imagemotion2
- 格式:pdf
- 大小:900.47 KB
- 文档页数:41
text2motion 预训练Text2Motion是一种预训练技术,能够将文本转化为动作。
这项技术的出现在很大程度上改变了我们对人工智能的认识,为人机交互带来了新的可能性。
本文将介绍Text2Motion的原理、应用以及对未来的影响。
Text2Motion的基本原理是通过深度学习模型将自然语言处理与动作生成相结合。
首先,模型会对输入的文本进行语义理解,从中提取出关键信息。
然后,模型会根据这些信息生成相应的动作序列,以实现对应的行为。
这些动作可以是人体的姿势、表情或者其他形式的动作。
Text2Motion的应用非常广泛。
比如,在虚拟现实领域,它可以将虚拟角色的对话转化为具体的动作,使其更加生动和真实。
在影视制作中,Text2Motion可以帮助导演和编剧将剧本转化为实际的动作指导,提高制作效率。
此外,Text2Motion还可以应用于机器人领域,使机器人能够通过语音指令执行相应的动作,实现更智能化的交互。
Text2Motion的出现对人机交互带来了新的可能性。
传统的人机交互方式主要是通过键盘、鼠标或触摸屏来实现,而Text2Motion则使得人们可以通过自然语言与机器进行交流。
这种交互方式更加直观和便捷,使得人机交互更加贴近人类的习惯和需求。
未来,随着人工智能技术的不断发展和完善,Text2Motion有望在更多领域得到应用。
比如,在医疗领域,它可以帮助医生将病历转化为具体的操作指导,提高诊疗效率。
在教育领域,Text2Motion 可以帮助教师将课程内容转化为生动的动作演示,提高学生的学习兴趣和理解能力。
然而,Text2Motion技术也面临一些挑战和问题。
首先,语义理解和动作生成是两个相对独立的任务,如何将二者有效结合起来仍然是一个挑战。
其次,不同语言和文化背景下的表达方式存在差异,如何处理这些差异也是一个需要解决的问题。
此外,由于动作的多样性和复杂性,如何生成符合预期的动作序列也是一个需要研究的方向。
《影像传播论》已获得北京市社科基金资助,正在出版过程中,应在年内出版。
现将《摘要》和部分内容在这里发布,请广大读者批评指正。
盛希贵 2004年8月《摘要》随着影像技术、印刷技术、电子传播技术等的数字化和数字传播技术的发展,信息传播进入"视觉化"、"图像化"时代。
与"视觉化"、"图像化"紧密相关的关键词之一是"影像"。
无论是在现实生活中、新闻传播中,还是在新闻传播学的学术研究、不同学科的著述、文献中,人们都常常听到、读到、用到"影像"这个概念,但是,对"影像"却从未做过认真的界定。
影像究竟是什么?应当如何界定其内涵?影像的本质是什么?影像传播的规律有哪些?等等,关于影像本体的研究少之又少;有关"影像传播"的理论研究也不多见。
在国外,对于视觉传播的研究有一些著述,但是具体到影像,尤其是将摄影、电影、电视等融为一体的影像传播著述也不多见。
本文以大众传播理论、视觉心理学、视觉传播理论等为依据,以影像本体研究、现代社会中影像传播的特点、过程、效果、功能、对社会的影响以及影像传播者和受众研究等为主要研究对象,揭示影像传播的基本原理和规律;并且,以批判的眼光来分析影像传播带来的社会问题,提出改进、提高影像传播质量、加强影像传播学研究和学科建设的建议。
在美国、加拿大等传播学研究起步较早、传播学理论和实践研究、发展较为完善的国家,视觉传播学和影像传播研究有一些基础和成果,例如,视觉传播学(Visual Communication)、视觉教养理论(Visual Literacy)、双通道编码理论(The Dual Coding Theory)、多渠道传播与提示-累计理论(The multiple- Channel Communication and Cue Summation Theory ),马歇尔.麦克卢汉的媒体划分理论--"冷与热"等,著述有See What I Mean--"An Introduction to Visual Communication, John Morgan and Peter Welton, Edward Arnold (Publisher) Ltd.,1986;Seeing is Believing --An Introduction to Visual Communication, Arthur Asa Berger, Copyright 1989 by Mayfield Publishing Company等。
ZEISS Axio Imager 2Your Open Microscope System for Automated Material AnalysisProduct Information Version 1.2Axio Imager 2 from ZEISS is your system platform tailored to demanding materials analysis tasks, development of new materials as well as quality control.You always profit from crisp images and high optical performance. This applies in particular to sophisticated contrasting techniques, e.g. like the Circular Differential Interference Contrast (C-DIC) and polarization contrast.Use the motorized stand to achieve reproducible illumination settings and, consequently, constant image quality. You always obtain comparable results and high productivity by automating your workflow. Axio Imager 2 offers a high degree of adaptability in line with your future requirements. The stands are open to expand and cover a wide range of applications.Your Open Microscope System for Automated Material Analysis› In Brief › The Advantages › The Applications › The System› Technology and Details ›ServiceAnimation20 µmSimpler. More Intelligent. More Integrated.Profit from an Open Microscope System Whether in research, testing or failure analysis, materials microscopy faces quite various challenges. With Axio Imager 2 from ZEISS you will be able to meet and win these challenges. Attach application-specific components and perform e.g. particle analysis, investigate non-metallic inclusions (NMI), liquid crystals or semiconductor-based MEMs. Axio Imager 2 supports the correlative workflow to electron microscopic investigations, too.Achieve Reliable, Reproducible ResultsStability is essential if you want to obtain good results. You will appreciate the stable imaging conditions of Axio Imager 2, especially when working with high magnifications and performing time dependent studies. Due to the motorization of Axio Imager 2 you will achieve quick and repro-ducible results while you always work under constant conditions. For instance, the motorized apertures and the illumination control, which automatically adjusts the color temperature via filter wheels. Experience Competence in all Contrasting TechniquesChoose from a variety of contrasting techniques to achieve an optimum image quality for your dedicated applications. Examine your samples in reflected light in brightfield, darkfield, Differential Interference Contrast (DIC), Circular Differential Interference Contrast (C-DIC), polarization or fluorescence contrast. For transmitted light you can choose between brightfield, darkfield, Differential Interference Contrast (DIC), polarization or circular polarization. Minimized stray light enables homogenous illumination. You achieve outstanding image contrast, even at high magnifications.Carbon fiber-reinforced polymer (CFRP), Differential Interference Contrast (DIC); Objective: EC Epiplan-NEOFLUAR 50×/0.8Stage insert with correlative sample holder for a big variety of specimen.Appreciate the stable imaging conditions with Axio Imager 2.› In Brief› The Advantages › The Applications › The System› Technology and Details › ServiceBrightfield and Darkfield: Maximum Homogeneity and a Stray Light Free Image Background In brightfield Axio Imager 2 provides homoge-neous illumination and exceptional contrast. By minimizing disturbing stray light and reducing the longitudinal color aberration of the illumination optics, the darkfield illumination contrast is suitable for the most challenging samples and impresses even when faced with finest structures. Switching between the techniques only requires a simple turn. The motorized stands allow you to work particularly quickly and conveniently.C-DIC: Perfect for All StructuresCircular Differential Interference Contrast (C-DIC) is a polarization-optical technique which, in contrast to ordinary Differential Interference Contrast (DIC), uses circularly polarized light. This technique has a number of decisive advantages for the contrasting of differently aligned object structures. The speci-men no longer has to be rotated for best imageExpand Your PossibilitiesCopper casting, brightfield.Objective: EC Epiplan-NEOFLUAR 20×/0.5Copper casting, darkfield.Objective: EC Epiplan-NEOFLUAR 20×/0.5contrast and quality, as it is the case in basic DIC. With C-DIC it is simply enough to adjust the position of the C-DIC prism to achieve best image quality whether it is for contrast and/or resolution independent of sample orientation. And all this is possible using one C-DIC prism for a homoge-neous unsurpassed quality image.Copper casting, C-DIC.Objective: EC Epiplan-NEOFLUAR 20×/0.5Experience Competence in all Contrasting Techniques › In Brief› The Advantages › The Applications › The System› Technology and Details › Service200 µm Experience Competence in All Contrasting TechniquesExpand Your PossibilitiesBrightfieldDarkfieldC-DICSample: pure aluminum; Objective: EC Epiplan-NEOFLUAR 10×/0.25, same position acquired with different contrasting techniquesPolarization Contrast Polarization with Additional Lambda Plate› In Brief› The Advantages › The Applications › The System› Technology and Details › ServiceTailored Precisely to Your Applications› The Advantages› The Applications› The System› Technology and Details› ServiceTailored Precisely to Your Applications› The Advantages› The Applications› The System› Technology and Details› Service20 µm20 µm20 µm20 µm200 µm200 µmZEISS Axio Imager 2 at WorkAviation and Space IndustryCarbon fiber-reinforced polymer (CFRP), brightfield, objective: EC Epiplan-NEOFLUAR 50×/0.8Carbon fiber-reinforced polymer (CFRP), darkfield, objective: EC Epiplan-NEOFLUAR 50×/0.8Carbon fiber-reinforced polymer (CFRP), DIC, objective: EC Epiplan-NEOFLUAR 50×/0.8Raw iron, brightfield,objective: EC Epiplan-NEOFLUAR 50×/0.8Aluminium, polarization,objective: EC Epiplan-NEOFLUAR 10×/0.25Metal Producing and Processing IndustryAluminium, polarization with Lambda plate, objective: EC Epiplan-NEOFLUAR 10×/0.25› In Brief › The Advantages › The Applications › The System› Technology and Details › Service10 µm20 µm50 µmZEISS Axio Imager 2 at WorkOil, Gas and Mining IndustryVitrinite,objective: EC Epiplan-NEOFLUAR 50×/1.0 Oil PolCast iron, brightfield,objective: EC Epiplan-APOCHROMAT 50×/0.95Particle analysis, brightfield,objective: EC Epiplan-NEOFLUAR 20×/0.5Automotive IndustryParticle Analysis› In Brief › The Advantages › The Applications › The System› Technology and Details › ServiceExpand Your PossibilitiesAnalyze Tiny Particles: Accurately and ReproduciblyParticle Analyzer is a milestone for your quality control. With the fully motorized light microscope Axio Imager 2 you measure particles down to 2 µm.Particle Analyzer software supports the standards for cleanliness testing ISO 16232, VDA 19, and oil analysis ISO 4406, ISO 4407, and SAE AS 4059. With the system solutions from ZEISS, you ensure that the required microscope settings are always selected correctly. You receive reliable, reproducible results nearly independent of the user carrying out the analysis. By carrying out correlative particle analyzes, you expand the depth of information contained within your findings to include the results of element and materials characterization.