2013高中数学必修五期末复习题
- 格式:doc
- 大小:249.24 KB
- 文档页数:5
数学必修5复习题及答案一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^3 - 3x^2 + 5x - 7 \),求\( f(2) \)的值。
A. 1B. 5C. 9D. 132. 直线\( l: y = 3x + 2 \)与直线\( m: y = -2x + 5 \)的交点坐标是:A. (1, 7)B. (1, 5)C. (-1, 7)D. (-1, 3)3. 已知三角形ABC的三边长分别为a, b, c,且满足\( a^2 + b^2 = c^2 \),这个三角形是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形4. 函数\( y = \log_2 x \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x = 0 \)D. \( x \leq 0 \)5. 已知\( \sin A = \frac{3}{5} \),且\( A \)为锐角,求\( \cosA \)的值。
A. \( \frac{4}{5} \)B. \( \frac{1}{5} \)C. \( \frac{-4}{5} \)D. \( \frac{-1}{5} \)6. 圆的方程为\( (x - 3)^2 + (y - 4)^2 = 25 \),该圆的半径是:A. 5B. 10C. 15D. 207. 函数\( y = x^2 - 4x + 4 \)的顶点坐标是:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)8. 已知\( \tan \theta = 2 \),求\( \sin \theta \)的值。
A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2}{3} \)D. \( \frac{1}{3} \)9. 抛物线\( y = x^2 \)的焦点坐标是:A. (0, 0)B. (0, 1/4)C. (1/4, 0)D. (0, -1/4)10. 已知\( \sin 30^\circ = \frac{1}{2} \),求\( \cos 30^\circ \)的值。
精品文档数学必修5试题一、〔每小5分,共50分〕1.数列{an}中,a12,an11(nN*)a101的〔2,A .49B.50C.51D.522.在△ABC中,假设a=2,b23,A300,B等于〔〕A .60oB.60o或120oC.30oD.30o或150o3.在三角形ABC中,如果abcbca3bc,那么A等于〔〕A.300B.600C.1200D.15004.{an}是由正数成的等比数列,且a5a6=81,log3a1+log3a2+⋯+log3a10的是〔A .5B.10;C.20D.2或45.x4x的最小值是〔〕0,函数yxA.5B.4C.8D.66.等差数列 {an}的公差d≠0,假设a5、a9、a15成等比数列,那么公比( ) 3C .D.4A.B3.4ccos C7.在⊿ABC中,,此三角形bcos BA.直角三角形;B.等腰直角三角形C。
等腰三角形D.等腰或直角三角形8.数列{a n}的前n和S n159131721(1)n1(4n3),S15S22S31的是〔〕A.-76B.76C.46D.13y19.设x,y满足约束条件y x ,那么z 3xy的最大值为〔〕A.5.3C.7D.-810.等差数列{an}中,a1=-5,它的前11的平均是5,假设从中抽取1,余下10的平均是4,抽取的是〔〕A.aB.aC.a10D.a 811二、填空(每小5分,共20分)11.等差数列{a}足a5a6=28,其前10之和.n12.数列{a n}足a12,a nan11,a n=;.精品文档13.不等式2x11的解集是 .3x 114.数列a 的前n 和s n 2a n3(nN *),a 5。
nn=3·2n+k ,假设数列{ank 的15.在数列{a}中,其前n 和}是等比数列,常数.三.解答〔分 75分,解答写出文字明,演算步〕〔10分〕在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 223x20的两个根, 且2coc(AB)1。
数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由,确定的等差数列,当时,序号等于()A.99 B.100 C.96 D.1012.中,若,则的面积为()A.B. C.1 D.3.在数列中,=1,,则的值为()A.99 B.49 C.102 D. 1014.已知,函数的最小值是()A.5 B.4 C.8 D.65.在等比数列中,,,,则项数为()A. 3B. 4C. 5D. 66.不等式的解集为,那么()A. B. C. D.7.设满足约束条件,则的最大值为()A. 5 B. 3 C. 7 D. -88.在中,,则此三角形解的情况是()A.一解B.两解C.一解或两解D.无解9.在△ABC中,如果,那么cosC等于()10.一个等比数列的前n项和为48,前2n项和为60,则前3n项和为()A、63B、108C、75D、83二、填空题(本题共4小题,每小题5分,共20分)11.在中,,那么A=_____________;12.已知等差数列的前三项为,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤)15(12分) 已知等比数列中,,求其第4项及前5项和.16(14分)(1) 求不等式的解集:(2)求函数的定义域:17 (14分)在△ABC中,BC=a,AC=b,a,b是方程的两个根,且。
求:(1)角C的度数;18(12分)若不等式的解集是,(1) 求的值;(2) 求不等式的解集.19(14分)如图,货轮在海上以35n mile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为.半小时后,货轮到达C点处,观测到灯塔A的方位角为.求此时货轮与灯塔之间的距离.A20( 14分)某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。
该公司第n 年需要付出设备的维修和工人工资等费用的信息如下图。
一、选择题1.若正数x,y满足21yx+=,则2xy+的最小值为()A.2 B.4 C.6 D.82.已知正数x,y满足1431x y+=+,则x y+的最小值为()A.53B.2 C.73D.63.设变量,x y、满足约束条件236y xx yy x≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y=+的最大值为()A.2 B.3 C.4 D.94.如图,地面四个5G中继站A、B、C、D ,已知()62kmCD=+,30ADB CDB∠=∠=︒,45DCA∠=︒,60ACB∠=︒,则A、B两个中继站的距离是()A.3km B.10km C10km D.62km 5.ABC∆的内角A,B,C的对边分别为a,b,c,已知2b=,6Bπ=,4Cπ,则ABC∆的面积为()A.223+B31C.232D316.设ABC的内角A,B,C的对边分别是a,b,c.已知2cos0b a C-=,()sin3sinA A C=+,则2bca=()A7B14C.23D67.在ABC中,角A,B,C的对边分别为a,b,c,若22tan tanB Cb c=,则ABC的形状为()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形8.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .139.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D.25910.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .411.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-212.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -二、填空题13.已知实数x ,y 满足约束条件010x y x y x -≤⎧⎪+≤⎨⎪⎩,则23x y z +=的最大值__________.14.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 15.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.16.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.17.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .18.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,2c =,60B =︒,则b = ,C = .19.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.20.在数列{}n a 中,11a =()*1n =∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.三、解答题21.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 22.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.23.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.24.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD,求AD 的值和sin ∠ABD 的值25.在①数列{}n a 为递增的等比数列,且2312a a +=,②数列{}n a 满足122n n S S +-=,③数列{}n a 满足1121222n n n n a a a na -++++=这三个条件中任选一个,补充在下面问题中,再完成解答.问题:设数列{}n a 的前n 项和为n S ,12a =,__________. (1)求数列{}n a 的通项公式; (2)设2221log log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .26.已知等比数列{}n a 的公比3q =,并且满足2a ,318a +,4a 成等差数列. (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足31log n n nb a a =+,记n S 为数列{}n b 的前n 项和,求使2220n S n ->成立的正整数n 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等.所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.3.D解析:D 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC 中,由正弦定理得()362sin 223sin sin 75CD ADCAC DAC+⨯⋅∠===∠︒, 在BDC 中,由正弦定理得()162sin 231sin 22CD BDC BC DBC+⨯⋅∠===+∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠()()()22123312233112=++-⨯⨯+⨯=,所以10km AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得6c b =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则()2293bc b a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.7.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B Cb c =, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=,B C ∴=,或2B C π+=,ABC ∆∴的形状为等腰三角形或直角三角形. 故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.8.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.9.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.10.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.11.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.12.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.二、填空题13.【分析】先作出不等式组对应的可行域再通过数形结合求出的最大值即得解【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域设它表示斜率为纵截距为的直线系要求的最大值即求的最大值当直线经过点时直线 解析:9【分析】先作出不等式组对应的可行域,再通过数形结合求出2x y +的最大值即得解. 【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域,设12,22m m x y y x =+∴=-+,它表示斜率为12-,纵截距为2m的直线系, 要求23x y z +=的最大值即求m 的最大值.当直线122m y x =-+经过点(0,1)A 时,直线的纵截距2m最大,m 最大. 此时max 022m =+=, 所以23x y z +=的最大值为239=.故答案为:9 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案。
高二数学(文科)试题(必修5,选修1-1)本试卷分第I 卷和第II 卷两部分,满分120分,考试时间100分钟 注意事项:1.答第I 卷前,考生务必在答题卷上写上自己的姓名、考试科目、准考证号,并用2B 铅笔涂写在答题卡上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,第II 卷答在答题卷上。
3.考试结束,将答题卡和答题卷一并交回。
第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,有且只有一项是符合题目要求的。
1. 已知数列{}n a 的通项公式为)(42*2N n n n a n ∈--=,则a 4等于( ). A.1 B. 2 C.4 D. 8 2. 若p 是真命题,q 是假命题,则( )A .p q ∧是真命题B .p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题 3. 抛物线22x y =的焦点坐标是( ) A.(0,81) B.(81 ,0) C. (0,21) D.(21,0) 4. 不等式x x x 3622<--的解集为( )A. }61|{<<-x xB. }61|{≤≤-x xC. 1|{-<x x 或}6>xD. 2|{-<x x 或}3>x5. 在ABC ∆中,1,30,4500===a B A ,则ABC ∆中最短边的边长等于( ) A.21 B. 22 C. 23 D. 266.设数列{}n a 是等差数列,则“21a a <”是“数列{}n a 是递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .不充分不必要条件7. 下列求导数运算正确的是( ) A .x x e e =+')1( B .10ln 1)(ln x x ='C .)1('+x x =211x+D .x x x x sin 2)cos (2-=' 8. 双曲线122=-y x 的顶点到其渐近线的距离等于( ) A.21 B. 22 C. 1 D. 2 9. 设等差数列{a n }的前n 项和为S n ,若a 1=-10,a 4+a 6=-4,则当S n 取最小值时,n等于( ) A .5 B .211C .6D .5或610.若x , y 满足约束条件⎪⎩⎪⎨⎧≥≥≤-+00042y x y x ,则y x z 2+=的最大值是( )A. 0B. 2C. 8D.1211.给出下列4个命题:①若0232=+-x x ,则x =1或x =2;②若a b >,则22ac bc >;③若a b >,则a cbc ->-;④.若b a >,则ba 11<,其中真命题的个数为( )A. 0B. 1C. 2D.312. 函数)(x f y =在定义域(3,32-)内可导,其图象如图所示,记)(x f y =的导函数为)('x f y =,则不等式0)('>x f 的解集为( )A. )2,1()31,23(⋃--B. )38,34()21,1(⋃-C.)3,2()1,31(⋃-D. )3,38()34,21()1,23(⋃⋃--第Ⅱ卷(非选择题,共72分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知命题p :x e R x x >∈∀,,则p ⌝为 . 14. 已知数列{}n a 的通项公式为n a n n ⋅-=)1(,前n 项和为n S ,则8S = .15. 若)0(>m m 是1和4的等比中项,则圆锥曲线122=+my x 的离心率是 . 16.设0,0>>y x ,且12=+y x ,则yx 12+的最小值为 . 三、解答题:本大题共5小题,满分56分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)写出命题“平方和为0的两个实数都为0”的逆命题、否命题、逆否命题并分别判断命题的真假;(2)写出命题“负数的平方是正数”的否定并判断真假. 18.(本小题满分10分) 在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若c b a ,,成等差数列,060=B ,23=∆ABC S ,求b . 19.(本小题满分12分)已知中心在原点,焦点在y 轴上,短轴长为10的椭圆被直线23:-=x y l 截得的弦的中点横坐标为21,求此椭圆的方程.20.(本小题满分12分)聊城市2013年共有一万辆公交车且全是燃油型,计划于2014年开始淘汰燃油型公交车,第一年(2014年)淘汰50辆,以后每年比上一年多淘汰100辆;另计划于2014年开始投入256辆电力型公交车,随后电力型公交车每年的投入量比上一年投入量增加50%,试问:()1本市在2020年应该投入多少辆电力型公交车?()2到哪一年底,本市燃油型公交车的总量淘汰了一半?21.(本小题满分12分) 已知函数x x x x f 331)(23--=. (1)求函数)(x f 在点(1,-9)处的切线方程; (2) 求函数)(x f 的的单调区间;(3)求函数)(x f 在]2,2[-上的最大、最小值.: 班级: 姓名: 考号:19.(本题满分12分)高二数学(文科)参考答案二、填空题 13.000,x eR x x ≤∈∃;14.4 ; 15.22; 16. 8. 三、解答题 17.解:(1)逆命题:若两个实数都为0,则它们的平方和为0.真命题;…2分否命题:若两个实数的平方和不为0,则它们不都为0.真命题;…5分逆否命题:若两个实数不都为0,则它们的平方和不为0.真命题. …8分(2)p ⌝:存在一个负数,它的平方不是正数.假命题. …10分 18. 解:∵c b a ,,成等差数列 ∴b c a 2=+ …………2分∵2343sin 21===∆ac B ac S ABC ∴2=ac …………5分 在ABC ∆中,2144422)(2cos 2222222=--=--+=-+=b b ac b ac c a ac b c a B …………8分 得:22=b ∴2=b …………10分19.解:根据题意,设所求椭圆方程为)0(12222>>=+b a bx a y ………2分∵椭圆的短轴长为10, ∴5=b ………3分∴椭圆方程为)5(125222>=+a x ay ………4分 与23-=x y 联立,得:025100300)225(222=-+-+a x x a (*)………7分设直线l 与椭圆的交点为),(,),(2211y x B y x A ,则225300221+=+a x x ………9分∵弦的中点横坐标为21,∴12253002=+a解得:752=a ………10分 此时(*)中0251002<-a ,∴0>∆ ………11分∴所求椭圆方程为1257522=+x y ………12分 20. 解:(1)本市逐年投入的电力型公交车的数量组成等比数列{n a },其中a 1=256,q =1.5,…………3分则在2020年应投入电力型公交车671a a q ==256×1.56=2916(辆) …………5分 (2) 本市逐年淘汰的燃油型公交车的数量组成等差数列{}n b ,其中b 1=50,d =100, …8分 设S n =b 1+b 2+ … +b n ,则()21501100502n S n n n n =+-⨯=, …………10分 令210000505000n -= 得 n =10,( n =-10舍去) …………11分 故到2023年底燃油型公交车的总量淘汰了一半。
