能。
选择合适的功率晶体管、电容器和电感器可以提高逆变器的功率输出和效率。
四、输出滤波电路设计输出滤波电路用于滤除逆变电路产生的谐波成分,生成纯正弦波的交流电。
常用的输出滤波电路包括LC滤波电路和LCL滤波电路。
LC滤波电路结构简单,但不能有效滤除高频成分;而LCL滤波电路在滤除谐波的同时,还能提供较好的带宽特性。
五、保护措施设计正弦波逆变器在实际应用中需要具备安全可靠的特性。
常见的保护措施包括过压保护、过流保护、温度保护等。
通过合理设计电路,设置过压、过流和温度保护装置,可以有效保护逆变器及其外部负载。
六、控制电路设计正弦波逆变器的控制电路主要包括运算放大器、比较器和PWM 控制电路等。
通过运算放大器进行误差放大和控制信号处理,再经过比较器和PWM控制电路产生PWM信号,并控制逆变电路,从而实现对逆变器输出波形的控制。
七、实验验证与结果分析在设计完成后,进行实验验证并对实验结果进行分析。
基于C8051F410的单相正弦波逆变电源的设计孙立辉【摘要】设计了一种基于C8051F410单相正弦波逆变电源,单片机对采样电压进行中位值滤波、PI控制得到相应电压值,来控制SPWM波形参数,从而控制逆变桥,改变输出电压的幅值。
设计中同时给出了逆变电源的其他组成部分以及相关参数。
通过测试可以实现输入12V直流电,输出交流220V,频率50Hz,功率100W,精度±2%,效率达到90%以上。
【期刊名称】《制造业自动化》【年(卷),期】2015(000)012【总页数】4页(P141-144)【关键词】C8051f410;SPWM;单相;正弦波;逆变电源【作者】孙立辉【作者单位】吉林化工学院信息与控制工程学院,吉林 132022【正文语种】中文【中图分类】TP3030 引言随着电力电子技术的飞速发展,逆变电源的应用越来越广泛。
目前,正弦波逆变电源的关键之一是SPWM的产生,常以DSP为控制芯片产生SPWM信号[1~3],还可以用一些专用的单片机(如8051F系列)也可实现此功能。
本文设计一种以C8051F410单片机作为控制核心的逆变电源,介绍逆变电源软硬件结构,并确定每部分参数的确定原则。
1 结构原理本系统采用C8051F410单片机作为控制核心,产生SPWM驱动信号,实现对逆变主电路的控制,并对输出电压电流进行检测和显示。
系统输入+12V直流电,输出220V、频率为50Hz的交流电,可以为一般性的负载提供电源。
系统的主电路结构主要分为MOS管组成的逆变模块、C8051F410单片机组成的控制及驱动模块、DC-DC升压模块和辅助模块四个模块,设计方案框图如图1所示。
图1 设计方案框图2 电路设计2.1 控制及驱动模块2.1.1 单片机最小系统单片机是系统的主控制部分,采用C8051F410单片机。
C8051F410器件是完全集成的低功耗混合信号片上系统型MCU,具有片内上电复位、VDD监视器、看门狗定时器和时钟振荡器的C8051F41x器件是真正能独立工作的片上系统。
纯正弦波逆变器电路图大全(数字式/自举电容/光耦隔离反馈电路图详解)纯正弦波逆变器电路图(一)基于高性能全数字式正弦波逆变电源的设计方案逆变电源硬件结构如图2所示。
主要包括直流推挽升压电路、正弦逆变电路、输出滤波电路、驱动电路、采样电路、主控制器和点阵液晶构成。
其中,直流升压部分将输入电压升高至输出正弦交流电的峰值以上的母线直流电压,正弦逆变部分将母线直流电压逆变后经输出滤波电路得到正弦式交流电,采样电路则对母线电压、母线电流、输出电压、输出电流、输入电压进行采样,以实现短路保护、过压欠压保护、过流保护、闭环稳压等功能。
驱动电路的功能是将驱动信号的逻辑电平进行匹配放大,以满足驱动功率管的要求。
控制电路的功能是产生驱动信号,并对采样信号进行处理,以实现复杂的系统功能。
点阵液晶的功能是显示系统工作信息,如果输出电压、电流以及保护信息等。
1)主控制器主控制器选用STM32F103VE增强型单片机,STM32系列单片机是意法半导体公司专门为高性能、低成本、低功耗的嵌入式应用设计的产品。
此单片机采用哈佛结构,使处理器可以同时进行取址和数据读写操作,处理器的性能高达1.25 MIPS/MHz.支持单周期硬件乘除法,最高时钟频率72 M,最大可达512 kB片上Flash及64 kB片上RAM.同时具有多达30路PWM及3个12位精度的ADC等众多适合做逆变及电机驱动的外设。
在本系统中用于产生PWM、SPWM驱动信号,并对采样信号进行处理,以完成稳压反馈及保护功能,并驱动点阵液晶显示系统信息。
考虑实际的功率管及驱动芯片的速度,升压PWM波的频率为20 kHz,逆变SPWM波的频率为18 kHz.根据调制方法的不同,SPWM驱动信号形式可以分为:双极性、单极性和单极性倍频。
由于双极性调制失真度小,故本设计中SPWM 采用双极性驱动方式。
2)点阵液晶选用LPH7366型点阵液晶,具有超低功耗的特点。
用于显示系统当前的工作状态,如输出电压、输出电流、输入电压等信息。