› In Brief › The Advantages › The Applications › The System› Technology and Details › Service100 µmExpand Your PossibilitiesCompletely characterize residual dirt particles with Correlative Automated Particle Analysis from ZEISS. Detect particles with your Axio Imager 2 and relocate preselected particles automatically, using your SEM from ZEISS. Perform an EDX analyisis to reveal information of their elemental composition. Correlative Particle Analyzer automatically documents the results from both, the light microscopic and electron microscopic analysis. You receive a combined, informative report at the touch of a button.As an experienced user, you can inspect the results of the combined light microscopic and electron microscopic analysis on an interactive overview screen. Retrieve particles at the touch of a button, automatically start new EDX analyzes, and auto-matically generate a report. With Correlative Particle Analyzer, your results will be available up to ten times faster than first conducting an analysis with a light microscope and then sub-sequently with an electron microscope. You can systematically focus on potentially process-critical particles.The complementary material characterization from both microscopic worlds gives you added security.Correlative Automated Particle Analysis (CAPA): More Knowledge. Higher Quality.Image of a metallic particle from a light microscopeImage of the same metallic particle from an electron microscopeOverlay of the images from both systems; chemical element composition via EDX analysis; graphical EDX overlay prepared with Bruker Esprit softwareCorrelative sample holder for efficient relocation of particles in your ZEISS scanning electron microscope.› In Brief › The Advantages › The Applications › The System› Technology and Details › Service20 µm 20 µm20 µm20 µmExpand Your PossibilitiesCLEM (Correlative Light and Electron Microscopy) image of a region of interest from an aged Li-ion battery with different contrasts of brightfield (a) and polarized light (b) in LM as well as BSE signal (c) and EDS mapping (d) in SEM.Correlative Microscopy withZEISS Axio Imager 2: Bridging the Micro and Nano WorldAre you looking for a way to combine imaging and analytical methods effectively?Shuttle & Find offers precisely this: An easy-to-use, highly productive workflow from a light to an electron microscope – and vice versa.The workflow between the two systems has never been so easy. The precise recall of regions of interest enhances productivity. Instead of wasting valuable time searching, you now gain new insights into your samples with a few mouse clicks. Regions of interest, marked on one system, you can instantely relocate on the other system. Open up new dimensions of information in numerous material analysis applications. Absolutely reproducible.› In Brief › The Advantages › The Applications › The System› Technology and Details › ServiceExpand Your PossibilitiesExaminations in the fields of research and industrial production (e.g. surface examinations of reflective, low-contrast specimens such as metallographic specimens and polished or textured wafers) require a fast focusing system that ensures high precision levels of max. 0.3 times the objective’s depth of field. This requirement can be easily met by com-bining your Axio Imager 2 with the Auto Focus system to benefit from fast and accurate focusing across a wide capture range of up to 12,000 µm. The Auto Focus system is designed to work with reflected light and transmitted light in brightfield, darkfield, polarized light and DIC.How it WorksThe objective guides the structured light produced by an LED in the Auto Focus system onto the specimen, with the specimen’s surface reflecting it back. During this process, Auto Focus permanently analyses the signal and derives the appropriate control signals for the focus drive, to bring the surface into focus. The Auto Focus sensor detects changes and deviations in the focus position and compensates them automatically. The Auto Focus system comes with three different modes corre-sponding to different specimen characteristics (reflective/partially reflective/diffuse) and with three different precision levels (precision/balance/speed).How the Auto Focus system works: 1) LED 2) Sensor module 3) Sensor 4) Beam splitter 5) O bjective 6) Specimen› In Brief › The Advantages › The Applications › The System› Technology and Details › Service5362141 Microscope• Axio Imager.A2m (encoded)• Axio Imager.D2m (encoded, partly motorizable)• Axio Imager.M2m (motorizable, TL manual)• Axio Imager.Z2m (motorizable, TL motorized)2 Objectives Reflected Light • EC EPIPLAN• EC Epiplan-NEOFLUAR • EC Epiplan-APOCHROMAT Transmitted Light • N-ACHROPLAN • EC Plan-NEOFLUAR • Plan-APOCHROMAT • C-APOCHROMAT • FLUARLong Working Distance • LD EPIPLAN• LD EC Epiplan-NEOFLUAR 3 Illumination Reflected Light • MicroLED • VisLED • Halogen • HBO / HXP Transmitted Light • MicroLED • VisLED • HalogenYour Flexible Choice of Components4 Cameras • Axiocam 105 • Axiocam 305• Axiocam 506• Axiocam 705• Axiocam 7125 Software • ZEN core • ZEN starter6 Accessories • Auto Focus• Linkam heating- and cooling stages • Focus Linear Sensor • Correlative Microscopy› In Brief › The Advantages › The Applications › The System› Technology and Details › ServiceSystem Overview› The Advantages› The Applications› The System› Technology and Details› ServiceSystem Overview› The Advantages› The Applications› The System› Technology and Details› ServiceSystem Overview› The Advantages› The Applications› The System› Technology and Details› ServiceTechnical Specifications› The Advantages› The Applications› The System› Technology and Details› ServiceTechnical Specifications› The Advantages› The Applications› The System› Technology and Details› ServiceTechnical Specifications› The Advantages› The Applications› The System› Technology and Details› ServiceTechnical Specifications› The Advantages› The Applications› The System› Technology and Details› ServiceBecause the ZEISS microscope system is one of your most important tools, we make sure it is always ready to perform. What’s more, we’ll see to it that you are employing all the options that get the best from your microscope. You can choose from a range of service products, each delivered by highly qualified ZEISS specialists who will support you long beyond the purchase of your system. Our aim is to enable you to experience those special moments that inspire your work.Repair. Maintain. Optimize.Attain maximum uptime with your microscope. A ZEISS Protect Service Agreement lets you budget for operating costs, all the while reducing costly downtime and achieving the best results through the improved performance of your system. Choose from service agreements designed to give you a range of options and control levels. We’ll work with you to select the service program that addresses your system needs and usage requirements, in line with your organization’s standard practices.Our service on-demand also brings you distinct advantages. ZEISS service staff will analyze issues at hand and resolve them – whether using remote maintenance software or working on site. Enhance Your Microscope System.Your ZEISS microscope system is designed for a variety of updates: open interfaces allow you to maintain a high technological level at all times. As a result you’ll work more efficiently now, while extending the productive lifetime of your microscope as new update possibilities come on stream.Profit from the optimized performance of your microscope system with services from ZEISS – now and for years to come.Count on Service in the True Sense of the Word>> /microservice› In Brief › The Advantages › The Applications › The System› Technology and Details › ServiceCarl Zeiss Microscopy GmbH 07745 Jena, Germany******************** /axioimager-mat Notfortherapeuticuse,treatmentormedicaldiagnosticevidence.Notallproductsareavailableineverycountry.ContactyourlocalZEISSrepresentativeformoreinformation.EN_42_11_31|CZ11-219|Design,scopeofdelivery,andtechnicalprogresssubjecttochangewithoutnotice.|©CarlZeissMicroscopyGmbH。