一、选择题1.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+2.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4e x x y -=+D .2211y x x =+++3.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca -<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 4.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1bB .a 2>b 2C .21ac +>21b c + D .a |c |>b |c |5.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则223a c -的最小值为( )A .4-B .23-C .2-D .3-6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( )A .60︒B .60︒或120︒C .30D .30或150︒8.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 9.某大楼共有12层,有11人在第一层上了电梯,他们分别要去第2至12层,每层1人,因特殊原因,电梯只能停在某一层,其余10人都要步行到所要去的楼层,假设初始的“不满意度”为0,每位乘客每向下步行一层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,要使得10人“不满意度”之和最小,电梯应该停在第几层( ) A .7B .8C .9D .1010.设等差数列{}n a 的前n 项和为n S ,若10a >,81335a a =,则n S 中最大的是( ). A .10SB .11SC .20SD .21S11.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或12.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .9二、填空题13.已知正实数a 、b 满足21a b +=,则11a b a b+--的最小值为____________. 14.若实数x ,y 满足约束条件23023030x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则y x x y +的取值范围是______.15.若实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则1x y x ++的取值范围为_____.16.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若6a =,2c b =,则ABC 面积的最大值是______.17.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________18.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________.19.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 20.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a =,则n a =_____.三、解答题21.随着信息技术的发展,网络学习成为一种重要的学习方式,现某学校利用有线网络同时提供A 、B 两套校本选修课程.A 套选修课每次播放视频40分钟,课后研讨20分钟,可获得学分5分;B 套选修课每次播放视频30分钟,课后研讨40分钟,可获得学分4分.全学期20周,网络对每套选修课每周开播两次(A 、B 两套校本选修课程同时播放),每次均为独立内容.学校规定学生每学期收看选修课视频时间不超过1400分钟,研讨时间不得少于1000分钟.A 、B 两套选修课各选择多少次才能使获得学分最高,获得的最高学分是多少?22.已知函数2()2,,f x x ax x R a R =-∈∈. (1)当1a =时,求满足()0f x <的x 的取值范围;(2)解关于x 的不等式2()3f x a <.23.将函数()sin 3cos f x x x =图象上所有点向右平移6π个单位长度,然后横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象. (1)求函数()g x 的解析式及单调递增区间;(2)在ABC 中,内角,,A B C 的对边分别为,,a b c ,若1sin cos 364B B ππ⎛⎫--= ⎪⎝⎭⎛⎫ ⎪⎝⎭,,236c g b π⎛⎫== ⎪⎝⎭ABC 的面积. 24.在ABC 中,,,A B C 的对边分别为,,a b c 且2cos cos cos b B a C c A =+. (1)求B 的值;(2)求22sin cos()A A C +-的范围.25.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围.26.已知各项均为正数的数列{}n a 的前n 项和为n S ,且满足222n n n S a a =+-.(1)求数列{}n a 的通项公式; (2)若232n nn a a b --=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y tt(,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .4y ≥=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .2.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x x y -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4e x x y -=+的最小值为4,故C 项正确;D 项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.3.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题4.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.5.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴2222a c b ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 2C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<,所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.8.B解析:B【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.9.C解析:C 【分析】根据题意,假设电梯所停的楼层,表达出“不满意度”之和,利用等差数列的求和公式即可求得结论. 【详解】解:设电梯所停的楼层是(212)n n ,则12(2)2[12(12)]S n n =++⋯+-+++⋯+- (2)(1)(12)(13)222n n n n ----=+⨯ 22235335353()157()157232624n n n =-+=--+ 开口向上,对称轴为5396x =≈, 故S 在9n =时取最小值239539314402min S ⨯-⨯+==.故选:C . 【点睛】本题考查数列知识,考查函数思想的运用,考查计算能力,求得“不满意度”之和是关键.10.C解析:C 【解析】分析:利用等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><,即可作出判定.详解:在等差数列{}n a 中,18130,35a a a >=,则113(7)5(12)a d a d +=+,整理得12390a d +=,即()()1119200a d a d +++=, 所以20210a a +=,又由10a >,所以20210,0a a ><,所以前n 项和n S 中最大是20S ,故选C .点睛:本题考查了等差数列的通项公式,及等差数列的前n 项和n S 的性质,其中解答中根据等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><是解答的关键,着重考查了学生分析问题和解答问题的能力.11.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.12.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.二、填空题13.【分析】将所求代数式变形为将所求代数式与相乘展开后利用基本不等式可求得的最小值【详解】已知正实数满足则当且仅当时即当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其12【分析】将所求代数式变形为1121121a ba b b b+=+----,将所求代数式与()1b b+-⎡⎤⎣⎦相乘,展开后利用基本不等式可求得11a ba b+--的最小值.【详解】已知正实数a、b满足21a b+=,则1211112112121a b b ba b b b b b--++=+=+-----()111111122112222b bb bb b b b-⎛⎫=+-+-=+-≥=⎡⎤ ⎪⎣⎦--⎝⎭.当且仅当1b-=时,即当1b=时,等号成立,因此,11a ba b+--12.12.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】作出可行域利用表示可行域内点与原点连线的斜率求得它的取值范围再根据函数的单调性可得的范围【详解】作出可行域如图内部(含边界)表示出可行域内点与原点连线斜率由已知得所以记由勾形函数性质知在上递解析:52,2⎡⎤⎢⎥⎣⎦【分析】作出可行域,利用yx表示可行域内点与原点连线的斜率求得它的取值范围,再根据函数的单调性可得y xx y+的范围. 【详解】作出可行域,如图ABC 内部(含边界),yx表示出可行域内点与原点连线斜率,由已知得(1,2),(2,1)A B ,2OA k =,12OB k =, 所以1,22y t x ⎡⎤=∈⎢⎥⎣⎦, 1y x t x y t +=+,记1()f t t t =+,由勾形函数性质知()f t 在1,12⎡⎤⎢⎥⎣⎦上递减,在[1,2]上递增,1522f ⎛⎫= ⎪⎝⎭,(1)2f =,5(2)2f =,∴5()2,2f t ⎡⎤∈⎢⎥⎣⎦.故答案为:52,2⎡⎤⎢⎥⎣⎦.15.【分析】作出不等式组对应的平面区域然后化简目标函数利用不等式的几何意义利用线性规划的知识进行求解即可【详解】解:实数满足不等式组的可行域如图三角形的三边及其内部部分:它的几何意义是可行域内的点与连线解析:5,53⎡⎤⎢⎥⎣⎦【分析】作出不等式组对应的平面区域,然后化简目标函数,利用不等式的几何意义,利用线性规划的知识进行求解即可. 【详解】解:实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,的可行域如图,三角形ABC 的三边及其内部部分:111x y y x x+++=+,它的几何意义是可行域内的点与()0,1D -连线的斜率加1, 由图象知BD 的斜率最小,CB 的斜率最大,由4020x y x y +-=⎧⎨-+=⎩解得()1,3C ,此时DC 的斜率:3141+=, 由25040x y x y --=⎧⎨+-=⎩得()3,1B ,此时BD 的斜率:11233+=, 则1x y x ++的取值范围为是5,53⎡⎤⎢⎥⎣⎦,故答案为:5,53⎡⎤⎢⎥⎣⎦. 【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.16.【分析】先根据余弦定理求出结合平方关系求得利用三角形的面积公式及二次函数可求面积的最大值【详解】∵∴可得∴由可得即则的面积当且仅当时即时取等号故答案为:【点睛】本题主要考查三角形的面积最值常见求解思 解析:12【分析】先根据余弦定理求出cos A ,结合平方关系求得sin A ,利用三角形的面积公式及二次函数可求ABC 面积的最大值. 【详解】∵6a =,2c b =,∴2222644cos b b b A =+-,可得22536cos 4b A b-=, ∴()2222304360sin 1cos b A A --=-=,由()2223043600b --≥,可得2436b ≤≤,即26b ≤≤,则ABC 的面积221sin sin 122S bc A b A b ====≤, 当且仅当2360b =时,即b = 故答案为:12. 【点睛】本题主要考查三角形的面积最值,常见求解思路是建立关于三角形面积的表达式结合二次函数或者基本不等式的知识求解,侧重考查数学运算的核心素养.17.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值. 【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =. 设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BCB A=∠∠,即32sin(3)sin παα=-,整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=, 结合sin 0α≠得222(2cos 12cos )3αα-+=,即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==.再由ABC 得:2sin sin 2ABαα=,∴=解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.18.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为 解析:2π【分析】根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.19.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的 解析:4256【分析】由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =,∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256. 【点睛】本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.20.【分析】由两本同除以可构造是等差数列由此可求出再利用即可求得【详解】由得是以为首相1为公差的等差数列当时故答案为:【点睛】本题主要考查了由数列的递推关系式求数列的通项公式是常考题型属于中档题解析:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【分析】由11n n n n S S S S ++=⋅-,两本同除以1n n S S +⋅,可构造1n S ⎧⎫⎨⎬⎩⎭是等差数列,由此可求出a 1n S n =,再利用1n n n a S S -=-,即可求得n a 【详解】 由11n n n n S S S S ++=⋅-,得1111n nS S +-= ()n N *∈ 1n S ⎧⎫∴⎨⎬⎩⎭ 是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=, 1n S n∴=, 当2n ≥ 时,11111(1)n n n a S S n n n n -=-=-=---, 1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【点睛】本题主要考查了由数列的递推关系式,求数列的通项公式,是常考题型,属于中档题.三、解答题21.选择A 套选修课学习20次,B 套选修课学习20次,可以使获得最高学分为180分 【分析】设选择A 、B 两套课程分别为x 、y 次,z 为学分,根据题意列出线性约束条件404030140020401000,x y x y x y x y N+≤⎧⎪+≤⎪⎨+≥⎪⎪∈⎩,目标函数54z x y =+,作出可行域,即可求解. 【详解】设选择A 、B 两套课程分别为x 、y 次,z 为学分,则404030140020401000,x y x y x y x y N +≤⎧⎪+≤⎪⎨+≥⎪⎪∈⎩目标函数54z x y =+,二元一次不等式组等价于4043140250,x y x y x y x y N+≤⎧⎪+≤⎪⎨+≥⎪⎪∈⎩作出二元一次不等式组所表示的平面区域,即可行域,如图阴影部分.作直线:540l x y +=,直线l 沿可行域方向平移,当直线过M 点时,目标函数取得最大值. 联立4314040x y x y +=⎧⎨+=⎩,解得2020x y =⎧⎨=⎩. 所以点M 的坐标为()20,20, 此时max 520420180Z =⨯+⨯=.所以选择A 套选修课学习20次,B 套选修课学习20次,可以使获得的学分最高,最高学分为180分. 【点睛】本题主要考查了利用线性规划解决实际问题,属于中档题.22.