基于EG8010芯片新型纯正弦波逆变器设计赵群渤海船舶职业学院电气工程,辽宁葫芦岛125000摘要:现代船舶中交流电动使用越来越平凡,感性负载过大使得船用逆变器对输出波形要求越来越严格,传统的方波逆变器已经不能适用。
该设计主要应用新型纯正弦波逆变器SPWM芯片完成逆变过程。
比较以前的一些方波逆变器、修正波逆变器负载能力更强,谐波干扰更小,可带感性负载,转化效率高等特点。
再有随着智能电网的发展,并网的要求使得纯正弦波逆变器成为工业生产,家庭生活比不缺少的电器工具。
关键词:纯正弦波逆变器;EG8010-SPWM;过压保护;脉宽调制0 引言逆变器是将直流电能转变成交流电能的变流装置,广泛应用于感应加热、交流电机调速、不间断电源(UPS)和汽车电器等场合。
是电力电子技术中一个重要组成部什。
其应用领域也达到了前所未有的广阔,从毫瓦数的液晶背光板逆变电路到百兆瓦级的高压直流输电换流站,从日常生活的变频空调、变频冰箱到航空领域的机裁设备;从使用常规化石能源的火力发电设备到使用可再生能源发电的太阳能风力发电设备,都少不了逆变电源。
无需怀疑,随着汁算机技术和各种新型功率器件的发展,逆变装置也将向着体积更小、效率更高、性能指标更优越的方向发展。
1 背景目前逆变器的波形主要分三类,一类是方波逆变器,一类是准正波逆变器,一是纯正弦波逆变器。
纯正弦波逆变器输出的是与日常使用的电网一样,甚至更好的纯正弦波交流电。
方波逆变器输出的波形则是质量较差的方形波交流电,其正向最大值到负向最大值几乎在同时产生,这样对负载和逆变器本身造成剧烈的不稳定影响。
同时,其负载能力差,仅为额定负载的50%左右,不能带电机等感性负载。
尤其现代生产、生活中交流电动机使用越来越平凡,如果所带的感性负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。
针对上述这些缺点,这几年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有很大改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。
逆变器的概述逆变器(inverter)是将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。
与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。
它由逆变桥、控制逻辑和滤波电路组成。
主要用于把直流电力转换成交流电力。
一般由升压回路和逆变桥式回路构成。
升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。
逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。
广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、油烟机、冰箱,录像机、按摩器、风扇、照明等。
引言电力系统变电站和调度所的继电保护和综合自动化管理设备有的是单相交流供电的,其中有一部分是不能长时间停电的。
普通UPS设备因受内置蓄电池容量的限制,供电时间比较有限,而直流操作电源所带的蓄电池容量一般都比较大,所以需要一套逆变电源将直流电逆变成单相交流电。
电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。
目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。
IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。
它的并联不成问题,由于本身的关断延迟很短,其串联也容易。
尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。
正弦逆变器控制软件设计
摘要:介绍单相全桥逆变器的工作原理,阐述产生SPWM波和实现PI控制的算法,给出以DSP(数字信号处理器)实现控制的软件流程。
实验表明利用软件完成逆变器控制是可行的。
关键词:正弦逆变器;控制;SPWM;PI;DSP
目前,正弦逆变器的控制通常采用模拟电路或数字电路实现。
由于硬件的固有缺点和不能实施先进的控制策略,致使逆变器的性能不能极大的提高。
随着高速微处理器的问世,特别是具有高速运算、处理和控制能力的DSP的出现,使得对正弦逆变器采用新的控制方法成为可能。
文中将重点介绍采用DSP实现正弦逆变器控制的方法。
1 全桥正弦逆变器
图1示出单相全桥逆变器的原理电路及波形。
其中H桥和滤波电路完成直流到交流的变换,滤去谐波,获得交流电;控制电路完成对H桥中开关管的控制,并使输出交流电的电压、频率和波形稳定。
SPWM的生成原理及波形如图2所示。
由于采用正弦波调制波(Ussintωs t)与三角波载波(幅值为Uc的正三角波,频率为ωc)相交来获得SPWM波,因此,基波频率为调制波的频率,基波幅值与调制比M(M=Us/Uc)成正比关系,谐波含量少。