stable difusion api img2img 参数简介在计算机视觉领域,图像转换是一个重要的任务。
图像间的转换可以用于图像修复、风格转换、图像增强等多个应用场景。
而在实际应用中,我们更倾向于使用稳定性好、效果好的图像转换算法。
而 stable difusion api img2img 就是一个强大的图像转换模型。
什么是 stable difusion api img2img?stable difusion api img2img 是一个基于稳定扩散(Stable Difusion)算法的图像转换模型。
它是由图像中心切块、转化为低维潜变量、通过正反向映射进行转换的一种方法。
这个模型可以在图像转换任务中取得很好的效果,并且具有较高的稳定性,适用于各种图像转换应用。
稳定扩散算法简介稳定扩散算法是一个基于梯度迭代的图像转换方法。
它的主要思路是将图像转换问题转化为一个梯度下降问题,通过迭代优化潜变量,从而实现图像的转换。
稳定扩散算法的具体步骤如下: 1. 图像切块:将输入的图像按照一定的尺寸进行切块,得到一系列的小图像块。
2. 特征提取:使用深度神经网络对每个小图像块进行特征提取,得到对应的低维潜变量。
3. 正向映射:使用正向映射函数将低维潜变量映射到目标图像的低维潜变量空间。
4. 反向映射:使用反向映射函数将目标图像的低维潜变量映射回原始图像空间。
5. 梯度下降:通过梯度下降算法迭代优化潜变量,从而不断改进图像转换的效果。
6. 重构图像:在达到一定的迭代次数后,将更新后的潜变量反向映射回原始图像空间,得到最终的转换结果。
stable difusion api img2img 的参数设置为了实现更好的图像转换效果,stable difusion api img2img 提供了多个参数供用户设置。
以下是一些重要的参数: 1. image_size:输入图像的大小。
2. latent_dim:潜变量的维度。
stable diffusion img2img原理一、引言本文将详细介绍stable diffusion img2img原理。
img2img是一种图像到图像的转换方法,它可以将一张图像转换为另一张图像,广泛应用于计算机视觉、图像处理等领域。
stable diffusion作为一种稳健的扩散算法,具有稳定、高效的优点,可以应用于多种img2img 任务中。
二、原理概述1. 扩散过程:在img2img转换中,扩散是一种常用的方法,它可以将输入图像逐步转换为目标图像。
在stable diffusion算法中,通过将原始图像和噪声图像进行迭代处理,逐渐向目标图像方向演变。
2. 稳定扩散:stable diffusion算法采用了一种稳定扩散机制,通过在每次迭代中引入一些随机噪声,使得算法在处理不同输入图像时都能够得到稳定的结果。
这种机制能够避免算法陷入局部最优解,从而提高算法的鲁棒性和稳定性。
3. 权重更新:在stable diffusion算法中,通过更新每个像素的权重来实现图像的转换。
权重更新规则采用了一种非线性函数,能够根据像素值的大小自动调整权重,从而实现平滑过渡的效果。
这种权重更新规则可以确保算法在处理不同输入图像时都能够得到较为自然的图像转换效果。
三、步骤详解1. 初始化:首先,需要将原始图像和噪声图像进行初始化,并设置一定的迭代次数。
2. 迭代处理:在每次迭代中,将原始图像与噪声图像进行卷积操作,并更新每个像素的权重。
重复以上步骤,直到达到预设的迭代次数或达到满意的转换效果。
3. 后处理:在迭代完成后,对转换后的图像进行一些后处理操作,如阈值化、色彩调整等,以得到更加自然和清晰的图像转换效果。
四、应用场景stable diffusion算法可以应用于多种img2img任务中,如人脸识别、图像修复、超分辨率等。
通过将输入图像转换为目标图像,可以提高图像的质量和清晰度,为计算机视觉和图像处理领域的研究和应用提供了有力支持。
"Stable Diffusion" 是一种深度学习模型,通常用于图像到图像的转换。
它经常被用于图像修复、超分辨率、风格迁移等任务。
至于"img2img" 参数,这通常是指在深度学习中使用的图像到图像转换任务的参数。
在 Stable Diffusion 中,img2img 参数可能包括以下几种:
1. **输入图像大小**:这指的是输入到模型的图像的大小。
通常,这会是一个二维的元组,例如 (256, 256)。
2. **步长**:这指的是在扩散过程中,每个步骤中随机噪声的添加量。
步长越大,噪声的添加量就越多,反之亦然。
3. **时间步长**:这指的是在扩散过程中,每个步骤之间的时间间隔。
时间步长越大,每个步骤之间的间隔就越长。
4. **学习率**:这指的是在训练过程中,模型参数更新的步长。
学习率越大,参数更新的步长就越大,反之亦然。
5. **权重衰减**:这指的是在训练过程中,对模型参数施加的权重衰减。
权重衰减越大,模型参数的权重就越小。
6. **批次大小**:这指的是在训练过程中,每次更新模型参数时使用的样本数量。
批次大小越大,每次更新的样本数量就越多。
7. **迭代次数**:这指的是在训练过程中,模型参数更新的总次数。
迭代次数越多,模型参数更新的次数就越多。
这些参数通常需要根据具体任务和数据集进行调整和优化。
Vilar IP Camera VS-IPC1002 User’s ManualIndex1INTRODUCTION.............................................................................- 1 -1.1W ELCOME TO THE V ILAR IP C AMERA (11.2P ACKAGE C ONTENTS (11.3I DENTIFY VS-IPC1002 (21.3.1VS-IPC1002Views....................................................................- 2 -1.3.2Indication and Operation..........................................................- 4 -2FUNCTIONS AND FEATURES........................................................- 10 -2.1B ASIC F UNCTIONS (102.2A DVANCED F EATURES (103SYSTEM REQUIREMENT...............................................................- 11 -4SETUP PROCEDURE......................................................................- 12 -4.1VS-IPC1002P OWER &N ETWORK C ONNECTION (124.2R OUTER/S WITCH/H UB/X DSL M ODEM C ONNECTION (134.3U SE IPC AM S EARCH T OOL TO SETUP VS-IPC1002 (144.4V IEW V IDEO ON W EB B ROWSER (164.5S ETUP VS-IPC1002 ON W EB (224.6M OUNTING THE VS-IPC1002 (225SYSTEM CONFIGURATION...........................................................- 24 - 5.1S YSTEM STATUS (245.2U SER M ANAGEMENT (255.3N ETWORK (265.4D ATE AND T IME (275.5V IDEO (275.6JPEG E NCRYPTION (285.7E-MAIL (295.8FTP (305.9S ENSORS AND M OTION D ETECTION (315.10S CHEDULER T RIGGER (315.11S YSTEM M AINTENANCE (325.12S YSTEM L OG (325.13G UEST Z ONE (336VISIT VS-IPC1002 OVER INTERNET............................................- 34 - 6.1WAN IP A DDRESS (346.2N ETWORK A DDRESS T RANSLATION (NAT (356.3P ORT F ORWARDING (356.4D EFAULT G ATEWAY (366.5A CCESSING M ULTIPLE C AMERAS ON THE I NTERNET (366.6D YNAMIC D OMAIN N AME S ERVICE (DDNS (376.7C ONFIGURATION E XAMPLE (387TECHNICAL PARAMETERS............................................................- 40 -Figures and Tables IndexFigure 1 VS-IPC1002 View.........................................................- 2 - Figure 2 VS-IPC1002 Front View...................................................- 2 - Figure 3 VS-IPC1002 Back View....................................................- 3 - Figure 4 Front View Indication and Operation.................................- 4 - Figure 5 LCD Indications..............................................................- 4 - Figure 6 IP Address/Network Mask/Gateway...................................- 5 - Figure 7 Back View Indication.......................................................- 7 - Figure 8 Input & Output defines....................................................- 7 - Figure 9 Input & Output Pins Connection........................................- 8 - Figure 10 Insert a CF Card...........................................................- 9 - Figure 11 Connecting the Ethernet wire.......................................- 12 - Figure 12 connecting the power supply........................................- 12 - Figure 13 LAN connection..........................................................- 13 - Figure 14 VS-IPC1002 Search Tool..............................................- 14 - Figure 15 Modify Vi lar IP camera’s IP Address...............................- 15 - Figure 16 Input Administrator’s Username and Password................- 15 - Figure 17 VS-IPC1002 Home Page..............................................- 16 - Figure 18 Login Message box.....................................................- 17 - Figure 19 IE SecurityWarning....................................................- 17 - Figure 20 Security setting for ActiveX Controls..............................- 18 - Figure 21 Set VS-IPC1002 as a trusted site..................................- 19 - Figure 22 Video webpage...........................................................- 20 - Figure 23 History Images View...................................................- 21 - Figure 24 The right-click menu of ActiveX Control.........................- 21 - Figure 25 The bottom menu of ActiveX Control...........................- 22 - Figure 26 System Status View....................................................- 24 - Figure 27 User Management View...............................................- 25 - Figure 28 Network Setup View....................................................- 26 - Figure 29Date and Time Setup View............................................- 27 - Figure 30 Video Setup View.......................................................- 27 - Figure 31JPEG Encryption Setup View..........................................- 28 - Figure32 Require Password Input in Client Web Browser.................- 28 - Figure 33 Input Password in Web Browser (ActiveX......................- 29 - Figure 34 Input Password in Web Browser (Java........................- 29 - Figure35 E-mail Setup View.......................................................- 29 - Figure 36 FTP Setup View..........................................................- 30 - Figure 38 Scheduler Trigger Setup View.......................................- 31 - Figure 39 System Maintenance View..........................................- 32 - Figure 40 System Log View........................................................- 32 - Figure 41 “Guest Zone” View......................................................- 33 - Figure 42 Vilar IP camera’s Application Environment......................- 34 - Figure 43 Typical Network Environment.......................................- 38 -1 Introduction1.1Welcome to the Vilar IP CameraThe Vilar IP Camera combines a high quality digital video camera with network connectivity and a powerful web server to bring clear video to your desktop from anywhere on your local network or over the Internet.1.2Package ContentsNow the digital cameras are used more often in many public areas such as super markets, schools, factories and so on. Especially on some special areas such as banks and traffic cross road, its powerful image management can help you monitor those areas better.1.3Identify VS-IPC10021.3.1VS-IPC1002ViewsFigure 2 VS-IPC1002 Front View1.3.2Indication and OperationFigure 5 LCD IndicationsLCD circulates display IP Address/Network Mask/Gateway, it shown as Figure 6.System in configuration status. E.g. Upgrading firmware.Network mode indications:Icon MeaningStatic IP Use static (manually fixed IP mode.DHCP IP Address is dynamic assigned byDHCP Server.PPPoE Vilar IP Camera’s internal PPPoE dialfunction enabled.