(1)(0,2);(2)当0a >时,解集为(,3)a a -;当0a =时,解集为空集;当0a <时,解集为(3,)a a -. 【分析】(1)解一元二次不等式可得;(2)分类讨论,根据两根据的大小分类讨论. 【详解】(1)当1a =时,2()2f x x x =-,所以()0f x <,即220x x -<解得02x <<.所以()2f x 的解集为(0,2).(2) 由2()3f x a <,得 22230x ax a --<,所以 (3)()0x a x a -+<, 当0a >时,解集为(,3)a a -;当0a =时,解集为空集; 当0a <时,解集为(3,)a a -. 【点睛】本题考查解一元二次不等式,对含参数的不等式一般需要分类讨论,分类的层次有三个:一是最高次项系数的正负或者是0,二是对应的一元二次方程有无实数解,三是方程有实数解,方程两根的大小关系. 23.(1)()2sin 26g x x π⎛⎫=+⎪⎝⎭,单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈;(2)2或 【分析】(1)由题可得()2sin 26g x x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-+≤+≤+即可解得单调递增区间;(2)由题可得2c =,6B π=或2B π=,由余弦定理可求得a ,即可求出面积.【详解】(1)()sin 2sin 3f x x x x π⎛⎫=+=+⎪⎝⎭, ()f x 图象向右平移6π个单位长度得到2sin 6y x π⎛⎫=+ ⎪⎝⎭的图象,横坐标缩短为原来的12 (纵坐标不变)得到2sin 6y x π⎛⎫=+ ⎪⎝⎭图象, 所以()2sin 26g x x π⎛⎫=+ ⎪⎝⎭, 令222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+,所以()g x 的单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈ (2)由(1)知,62c g π⎛⎫⎪⎝⎭==,因为21sin cos cos 3664B B B πππ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-+=+=,所以1cos 62B π⎛⎫⎪⎝=±⎭+又因为()0,B π∈,所以7,666B πππ+=⎛⎫⎪⎝⎭, 当1cos 62B π⎛⎫⎪⎝=⎭+时,,636B B πππ+==,此时由余弦定理可知,2422cos 126a a π+-⨯⨯=,解得a =,所以12sin262ABCSπ=⨯⨯⨯=, 当1cos 62B π⎛⎫⎪⎝=-⎭+时,2,632B B πππ+==,此时由勾股定理可得,a ==,所以122S =⨯⨯=△ABC 【点睛】关键点睛:本题考查三角函数的图象变换求三角函数的性质,以及解三角形的应用,解题的关键是根据图象变换正确得出变换后的解析式.24.(1)3B π=;(2)1(,12-. 【分析】(1)根据等差数列的性质可知cos cos 2cos a C c A b B +=,利用正弦定理把边转化成角的正弦,化简整理得sin 2sin cos B B B =,求得cos B ,进而求得B ;(2)先利用二倍角公式及辅助角对原式进行化简整理,进而根据A 的范围和正弦函数的单调性求得()2sin cos A A C 2+-的范围.【详解】因为2cos cos cos b B a C c A =+由正弦定理得, 2sin cos sin cos sin cos B B A C C A =+即:()sin 2sin cos A C B B +=,则sin 2sin cos B B B =,因为sin 0B ≠ 所以1cos 2B =,又0B π<< 得3B π=(2)∵3B π=,∴23A C π+=∴2222sin cos()2sin cos(2)3A A C A A π+-=+-=131cos 2cos 2sin 212cos 22222A A A A A --+=+-=1)3A π-,∵203A π<<,233A πππ-<-<∴sin(2)13A π<-≤ 则()2sin cos A A C 2+-的范围为1,12⎛- ⎝ 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 25.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n n n n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n nn n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立, 所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭, 所以()[]2,4f x ∈-, 当0m >时,()min16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >; 当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-, 0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .26.(1)1n a n =+;(2)12n n n T -=. 【分析】(1)根据222n n n S a a =+-可得211122n n n S a a +++=+-,两式作差证明{}n a 为等差数列,由此求解出{}n a 的通项公式; (2)先根据232n nn a a b --=求解出{}n b 的通项公式,然后采用错位相减法进行求和,由此求解出n T . 【详解】(1)因为222n n n S a a =+-,所以211122n n n S a a +++=+-, 所以两式作差有:221112n n n n n a a a a a +++=+--,所以()()221111n n n n n n n n a a a a a a a a +++++=-=+-,且0n a >,所以10n n a a ++>,所以11n n a a +-=,所以{}n a 是公差为1的等差数列,且21111222S a a a ==+-,所以12a =或11a =-(舍),所以()2111n a n n =+⋅-=+;(2)因为232n n n a a b --=,所以122n n n b --=, 所以01211012...2222n n n T ---=++++,所以12311012...22222n nn T --=++++, 两式作差可得:012311111112+ (2222222)n n n n T ------=++++-, 所以11111222221212n n n n T --⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭-⎝⎭=---,所以11112221222n n n n n n T ---⎛⎫-⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点睛】思路点睛:满足等差乘以等比形式的数列{}n a 的前n 项和n S 的求解步骤(错位相减法): (1)先根据数列的通项公式写出数列n S 的一般形式:123...n n S a a a a =++++;(2)将(1)中的关于n S 等式的左右两边同时乘以等比数列的公比()1q ≠;(3)用(1)中等式减去(2)中等式,注意用(1)中等式的第一项减去(2)中等式的第2项,依次类推,得到结果;(4)利用等比数列的前n 项和公式以及相关计算求解出n S .。
广东省肇庆市2012-2013学年下学期期末考试高二数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知点P的极坐标为,则点P的直角坐标为()A.(1,)B.(1,﹣)C.(,1)D.(,﹣1)考点:点的极坐标和直角坐标的互化.专题:计算题.分析:利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,可求出点的直角坐标.解答:解:x=ρcosθ=2×cos=1,y=ρsinθ=2×sin=∴将极坐标(2,)化为直角坐标是(1,).故选A.点评:本题主要考查了点的极坐标和直角坐标的互化,同时考查了三角函数求值,属于基础题.2.(5分)一物体作直线运动,其运动方程为s(t)=﹣t2+2t,则t=1时其速度为()A.4B.﹣1 C.1D.0考点:导数的几何意义.专题:导数的概念及应用.分析:首先求导,然后将t=1代入即可.解答:解:∵s(t)=﹣t2+2t∴s'(t)=﹣2t+2∴s'(1)=0故t=1时其速度为0.故选:D.点评:本题考查了导数的几何意义,属于基础性的题目.3.(5分)若(x2﹣1)+(x2+3x+2)i是纯虚数,则实数x的值是()A.1B.﹣1 C.1或﹣1 D.﹣1或﹣2考点:复数的基本概念.专题:计算题.分析:(x2﹣1)+(x2+3x+2)i是纯虚数,实部为0,虚部不为0,求解不等式组即可确定x 的值.解答:解:(x2﹣1)+(x2+3x+2)i是纯虚数,则解得:x=1故选A点评:本题考查复数的基本概念,考查计算能力,是基础题.4.(5分)曲线(t为参数)与x轴交点的直角坐标是()A.(1,4)B.(1,﹣3)C.(,0)D.(,0)考点:点的极坐标和直角坐标的互化;参数方程化成普通方程.专题:计算题.分析:欲求曲线(t为参数)与x轴交点的直角坐标,只须在方程中,令y=0,得t=,再将其代入x=1+t2中,得x即可.解答:解:在方程中,令y=0,得t=,将其代入x=1+t2中,得x=1+=,则曲线(t为参数)与x轴交点的直角坐标是(,0).故选C.点评:本题考查参数方程的应用,考查曲线的交点问题,属于基础题.5.(5分)用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度考点:反证法与放缩法.专题:常规题型.分析:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.解答:解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B点评:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.6.(5分)若随机变量X~N(1,σ2),且P(0<X≤3)=0.7989,则P(﹣1<X≤2)=()A.0.7989 B.0.2011 C.0.2021 D.以上答案均不对考点:正态分布曲线的特点及曲线所表示的意义.分析:根据X~N(1,σ2),可得图象关于x=1对称,利用P(0<X≤3)=0.7989,即可求得结论.解答:解:根据正态分布N(1,σ2)的密度函数的图象的对称性可得,∵X~N(1,σ2),∴图象关于x=1对称∴P(﹣1<X≤2)=P(0<X≤3)=0.7989.故选A.点评:本题主要考查正态分布的图象,利用正态曲线的对称性是解题的关键.7.(5分)复数与在复平面上所对应的向量分别是,,O为原点,则这两个向量的夹角∠AOB=()A.B.C.D.考点:复数的代数表示法及其几何意义;数量积表示两个向量的夹角.专题:计算题.分析:由条件求得||、||、的值,再由两个向量的夹角公式求得这两个向量的夹角∠AOB的值.解答:解:∵对应的复数为===﹣i,对应的复数为,∴||=1,||=2,=0+(﹣1)(﹣)=,设这两个向量的夹角∠AOB=θ,则cosθ===,∴θ=,故选A.点评:本题主要考查复数的代数表示及其几何意义,两个向量的夹角公式的应用,属于基础题.8.(5分)已知数列{a n}的通项公式,记f(n)=(1﹣a1)(1﹣a2)(1﹣a3)…(1﹣a n),通过计算f(1),f(2),f(3),f(4)的值,猜想f(n)的值为()A.B.C.D.考点:归纳推理.专题:规律型.分析:先根据数列的f(n)=(1﹣a1)(1﹣a2)(1﹣a3)…(1﹣a n),求得f(1),f(2),f (3),f(4),可知分母和分子分别是等差数列进而可猜想出f(n)的值.解答:解:a1=,f(1)=1﹣a1=;a2=,f(2)=×=;a3=,f(3)==.…由于f(1)=1﹣a1==;f(2)=×==;f(3)===.…猜想f(n)的值为:f(n)=.故选D.点评:本题主要考查了归纳推理,考查了数列的通项公式.数列的通项公式是高考中常考的题型,涉及数列的求和问题,数列与不等式的综合等问题.二、填空题:本大题共6小题,每小题5分,共20分.9.(5分)计算=π.考点:定积分.专题:计算题.分析:结合导数公式,找出cosx+1的原函数,用微积分基本定理代入进行求解.解答:解:=(sinx+x)=sin0+0﹣[sin(﹣π)﹣π]=π,故答案为:π.点评:本题考查了导数公式及微积分基本定理,属于基本知识、基本运算的考查.10.(5分)i是虚数单位,则=3﹣i.考点:复数代数形式的乘除运算.专题:计算题.分析:利用两个复数代数形式的乘除法法则化简所给的式子,可得结果.解答:解:复数==3﹣i,故答案为3﹣i.点评:本题主要考查两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.11.(5分)若直线l经过点M(1,5),且倾斜角为,则直线l的参数方程为(t为参数).考点:直线的参数方程.专题:直线与圆.分析:根据直线的参数方程的特征及参数的几何意义,直接写出直线的参数方程.解答:解:由于过点(a,b)倾斜角为α的直线的参数方程为(t是参数),∵直线l经过点M(1,5),且倾斜角为,故直线的参数方程是即(t为参数).故答案为:(t为参数).点评:本题主要考查直线的参数方程,以及直线的参数方程中参数的几何意义,属于基础题.12.(5分)已知(1﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+a2+a3+a4+a5=﹣2.考点:二项式定理的应用;二项式系数的性质.专题:计算题;概率与统计.分析:在所给的式子中,令x=0可得a0=1.再令x=1可得a0+a1+a2+a3+a4+a5=﹣1,由此求得a1+a2+a3+a4+a5的值.解答:解:在(1﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5 中,令x=0可得a0=1.再令x=1可得a0+a1+a2+a3+a4+a5=﹣1,故a1+a2+a3+a4+a5=﹣2,故答案为﹣2.点评:本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于中档题.13.(5分)圆心在,半径为1的圆的极坐标方程是(其它正确答案同样给分).考点:简单曲线的极坐标方程.专题:计算题.分析:由题意圆心在,半径为1的圆,利用直角坐标方程,先求得其直角坐标方程,间接求出所求圆的方程.解答:解:由题意可知,圆心在的直角坐标为(,),半径为1.得其直角坐标方程为(x﹣)2+(y﹣)2=1,即x2+y2=x+y所以所求圆的极坐标方程是:ρ2=⇒.故答案为:.点评:本题是基础题,考查极坐标方程的求法,考查数形结合,计算能力.14.(5分)(2011•陕西)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为5+6+7+8+9+10+11+12+13=81.考点:归纳推理.专题:规律型.分析:根据题意,观察等式的左边,分析可得规律:第n个等式的左边是从n开始的(2n﹣1)个数的和,进而可得答案.解答:解:根据题意,观察可得,第一个等式的左边、右边都是1,第二个等式的左边是从2开始的3个数的和,第三个等式的左边是从3开始的5个数的和,…其规律为:第n个等式的左边是从n开始的(2n﹣1)个数的和,第五个等式的左边应该是从5开始的9个数的和,即5+6+7+8+9+10+11+12+13,计算可得,其结果为81;故答案为:5+6+7+8+9+10+11+12+13=81.点评:本题考查归纳推理,解题时要认真分析题意中的等式,发现其变化的规律,注意验证即可.三、解答题:本大题共6小题,共80分,解答应写出证明过程或演算步骤.15.(12分)某地有两所中学,为了检验两校初中毕业生的语文水平,从甲、乙两校九年级学生中各随机抽取20%的学生(即占各自九年级学生总数的20%)进行语文测验.甲校32人,有21人及格;乙校24人,有15人及格.(1)试根据以上数据完成下列2×2列联表;及格不及格合计甲乙合计(2)判断两所中学初中毕业生的语文水平有无显著差别?附:P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05k00.455 0.708 1.323 2.072 2.706 3.841.考点:独立性检验.专题:应用题.分析:(1)由题意知按学生考试成绩及格与不及格进行统计,甲班及格人数为21人,乙班及格人数为15,从而做出甲班不及格的人数和乙班不及格的人数,列出表格,填入数据.(2)根据所给的数据,代入求观测值的公式,做出观测值,把所得的数值同观测值表中的数据进行比较,得到两所中学初中毕业生的语文水平无显著差别.解答:解:(1)及格不及格合计甲21 11 32乙15 9 24合计36 20 56(6分)(2).(10分)因为k≈0.058<0.455,所以两所中学初中毕业生的语文水平无显著差别.(12分)点评:本题考查独立性检验的作用,考查列联表的做法,是一个基础题,这种题目运算量比较小,但是需要注意计算观测值时,数据运算比较麻烦,需要认真完成.16.(12分)某产品的广告费用支出x与销售额y之间有如下的对应数据:x 2 4 5 6 8y 30 40 60 50 70(1)求回归直线方程;(2)据此估计广告费用为10时销售收入y的值.附:线性回归方程中系数计算公式,,其中,表示样本均值.考点:回归分析的初步应用.专题:应用题;概率与统计.分析:(1)根据所给的数据计算出x,y的平均数和回归直线的斜率,即可写出回归直线方程,(2)由(1)中的回归直线方程,把所给的自变量x代入方程,得到y的一个估计值,得到结果.解答:解:(1),(1分),(2分),(3分),(4分),(6分),(8分)所以回归直线方程为.(9分)(2)x=10时,预报y的值为y=6.5×10+17.5=82.5.(12分)点评:本题考查回归分析的初步应用,写方程要用的斜率和x,y的平均数都要经过计算算出,这样的题有一定的运算量,是一个基础题.17.(14分)六一儿童节期间,某商场对儿童节礼品采取促销措施.某儿童节礼品的进货价是10元/件,据市场调查,当销售量为x(万件)时,销售价格(元/件).若x∈N*,问销售量x为何值时,商场获得的利润最大?并求出利润的最大值.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:先确定利润函数,在求导确定函数的单调性,从而可求最值.解答:解:设商场的利润为y万元,由题意得(x∈N*)(5分)(7分)令y'=0,得,(舍去).(8分)y',y随x变化的情况如下表:x (0,)(,+∞)y' + 0 ﹣y 递增极大值递减(11分)因为,当x=3时,y=9;当x=4时,y=9;(12分)所以当x=3或x=4时,y max=9.(13分)答:销售量x为3万件或4万件时,商场获得的利润最大,最大值为9万元.(14分)点评:本题考查函数解析式的确定,考查利用数学知识解决实际问题,考查导数知识的运用,属于中档题.18.(14分)某学校高一年级组建了A、B、C、D四个不同的“研究性学习”小组,要求高一年级学生必须参加,且只能参加一个小组的活动.假定某班的甲、乙、丙三名同学对这四个小组的选择是等可能的.