正弦逆变器常采用SPW M控制,利用调制波控制输出波形频率,调整M来控制输出电压幅值。
工作时,H桥中Vl、V4在前半周期内以图2中的SPWM信号闭合,V2、V3断开;在后半周期内V1、V4断开,V2、V3以SPWM信号闭合。
故在整个周期内H桥输出波形如图1(b)所示。
这样,对该波形进行滤波,即可获得频率为ωs。
,幅值正比M与调制比M 的正弦交流电。
2 H桥控制方案和信号的数字化
2.1 控制方案
对逆变器的控制主要包括对SPWM的控制(即H桥开关管开关方式)和对SPWM脉宽的控制(即调整M,使输出电压稳定的反馈控制,一般采用平均电压控制技术,即PI控制)二部分。
SPWM的控制方式可分为单极性和双极性二种。
在传统的单极性或双极性控制方式中,开关管均工作在高频条件下,这样虽然可以得到较理想的正弦输出电压波形,但也产生了较大的开关损耗,且频率越高,损耗越大。
图3所示的混合型单极性控制方式(HSPWM UVI~Uv4)波形分别对应图1(a)中V1~V 4.开关管的驱动信号)可较好地解决这一矛盾,既能得到理想的正弦波形,又能适当地减小开关损耗。
在这种工作方式下.工作在较高开关频率的2只功率管互补导通,得到理想的正弦波形,另外2只功率管工作在输出基波频率条件下,从而减小了开关损耗。
2.2 SPWM波生成数字化
图4示出采用三角波作为载波的规则采样获得的SPWM波,在三角波零峰t D时刻对正弦调制波采样得到D点,过D点作水平直线与三角波分别交于A点和B点,在A点的时刻tA和B点的时刻b间输出高电平,其他时刻输出低电平。
根据三角关系,可以得出
其中σ为脉冲宽度。
逆变器控制信号中,调制波和载波频率一定,tD时刻为n倍三角波周期(n=1,2,…,N。
N=Ts/Tc,N为载波比,E为正弦波周期),如果一个周期内有Ⅳ个矩形波.则第n个矩形波的占空比D为:
2.3 PI调节器数字化
图5为模拟PI调节示意图,可以计算出
离散化后整理可得:
3 基于DSP的控制软件
实现逆变器控制主要依靠DSP的事件管理模块和A/D转换模块。
事件管理模块由通用定时器f提供时间基准)、非对称/对称波形发生器、可编程的死区发生单元、输出逻辑控制单元等组成,以实现SPWM波。
A/D转换模块采样输人的平均电压并转换为数字信号。
3.1 HSPWM控制方式软件实现
如图4所示,SPWM波是用三角波和正弦波相交比较而得到的。
采用DSP产生SPW
M波的设置如下
三角波的获得是将事件管理器计数模式设置为连续增减计数,其计数从0增到TxPR 再减到0,其周期为2TxPR,即载波的周期为2TxPR。
由于正弦波采用在线计算会影响运行速度,所以采用离线计算方法。
在程序开始时.按照规则采样法计算nTe处的正弦值(即三角波和正弦波比较点的值),并存于数组中,需要时通过中断调用该值。
SPWM波的获得是在DSP事件管理器的比较单元工作时,通用定时器的计数器TxCN I’的值与比较寄存器CMPRx的值不断进行比较。
当二者匹配时,PWM电路按照输出逻辑输出二路极性相反的PWM波。
在逆变器控制中,载波比固定,半个周期内输出的脉冲个数、占空比固定,TxPR值固定,形成SPWM正弦波的CMPRx的值为TxPRMsinomTc(即图4中D点正弦值),所以,在计数器计数最大时(TxCNll-TxPR,即三角波凸点处)中断.更新C MPRx的值,就可以输出SPWM。
在图3中HSPWM控制信号Uvi与Uv2、Uv3与Uv4极性相反。
在DSP中只需要两个全比较单元。
如UV1与UV2控制信号,在前半周期,CMPRx设置为0,则输出相对应的高、低电平控制信号,在后半周期,利用中断更新CMPRx的值即可获得图3所示的UV I与Uv2控制信号UV3与UⅥ控制信号。
同理可获得。
产生HSPWM控制信号的软件流程如图6所示。
3.2 PI算法的软件
采用平均电压反馈的逆变器,需要采样输出电压的平均值。
电压采样值低于3.3V可直接输入DSP的A/D通道进行转换以获得Vf(k),再确定Kp和K1即可。
在实际应用中,还需对PI调节器加以限制.当偏差值输入较大时,输出值会很大,可能会使输出饱和,这样对开关管有很大的冲击,而且会导致系统不稳定。
所以需要对PI调节器的输出限幅,即当I u(k)
|>umax时,令u=umax或u=umin。
另外,PI控制器中积分环节的目的主要是消除静差、提高精度。
但在电压大幅度变化如启动、结束时,在短时间内系统输出有很大的偏差.会造成PI运算的积分积累,从而引起较大的超调.导致系统的振荡。
根据实际情况,设定阈值δ>0。
当le(k)I>δ时.
采用P控制,这样可避免过大的超调,而且保持较快的响应速度。
当le(k)|≤ω时,采用PI控制,可保证系统的控制精度。
具体程序流程如图7所示。
4 实验及结论
以DSP控制4kW、230V、400Hz逆变器时的各部分波形如图8所示。
实验结果表明,基于DSP控制的逆变器可以满足要求。