(Used for xDSLThere is a “user visiting” yellow LED on the panel. IEEuser visiting” icon of LCDFigure 8 Input & Output definesOutputA B Input Common Input 1 2Input Pins: The input pins can be used for 2-way external sensor input. For example, you may connect a Person Infrared Sensor (PIR to it for motion detection. When external sensor triggered, VS-IPC1002 can be programmed to send an email with picture or control the internal relay output.Connecting two sensors which send open and close signals to IO input pins. Pin3 and Pin4 connect two input lines of sensor 1 respectively. Pin4 and Pin5 connect two input lines of sensor 2 respectively.Figure 9 Input & Output Pins ConnectionExternal Power Socket:Connect to a 5V AC-DC adapter.CAUTION: Do not use any non-approved power adapter otherthan the ones which is accessory. This is to prevent anydamage of VS-IPC1002.RJ-45 Ethernet Socket: Connects your VS-IPC1002 to LAN.CF Card Socket: As image storage CF Card could save the sensor triggerimage on the real time or discontinuous time. Its maximum capacity is 2GByte. You have to format it as FAT16/FAT32 before use it. Both type1 and type2 CF card can be supported by this socket.2 Functions and Features2.1Basic FunctionsThe basic function of VS-IPC1002 is transmitting remote video and audio on the IP network. The high quality video image can be transmitted with 30fps speed on theLAN/WAN by using MJPEG hardware compression technology.The VS-IPC1002 is basic on the TCP/IP standard. There is a WEB server inside which could support Internet Explore. Because of that the management and maintenance of your device become more simply by using network to achieve the remote configuration, start-up and upgrade firmware.You can use this VS-IPC1002 to monitor some special places such as your home and your office. Also controlling the VS-IPC1002 and managing image are simple by clicking the website through the network.2.2Advanced FeaturesüAdvanced Image EncryptionBesides standard user authentication, there is a powerful 128-bit AES encryption can be used to ensure the image transmission safe.üDigital Video Recording and TransportationVS-IPC1002 can save the image in CF Card. sending the image to your mailbox automatic when the VS-IPC1002 is triggered.üMotion DetectionYour may use the internal Motion Detection function or external PIR sensor to trigger images recording and transportation.üAlarm sensor input/outputThe detection sensor sends an alarm and records it by itself when there is a fire or accident. A message as an email is send to you by this sensor. (Theinput/output discreteness can be chosenüDDNS supportUsing the VS-IPC1002 in the condition which including ADSL and IP change often is more convenient, because VS-IPC1002 provides dynamic DNS function.3 System RequirementüLAN: 10Base-T Ethernet / 100BaseTX Fast EthernetüWeb Browser can support ActiveX ,such as Internet Explorer 5.0 or higherüWeb Browser can support Java Applet, such as Firefox 1.5üPC – Intel Pentium III or equivalent, 1GHz or aboveü128MB RAMü800x600 resolution with 16-bit color or above4 Setup ProcedureBefore use VS-IPC1002, please setup according to the following procedures.4.1VS-IPC1002 Power & Network ConnectionStep1: Connect the network cable to the RJ45 network connections portFigure 11 Connecting the Ethernet wireStep2: Connect the power adapter to the VS-IPC1002 power socket and then insert the plug into an available power outlet.Figure 12 connecting the power supply4.2is The current IP address of VS-IPC1002, Network Mask and Gateway will be shown on the LCD panel after 1minute.VS-IPC1002 is available for visiting now. There are two methods for visiting its homepage:1. Run Vilar IP camera management tool “VilarWizard_CN.exe ” in theCD. This software will search for all VS-IPC1002 in your LAN. Select one and then click [visit] to continue.2. Run an Internet Explorer , and input the IP address as shown on the LCDto IE ’s address bar , for example: http://192.168.0.234.CAUTION: Do not use any non-approved power adapter other than the ones which are accessory. This is to prevent any damage of VS-IPC1002.In different country or region, the power supply might be different (110V/220,50Hz/60Hz, please make sure itcorrespond to the tag marked on thepower adapter.4.3 Use Vilar IP camera mangement tool to setupVS-IPC1002Insert the incidental CD into the CD-ROM drive. After run the Vilar IP camera management tool “VilarWizard_CN.exe ”, the interface as follow will pup up.Figure 14 VS-IPC1002 Search ToolThis tool shows all Vilar IP Cameras found on your LAN with its Serial Number/IP Address/Firmware Version. If your Vilar IP camera ’s IP address is not as the same segment of your PC (defined by IP Address and Network Mask, you may not be able to visit your Vilar IP camera. For example, Your PC ’s IP address is 192.168.100.33, network mask is 255.255.255.0, then your PC can visit the IP address from 192.168.100.1 to 192.168.100.255 only, If your Vilar IP camera ’s IP Address is not within this range, you cannot access it. Therefore you can click [Setup IP] button to change Vilar IP camera ’s IP address and adjust it adapting your PC setting.Click [Auto Set], let IPCamSearch tool find an available IP Address for you. Note: VS-IPC1002 by default use fixed (static IP address setting. The default IP addressis :192.168.0.234, Network Mask is255.255.255.0, Gateway is 192.168.0.1Figure 15 Modify Vilar IP camera’s IP AddressClick [OK], and then input administrator’s username and password to continue.Figure 16 Input Administrator’s Username and PasswordInput the correct username and password, and click [OK], then you can see a message box indicating Vilar IP camera’s IP Address has changed(VS-IPC1002 is in static IP mode now.Then you may click [Visit IPCam] to run an Internet Explorer, You can do more configuration by click [System Setup] on homepage of VS-IPC1002.4.4 View the video of VS-IPC1002 on Web Browser You may visit Vilar IP camera ’s homepage by IE or other compatible web browsers.Figure 17 VS-IPC1002 Home PageClick “User Visit ” to view video. You will see a message box which requires your login as shown below.Note: If you don ’t have Vilar IP camera management tool at hand, you may change your PC ’s IP Address to the same segment, according to the IP shown on Vilar IPcamera ’s front LCD. Then you can input Vilar IP camera ’s IP Address into IE ’s address bar to access.Figure 18 Login Message boxInput correct Username and password, then you can view the video.The system will prompt you install the ActiveX control when you use it first time.The follow dialog box will be indicated after you setting the security option of Internet Explorer correctly.Figure 19 IE Security WarningClick [Install] to continue. If you cannot see the message above, you must modify IE’s security configuration.You can follow this procedure to setup IE security configuration:1. Select [Internet Options] in [Tools] menu of IE;2. Switch to [Security] option card;3. Select [Custom Level];4. Setup as the following;a Init and Run unmarked as safety ActiveX controls: Select[Alert];b downloading unsigned ActiveX controls: Select [Alert];c Run ActiveX controls and plug-in: Select [Enable];Figure 20 Security setting for ActiveX Controls5. Click [OK] to save it.In addition the IPCam also can be a “Trusted Sites ”, the setting process as foll ow:1. Select [Internet Options] in [Tools] menu of IE;2. Switch to [Security] option card;Note: You can not download the ActiveX Control without authorization until setup Internet Explorer security configuration properly.3.Select [Trusted Sites];4.Uncheck “√“ before “……https:(S”;5.Input Vilar IP camera’s IP address or URL, for example,http://192.168.0.250 or ;6.Click [Add], [OK] to save.Figure 22 Video webpageThere is a pan/tilt on the top-left of the website. You can click it to move the camera Up/Down/Left/Right; or choosing the right-left cruise, up-down cruise and centered.On the left, you