(1)求甲、乙、丙三名同学选择四个小组的所有选法种数;(2)求甲、乙、丙三名同学中至少有二人参加同一组活动的概率;(3)设随机变量X为甲、乙、丙三名同学参加A小组活动的人数,求X的分布列与数学期望EX.考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)甲、乙、丙三名同学每人选择四个小组的方法是4种,利用乘法原理可得结论;(2)求出对立事件的概率,可得结论;(3)确定X的取值,求出相应的概率,即可得到X的分布列与数学期望EX.解答:解:(1)甲、乙、丙三名同学每人选择四个小组的方法是4种,故有43=64种.(4分)(2)甲、乙、丙三名同学选择三个小组的概率为所以三名同学至少有二人选择同一小组的概率为.(8分)(3)由题意X的可能取值为:0,1,2,3所以,,,,(12分)所以X的分布列如下:X 0 1 2 3P故数学期望.(14分)点评:本题考查概率的计算,考查离散型随机变量的分布列与数学期望,考查学生的计算能力,属于中档题.19.(14分)设数列{a n}的前n项和为S n,且S n=2n﹣a n(n∈N*).(1)求a1,a2,a3,a4的值;(2)猜想a n的表达式,并加以证明.考点:归纳推理.专题:等差数列与等比数列.分析:(1)根据S n=2n﹣a n,利用递推公式,分别令n=1,2,3,4,求出a1,a2,a3,a4,(2)由(1)猜想(n∈N*).利用a n=S n﹣S n﹣1,整理出a n的递推式,进而构造等比数列{a n﹣2}中求出a n.解答:解:(1)因为S n=2n﹣a n,S n=a1+a2+…+a n,n∈N*(1分)所以,当n=1时,有a1=2﹣a1,解得;(2分)当n=2时,有a1+a2=2×2﹣a2,解得;(3分)当n=3时,有a1+a2+a3=2×3﹣a3,解得;(4分)当n=4时,有a1+a2+a3+a4=2×4﹣a4,解得.(5分)(2)猜想(n∈N*)(9分)由S n=2n﹣a n(n∈N*),得S n﹣1=2(n﹣1)﹣a n﹣1(n≥2),(10分)两式相减,得a n=2﹣a n+a n﹣1,即(n≥2).(11分)两边减2,得,(12分)所以{a n﹣2}是以﹣1为首项,为公比的等比数列,故,(13分)即(n∈N*).(14分)点评:本题主要考查数列递推关系式的应用,考查归纳推理及等比数列的通项公式.属于中档题.20.(14分)(2010•焦作二模)已知,其中e是无理数,a∈R.(1)若a=1时,f(x)的单调区间、极值;(2)求证:在(1)的条件下,;(3)是否存在实数a,使f(x)的最小值是﹣1,若存在,求出a的值;若不存在,说明理由.考点:利用导数求闭区间上函数的最值.专题:综合题;压轴题;存在型.分析:(1)由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点代入已知函数,比较函数值的大小,从而解出单调区间;(2)构造函数h(x)=g(x)+,对其求导,求出h(x)的最小值大于0,就可以了.(3)存在性问题,先假设存在,看是否能解出a值.解答:解:(1)∵当a=1时,,∴,(1分)∴当0<x<1时,f'(x)<0,此时f(x)单调递减当1<x<e时,f'(x)>0,此时f(x)单调递增,(3分)∴f(x)的单调递减区间为(0,1);单调递增区间为(1,e);f(x)的极小值为f(1)=1.(4分)(2)由(1)知f(x)在(0,e]上的最小值为1,(5分)令h(x)=g(x)+,x∈(0,e]∴,(6分)当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增,(7分)∴,∴在(1)的条件下,f(x)>g(x)+,(8分)(3)假设存在实数a,使,(x∈(0,e])有最小值﹣1,∴,(9分)①当a≤0时,∵0<x≤e,∴f'(x)>0,∴f(x)在(0,e]上单调递增,此时f(x)无最小值.(10分)②当0<a<e时,若0<x<a,则f'(x)<0,故f(x)在(0,a)上单调递减,若a<x<e,则f'(x)>0,故f(x)在(a,e]上单调递增.,,得,满足条件.(12分)3当a≥e4时,∵0<x<e,∴f'(x)<0,∴f(x)在(0,e]上单调递减,(舍去),所以,此时无解.(13分)综上,存在实数,使得当x∈(0,e]时f(x)的最小值是﹣1.(14分)(3)法二:假设存在实数a,使,x∈(0,e])的最小值是﹣1,故原问题等价于:不等式,对x∈(0,e]恒成立,求“等号”取得时实数a的值.即不等式a≥﹣x(1+lnx),对x∈(0,e]恒成立,求“等号”取得时实数a的值.设g(x)=﹣x(1+lnx),即a=g(x)max,x∈(0,e](10分)又(11分)令当,g'(x)>0,则g(x)在单调递增;当,g'(x)<0,则g(x)在单调递减,(13分)故当时,g(x)取得最大值,其值是故.综上,存在实数,使得当x∈(0,e]时f(x)的最小值是﹣1.(14分)点评:此题是一道综合题,主要还是考查导数的定义及利用导数来求区间函数的最值,利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力,解题的关键是求导要精确.。
高中数学必修5期末试卷数学必修5试题一、选择题(每小题5分,共50分) 1.已知数列{a n }中,21=a,*11()2n naa n N +=+∈,则101a 的值为 ( )A .49B .50C .51D .522.在△ABC 中,若a = 2 ,b =,030A = , 则B 等于 ( )A .60oB .60o或 120oC .30oD .30o或150o3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于 ( )A .030B .060C .0120D .01504.设{a n }是由正数组成的等比数列,且a 5a 6=81,log 3a 1+ log 3a 2+…+ log 3a 10的值是( )A .5B .10;C .20D .2或45.已知0x >,函数4y x x=+的最小值是 ( )A .5B .4C .8D .66.已知等差数列{a n }的公差d≠0,若a 5、a 9、a 15成等比数列,那么公比为 ( )A .34B .23C .32D .437.在⊿ABC 中,BCb c cos cos =,则此三角形为( )A . 直角三角形; B. 等腰直角三角形 C 。
等腰三角形 D. 等腰或直角三角形8.已知数列}{na 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n Λ,则312215S S S-+的值是( )A. -76B. 76C. 46D. 139.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -810.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是( )A .a 8B .a 9C .a 10D .a 11二、填空题( 每小题5分,共20分 ) 11.已知等差数列{a n }满足56aa +=28,则其前10项之和为 . 12.数列{}na 满足12a=,112n n naa --=,则na = ;13.不等式21131x x ->+的解集是 . 14.数列{}na 的前n 项和*23()n ns a n N =-∈,则5a = 。
一、选择题1.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,32.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1+∞ C .(1,3)D .(3,+∞)3.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .604.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163B .13C .2D .45.在ABC 中,内角,A ,B C 的对边分别为,a ,b c,已知b =22cos c a b A -=,则a c +的最大值为( )AB.C.D6.在△ABC 中,若b =2,A =120°,三角形的面积S = AB.C .2 D .47.在ABC 中,60A ∠=︒,4AC =,BC =ABC 的面积为 A.B .4C.D8.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭( )A .1B .22 C.62- D .62+ 9.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .404210.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .911.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .212.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .276二、填空题13.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y x =-的最大值为11,则实数c的值为____.14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.ABC 的三边边长,,a b c 成递增的等差数列,且最大角等于最小角的2倍,则::a b c =______16.给出以下四个结论:①函数()211x f x x -=+的对称中心是()1,2-;②若关于x 的方程10x k x-+=在()0,1x ∈没有实数根,则k 的取值范围是2k ≥;③在ABC 中,若cos cos b A a B =则ABC 为等腰三角形;④若将函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后变为偶函数,则ϕ的最小值是12π.其中正确的结论是________.17.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 18.已知正项等比数列{}n a 满足:28516a a a ,35+20a a =,若存在两项,m n a a 使得=32m n a a ,则14m n+的最小值为______ 19.已知数列{}n a 的各项均不为零,其前n 项和为n S ,且11a =,()12n n n S a a n *+=∈N .若11n n n b a a +=,则数列{}n b 的前n 项和n T =______. 20.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列(x 、y 均不为0),则a cx y+=______. 三、解答题21.(1)已知()2f x kx =+,不等式()3f x <的解集为()1,5-,不等式()1xf x ≥的解集为A .求集合A ;(2)解关于x 的不等式()2220ax a x +--≥.22.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.23.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin bC a-=tan cos A C -. (1)求角A 的大小;(2)若b =2c =,点D 在边BC 上,且2CD DB =,求a 及AD . 24.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC为锐角三角形,b =2a c -的取值范围. 25.已知数列{}n a 满足:121(21)n n n a q---=,224224231(N )22n n n n n a a a *++⋅⋅⋅+=+∈. (Ⅰ)求2n a ; (Ⅱ)若7553q <<,求数列{}n a 的最小项. 26.在数列{}n a ,{}n b 和{}n c 中,{}n a 为等差数列,设{}n a 前n 项的和为n S ,{}n c 的前n 项和为n T ,11a =,410S a =,12b =,n n n c a b =⋅,22n n T c =-. (1)求数列{}n a ,{}n b 的通项公式; (2)求证:()()()()()()12122311111111nn n c c c c c c c c c ++++<------.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.2.A解析:A【解析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.3.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以229494(3)(8)(4)(9)3737249b a b a b aa b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.4.B解析:B 【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案.【详解】根据题意,正数x ,y 满足x +y =1,则2211x y y x +++=22(1)(1)11--+++y x y x=(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13[8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13,所以3m ≤,则m 的最大值为13; 故选:B . 【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题.5.B解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c+的最大值为故选:B.【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.6.C解析:C【解析】12sin1202S c==⨯︒,解得c=2.∴a2=22+22−2×2×2×cos120°=12,解得a=,∴24sinaRA===,解得R=2.本题选择C选项.7.C解析:C【分析】利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【详解】因为ABC∆中,60A∠=︒,4AC=,BC=由正弦定理得:sin sinBC ACA B=,所以4sin60sin B︒=,所以sin1B=,所以90,30B C︒︒∠=∠=,所以14sin302ABCS︒∆=⨯⨯= C.【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin1B=,从而求得90,30B C︒︒∠=∠=,之后应用三角形面积公式求得结果.8.D解析:D 【分析】根据()22a b c =+-cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭12==故选:D. 【点睛】 本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.9.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.10.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.11.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++,因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.12.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果. 【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=, 故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.二、填空题13.23【分析】画出不等式组表示的平面区域数形结合判断出取最大值的点即可建立关系求出【详解】画出不等式组表示的平面区域如图阴影部分直线在轴上的截距为则由图可知即将化为观察图形可知当直线经过点时取得最大值解析:23 【分析】画出不等式组表示的平面区域,数形结合判断出2z y x =-取最大值的点,即可建立关系求出. 【详解】画出不等式组表示的平面区域,如图阴影部分,直线320x y c +-=在y 轴上的截距为2c,则由图可知12c ≥,即2c ≥,将2z y x =-化为122zy x =+, 观察图形可知,当直线122zy x =+经过点A 时,z 取得最大值, 由210320x y x y c -+=⎧⎨+-=⎩解得27237c x c y -⎧=⎪⎪⎨+⎪=⎪⎩,故23221177c c +-⨯-=,解得23c =. 故答案为:23. 【点睛】方法点睛:线性规划常见类型, (1)y bz x a-=-可看作是可行域内的点到点(),a b 的斜率; (2)z ax by =+,可看作直线a zy x b b=-+的截距问题; (3)()()22z x a y b =-+-可看作可行域内的点到点(),a b 的距离的平方.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积 解析:23【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC AB θ=⋅⋅︒==OAB 的面积11sin 1sin 222OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=+13(sin )60)2θθθ==-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.【分析】由题意可得又最大角等于最小角的倍运用正弦定理求出用余弦定理化简求出边长关系【详解】的三边边长成递增的等差数列最大角为最小角为由正弦定理可得化简可得用余弦定理代入并化简可得:则则移项可得:消去 解析:4:5:6【分析】由题意可得2b a c =+,又最大角等于最小角的2倍,运用正弦定理求出2cos a A c =,用余弦定理化简求出边长关系. 【详解】ABC 的三边边长a 、b 、c 成递增的等差数列,2b a c ∴=+,最大角为C ∠,最小角为A ∠, sin sin 2C A ∴=, 由正弦定理可得sin sin sin 22sin cos a c c cA C A A A===,化简可得2cos a A c =, 用余弦定理代入并化简可得:23220ab a ac bc -+-=,()()2220c a b a a b ---=,则()()20a b c a a b ⎡⎤--+=⎣⎦,a b ≠,则22c a ab =+,移项可得:()()c a c a ab -+=,()2b c a ab -=,消去b 并化简可得23a c =, 设4a k =,6c k =,则5b k =,则::4:5:6a bc =.故答案为:4:5:6. 【点睛】本题结合数列知识考查了运用正弦定理和余弦定理来解三角形,探究出三角形根据已知条件得到的三边数量关系,有一定的计算量,需要熟练运用各公式进行化简.16.①③④【分析】将化成后可得图象的对称中心故可判断①的正误;参变分离后考虑在上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出的值从而可判断④的正误【详解】对于①因为故的图解析:①③④ 【分析】将()f x 化成()321f x x -=++后可得图象的对称中心,故可判断①的正误;参变分离后考虑1y x x=-在()0,1上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出ϕ的值,从而可判断④的正误. 【详解】对于①,因为()321f x x -=++,故()f x 的图象可以看出3y x-=向左平移1个单位,向上平移2个单位,故()f x 的图象的对称中心为()1,2-,故①正确. 对于②,考虑方程10x k x -+=在()0,1上有实数根即1k x x=-在()0,1上有实数根, 故(),0k ∈-∞, 故关于x 的方程10x k x-+=在()0,1x ∈没有实数根时,则[)0,k ∈+∞,故②错误. 对于③,由正弦定理得到sin cos sin cos =B A A B ,故()sin 0B A -=, 因为(),B A ππ-∈-,故0B A -=即B A =,故③正确. 对于④,平移后得到的图象对应的解析式为sin 223πy x φ⎛⎫=-- ⎪⎝⎭, 因为该函数为偶函数,故202,32ππφk πk Z ⨯--=+∈, 故5,212k ππφk Z =--∈,因为0ϕ>,故min 12πϕ=,故④正确. 故答案为:①③④. 【点睛】本题考查分式函数的图象性质、函数值域的求法、正弦定理和三角变换以及正弦型函数的图象特征,注意在三角形中,可利用正弦定理把边角的混合关系转化为边的关系或角的关系,而正弦型函数图象的性质,可利用整体法结合正弦函数的性质来讨论,本题属于中档题.17.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案. 【详解】0a >,0b >,且a ,1,b 依次成等差数列,∴2a b +=, ∴()41141141941(52222b a a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4b a a b =,即43a =,23b =,取等号, 故14a b +的最小值为92. 故答案为:92. 【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.18.【分析】由先求出数列的通项公式由找到把乘以1等量代换最后利用均值定理即可求解【详解】解:设正项等比数列的公比为由又所以所以即当且仅当即时取等号则的最小值为故答案为:【点睛】考查等比数列的性质以及用均解析:34【分析】 由28516a a a ,35+20a a =找到12m n +=,把14m n+乘以1,等量代换,最后利用均值定理即可求解. 【详解】解:设正项等比数列{}n a 的公比为()0q q >, 由28516a a a ,255516,16a a a ==,又35+20a a =,所以34a =,25316=4,24a q q a ===5515=1622n n n n a a q ---=⨯=,,所以1110222n m m n a a --==,即12m n +=,14145531212123124m n n m m n m n m n +⎛⎫+=+⋅=++≥+= ⎪⎝⎭ 当且仅当123n mm n=,即4,8m n ==时取等号, 则14m n +的最小值为34故答案为:34. 【点睛】考查等比数列的性质以及用均值定理求最小值,基础题.19.【分析】由得数列的递推关系数列奇数项成等差数列偶数项成等差数列分别求出通项公式后合并可得然后用裂项相消法求和【详解】∵∴两式相减得又∴由且得因此综上∴故答案为:【点睛】本题考查求等差数列的通项公式裂 解析:1n n + 【分析】由11n n n a S S ++=-得数列{}n a 的递推关系,数列奇数项成等差数列,偶数项成等差数列,分别求出通项公式后,合并可得n a ,然后用裂项相消法求和n T . 【详解】∵12n n n S a a +=,∴1122n n n S a a +++=,两式相减得11121222n n n n n n n a S S a a a a +++++=-=-,又10n a +≠,∴22n n a a +-=, 由1122S a a =且11a =得22a =,因此2112(1)12(1)21n a a n n n -=+-=+-=-,222(1)22(1)2n a a n n n =+-=+-=, 综上,n a n =,*n N ∈,111(1)1n b n n nn ,∴11111111223111n n T n n n n =-+-++-=-=+++. 故答案为:1n n +. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.20.【分析】由题意可得出代入计算可得出的值【详解】由题意可得出故答案为:【点睛】本题考查利用等差中项和等比中项求值考查计算能力属于中等题 解析:2【分析】由题意可得出2b ac =,2a bx +=,2b c y +=,代入计算可得出a c x y +的值.【详解】由题意可得出2b ac =,2a bx +=,2b c y +=, ()()()()()222222224222a b c c a b ab ac bc a c a cab ac bc x y a b b c a b b c ab ac b bc ab ac bc +++++++∴+=+====+++++++++.故答案为:2. 【点睛】本题考查利用等差中项和等比中项求值,考查计算能力,属于中等题. 三、解答题21.(1)[)1,2;(2)见解析 【分析】 (1)由题意得,23523k k ⎧-+=⎪⎨+=⎪⎩,由此可求得()2f x x =-+,代入后转化为一元二次不等式即可求出答案;(2)分类讨论法解不等式即可. 【详解】解:(1)∵()2f x kx =+,不等式()3f x <的解集为()1,5-, ∴方程23kx +=的解集为1,5,∴23523k k ⎧-+=⎪⎨+=⎪⎩,解得1k =-,∴()2f x x =-+,∴()112x x f x x ≥⇔≥-+()2102x x -⇔≤-()()12020x x x ⎧--≤⇔⎨-≠⎩, 解得12x ≤<,∴[)1,2A =;(2)∵()2220ax a x +--≥,①当0a =时,原不等式化为220x --≥,解得1x ≤-; 当()2010a a x x a ⎛⎫≠∴-+≥ ⎪⎝⎭, ②当0a >时,原不等式化为()210x x a ⎛⎫-+≥ ⎪⎝⎭, 解得1x ≤-,或2x a≥; ③当0a <时,原不等式化为()210x x a ⎛⎫-+≤ ⎪⎝⎭, 1︒当21a=-即2a =-时,原不等式化为()210x +≤,解得1x =-; 2︒当21a<-即20a -<<时,解得21x a ≤≤-;3︒当21a >-即2a <-时,解得21x a-≤≤; 综上:当2a <-时,原不等式的解集为21,x a ⎡⎤∈-⎢⎥⎣⎦; 当2a =-时,原不等式的解集为{}1x ∈-; 当20a -<<时,原不等式的解集为2,1x a ⎡⎤∈-⎢⎥⎣⎦; 当0a =时,原不等式的解集为(],1x ∈-∞-; 当0a >时,原不等式的解集为(]2,1,x a ⎡⎫∈-∞-+∞⎪⎢⎣⎭. 【点睛】本题主要考查一元二次不等式的解法,考查分式不等式的解法,考查转化与化归思想,考查分类讨论法,属于中档题.22.(1)25-;(2)⎛-∞ ⎝⎭,. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或 ∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =-(2)∵不等式的解集为R ∴0k <且24240k ∆=-<∴6k <-∴k 的取值范围是(-∞, 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.23.(1)π4A =;(2)a =AD = 【分析】(1()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =cos 10B =-3a BD ==,再由余弦定理即可求出AD . 【详解】解:(1()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos AC A C A C C A C A--=-,∵sin 0C ≠,∴2sin cos cos AA A+=,∴cos A =0πA <<,∴π4A =.(2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴3a BD ==,又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴AD = 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算. 24.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案. 【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+.再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=.(2)由3B π=,b =224sin 2sin 4sin 2sin 3a c A C C Cπ⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos 2C <<. 所以2a c -的取值范围为()0,3.25.(Ⅰ)2231n n a n =-;(Ⅱ)25q . 【分析】(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,利用122n n n n S S a -=-可求2n a . (2)讨论{}2-1n a 的单调性后可求数列{}21n a -的最小项,结合223n a >可求数列{}n a 的最小项.【详解】解:(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,即23122n S n n =+, ∴2131(1)(1)22n S n n -=-+-.则12231(2)n n n n S S n n a -=-=-≥, 故()22231n n a n n =≥-,当1n =,21a =,也符合此式, ∴2231n n a n =-. (Ⅱ)222223313313n n a n n ==+>--. 考虑奇数项,∵12121n n q a n --=-, ∴[]112121(21)(21)2121(21)(21)n n n n n q q n n q q a a n n n n --+---+-=-=+-+- ()()()111121(21)(21)(21)(21)2222n n q n q q q q q n n n q n n --⎡⎤-+----==+⎢⎥-⎡⎤⎣⎦+⎦-⎣-, 又()1112121q q q +=+--, ∵7553q <<,得()112,321q +∈-,而220q ->, ∴当2n ≤时,2121n n a a +-<,当3n ≥时,2121n n a a +->,即奇数项中5a 最小. 而25252593n q a a =<<<,所以数列{}n a 的最小项为255q a =. 【点睛】思路点睛:数列的最大项最小项,一般根据数列的单调性来处理,如果数列是分段数列,则可以分别讨论各段上的最大项最小项,比较后可得原数列的最大项最小项.26.(1)n a n =,2nn b n=;(2)证明见解析; 【分析】(1)设{}n a 的公差为d ,由410S a =,即可得到1d a =,从而求出{}n a 的通项公式,再由1122n n n n n c T T c c --=-=-,可得{}n c 是首项为2,公比为2的等比数列,即可求出{}n c 的通项,最后由n n n c a b =⋅,求出{}n b 的通项公式;(2)依题意可得()()1111112121n n n n n c c c ++=-----,利用裂项相消法求和即可得证; 【详解】解:(1)因为{}n a 为等差数列,且{}n a 前n 项的和为n S ,设其公差为d , 因为410S a =,11a =,所以()11441492a d a d ⨯-+=+,所以11d a ==,所以n a n =,因为11a =,12b =,n n n c a b =⋅,所以1112c a b =⋅=,因为{}n c 的前n 项和为n T 且22n n T c =-,当2n ≥时,()()111222222n n n n n n n c T T c c c c ---=-=---=-,所以()122n n c c n -=≥,所以{}n c 是首项为2,公比为2的等比数列,所以2n n c =,因为n n n c a b =⋅,所以2nn n n c b a n== (2)因为()()()()1112111121212121n n n n n n n n c c c +++==-------所以()()()()()()1212231111111n n n c c c c c c c c c ++++------ 122311111111111111212121212121212121n n n n +++=-+-++-=-=-<--------- 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。
高二数学必修5模块测试题一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、在△ABC 中,如果cos cos a b c B c A -=-,那么△ABC 为( D ) (A )等腰三角形 (B )直角三角形(C )等腰直角三角形 (D )等腰三角形或直角三角形 2、设n S 是等差数列{}n a 的前n 项和,若5935S 5,9a a S =则等于( A )(A )1 (B )-1 (C )2 (D )123、某同学的父母想为他3年后读大学准备一笔资金,从2004年他考入深圳外国语学校高中部起,每年的8月1日到银行存入a 元钱(一年定期),若年利率r 保持不变,且每年到期的存款的本金和利息均自动转为新一年的本金(不计利息税),则到2007年8月1日将所有存款的本金和利息全部取回,他可取回的钱数(元)为( C ) (A )3(1)a r + (B ) 4(1)a r + (C )3[(1)1]a r r r+-- (D )4[(1)1]a r r r+--4、在△ABC 中,∠A ,∠B ,∠C 所对的边分别为c b a ,,,如果,,a b c 成等差数列,∠B =30°,△ABC 的面积为32,那么b 等于 ( B )(A)2 (B)1+ (C2(D)2+5、如果,a b R ∈且0a b +<,则关于x 的不等式0a xb x-≥+的解集为( C )(A ){|}x b x a -<≤ (B ){|}x x a x b ≤>-或 (C ){|}x a x b ≤<- (D ){|}x a x b ≤≤- 6、椭圆22a x+22by=1(0>>b a )的两焦点为F 1、F 2,以F 1F 2为边作正三角形,椭圆恰好平分此正三角形的另两边,则椭圆的离心率为( D )(A)21 (B)23 (C)4-23 (D)3-17、过抛物线y 2=2px (0>p )的对称轴上一定点M(0,a )作一直线交抛物线于P 、Q 两点,若线段PQ 的纵坐标分别是m 、n ,则n m ⋅的值是( B )(A )-pa (B) -2pa (C) -3pa (D) -4pa 8、双曲线92x-162y=1两焦点为F 1、F 2,,点P 在双曲线上,且PF 1、PF 2的倾斜角之差为3π,则∆PF 1F 2的面积为( A )(A)163 (B) 323 (C) 32 (D) 429、设"0",0>≠ac abc ,是“曲线c by ax =+22为椭圆”的( B )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分又不必要条件10、(文)函数32y x ax a =-+在(0,1)内有极小值,则实数a 的取值范围为( D )(A )(0,3) (B) (,3-∞) (C)(0,)+∞ (D)3(0,)2(理)已知∠ABC =90°,BC ∥平面M ,AB 与平面M 斜交,那么∠ABC 在平面M 内的射影是( B )(A )锐角 (B )直角 (C )锐角或直角 (D )锐角或直角或钝角二、填空题:本大题共4小题,每小题4分,共16分. 请把答案填在题中的横线上. 11、设z x y =-,式中变量x y 和满足条件30,20,x y x y +-≥⎧⎨-≥⎩则z 的最小值是 1 .12、数列392565161,,,,,2481632 的前n 项和为 (1)1122n n n +-+ .13、若曲线19422=++ym x的一条准线方程为x =10,则m 的值是 6或8614、(文)已知双曲线的对称轴为坐标轴,一条渐近线为2x -y =0214、(理)在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b、c ,则空间任意一个向量p 总可以唯一表示为cz b y a x p++=.其中不.正确..命题的序号为 ①②③④ . 三、解答题: 解答应写出文字说明、证明过程或演算步骤.15、在R 上定义运算⊗:(1).x y x y ⊗=- 若不等式()()1x a x a -⊗+<对任意实数x 成立,求实数a 的取值范围. 答案:13(,).22-16、. 求关于x 的不等式ax a ax >++32对一切实数x 都成立的充要条件. 答案:[)0,+∞ 17、(文)求函数f (x )= 在[0,2]上的最大值与最小值答案:最大值为1ln 24-;最小值为0(理)在△ABC 中,∠A ,∠B ,∠C 所对的边分别为c b a ,,,已知,,a b c 成等比数列,且3cos 4B =.(Ⅰ)求11tan tan A B+的值;(Ⅱ)设3,.2B A BC a c =+ 求的值(理)解:(Ⅰ)由3cos 4B =,得 sin 4B ==由2b ac =及正弦定理,得 2s i n s i n s i n .B A C =于是11c o s c o ss i n c o s c o s s i nt a n t a ns i ns i ns i n s i nA C C A C A AB AC A C ++=+=22sin()sin 1sin sin sin 7A C BBBB+====(Ⅱ)由32B A B C = ,得 3c o s ,2c a B = 又 3c o s4B =,所以 22,2.c a b ==即由余弦定理,得 2222c o s ,b a c a c B =+- 即 2222c o s 5,a cb ac B +=+= ∴ 222()2549,a c a c a c +=++=+= ∴ 3.a c +=18、(文)已知曲线C 的方程为:k x 2+(4-k )y 2=k +1(k ∈R)(1) 若曲线C 是椭圆,求k 的取值范围;(2) 若曲线C 是双曲线,且有一条渐进线的倾斜角是600,求此双曲线的方程;(3) 满足(2)的双曲线上是否存在两点P ,Q 关于直线l :y=x-1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