can also select the Resolution, Quality, Brightness, Contrast and Zoom.Resolution can be 640x480, 320x240, and 160x120. The higher resolution, the higher clarity, while requiring more bandwidth.Quality can be “High”, “Standard”or “Low”. “High”consumes largest bandwidth, thus the frame per second will down.If you feel the frame per second (fps is too slow, and want to increase it, you can select “Low” quality and lower resolution. If you hope to see clearer image, you may choose “High” quality and higher resolution.Brightness and Contrast can be changed according to different environment. “+” means add, “-” means reduce. “STD” means a standard (middle value.Zoom will show the video in a scale of half or double. It won’t affect the transport fps or bandwidth.Click [Snapshot] will pop up a new page to snap a static JPEG image, you mayclick right key of mous e and select “save as…” to store it to your computer. Click [History], will pop up a History View Page (You must have inserted CF Card first.Figure 23 History Images ViewUnder the ActiveX Control mode you can save the video on the local hard disk. Left –click the image display area of ActiveX Control, then select the corresponding function by right-click with your mouse.Figure 1 The right-click menu of ActiveX ControlYou can choose the function what you need from option at the bottom of the ActiveX Control as well.Figure 2 The bottom menu of ActiveX ControlThere are two kinds of video format such as IPEG and MPEG4. The video file size as JPEG format is bigger than MPEG4 format.VS-IPC1002 can be installed on the vertical wall by using mounting pedestal. Choosing the observed areas becomes more convenient by adjusting the VS-IPC1002 support platform at any point of view.Step 1. Find a suitable location to mount the camera.Step 2. Using the mounting bracket as a guide, mark the location of the two mounting holes.Step 3. Drill a “¼” hole for each screw.Step 4. Use a hammer to tap the two plastic anchors into the holes.Step 5. Use the two screws to fasten the bracket to the wall.Step 6. Place the camera on the mounting bracket platform and rotate the camera to be facing in the desired direction.Step 7. Secure the camera to the mounting bracket using the thumbscrew located on the bottom of the platform.Step 8. Loosen the tilt adjust thumbscrew and tilt the camera toward the area to be observed.5 System Configuration5.1System statusThis page shows status of the system for diagnose.Figure 26 System Status View5.2User Management““““”Allow Anybody Visit”: VS-IPC1002 provide a Guest Zone, if you checkedthis, any temporally visitors may enter Guest Zone to see the video without enter any username/password. If you unchecked this (default, the visitors have to enter at least a “Guest” permission username/password to visit the “Guest Zone”. At any time, the “User Zone”only allows “User”& “Administrator” permission to visit.”Vilar Backbone”Service Setup: This service as a connection of central server is useful for customer. You can choose start “Vilar Backbone” function and enter the correct user name, password, IP address of server and port information. (Vilar Backbone service depends on the Vlilar Camera addition service provided by network carrier. Please connect your camera dealer to make sure the availability of this service in your area and the relative charge of this service.5.3NetworkFigure 28 Network Setup View5.4Date and TimeFigure 29Date and Time Setup View 5.5VideoFigure 30 Video Setup View5.6JPEG EncryptionFigure 31JPEG Encryption Setup ViewFigure32 Require Password Input in Client Web BrowserFigure 33 Input Password in Web Browser (ActiveXFigure 34 Input Password in Web Browser (Java 5.7E-mailFigure35 E-mail Setup ViewThis section sets up the necessary Email server information. The administrator will have to enter a valid Account Name and Password to the Email server. This information is necessary to allow email notification features.“SMTP Server”: The administrator will have to enter the Email server address here.“Sender’s Email” This will determines Vilar IP camera’s Email address.“Email Requires Authentication”: If checked, the administrator will have to provide the account name and password in order to access the Email server.“E-mail Sender Username”: Enter the account name or login name to the Email server.“E-mail Sender Password”: Enter the password for the above account name.5.8FTPFigure 36 FTP Setup View5.9Sensors and Motion DetectionFigure 37 Sensors and Motion Detection Setup View 5.10Scheduler Trigger Figure 38 Scheduler Trigger Setup View5.11System MaintenanceFigure 39 System Maintenance View 5.12System LogFigure 40 System Log View5.13Guest ZoneFigure 41 “Guest Zone” View6 Visit VS-IPC1002 over INTERNETThe common environment for VS-IPC1002 using as follow:1.In Local Area Network (LAN only.2.Direct connect to INTERNET via xDSL (PPPoE Modem.3.Share one INTERNET connection with other computer, and connect toINTERNET via a gateway or router.Figure 42 Vilar IP camera’s Ap plication EnvironmentIf your LAN is connected to the Internet through a high speed (broadband Internet connection, you can access your cameras by web browser from anywhere on the Internet. To do this you need to:1.Know your WAN (Internet IP address. This is the IP address that yourInternet Service Provider gives you to access the Internet. It may be static (always the same or dynamic (can change from time to time.2.Make sure the router or gateway can visit the VS-IPC1002 through theport 80.3.Make sure your camera’s default gateway is set as your LAN (local IPaddress of your router/gateway.6.1WAN IP AddressThe WAN IP address is necessary when you want connect your home or business network to the internet. The WAN IP address is different from the LANIP address. It can be seeing by outside network, and it is supplied by Internet Service Provider to grant you access the internet.Your WAN IP address is stored by your gateway router which uses it to connect the Internet. All the devices on your network connect to the Internet via your gateway router. You can find your current WAN IP address by checking your router’s status page. Alsothere are various websites such as will help you find your current IP address.The term gateway is used generically to mean the device that connects a local Most a.6.2have6.3All the TCP/IP (internet networks are using software port to connect with each other. The port can be considered as channels of television. Default all the websites are through the channel 80 (port, the websites and the images can be sent via the port 80 to yourbrowser by VS-IPC1002. Therefore this channel (port can received the visiting application without the encumbrance from your router/firewall. You can visit VS-IPC1002 from the external network and those two ports have to transmitting or redirecting on the LAN IP address port by your gateway router. Thus the setting software of your router has to possessing transmission or redirecting function.Before sett ing up port forwarding, it ’s best to configure your VS-IPC1002 to use a static LAN IP since your port forwarding setup will need to be updated if the camera ’s LAN IP addresses changes.6.4 Default Gatewaycorrect request to correspond camera. All the websites requests will be sent to port 80 by browser if the default setting does not change. However the port 80 transmit therequest to one LAN IP address only, therefore all the websites requests on the port 80 will send to that address.The solution of this problem is to set up the router, assign a different port number to each camera. For example, you may set up your second camera to use port 81. When you want to access this camera, you would tell your browser to use port 81, instead of port 80. In your router ’s port forwarding setup, you would need toNote: Forwarding ports to your camera does not pose any additional security risk to your LAN.forward port 81 to the LAN IP address of the second camera. Web page requests arriving at port 81 wi ll automatically be directed to the second camera’s address.To instruct your browser to use a different port, other than 80, to access a web page, you would add the port number at the end of the IP address or URL, separated by a colon. For example, to access a camera on port 81 if your WAN IP address is 210.82.13.21, you would enter http:// 210.82.13.21:81 into your browser’s address bar. You can do the same thing with a URL such as :81.The steps to set up remote access are as follows:The solution to the dynamic IP address problem comes in the form of a dynamic DNS service.The Internet uses DNS servers to lookup domain names and translates them into IP addresses. Domain names, such as , are easy to remember as aliases of IP addresses. A dynamic DNS service is unique because it provides a means of updating your IP address so that your listing will remain current when your IP address changes. There are several excellent DDNS services available on the Internet and best of all most are free to use. Two such services you can use are and . You’llneed to register with the service and set up the domain name of your choice to begin using it. Please refer to the home page of the service for detailed instructions.A DDNS service works by uploading your WAN IP address to its servers periodically. Your gateway-router may support DDNS directly, in which case you can enter your DDNS account information into your router and it will update the DDNSser vers automatically when your IP address changes. Please consult your router’s documentation for more information. If your router does not support DDNS, you can setup the Vilar IP camera’s DDNS client.Figure 43 Typical Network EnvironmentsNow, every LAN devices connect to INTERNET via NAT function provided by IP Sharing Device. However, from the point of remote PC’s view, remote PC see only an IP Sharing Device, it doesn’t know how many PCs existed inside privacy LAN. This IP Sharing Device is also acted as a firewall.Thus, we have changed the setting of IP Sharing Device; let public PC has theopportunity to access LAN devices, e.g. VS-IPC1002.We can achieve this goal by enable Reversal NAT (RNAT function of IP Sharing Device.1.“Virtual Server”: Many routers have “Virtual Server” support. You mustforward the WAN 80 TCP port to LAN Vilar IP camera’s IP and Port. (If you visit 210.82.13.21’s 80 port outside, you will be forward to LAN192.168.0.2’s 80 port.2.Another method is the “DMZ Host”. If enabled to use a LAN device as theDMZ host, the outside PC will be able visit this LAN device directly, as ifanin7 Technical ParametersOtherCPU 32bit ARM@66MHz frequency. SDRAM 16MByte FLASH 4MByte。
opencv createbackgroundsubtractormog2 参数-回复OpenCV是一个流行的开源计算机视觉库,它提供了各种功能来处理图像和视频。
其中之一是背景建模。
背景建模是一种将场景中动态的物体与静态背景分离的技术。
OpenCV中的`createBackgroundSubtractorMOG2`方法是一种常用的背景建模算法,它使用了高斯混合模型(Gaussian Mixture Model, GMM)来对背景进行建模。
本文将详细解释`createBackgroundSubtractorMOG2`的各种参数,并逐步回答相关问题。
1. 背景建模的概念及应用介绍(200-300字)背景建模是计算机视觉领域中的一项基础技术,用于从视频序列中提取出静态背景。
它通过分析每一帧图像中的像素值,将被运动物体遮挡的背景部分提取出来。
这项技术在许多领域都有广泛的应用,例如视频监控、运动检测、虚化背景等。
2. `createBackgroundSubtractorMOG2`方法的参数介绍(500-600字)`createBackgroundSubtractorMOG2`方法是OpenCV中的一个函数,用于创建一个基于高斯混合模型的背景建模器。
该方法有多个参数,下面将逐一介绍这些参数的含义和作用。
- `history`参数用于指定需要考虑的过去帧的数量。
它定义了模型中保留的观察帧的数量。
这个参数的值越大,模型将考虑更长时间内的像素值,从而更好地适应背景的变化。
默认值为500。
- `varThreshold`参数用于指定高斯分布的阈值。
当像素值与背景差异超过这个阈值时,该像素被认为是前景对象的一部分。
较小的值可以捕捉到更小的变化,但也可能会引入噪声。
默认值为16。
- `detectShadows`参数用于指定算法是否检测阴影。
如果设置为True,则会检测并标记出阴影区域。
默认值为True。
- `shadowValue`参数用于指定阴影像素的值。
第38卷第6期2023年12月安 徽 工 程 大 学 学 报J o u r n a l o fA n h u i P o l y t e c h n i cU n i v e r s i t y V o l .38N o .6D e c .2023文章编号:1672-2477(2023)06-0084-08收稿日期:2022-12-16基金项目:安徽省高校自然科学基金资助项目(K J 2020A 0367)作者简介:王 坤(1999-),男,安徽池州人,硕士研究生㊂通信作者:张 玥(1972-),女,安徽芜湖人,教授,博士㊂数字图像修复的D I -S t yl e G A N v 2模型王 坤,张 玥*(安徽工程大学数理与金融学院,安徽芜湖 241000)摘要:当数字图像存在大面积缺失或者缺失部分纹理结构时,传统图像增强技术无法从图像有限的信息中还原出更多所需的信息,增强性能有限㊂为此,本文提出了一种将解码信息与S t y l e G A N v 2相融合的深度学习图像修复方法 D I -S t y l e G A N v 2㊂首先由U -n e t 模块生成包含图像主信息的隐编码以及次信息的解码信号,随后利用S t y l e G A N v 2模块引入图像生成先验,在图像生成的过程中不但使用隐编码主信息,并且整合了包含图像次信息的解码信号,从而实现了修复结果的语义增强㊂在F F HQ 和C e l e b A 数据库上的实验结果验证了所提方法的有效性㊂关 键 词:图像修复;解码信号;生成对抗神经网络;U -n e t ;S t y l e G A N v 2中图分类号:O 29 文献标志码:A 数字图像是现代图像信号最常用的格式,但往往在采集㊁传输㊁储存等过程中,由于噪声干扰㊁有损压缩等因素的影响而发生退化㊂数字图像修复是利用已退化图像中存在的信息重建高质量图像的过程,可以应用于生物医学影像高清化㊁史物影像资料修复㊁军事科学等领域㊂研究数字图像修复模型具有重要的现实意义和商业价值㊂传统的数字图像修复技术多依据图像像素间的相关性和内容相似性进行推测修复㊂在纹理合成方向上,C r i m i n i s i 等[1]提出一种基于图像块复制粘贴的修补方法,该方法采用基于图像块的采样对缺失部分的纹理结构进行信息的填充㊂在结构相似性度研究上,T e l e a [2]提出基于插值的F MM 算法(F a s tM a r c -h i n g M e t h o d );B e r t a l m i o 等[3]提出基于N a v i e r -S t o k e s 方程和流体力学的图像视频修复模型(N a v i e r -S t o k e s ,F l u i dD y n a m i c s ,a n d I m a g e a n dV i d e o I n p a i n t i n g )㊂这些方法缺乏对图像内容和结构的理解,一旦现实中待修复图像的纹理信息受限,修复结果就容易产生上下文内容缺失语义;同时它们需要手动制作同高㊁宽的显示待修复区域的掩码图像来帮助生成结果㊂近年来,由于深度学习领域的快速发展,基于卷积神经网络的图像修复方法得到了广泛的应用㊂Y u等[4]利用空间变换网络从低质量人脸图像中恢复具有逼真纹理的高质量图像㊂除此之外,三维面部先验[5]和自适应空间特征融合增强[6]等修复算法也很优秀㊂这些方法在人工退化的图像集上表现得很好,但是在处理实际中的复杂退化图像时,修复效果依旧有待提升;而类似P i x 2P i x [7]和P i x 2P i x H D [8]这些修复方法又容易使得图像过于平滑而失去细节㊂生成对抗网络[9](G e n e r a t i v eA d v e r s a r i a lN e t w o r k s ,G A N )最早应用于图像生成中,U -n e t 则用于编码解码㊂本文提出的D I -S t y l e G A N v 2模型充分利用S t y l e G A N v 2[10]和U -n e t [11]的优势,通过S t y l e -G A N v 2引入高质量图像生成图像先验,U -n e t 生成修复图像的指导信息㊂在将包含深度特征的隐编码注入预训练的S t y l e G A N v 2中的同时,又融入蕴含图像局部细节的解码信号,得以从严重退化的图像中重建上下文语义丰富且真实的图像㊂1 理论基础1.1 U -n e t U -n e t 是一种A u t o -E n c o d e r ,该结构由一个捕获图像上下文语义的编码路径和能够实现图像重建的对称解码路径组成㊂其前半部分收缩路径为降采样,后半部分扩展路径为升采样,分别对应编码和解码,用于捕获和恢复空间信息㊂编码结构包括重复应用卷积㊁激活函数和用于下采样的最大池化操作㊂在整个下采样的过程中,伴随着特征图尺度的降低,特征通道的数量会增加,扩展路径的解码过程同理,同时扩展路径与收缩路径中相应特征图相连㊂1.2 生成对抗网络生成对抗网络框架由生成器G 和判别器D 这两个模块构成,生成器G 利用捕获的数据分布信息生成图像,判别器D 的输入是数据集的图像或者生成器G 生成的图像,判别器D 的输出刻画了输入图像来自真实数据的可能性㊂为了让生成器G 学习到数据x 的分布p g ,先定义了一个关于输入的噪声变量z ,z 到数据空间的映射表示为G (z ;θg ),其中G 是一个由参数为θg 的神经网络构造的可微函数㊂同时定义了第2个神经网络D (x ;θd ),其输出单个标量D (x )来表示x 来自于数据而不是P g 的概率㊂本训练判别器最大限度地区分真实样本和生成样本,同时训练生成器去最小化l o g(1-D (G (z ))),相互博弈的过程由以下公式定义:m i n G m a x D V (D ,G )=E x ~P d a t a (x )[l o g (D (x ))]+E z ~P z (z )[l o g (1-D (G (z )))],(1)通过生成器㊁判别器的相互对抗与博弈,整个网络最终到达纳什平衡状态㊂这时生成器G 被认为已经学习到了真实数据的内在分布,由生成器合成的生成图像已经能够呈现出与真实数据基本相同的特征,在视觉上难以分辨㊂1.3 S t y l e G A N v 2选用高分辨率图像生成方法S t y l e G A N v 2[10]作为嵌入D I -S t y l e G A N v 2的先验网络,S t yl e G A N v 2[10]主要分为两部分,一部分是映射网络(M a p p i n g N e t w o r k ),如图1a 所示,其中映射网络f 通过8个全连接层对接收的隐编码Z 进行空间映射处理,转换为中间隐编码W ㊂特征空间中不同的子空间信息对应着数据的不同类别信息或整体风格,因为其相互关联存在较高的耦合性,且存在特征纠缠的现象,所以利用映射网络f 使得隐空间得到有效的解耦,最后生成不必遵循训练数据分布的中间隐编码㊂另一部分被称为合成网络,如图1b 所示㊂合成网络由卷积和上采样层构成,其根据映射网络产生的隐编码来生成所需图像㊂合成网络用全连接层将中间隐编码W 转换成风格参数A 来影响不同尺度生成图像的骨干特征,用噪声来影响细节部分使生成的图片纹理更自然㊂S t y l e G A N v 2[10]相较于旧版本重新设计生成器的架构,使用了权重解调(W e i g h tD e m o d u t i o n )更直接地从卷积的输出特征图的统计数据中消除特征图尺度的影响,修复了产生特征伪影的缺点并进一步提高了结果质量㊂图1 S t yl e G A N v 2基本结构根据传入的风格参数,权重调制通过调整卷积权重的尺度替代性地实现对输入特征图的调整㊂w 'i j k =s i ㊃w i jk ,(2)式中,w 和w '分别为原始权重和调制后的权重;s i 为对应第i 层输入特征图对应的尺度㊂接着S t y l e -㊃58㊃第6期王 坤,等:数字图像修复的D I -S t y l e G A N v 2模型G A N v 2通过缩放权重而非特征图,从而在卷积的输出特征图的统计数据中消除s i 的影响,经过调制和卷积后,权值的标准偏差为:σj =∑i ,k w 'i j k 2,(3)权重解调即权重按相应权重的L 2范式进行缩放,S t y l e G A N v 2使用1/σj 对卷积权重进行操作,其中η是一个很小的常数以避免分母数值为0:w ″i j k =w 'i j k /∑i ,k w 'i j k 2+η㊂(4)解调操作融合了S t y l e G A N 一代中的调制㊁卷积㊁归一化,并且相比一代的操作更加温和,因为其是调制权重信号,而并非特征图中的实际内容㊂2 D I -S t yl e G A N v 2模型D I -S t y l e G A N v 2模型结构如图2所示:其主要部分由一个解码提取模块U -n e t 以及预先训练过的S t y l e G A N v 2组成,其中S t y l e G A N v 2包括了合成网络部分(S y n t h e s i sN e t w o r k )和判别器部分㊂待修复的输入图像在被输入到整个D I -S t yl e G A N v 2网络之前,需要被双线性插值器调整大小到固定的分辨率1024×1024㊂接着输入图像通过图2中左侧的U -n e t 生成隐编码Z 和解码信号(D e c o d i n g I n f o r m a t i o n ,D I )㊂由图2所示,隐编码Z 经过多个全连接层构成的M a p p i n g Ne t w o r k s 解耦后转化为中间隐编码W ㊂中间隐编码W 通过仿射变换产生的风格参数作为风格主信息,已经在F F H Q 数据集上训练过的S t yl e G A N v 2模块中的合成网络在风格主信息的指导下恢复图像㊂合成网络中的S t y l e G A N B l o c k 结构在图2下方显示,其中包含的M o d 和D e m o d 操作由式(2)和式(4)给出㊂同时U -n e t 解码层每一层的解码信息作为风格次信息以张量拼接的方式加入S t y l e G A NB l o c k 中的特征图,更好地让D I -S t y le G A N v 2模型生成细节㊂最后将合成网络生成的图片汇入到判别器中,由判别器判断是真实图像还是生成图像㊂图2 数字图像修复网络结构图模型鉴别器综合了3个损失函数作为总损失函数:对抗损失L A ㊁内容损失L C 和特征匹配损失L F ㊂其中,L A 为原始G A N 网络中的对抗损失,被定义为式(5),X 和^X 表示真实的高清图像和低质量的待修复图像,G 为训练期间的生成器,D 为判别器㊂L A =m i n G m a x D E (X )L o g (1+e x p (-D (G (X ^)))),(5)L C 定义为最终生成的修复图片与相应的真实图像之间的L 1范数距离;L F 为判别器中的特征层,其定义为式(6);T 为特征提取的中间层总数;D i (X )为判别器D 的第i 层提取的特征:㊃68㊃安 徽 工 程 大 学 学 报第38卷L F =m i n G E (X )(∑T i =0||D i (X )-D i (G (X ^))||2),(6)最终的总损失函数为:L =L A +αL C +βL F ,(7)式(7)中内容损失L C 判断修复结果和真实高清图像之间的精细特征与颜色信息上差异的大小;通过判别器中间特征层得到的特征匹配损失L F 可以平衡对抗损失L A ,更好地恢复㊁还原高清的数字图像㊂α和β作为平衡参数,在本文的实验中根据经验设置为α=1和β=0.02㊂3实验结果分析图3 F F HQ 数据集示例图3.1 数据集选择及数据预处理从图像数据集的多样性和分辨率考虑,本文选择在F F H Q (F l i c k rF a c e s H i g h Q u a l i t y )数据集上训练数字图像修复模型㊂该数据集包含7万张分辨率为1024×1024的P N G 格式高清图像㊂F F H Q 囊括了非常多的差异化的图像,包括不同种族㊁性别㊁表情㊁脸型㊁背景的图像㊂这些丰富属性经过训练可以为模型提供大量的先验信息,图3展示了从F F H Q 中选取的31张照片㊂训练过程中的模拟退化过程,即模型生成数据集对应的低质量图像这部分,本文主要通过以下方法实现:通过C V 库对图像随机地进行水平翻转㊁颜色抖动(包括对图像的曝光度㊁饱和度㊁色调进行随机变化)以及转灰度图等操作,并对图像采用混合高斯模糊,包括各向同性高斯核和各向异性高斯核㊂在模糊核设计方面,本文采用41×41大小的核㊂对于各向异性高斯核,旋转角度在[-π,π]之间均匀采样,同时进行下采样和混入高斯噪声㊁失真压缩等处理㊂整体模拟退化处理效果如图4所示㊂图4 