一、选择题1.已知x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .322.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .83.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-4.设a=3x 2﹣x+1,b=2x 2+x ,则( )A .a >bB .a <bC .a≥bD .a≤b5.在ABC 中,2sin 22C a b a-=,角A 、B 、C 的对边分别为a 、b 、c ,则ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形D .直角三角形6.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,c =S =( ) AB.6C .16D.127.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒ C. 6,60b c C ===︒ D .4,3,30b c C ===︒8.在ABC 中,若2a =,b =30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒9.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( )A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦ C .5,6D .(],1-∞10.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >11.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .512.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+二、填空题13.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 14.在△ABC 中,已知AB =9,BC =7,cos (C ﹣A )=1921,则ABC 的面积为_____. 15.在相距3千米的A ,B 两个观察点观察目标点C ,其中观察点B 在观察点A 的正东方向,在观察点A 处观察,目标点C 在北偏东15︒方向上,在观察点B 处观察,目标点C 在西北方向上,则A ,C 两点之间的距离是______千米.16.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.17.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 18.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.19.定义:如果一个数列从第二项起,后一项与前一项的和相等且为同一常数,这样的数列叫“等和数列”,这个常数叫公和.给出下列命题: ①“等和数列”一定是常数数列;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列; ③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列; ④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =; 其中,正确的命题为__________.(请填出所有正确命题的序号) 20.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0; ③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.三、解答题21.已知定义域为R 的函数()22x xb n f x b +=--是奇函数,且指数函数xy b =的图象过点(2,4).(Ⅰ)求()f x 的表达式;(Ⅱ)若方程()23()0f x x f a x ++-+=,(4,)x ∈-+∞恰有2个互异的实数根,求实数a 的取值集合;(Ⅲ)若对任意的[1,1]t ∈-,不等式()22(1)0f t a f at -+-≥恒成立,求实数a 的取值范围.22.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin A C b cB a c--=+.(1)求角A ;(2)若ABC 的外接圆半径为2,求ABC 周长的最大值. 23.已知在△ABC 中,a ∶b ∶c =2∶∶+1),求角A 的大小.24.已知ABC中,2AB BC ==225AC AB +=. (1)求ABC ∠的值;(2)若P 是ABC 内一点,且53,64APB CPB ππ∠=∠=,求tan PBA ∠. 25.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 满足()()1211nn n n a b a a +=++,求数列{}n b的前n 项和n T .26.已知等差数列{}n a 和等比数列{}n b 的首项均为1,{}n b 的前n 项和为n S ,且22a S =,43a S =.(1)求数列{}n a ,{}n b 的通项公式;(2)设n n n c a b =⋅,*n N ∈,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -,据此可知目标函数的最大值为:max 2213z =⨯-=. 故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.2.C解析:C 【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.3.C解析:C【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.4.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.5.D解析:D 【分析】利用二倍角公式、正弦定理可得出sin sin cos B A C =,利用两角和的正弦公式可得出cos sin 0A C =,求出A 的值,即可得出结论. 【详解】21cos sin 222C C a b a--==,cos b a C ∴=,由正弦定理可得sin sin cos B A C =,所以,()sin cos sin sin cos cos sin A C A C A C A C =+=+,则cos sin 0A C =,0C π<<,则sin 0C >,cos 0A ∴=,0A π<<,2A π∴=,因此,ABC 为直角三角形.故选:D. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.6.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 2C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 2S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.7.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.8.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 30b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围. 【详解】数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①, 当1n =时,11a =.当2n ≥时,1121n n a S --=+②,①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立, 所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥, 所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C 【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.10.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>, 76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.11.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q -++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q-++++==-, 222222101521234(1)601a q qa a a a a -=-++=++, 两式相除得210551112(1)(1)(1)6111a q a q a q q q q --+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.12.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列,故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-.故选:A. 【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.二、填空题13.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12- 【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.14.【分析】设AD =CD =xBD =9﹣x 在中利用余弦定理可得x =6再利用余弦定理求出cosB 进而求出sinB 根据三角形的面积公式即可求解【详解】∵AB >BC ∴C >A 作CD =AD 则∠DCA =∠A 则∠BCD解析:【分析】设AD =CD =x ,BD =9﹣x ,在BDC 中,利用余弦定理可得x =6,再利用余弦定理求出cos B ,进而求出sin B ,根据三角形的面积公式即可求解. 【详解】 ∵AB >BC , ∴C >A ,作CD =AD ,则∠DCA =∠A ,则∠BCD =C ﹣A ,即cos ∠BCD =cos (C ﹣A )=1921, 设AD =CD =x ,则BD =9﹣x ,在BDC 中,由余弦定理得:BD 2=CD 2+BC 2﹣2CD ⋅BC ⋅cos ∠BCD ,即(9﹣x )2=x 2+49﹣2×7x 1921⋅=x 2+49﹣283x ,整理解得:x =6, ∴AD =6,BD =3,CD =6,在BDC 中,由余弦定理得cos B =2222BD BC CD BD BC +-⋅=222376237+-⨯⨯=1121. 则sin B =21cos B -=85, 则△ABC 的面积S =12×7×9×85=125,故答案为:5【点睛】本题考查了余弦定理解三角形、三角形的面积公式,考查了基本运算能力,属于中档题.15.【分析】在中则再由正弦定理列出方程即可求解【详解】由题设可知在中所以由正弦定理得即解得故答案为:【点睛】本题主要考查了解三角形的实际应用其中解答中熟练应用正弦定理列出方程是解答的关键着重考查运算与求 6【分析】在ABC 中,75CAB ∠=︒,45CBA ∠=︒,则60ACB ∠=︒,再由正弦定理列出方程,即可求解. 【详解】由题设可知,在ABC 中,75CAB ∠=︒,45CBA ∠=︒,所以60ACB ∠=︒,由正弦定理得sin sin AB AC ACB CBA =∠∠,即3sin 60sin 45AC=,解得AC =.. 【点睛】本题主要考查了解三角形的实际应用,其中解答中熟练应用正弦定理,列出方程是解答的关键,着重考查运算与求解能力,属于基础题.16.【分析】可先根据得出可转化为然后乘以利用基本不等式即可求解【详解】即的最小值为故答案为:【点睛】本题主要考查等差数列的相关性质以及基本不等式的应用属于综合题解析:34+ 【分析】可先根据1122S =得出574a a +=,7811572a a a a a 可转化为5721a a ,然后乘以574a a ,利用基本不等式即可求解. 【详解】111571111112222a a a a S ,574a a ,781178117511117557575757572222221a a a a a a a a a a a a a a a a a a a a a a , 75575757572112134244a a a a a a a a a a , 570a a ,75570,024a a a a ,757557573332222422444a a a a a a aa ,即57213224a a , 7811572a a a a a 的最小值为34+. 故答案为:34+. 【点睛】本题主要考查等差数列的相关性质,以及基本不等式的应用,属于综合题.17.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最解析:4 【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--. 所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B +的最小值为4. 故答案为:4 【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.18.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 45CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=,由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.19.②【分析】利用等和数列的定义对每一个命题逐一分析判断得解【详解】①等和数列不一定是常数数列如数列是等和数列但是不是常数数列所以该命题错误;②如果一个数列既是等差数列又是等和数列则这个数列一定是常数列解析:② 【分析】利用“等和数列”的定义对每一个命题逐一分析判断得解. 【详解】①“等和数列”不一定是常数数列,如数列1,0,1,0,1,0,1,0,1,0,是“等和数列”,但是不是常数数列,所以该命题错误;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列.如果数列{}n a 是等差数列,所以112(2)n n n a a a n +-+=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以122(2)n n a a n -=≥,所以1(2)n n a a n -=≥,所以这个数列一定是常数列,所以该命题是正确的.③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列. 如果数列{}n a 是等比数列,所以211(2)n n n a a a n +-⋅=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以221(2)n n a a n -=≥,所以1(2)n n a a n -=±≥,所以这个数列不一定是常数列,所以该命题是错误的.④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =,是错误的.举例“等和数列”1,99,1,99,1,其5201505S =≠⨯,所以该命题是错误的. 故答案为:② 【点睛】本题主要考查数列的新定义的理解和应用,考查等差数列和等比数列的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得 1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.三、解答题21.(Ⅰ)121()22x x f x +-+=+;(Ⅱ){}40a a -<<;(Ⅲ){}0a a ≥.【分析】(Ⅰ)先利用已知条件得到b 的值,再利用奇函数得到()00f =,进而得到n 的值,经检验即可得出结果;(Ⅱ)先利用指数函数的单调性判断()f x 的单调性,再利用奇偶性和单调性得到23x x a x +=-,把23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,求解即可;(Ⅲ)先利用函数()f x 为R 上的减函数且为奇函数,得到221t a at -≤-,把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--,利用二次函数的图像特点求解即可. 【详解】(Ⅰ)由指数函数xy b =的图象过点(2,4),得2b =,所以2()222x x nf x +=-⋅-,又()f x 为R 上的奇函数, 所以()00f =, 得1n =-,经检验,当1n =-时,符合()()f x f x -=-,所以121()22x x f x +-+=+;(Ⅱ)12111()22221x x xf x +-+==-+++, 因为21xy =+在定义域内单调递增, 则121x y =+在定义域内单调递减, 所以()f x 在定义域内单调递增减, 由于()f x 为R 上的奇函数, 所以由()23()0f x x f a x ++-+=, 可得()()23()f x x f a x f a x +=--+=-,则23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根, 即()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,则()()4000440204f a a a f a ⎧-><⎧⎪⎪∆>⇒>-⇒-<<⎨⎨⎪⎪-<>-⎩⎩, 所以实数a 的取值集合为{}40a a -<<.(Ⅲ)由(Ⅱ)知函数()f x 为R 上的减函数且为奇函数,由()22(1)0f t a f at -+-≥,得()()221f ta f at -≥-,所以221t a at -≤-,即2210t at a +--≤对任意的[1,1]t ∈-恒成立, 令()221g t t at a =+--,由题意()()1010g g ⎧-≤⎪⎨≤⎪⎩,得0a ≥,所以实数a 的取值范围为:{}0a a ≥. 【点睛】关键点睛:利用函数的奇偶性求解析式,(Ⅱ)把问题转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点的问题;(Ⅲ)把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立是解决本题的关键. 22.(1)3π;(2) 【分析】(1)正弦定理角化边可得a c b cb a c--=+,利用余弦定理,结合角A 的范围,即可得答案;(2)由(1)得3A π=,由正弦定理可得a 的值,利用余弦定理及均值不等式,即可求得b+c 的最大值,进而可得答案. 【详解】 (1)由sin sin sin A C b c B a c --=+及正弦定理得:a c b c b a c--=+,化简得222b c a bc +-=,∴2221cos 222b c a bc A bc bc +-===,又∵(0,)A π∈,∴3A π=.(2)∵ABC 的外接圆半径为2,3A π=,∴由正弦定理得324sinaR π==,解得a =∴由余弦定理得2222cos a b c bc A =+-⋅,∴2222212()3()32b c b c bc b c bc b c +⎛⎫=+-=+-≥+- ⎪⎝⎭,∴b c +≤b c =时,等号成立, ∴ABC的周长的最大值为a b c ++=【点睛】本题考查正弦定理、余弦定理、均值定理的应用,考查分析理解,求值化简的能力,属中档题.23.45A =︒【分析】利用余弦定理可求A 的大小. 