模拟退化处理在模型回测中,使用C e l e b A 数据集来生成低质量的图像进行修复并对比原图,同时定量比较本模型与近年来提出的其他方法对于数字图像的修复效果㊂3.2 评估指标为了公平地量化不同算法视觉质量上的优劣,选取图像质量评估方法中最广泛使用的峰值信噪比(P e a kS i g n a l -t o -n o i s eR a t i o ,P S N R )以及结构相似性指数(S t r u c t u r a l S i m i l a r i t y I n d e x ,S S I M )指标,去量化修复后图像和真实图像之间的相似性㊂P S N R 为信号的最大可能功率和影响其精度的破坏性噪声功率的比值,数值越大表示失真越小㊂P S N R 基于逐像素的均方误差来定义㊂设I 为高质量的参考图像;I '为复原后的图像,其尺寸均为m ×n ,那么两者的均方误差为:M S E =1m n ∑m i =1∑n j =1(I [i ,j ]-I '[i ,j ])2,(8)P S N R 被定义为公式(9),P e a k 表示图像像素强度最大的取值㊂㊃78㊃第6期王 坤,等:数字图像修复的D I -S t yl e G A N v 2模型P S N R =10×l o g 10(P e a k 2M S E )=20×l o g 10(P e a k M S E ),(9)S S I M 是另一个被广泛使用的图像相似度评价指标㊂与P S N R 评价逐像素的图像之间的差异,S S I M 仿照人类视觉系统实现了其判别标准㊂在图像质量的衡量上更侧重于图像的结构信息,更贴近人类对于图像质量的判断㊂S S I M 用均值估计亮度相似程度,方差估计对比度相似程度,协方差估计结构相似程度㊂其范围为0~1,越大代表图像越相似;当两张图片完全一样时,S S I M 值为1㊂给定两个图像信号x 和y ,S S I M 被定义为:S S I M (x ,y )=[l (x ,y )α][c (x ,y )]β[s (x ,y )]γ,(10)式(10)中的亮度对比l (x ,y )㊁对比度对比c (x ,y )㊁结构对比s (x ,y )三部分定义为:l (x ,y )=2μx μy +C 1μ2x +μ2y +C 1,c (x ,y )=2σx σy +C 2σ2x +σ2y +C 2,l (x ,y )=σx y +C 3σx σy +C 3,(11)其中,α>0㊁β>0㊁γ>0用于调整亮度㊁对比度和结构之间的相对重要性;μx 及μy ㊁σx 及σy 分别表示x 和y 的平均值和标准差;σx y 为x 和y 的协方差;C 1㊁C 2㊁C 3是常数,用于维持结果的稳定㊂实际使用时,为简化起见,定义参数为α=β=γ=1以及C 3=C 2/2,得到:S S I M (x ,y )=(2μx μy +C 1)(2σx y +C 2)(μ2x +μ2y +C 1)(σ2x +σ2y +C 2)㊂(12)在实际计算两幅图像的结构相似度指数时,我们会指定一些局部化的窗口,计算窗口内信号的结构相似度指数㊂然后每次以像素为单位移动窗口,直到计算出整幅的图像每个位置的局部S S I M 再取均值㊂3.3 实验结果(1)D I -S t y l e G A N v 2修复结果㊂图5展示了D I -S t yl e G A N v 2模型在退化图像上的修复结果,其中图5b ㊁5d 分别为图5a ㊁5c 的修复结果㊂通过对比可以看到,D I -S t y l e G A N v 2修复过的图像真实且还原,图5b ㊁5d 中图像的头发㊁眉毛㊁眼睛㊁牙齿的细节清晰可见,甚至图像背景也被部分地修复,被修复后的图像通过人眼感知,整体质量优异㊂图5 修复结果展示(2)与其他方法的比较㊂本文用C e l e b A -H Q 数据集合成了一组低质量图像,在这些模拟退化图像上将本文的数字图像修复模型与G P E N [12]㊁P S F R G A N [13]㊁H i F a c e G A N [14]这些最新的深度学习修复算法的修复效果进行比较评估,这些最近的修复算法在实验过程中使用了原作者训练过的模型结构和预训练参数㊂各个模型P S N R 和L P I P S 的测试结果如表1所示,P S N R 和S S I M 的值越大,表明修复图像和真实高清图像之间的相似度越高,修复效果越好㊂由表1可以看出,我们的数字图像修复模型获得了与其他顶尖修复算法相当的P S N R 指数,L P I P S 指数相对于H i F a c e G A N 提升了12.47%,同时本实验环境下修复512×512像素单张图像耗时平均为1.12s ㊂表1 本文算法与相关算法的修复效果比较M e t h o d P S N R S S I M G P E N 20.40.6291P S F R G A N 21.60.6557H i F a c e G A N 21.30.5495o u r 20.70.6180值得注意的是P S N R 和S S I M 大小都只能作为参考,不能绝对反映数字图像修复算法的优劣㊂图6展示了D I -S t y l e G A N v 2㊁G P E N ㊁P S F R G A N ㊁H i F a c e G A N 的修复结果㊂由图6可以看出,无论是全局一致性还是局部细节,D I -S t y l e G A N v 2都做到了很好得还原,相比于其他算法毫不逊色㊂在除人脸以外的其他自然场景的修复上,D I -S t yl e G A N v 2算法依旧表现良好㊂图7中左侧为修复前㊃88㊃安 徽 工 程 大 学 学 报第38卷图像,右侧为修复后图像㊂从图7中红框处标记出来的细节可以看出,右侧修复后图像的噪声相比左图明显减少,观感更佳,这在图7下方放大后的细节比对中表现得尤为明显㊂从图像中招牌的字体区域可见对比度和锐化程度的提升使得图像内部图形边缘更加明显,整体更加清晰㊂路面的洁净度上噪声也去除很多,更为洁净㊂整体上修复后图像的色彩比原始的退化图像要更丰富,层次感更强,视觉感受更佳㊂图6 修复效果对比图图7 自然场景图像修复结果展示(左:待修复图像;右:修复后图像)4 结论基于深度学习的图像修复技术近年来在超分辨图像㊁医学影像等领域得到广泛的关注和应用㊂本文针对传统修复技术处理大面积缺失或者缺失部分纹理结构的图像时容易产生修复结果缺失图像语义的问题,在国内外图像修复技术理论与方法的基础上,由卷积神经网络U -n e t 结合近几年效果极佳的生成对抗网络S t yl e G A N v 2,提出了以图像解码信息㊁隐编码㊁图像生成先验这三类信息指导深度神经网络对图像进行修复㊂通过在F F H Q 数据集上进行随机图像退化模拟来训练D I -S t y l e G A N v 2网络模型,并由P S N R 和S S I M 两个指标来度量修复样本和高清样本之间的相似性㊂㊃98㊃第6期王 坤,等:数字图像修复的D I -S t y l e G A N v 2模型㊃09㊃安 徽 工 程 大 学 学 报第38卷实验表明,D I-S t y l e G A N v2网络模型能够恢复清晰的面部细节,修复结果具有良好的全局一致性和局部精细纹理㊂其对比现有技术具有一定优势,同时仅需提供待修复图像而无需缺失部分掩码就能得到令人满意的修复结果㊂这主要得益于D I-S t y l e G A N v2模型能够通过大样本数据的训练学习到了丰富的图像生成先验,并由待修复图像生成的隐编码和解码信号指导神经网络学习到更多的图像结构和纹理信息㊂参考文献:[1] A N T O N I O C,P A T R I C KP,K E N T A R O T.R e g i o n f i l l i n g a n do b j e c t r e m o v a l b y e x e m p l a r-b a s e d i m a g e i n p a i n t i n g[J].I E E ET r a n s a c t i o n s o n I m a g eP r o c e s s i n g:A P u b l i c a t i o no f t h eI E E E S i g n a lP r o c e s s i n g S o c i e t y,2004,13(9):1200-1212.[2] T E L E A A.A n i m a g e i n p a i n t i n g t e c h n i q u eb a s e do nt h e f a s tm a r c h i n g m e t h o d[J].J o u r n a l o fG r a p h i c sT o o l s,2004,9(1):23-34.[3] B E R T A L M I O M,B E R T O Z Z IA L,S A P I R O G.N a v i e r-s t o k e s,f l u i dd y n a m i c s,a n d i m a g ea n dv i d e o i n p a i n t i n g[C]//I E E EC o m p u t e r S o c i e t y C o n f e r e n c e o nC o m p u t e rV i s i o n&P a t t e r nR e c o g n i t i o n.K a u a i:I E E EC o m p u t e r S o c i e t y,2001:990497.[4] Y U X,P O R I K L I F.H a l l u c i n a t i n g v e r y l o w-r e s o l u t i o nu n a l i g n e d a n dn o i s y f a c e i m a g e s b y t r a n s f o r m a t i v e d i s c r i m i n a t i v ea u t o e n c o d e r s[C]//I nC V P R.H o n o l u l u:I E E EC o m p u t e r S o c i e t y,2017:3760-3768.[5] HU XB,R E N W Q,L AMA S T E RJ,e t a l.F a c e s u p e r-r e s o l u t i o n g u i d e db y3d f a c i a l p r i o r s.[C]//C o m p u t e rV i s i o n–E C C V2020:16t hE u r o p e a nC o n f e r e n c e.G l a s g o w:S p r i n g e r I n t e r n a t i o n a l P u b l i s h i n g,2020:763-780.[6] L IX M,L IW Y,R E ND W,e t a l.E n h a n c e d b l i n d f a c e r e s t o r a t i o nw i t hm u l t i-e x e m p l a r i m a g e s a n d a d a p t i v e s p a t i a l f e a-t u r e f u s i o n[C]//P r o c e e d i n g so f t h eI E E E/C V F C o n f e r e n c eo nC o m p u t e rV i s i o na n dP a t t e r n R e c o g n i t i o n.V i r t u a l:I E E EC o m p u t e r S o c i e t y,2020:2706-2715.[7] I S O L A P,Z HUJY,Z HO U T H,e t a l.I m a g e-t o-i m a g e t r a n s l a t i o nw i t hc o n d i t i o n a l a d v e r s a r i a l n e t w o r k s[C]//P r o-c e ed i n g s o f t h eI E E E C o n fe r e n c eo nC o m p u t e rV i s i o na n dP a t t e r n R e c o g n i t i o n.H o n o l u l u:I E E E C o m p u t e rS o c i e t y,2017:1125-1134.[8] WA N G TC,L I U M Y,Z HUJY,e t a l.H i g h-r e s o l u t i o n i m a g es y n t h e s i sa n ds e m a n t i cm a n i p u l a t i o nw i t hc o n d i t i o n a lg a n s[C]//P r o c e e d i n g so f t h eI E E E C o n f e r e n c eo nC o m p u t e rV i s i o na n dP a t t e r n R e c o g n i t i o n.S a l tL a k eC i t y:I E E EC o m p u t e r S o c i e t y,2018:8798-8807.[9] G O O D F E L L OWI A N,P O U G E T-A B A D I EJ,M I R Z A M,e t a l.G e n e r a t i v ea d v e r s a r i a ln e t s[C]//A d v a n c e s i n N e u r a lI n f o r m a t i o nP r o c e s s i n g S y s t e m s.M o n t r e a l:M o r g a nK a u f m a n n,2014:2672-2680.[10]K A R R A ST,L A I N ES,A I T T A L A M,e t a l.A n a l y z i n g a n d i m p r o v i n g t h e i m a g e q u a l i t y o f s t y l e g a n[C]//P r o c e e d i n g so f t h e I E E E/C V FC o n f e r e n c e o nC o m p u t e rV i s i o n a n dP a t t e r nR e c o g n i t i o n.S n o w m a s sV i l l a g e:I E E EC o m p u t e r S o c i e-t y,2020:8110-8119.[11]O L A FR O N N E B E R G E R,P H I L I P PF I S C H E R,T HOMA SB R O X.U-n e t:c o n v o l u t i o n a l n e t w o r k s f o r b i o m e d i c a l i m a g es e g m e n t a t i o n[C]//M e d i c a l I m a g eC o m p u t i n g a n dC o m p u t e r-A s s i s t e dI n t e r v e n t i o n-M I C C A I2015:18t hI n t e r n a t i o n a lC o n f e r e n c e.M u n i c h:S p r i n g e r I n t e r n a t i o n a l P u b l i s h i n g,2015:234-241.[12]Y A N G T,R E NP,X I EX,e t a l.G a n p r i o r e m b e d d e dn e t w o r k f o r b l i n d f a c e r e s t o r a t i o n i n t h ew i l d[C]//P r o c e e d i n g s o ft h eI E E E/C V F C o n f e r e n c eo n C o m p u t e r V i s i o na n d P a t t e r n R e c o g n i t i o n.V i r t u a l:I E E E C o m p u t e rS o c i e t y,2021: 672-681.[13]C H E NCF,L IX M,Y A N GLB,e t a l.P r o g r e s s i v e s e m a n t i c-a w a r e s t y l e t r a n s f o r m a t i o n f o r b l i n d f a c e r e s t o r a t i o n[C]//P r o c e e d i n g s o f t h e I E E E/C V FC o n f e r e n c e o nC o m p u t e rV i s i o n a n dP a t t e r nR e c o g n i t i o n.V i r t u a l:I E E EC o m p u t e r S o c i-e t y,2021:11896-11905.