【详解】由题设可设)2,,1(0)a k b c k k ===>,由余弦定理得,222222644cos 2k k k b c a A bc +-+-===,而A 为三角形内角,故45A =︒. 24.(1)4ABC π∠=;(2)tanPBA ∠=. 【分析】(1)由已知求得25AC =-cos 2ABC ∠=,即可求得ABC ∠;(2)由题可得PBAPCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭,化简即可求出.【详解】 解:(1)由AB BC ==,知AB BC ==,由225AC AB +=,知2525AC AB =-=- 在ABC 中,由余弦定理得:222cos 22BC AB AC ABC AB BC +-∠===⨯, 0ABC π<∠<,4ABC π∴∠=;(2),44PBA PBC PCB PBC BPC πππ∠+∠=∠+∠=-∠=,PBA PCB ∴∠=∠,设PBA α∠=,则在PBC 中,由正弦定理得,2sin 3sin sin4PB BCPB απα=∴=, 在APB △中,由正弦定理得:,56sin sin 66PBAB PB παππα⎛⎫=∴=- ⎪⎛⎫⎝⎭- ⎪⎝⎭,sin sin cos cos sin 666πππαααα⎛⎫⎫∴=-=- ⎪⎪⎝⎭⎭,化简可得:tan 5α=,故tan PBA ∠=. 【点睛】本题考查正余弦定理的应用,解题的关键是先得出PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭.25.(Ⅰ)13-=n n a ;(Ⅱ)11231n n T =-+. 【分析】(Ⅰ)设数列{}n a 的公比为q ,由32a 是23a 与4a 的等差中项.求出q 后可得通项公式; (Ⅱ)求出n b ,用裂项相消法求和n T . 【详解】(Ⅰ)设数列{}n a 的公比为q ,由条件知32443a a a =+,即2311143a q a q a q =+,整理可得2430q q -+=,解得3q =(1q =舍去),所以11133n n n a a --=⋅=.(Ⅱ)()()()()1111223111131313131n n nn n n n n n a b a a ---+⋅===-++++++,所以01121111111313131313131n n nT -⎫⎫⎫⎛⎛⎛=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎝⎝⎭⎭⎭011113131231n n =-=-+++. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 26.(1)()1121n a a n d n =+-=-,1112n n nb b q ;(2)()3232n n T n =+-⋅. 【分析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由22a S =,43a S =,求得2,2d q ==,然后利用等差数列和等比数列通项公式求解.(2)由(1)得到()1212n n c n -=-⋅,然后错位相减法求解.【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,因为22a S =,43a S =,所以11d q +=+,2131d q q +=++, 解得2,2d q ==所以()1121n a a n d n =+-=-,1112n n nb b q ;(2)由(1)知:()1212n n c n -=-⋅, 所以()0121123252...212n n T n -=⋅+⋅+⋅++-⋅,则()1232123252...212n n T n =⋅+⋅+⋅++-⋅,两式相减得:()23122...2212n n n T n -=++++--⋅,()()1412121212n n n --=+--⋅-,()3322n n =-+-⋅,所以()3232nn T n =+-⋅. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。
数学必修5测试题一、选择题(每小题5分,共60分) 1.已知数列{a n }中,21=a ,*11()2n n a a n N +=+∈,则101a 的值为 ( ) A .49 B .50 C .51 D .522.在△ABC 中,若a = 2 ,b =,030A = , 则B 等于 ( )A .60B .60或 120C .30D .30或1503.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于 ( )A .030B .060C .0120D .01504.设{a n }是由正数组成的等比数列,且a 5a 6=81,log 3a 1+ log 3a 2+…+ log 3a 10的值是( )A .5B .10;C .20D .2或45.3 若不等式x +≤a(x+y) 对一切正数x 、y 恒成立,则正数a 的最小值为( )A 1;B 2 ;12; D 1; 6.已知等差数列{a n }的公差d≠0,若a 5、a 9、a 15成等比数列,那么公比为 ( ) A .34 B .23 C .32 D .437.在⊿ABC 中,BCb c cos cos =,则此三角形为 ( )A . 直角三角形; B. 等腰直角三角形 C 。
等腰三角形 D. 等腰或直角三角形8.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A. -76B. 76C. 46D. 139.若 x>0,y>0, 且x+y=s,xy=p, 则下列命题中正确的是 ( )A 当且仅当x=y 时s 有最小值B 当且仅当 x=y 时p 有最大值24s ;C 当且仅当 p 为定值 时s 有最小值D 当且仅当 x=y 时 有最大值24s ;10.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是 ( )A .a 8B .a 9C .a 10D .a 1111.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是 ( )A .a ≤0B .a <-4C .-<<40aD .-<≤40a 12.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列, 则b 2(a 2-a 1)=A.8B.-8C.±8 D,7二、填空题( 每小题5分,共20分 )13.已知等差数列{a n }满足56a a +=28,则其前10项之和为 .14.数列{}n a 满足12a =,112n n n a a --=,则n a = ▲ ; 15.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 。
期末复习综合自测题题1.在△ABC中,若a = 2 ,23b=,030A=, 则B等于A.60B.60或120C.30D.30或1502.在数列55,34,21,,8,5,3,2,1,1x中,x等于()A.11 B.12 C.13 D.143.已知a,b为非零实数,且a<b,则下列命题成立的是()A. a2<b2B.ab2<a2bC.21ab<21a bD.ba<ab【源:4.三角形ABC中角C为钝角,则有()A.sin A>cos BB. sin A<cos BC. sin A=cos BD. sin A与cos B大小不确定5.在ABC∆中,若32sina b A=,则B等于()A.60B.30C.60或120D.30或1506.等差数列{a n}各项依次递减,且有a2a4a6=45, a2+a4+a6=15那么它的通项公式是()A.a n =2n-3 B.a n =-2n+3 C.a n =-2n+13 D.a n =-2n+117.已知等比数列{}na的公比13q=-,则13572468a a a aa a a a++++++等于( )A.13- B.3- C.13D.38.在数列{}na中,12a=,11ln(1)n na an+=++,则na=()A.2ln n+ B.2(1)lnn n+- C.2lnn n+ D.1lnn n++9.已知两个等差数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为()A. 4 B.5 C.6 D.710.小正方形按照下图中的规律排列,每个图形中的小正方形的个数构成数列}{na有以下结论,①155=a;②}{na是一个等差数列;③数列}{na是一个等比数列;④数列}{na的递推公式),(11*+∈++=Nnnaann其中正确的是()A.①②④B.①③④ C.①② D.①④一、选择题:的取值范围是 . 12.在ABC ∆中, 若21cos ,3-==A a ,则ABC ∆的外接圆的半径为 _____. 13.在△ABC 中,若=++=A c bc b a 则,222_________。
鑫达捷& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷泉州一中2012-2013年第二学期期末考高一年数学科试卷答案(2013.7)第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是( D )A.21)1(+-n B. cos 2n πC. (1)2n cosπ+ D. (2)cos 2n π+2.已知各项均为正数的等比数列{n a },1a ·9a =16,则2a ·5a ·8a 的值( D ) A .16 B .32 C .48 D .643.若R c b a ∈、、,且b a >,则下列不等式一定成立的是 ( D )A .c b c a -≥+B .bc ac >C .02>-ba c D .0)(2≥-cb a4.已知等差数列}{n a 中,64a =,则数列}{n a 的前11项和11S 等于( C ) A . 22 B . 33 C . 44 D .555.在ABC∆中,若,24,34,60==︒=ACBCA则角B的大小为( B )A.30° B.45° C.135° D.45°或135°6.在数列{}n a中,11a=,22a=,若2122n n na a a++=-+,则5a等于( C )A.16 B.15 C.17 D.217.给出下列命题:①存在实数αsin cos1αα⋅=使成立;②存在实数α使3sin cos2αα+=成立;③函数)225sin(xy-=π是偶函数;④8xπ=是函数5sin(2)4y xπ=+的图象的一条对称轴的方程;其中正确命题的序号是( C )A.①、③ B.②、③、④C.③、④ D.①、③、④8.下列命题中正确的是 ( B )A.当2lg1lg,10≥+≠>xxxx时且B.当0>x,21≥+xxC.当2πθ≤<,θθsin2sin+的最小值为22 D.当xxx1,20-≤<时无最大值9.设数列{}na的前n项之和为nS,若21(3)12n nS a=+(Nn*∈),则{}na ( D )鑫达捷A .是等差数列,但不是等比数列;B .是等比数列,但不是等差数列;C .是等差数列,或是等比数列;D .可以既不是等比数列,也不是等差数列.10.在ABC ∆中,内角CB A 、、的对边分别是c b a 、、, 若223a b bc -=,sin 23sin C B =, 则=A ( A )A .030B .060C .0120D .015011.正数y x 、满足112=+yx ,若m m y x 222+>+恒成立,则实数m 的取值范围是( D ) A .42≥-≤m m 或 B .24≥-≤m m 或 C .42<<-m D .24<<-m12.已知1234{,,,}x x x x {|(3)sin 1,0}x x x x π⊆-⋅=>,则1234x x x x +++的最小值为( D )A .6B .8C .10D .12第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题4分,共16分.将答案填在答题卡的相应位置.13.角α的终边过点(1,2)-,则cosα的值为___55-_____.14.设,x y满足约束条件112210xy xx y≥⎧⎪⎪≥⎨⎪+≤⎪⎩,向量(2,),(1,1)a y x m b=-=-r r,且//a br r,则m的最小值为______-6___________.15.如图,渔船甲位于岛屿A的南偏西60o方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.则sinα=1433.16.已知数列{}n a中,11a=,*121(,2)n na a n N n-=+∈≥,则该数列前n项和nS=122n n+--. 三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.6ABC东南西北α鑫达捷17.(本小题满分12分)等差数列{}n a 中,33a =,178a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若11nn n b a a +=⋅,证明:数列{}n b 的前n 项和1n S <.18.(本小题满分12分)已知关于x 的不等式4632>+-x ax 的解集为}1{b x x x ><或. (Ⅰ)求a ,b 的值;(Ⅱ)解关于x 的不等式:0)(2<++-bc x b ac ax19.(本小题满分12分)在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,且bc a c b +=+222. (Ⅰ)求角A 的大小;(Ⅱ)若C A B sin sin sin 、、成等比数列,试判断ABC ∆的形状.解析:(Ⅰ)由已知得.2221222b c a bc cos A bc bc +-===, ………4分20.(本小题满分12分)小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25x -万元(国家规定大货车的报废年限为鑫达捷10年).(Ⅰ)大货车运输到第3年年底,该车运输累计收入是否会超过总支出? (Ⅱ)在第几年年底将大货车出售,能使小王获得的年平均利润最大?) (利润=累计收入+销售收入-总支出)21.(本小题满分12分)在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,已知 S ABC ⋅=∆32. (Ⅰ)求角B ;(Ⅱ)若2b =,求a c +的取值范围.22.(本小题满分14分)已知函数4()42x x f x =+.(Ⅰ)求R x x f x f ∈-+),1()(的值;(Ⅱ)若数列)1()1()2()1()0(}{f nn f n f n f f a a n n +-++++=Λ满足 (*)n N ∈, 求数列}{n a 的通项公式;(Ⅲ)若数列{}n b 满足12n n n b a +=⋅,n S 是数列{}n b 的前n 项和,是否存在正实数k ,使不等式4n n knS b >对于一切的n N *∈恒成立?若存在,请求出k 的取值范围;若不存在,请说明理由.鑫达捷。
高中数学必修5期末复习 等差数列一、选择题: 1.三个数,,a b c 既是等差数列,又是等比数列,则,,a b c 间的关系为( )A. b a c b -=-B. 2b ac = C. a b c == D. 0a b c ==≠2.下列关于星星的图案构成一个数列,该数列的一个通项公式是 ( )A .a n =n 2-n +1 B.a n =n(n -1)2 C.a n =n(n +1)2 D.a n =n(n +2)23.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)= ( )A .8B .-8C .±8D .98 4.如果,,1)()1(*∈+=+N n n f n f 且,2)1(=f 则=)100(f102.101.100.99.D C B A5.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .276.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( )A .5B .4C .3D .2 7.已知等差数列{n a }满足,0101321=++++a a a a 则有57.0.0.0.5199310021011==+<+>+a D a a C a a B a a A8.设{a n }是由正数组成的等比数列,且a 5a 6=81,log 3a 1+ log 3a 2+…+ log 3a 10的值是( )A .20B .10C .5D .2或4二、填空题:9.数列{a n }中,a 1=1,且a 1·a 2·……·a n =n 2 (n ≧2 ), 则a n = . 10.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列 一共有 项. 11.等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,若231n n A nB n =+,则n na b = 。
马鸣风萧萧≤≥1高中数学学习材料马鸣风萧萧*整理制作2013年重庆一中高2015级高一下期期末考试数 学 试 题 卷 2013.7一.选择题:(共10小题,每题5分,共50分.请将唯一正确的选项选出来,并涂在机读卡上的相应位置)1.已知直线的倾斜角为45°,在y 轴上的截距为2,则此直线方程为( )A .y x =+2.B .y x =-2C .y x =-+2D .y x =--2解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2, 故选A2.下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >-B .1a b >+C .22a b >D .33a b >解:a >b+1⇒a >b ;反之,例如a=2,b=1满足a >b ,但a=b+1即a >b 推不出a >b+1 故a >b+1是a >b 成立的充分而不必要的条件 故选B3. 直线错误!未找到引用源。
被圆22(4)4x y -+=错误!未找到引用源。
所截得的弦长为错误!未找到引用源。
( )A .2B .22C .42D . 错误!未找到引用源。
4.左图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1叶图次到14次的考试成绩依次记为1214,,,.A A A 右图是统计茎中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是( )树茎 树叶A .7B .8C .9D .10解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加14次考试成绩超过90分的人数;根据茎叶图的含义可得超过90分的人数为10个,故选D5.三个数20.90.9,ln 0.9,2a b c ===之间的大小关系是( )A.b c a <<.B.c b a <<C.c a b << D .a c b <<故选答案C6.公比为32等比数列{}n a 的各项都是正数,且5916a a =,则216log a =( ) A.4 B.5 C.6 D.77. 若20,AB BC AB ABC ⋅+=∆则是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形8. 直线10(,0)a x b y a b ++=>过圆228210x y x y ++++=的圆心,则14a b+的最小值为 ( )A .8B .12C .16D .207 8 9 10 11 96 3 83 9 8 84 15 3 149. 设等差数列{}n a 的前n 项和为n S 且满足,0,01615<>S S 则3151212315,,,,S S S S a a a a 中最大的项为( ) A.66a S B.77a S C.88a S D.99a S10.(原创) 已知直线166(1)()22m x n y ++++=与圆22(3)(6)5x y -+-=相切,若对任意的,m n R +∈均有不等式2m n k +≥成立,那么正整数k 的最大值是( )A.3B.5C.7D.9二.填空题:(共5小题,每题5分,共25分.请将最简答案填在答题卷相应的位置)马鸣风萧萧11. 若2a =,14b =,a 与b 的夹角为30,则ab ⋅= .12.设ABC ∆的内角,,A B C 所对的边分别为,,a b c .若2,3,120a b B ===︒,则角A = .13.人体血液中胆固醇正常值的范围在 2.86-5.98mmol/L ,若长期胆固醇过高容易导致心血管疾病.某医院心脏内科随机地抽查了该院治疗过的100名病员血液的胆固醇含量情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,只知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,胆固醇含量在4.6到5.1之间的病员人数为b ,则a b+= .14.设,x y 满足约束条件1020210x y x x y -≥⎧⎪-≥⎨⎪+≤⎩,向量(2,),(1,1)a y x m b =-=-,且//a b 则m 的最小值为 .15.(原创)已知直线41y kx k =-+与曲线21(1)|1|2x y --=--恰有一个公共点,则实数k 的取值范围是 .三.解答题:(共6小题,其中16~18每小题13分,19~21每小题12分,共75分.请将每题的解答过程写在答题卷相应的答题框内)16.(本题满分13分)已知直线1l :310ax y ++=,2l :(2)0x a y a +-+=. (Ⅰ)若12l l ⊥,求实数a 的值;(2)当12//l l 时,求直线1l 与2l 之间的距离. 解:(1)由12l l ⊥知3(2)0a a +-=,解得32a =;………………………………………………………6分 (Ⅱ)当12//l l 时,有(2)303(2)0a a a a --=⎧⎨--≠⎩解得3a = ………………………………………………………9分 1l :3310x y ++=, 2l :30x y ++=即3390x y ++=,距离为229142333d -==+.…………13分17.(本题满分13分)设ABC ∆的三个内角分别为,,A B C .向量3(1,cos)(3sin cos ,)2222C C C m n ==+与共线.(Ⅰ)求角C 的大小;(Ⅱ)设角,,A B C 的对边分别是,,a b c ,且满足2cos 2a C c b +=,试判断∆ABC 的形状. 解:(本题满分13分)解:(Ⅰ)∵m 与n 共线马鸣风萧萧∴)2cos 2sin 3(2cos 23C C C +=31π1sin (1cos )sin()2262C C C =++=++………………………3分πsin()16C += ∴C=3π …………………………………………………………………………6分(Ⅱ)由已知2a c b += 根据余弦定理可得:222c a b ab =+- ……………………………………8分联立解得:()0b b a -=0,,b b a >∴=3C π=,所以△ABC 为等边三角形, …………………………………………12分18.(本题满分13分)已知,a b 满足||||1a b ==,且a 与b 之间有关系式3ka b +=a kb -,其中0k >.(Ⅰ)用k 表示a b ⋅;(Ⅱ)求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小.解:(本题满分13分)解:(Ⅰ)223ka b a kb +=-,241b k ka ⋅=+,214k b ka +⋅=…………6分;(Ⅱ)2111111()24442k b k k k k k a +⋅==+≥=,当且仅当1k =时取“=” 故b a ⋅的最小值为12……………………………………………………………………………………10分 ||cos 1||2,11cos ,b b a a b a b a ⋅=<>=⨯=⨯<>,1cos ,2a b <>=,,60a b <>=︒………13分. 19.(本题满分12分)已知已知圆C 经过(2,4)A 、(3,5)B 两点,且圆心C 在直线220x y --=上. (Ⅰ)求圆C 的方程;(Ⅱ)若直线3y kx =+与圆C 总有公共点,求实数k 的取值范围.解:(1)由于AB 的中点为59(,)22D ,1AB k =,则线段AB 的垂直平分线方程为7y x =-+, 而圆心C 是直线7y x =-+与直线220x y --=的交点,由7220y x x y =-+⎧⎨--=⎩解得34x y =⎧⎨=⎩,即圆心(3,4)C ,又半径为22(23)(44)1CA =-+-=,故圆C 的方程为22(3)(4)1x y -+-=………6分;(2)圆心(3,4)C 到直线3y kx =+的距离234311k d k-+=≤+得2430k k -≤,解得304k ≤≤.………………………………………………………………………12分 20.(本题满分12分)(原创)已知函数()f x 是二次函数,不等式()0f x ≥的解集为{|23}x x -≤≤,且()f x 在区间[1,1]-上的最小值是4. (Ⅰ)求()f x 的解析式;(Ⅱ)设()5()g x x f x =+-,若对任意的3,4x ⎛⎤∈-∞- ⎥⎝⎦,2()(1)4()()xg g x m g x g m m⎡⎤--≤+⎣⎦均成立,求实数m 的取值范围.解:(Ⅰ)()0f x ≥解集为{|23}x x -≤≤,设2()(2)(3)(6)f x a x x a x x =+-=--,且0a < 对称轴012x =,开口向下,min ()(1)44f x f a =-=-=,解得1a =-,2()6f x x x =-++;……5分 (Ⅱ)22()561g x x x x x =++--=-,2()(1)4()()x g g x m g x g m m⎡⎤--≤+⎣⎦恒成立 即2222221(1)14(1)1x x m x m m ⎡⎤---+≤-+-⎣⎦对3,4x ⎛⎤∈-∞- ⎥⎝⎦恒成立 化简22221(4)23m x x x m -≤--, 即2214m m -≤2321x x --+对3,4x ⎛⎤∈-∞- ⎥⎝⎦恒成立……8分 令2321y x x=--+,记14,03t x ⎡⎫=∈-⎪⎢⎣⎭,则2321y t t =--+, 二次函数开口向下,对称轴为013t =-,当43t =-时min 53y =-,故221543m m -≤-………………10分 22(31)(43)0m m +-≥,解得32m ≤-或32m ≥……………………………………………………12分 21.(本题满分12分)(原创)设数列{}n b 的前n 项和为n S ,对任意的*n N ∈,都有0n b >,且233123n n S b b b =++;数列{}n a 满足22*111,(1cos )sin ,22n n n n b b a a a n N ππ+==++∈. (Ⅰ)求12,b b 的值及数列{}n b 的通项公式; (Ⅱ)求证:2624132151912n n a a a a a a a n a -+<+++对一切n N +∈成立. 解:(1)121,2b b ==;23333233121211,n n n n S b b b b S b b --=++++=,相减得:23121212)(()n n n b b b b b b b -+-=+++++31212(2)2n n n n b b b b b b -=++++,即2112222n n n b b b b b -=++++(2n ≥)同理21121222n n n b b b b b ++=++++,两式再减112211n n n n n n b b b b b b +++=+⇒--=,n b n =……5分(2)22*111,(1cos )sin ,22n n n n a a a n N ππ+==++∈, 21(10)12a a =++=,32(11)04a a =++=,43(10)15a a =++=一般地,2122212,1m m m m a a a a +-==+,则212122m m a a +-=+有212122(2)m m a a +-+=+,马鸣风萧萧2121222m m a a +-+=+,数列21{2}m a -+是公比为2的等比数列,12112(2)2m m a a --+=+得:1*21232()m m a m N --=-+⋅∈,1*2211132()2m m m a a m N -+==-+⋅∈所以:11212232132n n nn a n +--⎧-+⋅⎪=⎨⎪-+⋅⎩为奇数为偶数 令111112132232111112322322322(132)n n n n n n n c -------+⋅-+⋅+===+=+-+⋅-+⋅-+⋅-+⋅而当2n ≥时,2132n --+⋅2≥,故2101132n -<<-+⋅, 则22211120132(132)132n n n ---+<<=-+⋅-+⋅+⋅,从而212(132)n -<-+⋅2132n -⋅ *21411(2,)3232n n nc n n N -<+=+≥∈⋅⋅,624152132nn n a a a a a a a a T -=+++32114414182(1)(1)(1)1(1)14323243212n n n T n -<+++++⋅⋅⋅++=+++⋅-⋅⋅-2111194191(1)432123212n n n n n -=+++-=+-<+⋅…………………………………………………12分。
数学必修5复习题及答案一、选择题(每题3分,共30分)1. 函数y=f(x)的图象关于点(1,2)对称,则f(2)的值为:A. 0B. 1C. 3D. 42. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是:A. m≥4B. m≤4C. m≥0D. m≤03. 已知等差数列{an}的前n项和为Sn,若a1=1,a4+a5=14,则S5的值为:A. 15B. 16C. 20D. 254. 函数y=x^3-3x^2+1的单调递增区间为:A. (-∞,1)B. (1,+∞)C. (-∞,1)∪(2,+∞)D. (0,2)5. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),若双曲线C的渐近线方程为y=±(√3/3)x,则双曲线C的离心率为:A. √3B. 2C. 3D. √66. 已知函数f(x)=x^3+bx^2+cx+d,若f'(x)=3x^2+2bx+c,且f(1)=5,f'(1)=6,则b+c的值为:A. 1B. 2C. 3D. 47. 已知向量a=(1,2),b=(2,-1),则|a+b|的值为:A. √5B. √10C. √13D. √178. 已知三角形ABC的三边长分别为a、b、c,若a^2+b^2=c^2,且a=7,b=24,则c的值为:A. 25B. 26C. 27D. 289. 已知圆的方程为(x-1)^2+(y-1)^2=9,直线l的方程为y=x+m,若圆与直线l相切,则m的值为:A. 3B. -3C. 7D. -710. 已知函数f(x)=x^2-4x+3,若f(x0)=0,则x0的值为:A. 1B. 3C. 1或3D. 无解二、填空题(每题4分,共20分)11. 函数y=x^2-6x+10的顶点坐标为_________。
12. 已知等比数列{bn}的前n项和为Tn,若b1=2,q=3,则T3的值为_________。
1.由11a =,3d =确定的等差数列{}n a ,当298n a =时,序号n 等于 ( )
A.99
B.100
C.96
D.101
2.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( ) A .
2
1
B .23 C.1
D.3
3.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 101
4.已知0x >,函数4
y x x
=+的最小值是 ( )
A .5
B .4
C .8
D .6
5.在等比数列中,112a =,12q =,1
32
n a =,则项数n 为 ( )
A. 3
B. 4
C. 5
D. 6 6.不等式20(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a <∆< B. 0,0a <∆≤ C. 0,0a >∆≥ D. 0,0a >∆>
7.设,x y 满足约束条件1
2x y y x y +≤⎧⎪
≤⎨⎪≥-⎩
,则3z x y =+的最大值为 ( )
A . 5 B. 3 C. 7 D. -8
8.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解
9.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 ( )
2A.
3 2B .-3 1C .-3 1D .-4
10.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 11.在ABC ∆中,0
43
45,22,3
B c b ===
,那么A =_____________; 12.已知等差数列{}n a 的前三项为32,1,1++-a a a ,则此数列的通项公式为________ .
13.不等式
21
131
x x ->+的解集是 .
14.已知数列{a n }的前n 项和2n S n n =+,那么它的通项公式为a n =_________
15(12分) 已知等比数列{}n a 中,4
5
,106431=+=+a a a a ,求其第4项及前5项和.
16(14分)(1) 求不等式的解集:0542
<++-x x (2)求函数的定义域:1
52
x y x -=++
17 (14分)在△ABC 中,BC =a ,AC =b ,a ,b 是方程22320x x -+=的两个根, 且2()1coc A B +=。
求:(1)角C 的度数; (2)AB 的长度。
18(12分)若不等式0252>-+x ax 的解集是⎭
⎬⎫
⎩⎨⎧<<221x x ,
(1) 求a 的值;
(2) 求不等式01522>-+-a x ax 的解集.
19(14分)如图,货轮在海上以35n mile/h 的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为︒152的方向航行.为了确定船位,在B 点处观测到灯塔A 的方位角为︒122.半小时后,货轮到达C 点处,观测到灯塔A 的方位角为︒32.求此时货轮与灯塔之间的距离.
20( 14分)某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。
该公司第n 年需要付出设备的维修和工人工资等费用n a 的信息如下图。
(1)求n a ;
(2)引进这种设备后,第几年后该公司开始获利; (3)这种设备使用多少年,该公司的年平均获利最大?
A
C
B
北
北
152o
32 o
122o
费用(万元)
年
a n
4
2
n
2
1
高一数学必修5试题参考答案
一.选择题。
题号 1 2 3 4 5 6 7 8 9 10 答案 B C D
B
C
A
C
B
D
A
二.填空题。
11. 15o 或75o 12.n a =2n -3
13.1
{2}3x x -<<
14.n a =2n 三.解答题。
15.解:设公比为q , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分
由已知得 ⎪⎩⎪
⎨⎧=
+=+45105
131211q a q a q a a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 3分 即⎪⎩
⎪
⎨⎧=+=+ 45)1(①
10)1(2
3121 q q a q a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 5分 ②÷①得 2
1
,813
==q q 即 , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 7分 将2
1
=
q 代入①得 81=a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 8分 1)21(833
14=⨯==∴q a a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10分
2312
11)21(181)1(551
5=-⎥⎦⎤⎢⎣⎡
-⨯=--=q q a s ┄┄┄┄┄┄┄┄┄┄ 12分 16.(1){15}x x x <->或 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄7分 (2) {21}x x x <-≥或 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄14分 17. 解:(1)()[]()2
1
cos cos cos -=+-=+-=B A B A C π ∴C =120°┄┄┄5分 (2)由题设:23
2
a b ab ⎧+=⎪⎨
=⎪⎩ ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分
②
︒-+=∙-+=∴120cos 2cos 22
2222ab b a C BC AC BC AC AB
()()
102322
2
22=-=-+=++=ab b a ab b a ┄┄13分
10=∴AB ┄┄┄┄┄┄┄┄┄┄┄┄┄┄14分 18.(1)依题意,可知方程2
520ax x +-=的两个实数根为
1
2
和2,┄┄┄┄┄┄2分 由韦达定理得:
12+2=5
a - ┄┄┄┄┄┄┄┄┄┄┄4分 解得:a =-2 ┄┄┄┄┄┄┄┄┄┄6分 (2)1{3}2
x x -<< ┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分 19.在△ABC 中,∠B =152o -122o =30o ,∠C =180o -152o +32o =60o ,
∠A =180o -30o -60o =90o , ┄┄┄┄┄┄┄┄┄┄5分
BC =
235
, ┄┄┄┄┄┄┄┄┄┄7分 ∴AC =235sin30o =4
35
. ┄┄┄┄┄┄┄┄┄┄13分
答:船与灯塔间的距离为4
35
n mile . ┄┄┄┄┄┄┄┄┄┄14分
20.解:(1)由题意知,每年的费用是以2为首项,2为公差的等差数列,求得:
12(1)2n a a n n =+-= ┄┄┄┄┄┄┄┄┄┄2分
(2)设纯收入与年数n 的关系为f(n),则:
2(1)
()21[22]2520252
n n f n n n n n -=-+
⋅-=-- ┄┄┄┄┄┄┄┄┄┄4分 由f(n)>0得n 2
-20n+25<0 解得1053n 1053-<<+ ┄┄┄┄┄┄┄┄┄6分 又因为n N ∈,所以n=2,3,4,……18.即从第2年该公司开始获利 ┄┄┄┄┄┄┄8分 (3)年平均收入为
n )
n (f =20-25(n )202510n
+≤-⨯= ┄┄┄┄┄┄┄┄┄12分 当且仅当n=5时,年平均收益最大.所以这种设备使用5年,该公司的年平均获利最大。
┄┄┄┄14分。