[14]Y A N GLB,L I U C,WA N GP,e t a l.H i f a c e g a n:f a c e r e n o v a t i o nv i a c o l l a b o r a t i v e s u p p r e s s i o na n dr e p l e n i s h m e n t[C]//P r o c e e d i n g s o f t h e28t hA C MI n t e r n a t i o n a l C o n f e r e n c e o n M u l t i m e d i a.S e a t t l e:A s s o c i a t i o n f o rC o m p u t i n g M a c h i n e r y, 2020:1551-1560.D I -S t y l e G A N v 2M o d e l f o rD i g i t a l I m a geR e s t o r a t i o n WA N G K u n ,Z H A N G Y u e*(S c h o o l o fM a t h e m a t i c s a n dF i n a n c e ,A n h u i P o l y t e c h n i cU n i v e r s i t y ,W u h u241000,C h i n a )A b s t r a c t :W h e n t h e r e a r e l a r g e a r e a s o fm i s s i n g o r c o m p l e x t e x t u r e s t r u c t u r e s i n d i g i t a l i m a g e s ,t r a d i t i o n -a l i m a g e e n h a n c e m e n t t e c h n i q u e s c a n n o t r e s t o r em o r e r e q u i r e d i n f o r m a t i o n f r o mt h e l i m i t e d i n f o r m a t i o n i n t h e i m a g e ,r e s u l t i n g i n l i m i t e d e n h a n c e m e n t p e r f o r m a n c e .T h e r e f o r e ,t h i s p a p e r p r o p o s e s a d e e p l e a r n -i n g i n p a i n t i n g m e t h o d ,D I -S t y l e G A N v 2,w h i c hc o m b i n e sd e c o d i n g i n f o r m a t i o n (D I )w i t hS t y l e G A N v 2.F i r s t l y ,t h eU -n e tm o d u l e g e n e r a t e s ah i d d e n e n c o d i n g s i g n a l c o n t a i n i n g t h em a i n i n f o r m a t i o no f t h e i m -a g e a n d a d e c o d i n g s i g n a l c o n t a i n i n g t h e s e c o n d a r y i n f o r m a t i o n .T h e n ,t h e S t y l e G A N v 2m o d u l e i s u s e d t o i n t r o d u c e a n i m a g e g e n e r a t i o n p r i o r .D u r i n g t h e i m a g e g e n e r a t i o n p r o c e s s ,n o t o n l y t h eh i d d e ne n c o d i n gm a i n i n f o r m a t i o n i s u s e d ,b u t a l s o t h e d e c o d i n g s i g n a l c o n t a i n i n g t h e s e c o n d a r y i n f o r m a t i o no f t h e i m a g e i s i n t e g r a t e d ,t h e r e b y a c h i e v i n g s e m a n t i c e n h a n c e m e n t o f t h e r e p a i r r e s u l t s .T h e e x pe r i m e n t a l r e s u l t s o n F F H Qa n dC e l e b Ad a t a b a s e s v a l i d a t e t h e ef f e c t i v e n e s s o f t h e p r o p o s e da p p r o c h .K e y w o r d s :i m ag e r e s t o r a t i o n ;d e c o d e s i g n a l ;g e n e r a t i v e a d v e r s a r i a l n e t w o r k ;U -n e t ;S t y l e G A N v 2(上接第83页)P r o g r e s s i v e I n t e r p o l a t i o nL o o p S u b d i v i s i o n M e t h o d w i t hD u a lA d ju s t a b l eF a c t o r s S H IM i n g z h u ,L I U H u a y o n g*(S c h o o l o fM a t h e m a t i c s a n dP h y s i c s ,A n h u i J i a n z h uU n i v e r s i t y ,H e f e i 230601,C h i n a )A b s t r a c t :A i m i n g a t t h e p r o b l e mt h a t t h e l i m i ts u r f a c e p r o d u c e db y t h ea p p r o x i m a t eL o o p s u b d i v i s i o n m e t h o d t e n d s t o s a g a n d s h r i n k ,a p r o g r e s s i v e i n t e r p o l a t i o nL o o p s u b d i v i s i o nm e t h o dw i t hd u a l a d j u s t a -b l e f a c t o r s i s p r o p o s e d .T h i sm e t h o d i n t r o d u c e s d i f f e r e n t a d j u s t a b l e f a c t o r s i n t h e t w o -p h a s eL o o p s u b d i -v i s i o nm e t h o d a n d t h e p r o g r e s s i v e i t e r a t i o n p r o c e s s ,s o t h a t t h e g e n e r a t e d l i m i t s u r f a c e i s i n t e r p o l a t e d t o a l l t h e v e r t i c e s o f t h e i n i t i a l c o n t r o lm e s h .M e a n w h i l e ,i t h a s a s t r i n g e n c y ,l o c a l i t y a n d g l o b a l i t y .I t c a nn o t o n l y f l e x i b l y c o n t r o l t h e s h a p e o f l i m i t s u r f a c e ,b u t a l s o e x p a n d t h e c o n t r o l l a b l e r a n g e o f s h a p e t o a c e r -t a i ne x t e n t .F r o mt h e n u m e r i c a l e x p e r i m e n t s ,i t c a nb e s e e n t h a t t h em e t h o d c a n r e t a i n t h e c h a r a c t e r i s t i c s o f t h e i n i t i a l t r i a n g u l a rm e s hb e t t e rb y c h a n g i n g t h ev a l u eo f d u a l a d j u s t a b l e f a c t o r s ,a n d t h e g e n e r a t e d l i m i t s u r f a c eh a s a s m a l l d e g r e e o f s h r i n k a g e ,w h i c h p r o v e s t h em e t h o d t ob e f e a s i b l e a n d e f f e c t i v e .K e y w o r d s :L o o p s u b d i v i s i o n ;p r o g r e s s i v e i n t e r p o l a t i o n ;d u a l a d j u s t a b l e f a c t o r s ;a s t r i n g e n c y ㊃19㊃第6期王 坤,等:数字图像修复的D I -S t y l e G A N v 2模型。
monocle2坐标提取Monocle2坐标提取为标题的文章一、引言二、Monocle2坐标提取的原理Monocle2坐标提取是一种利用计算机视觉技术自动识别图像中物体位置的方法。
它基于人工智能算法,通过对图像进行分析和处理,提取出物体的坐标信息。
三、Monocle2坐标提取的应用领域1. 物体检测和跟踪:Monocle2坐标提取可以用于检测和跟踪物体在图像中的位置。
比如,在视频监控中,可以利用Monocle2坐标提取来实时监测和跟踪行人、车辆等物体的位置,从而提供更好的安全保障。
2. 图像分析和处理:Monocle2坐标提取可以用于对图像进行分析和处理。
比如,在医学影像领域,可以利用Monocle2坐标提取来定位和分析病灶、器官等的位置,从而辅助医生进行诊断和治疗。
3. 地理定位和导航:Monocle2坐标提取可以用于地理定位和导航应用。
比如,在导航软件中,可以利用Monocle2坐标提取来识别和定位道路、建筑等地标物体的位置,从而提供更准确和实用的导航服务。
四、Monocle2坐标提取的优势和局限性1. 优势:- 高效快速:Monocle2坐标提取可以在短时间内对大量图像进行处理和分析,提取出物体的坐标信息。
- 自动化:Monocle2坐标提取是一种自动化的技术,无需人工干预,减少了人力成本和时间成本。
- 准确性高:Monocle2坐标提取基于人工智能算法,具有较高的准确性和稳定性。
2. 局限性:- 对图像质量要求较高:Monocle2坐标提取对图像的质量要求较高,如果图像模糊或噪声较多,可能会导致坐标提取的准确性下降。
- 对物体特征要求较高:Monocle2坐标提取需要物体具有一定的特征,如果物体的特征不明显或变化较大,可能会影响坐标提取的准确性。
- 对计算资源要求较高:Monocle2坐标提取需要较高的计算资源支持,特别是在处理大规模数据时,需要具备强大的计算能力。
五、结论Monocle2坐标提取是一种利用计算机视觉技术自动识别图像中物体位置的方法。
llama2的模型结构摘要:1.Llama2 模型的背景和目的2.Llama2 模型的基本结构3.Llama2 模型的关键技术4.Llama2 模型的应用和性能5.总结正文:1.Llama2 模型的背景和目的Llama2 是一种用于自然语言处理的深度学习模型,其主要目的是通过学习大量文本数据来实现语言生成和理解。
Llama2 模型在处理自然语言任务时,例如文本分类、机器翻译和情感分析等,具有出色的性能和效率。
2.Llama2 模型的基本结构Llama2 模型采用了一种基于Transformer 的架构,Transformer 是一种基于自注意力机制的神经网络结构,可以在处理长序列数据时保持全局上下文信息。
Llama2 模型由多个编码器和解码器组成,编码器用于将输入序列编码为固定长度的上下文向量,而解码器则用于根据上下文向量生成输出序列。
3.Llama2 模型的关键技术Llama2 模型的关键技术包括以下几点:(1) 多层编码器和解码器:Llama2 模型采用了多个编码器和解码器,以增加模型的深度和表达能力。
(2) 自注意力机制:Llama2 模型使用了自注意力机制,使得模型能够自动学习输入序列中的长距离依赖关系。
(3) 位置编码:Llama2 模型使用了位置编码来保持输入序列的位置信息,从而更好地生成输出序列。
(4) 残差连接:Llama2 模型使用了残差连接,以提高模型的稳定性和梯度流。
(5) Dropout:Llama2 模型使用了Dropout 技术,以避免过拟合和提高模型的泛化能力。
4.Llama2 模型的应用和性能Llama2 模型在自然语言处理领域具有广泛的应用,例如文本分类、机器翻译、情感分析等。
Llama2 模型在多个NLP 任务上都取得了非常好的性能和效果,例如在WMT 机器翻译任务上取得了当时的最佳结果。
5.总结Llama2 是一种基于Transformer 的深度学习模型,其具有出色的性能和效率,在自然语言处理领域具有广泛的应用。
text2cinemagraph使用方法text2cinemagraph是一种很有趣和创新的工具,它能够将静态的文本转换成动态的cinemagraph图像。
使用text2cinemagraph,你可以添加动态元素,使文字更具视觉吸引力。
下面将一步一步地介绍使用text2cinemagraph的方法,希望能帮助你更好地使用这个工具。
步骤1:选择合适的文本主题首先,你需要确定一个适合的文本主题,这个主题将成为你要创建cinemagraph的内容。
可以选择关于自然美景、悬疑故事、浪漫情感等各种各样的主题,根据你的兴趣和需求来决定。
在本文中,我们将以“冒险旅行”为主题进行演示。
步骤2:收集所需素材在创建cinemagraph之前,你需要收集一些素材作为基础。
这些素材可以包括一些静态的图像或者视频。
对于我们的“冒险旅行”主题,你可以选择一些关于自然风景或者旅行场景的图片或视频。
确保素材的质量和内容与你的主题吻合。
步骤3:准备文本和特效打开text2cinemagraph工具,将你准备好的文本输入到文本框中。
然后,选择适合的特效样式,例如切割、转场、缩放、模糊等。
text2cinemagraph 提供了多种特效供你选择,你可以根据自己的需求和创意进行调整。
确保所选的特效能够与你的文本主题和素材相匹配。
步骤4:添加音乐和声效如果你想要进一步提升你的cinemagraph的效果,你可以考虑添加一些背景音乐或声效。
text2cinemagraph工具支持添加音频文件,并可以根据你的需要进行调整。
你可以选择一些与你的主题相符合的音乐或声效,来增加cinemagraph的氛围和观赏性。
步骤5:编辑和调整一旦你完成了文本、特效和音效的添加,你可以开始编辑和调整cinemagraph的各个参数。
text2cinemagraph提供了一系列的编辑工具,可以帮助你调整文本的大小、位置、颜色、动画速度等等。
你可以根据需要进行适当的修改和优化,以确保生成的cinemagraph符合你的要求和预期。
img2img 原理
img2img是一种图像转换技术,可以将一张图像转换成另一张具有特定风格的图像。
其原理是利用深度学习模型进行图像转换。
具体来说,img2img 使用了一种称为条件生成对抗网络 (Conditional Generative Adversarial Networks, CGANs) 的模型。
CGANs 是一种生成对抗网络 (Generative Adversarial Networks, GANs) 的变种,不仅可以生成新图像,还可以将一个输入图像转换成另一个具有特定条件的图像。
在 img2img 中,输入图像和目标图像都被称为条件。
CGANs 接受输入图像和目标图像作为条件,并通过对抗训练的方式训练生成器和判别器。
生成器负责生成符合目标风格的图像,而判别器则负责判断生成器生成的图像是否符合目标风格。
通过反复迭代训练,生成器逐渐学会生成更符合目标风格的图像,同时判别器也逐渐变得更加准确。
除了 CGANs,img2img 还可以使用其他深度学习模型进行图像转换,例如自编码器 (Autoencoder) 和变分自编码器 (Variational Autoencoder)。
不同的模型适用于不同的场景和任务,选择合适的模型可以提高图像转换的质量和效率。
总之,img2img 基于深度学习模型实现图像转换,通过对输入图像和目标图像进行条件生成对抗训练,可以将一张图像转换成具有特定风格的另一张图像。
- 1 -。
img2img stable diffusion原理-回复[img2img stable diffusion原理]img2img stable diffusion是一种图像处理技术,其原理是通过扩散过程平滑图像,去除噪声,同时保持图像的细节和结构。
本文将逐步解释img2img stable diffusion的原理及其在图像处理中的应用。
1. 引言图像处理是数字图像处理领域的一个重要研究方向。
图像的质量对于许多应用来说都至关重要。
然而,由于种种原因,图像可能会受到噪声的影响,导致图像质量下降。
因此,图像去噪是图像处理中必不可少的一步。
2. 图像去噪的方法目前,图像去噪的方法有很多,例如线性滤波、非线性滤波等。
然而,这些传统的滤波方法往往会模糊图像细节,降低图像的清晰度。
3. img2img stable diffusion原理img2img stable diffusion是一种基于扩散过程的图像去噪方法。
其主要思想是通过扩散过程在图像中传播信息,达到平滑图像但保持图像细节和结构的目的。
具体来说,img2img stable diffusion基于以下两个假设:- 图像的噪声分布未知,且可能是非高斯分布。
- 噪声水平在图像中是不均匀的,即相邻像素之间的噪声水平可能存在差异。
为了实现图像的平滑,img2img stable diffusion引入了扩散系数。
扩散系数的大小取决于图像的局部特性,如梯度、纹理等。
在图像中,像素之间的差异越大,其扩散系数越大,反之亦然。
通过调整扩散系数,可以在平滑图像的同时保留图像的细节和结构。
4. img2img stable diffusion的实现步骤img2img stable diffusion的实现可以分为以下几个步骤:1) 初始化:将输入图像作为初始图像,设置扩散系数的初始值。
2) 扩散过程:迭代地更新图像中的像素值,使其向相邻像素扩散。
更新的过程中,根据扩散系数控制信息的传播速度。
vision master 二值化原理
Vision Master是一种用于图像处理的技术,其中二值化是其中一个重要的步骤。
二值化是将图像中的像素值转换为只有两种取值的过程,通常是将图像转换为黑白二色。
在这个过程中,像素值大于某个阈值的像素被设为白色,小于等于阈值的像素被设为黑色。
二值化的原理是基于图像的灰度级来进行的。
首先,需要将彩色图像转换为灰度图像,这可以通过将彩色像素的红、绿、蓝三个分量进行加权平均来实现。
然后,通过设定一个阈值来决定哪些像素将被设为黑色,哪些将被设为白色。
通常情况下,阈值的选择是根据图像的特点和需求来确定的。
二值化的目的是减少图像中的信息量,保留图像中最重要的特征。
通过将图像转换为只有黑白两种颜色的二值图像,可以更方便地进行形状分析、边缘检测、目标识别等操作。
在某些情况下,二值化还可以用于去除噪声,提升图像的质量。
然而,二值化也存在一些问题。
由于阈值的选择是基于整幅图像的统计特性进行的,因此对于图像中不同区域的亮度差异较大的情况,可能会导致部分细节的丢失或模糊。
此外,阈值的选择也可能会受到光照条件、噪声等因素的影响,进而影响二值化结果的准确性。
二值化是图像处理中的重要步骤之一,可以将彩色或灰度图像转换为黑白二色图像。
通过选择合适的阈值,可以保留图像中最重要的
特征,方便后续的图像处理和分析。
然而,二值化也存在一些限制,需要根据具体的应用场景和需求进行调整和优化。