2.6应用一元二次方程2
- 格式:ppt
- 大小:88.00 KB
- 文档页数:9
第二章一元二次方程6 应用一元二次方程第2课时 销售及变化率问题教学目标教学反思1.会用列一元二次方程的方法解决营销问题及平均变化率问题.2.进一步培养学生化实际问题为数学问题的能力和分析问题、解决问题的能力,培养学生应用数学的意识.教学重难点重点:会用列一元二次方程的方法解决营销问题及平均变化率问题.难点:如何找出等量关系.教学过程导入新课某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?探究新知一、温故知新1.某商人将进价为每件8元的某种商品按每件10元出售,则1件的利润是_____;若每天可售出100件,则1天的总利润是_________.2.利润问题的两个主要等量关系:1件的利润=1件的售价-1件的进价;总利润=每件的利润×销售总件数.二、知识讲解1.销售问题与一元二次方程例1 新华商场销售某种冰箱,每台进货价为2 500元.调查发现,当销售价为2 900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5 000元,每台冰箱的定价应为多少元?分析:本题的主要等量关系是:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000元.如果设每台冰箱降价x元,那么每台冰箱的定价就是(2 900-x)元,每台冰箱的销售利润为(2 900-x-2 500)元,平均每天销售冰箱的数量为台.这样就可以列出一个方程,从而使问题得到解决.解:设每台冰箱降价x元. 根据题意,得.整理,得x2- 300x + 22 500 =0.解这个方程,得x1=x2=150.教学反思2 900-150 =2 750.所以,每台冰箱应定价为2 750元.总结:利润问题常见关系式:(1)利润=售价-________;(2)利润率;(3)总利润=____________×销量.2.平均变化率问题与一元二次方程例2 某公司1 月份的生产成本是400 万元,由于改进生产技术,生产成本逐月下降,3 月份的生产成本是361 万元. 假设该公司2,3,4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率.(2)请你预测4 月份该公司的生产成本.解:(1)设该公司每个月生产成本的下降率为x,根据题意,得400(1-x)2= 361.解得x1=5%,x2=1.95>1(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1-5%)= 342.95(万元).答:预测4 月份该公司的生产成本为342.95 万元.总结:若平均增长(或降低)的百分率为x,增长(或降低)前的量是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(其中增长取“+”,降低取“-”).三、练习巩固,拓展提高1.某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8 000元的利润,且尽量减少库存,售价应为多少?分析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8 000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.2.某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.分析:设3,4月份销售额的月平均增长率为x ,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x )万元,4月份的销售额为60(1-10%)(1+x )2万元.解:设3,4月份销售额的月平均增长率为x .根据题意,得60(1-10%)(1+x )2=121.5,则(1+x )2=2.25,解得x 1=0.5,x 2=-2.5(不合题意,舍去).答:3,4月份销售额的月平均增长率为50%.课堂练习1.某地一月份发生禽流感的养鸡场有100家,后来二、 三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月发生禽流感的养鸡场的增长率为x ,依题意列出的方程是( )A.100(1+x )2=250B.100(1+x )+100(1+x )2=250C.100(1-x )2=250D.100(1+x )2+100=2502.某商店将进价为每件8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,若设每件售价为x 元,销售量可表示为( )A.×10 B. 200-×10 C. 200-×10 D. 200-0.5(x -10)×103.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低( )元.A. 0.2或0.3B. 0.4C. 0.3D. 0.24.一件上衣原价为每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?参考答案1.B2.B3.C4.解:设第一次降价的百分率为x ,则第二次降价的百分率为2x ,根据题意得500(1-x )(1-2x )=240,解得x 1=0.2=20%,x 2=1.3=130%(舍去).答:第一次降价的百分率为20%,第二次降价的百分率为40%.课堂小结(学生总结,老师点评)营销问题中的数量关系:(1)单件商品利润=单件商品售价-单件商品进价;教学反思(2)利润率=利润进价=售价―进价进价;(3)售价=进价×(1+利润率);(4)总利润=每件商品的利润×商品的销量.布置作业课本习题2.10板书设计6 应用一元二次方程第2课时 销售及变化率问题。
北师大版九年级数学上册说课稿:2.6应用一元二次方程一. 教材分析北师大版九年级数学上册第2.6节“应用一元二次方程”是学生在学习了二元一次方程组、一元一次方程和一元二次方程的基础上进行学习的。
这一节的主要内容是通过实例让学生了解并掌握一元二次方程的应用,培养学生的实际问题解决能力。
教材中提供了丰富的例题和练习题,旨在帮助学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程和一元二次方程有了初步的了解。
但是,学生在解决实际问题时,往往会将数学知识与实际问题脱节,不能很好地将数学知识应用于解决实际问题。
因此,在教学过程中,教师需要引导学生将数学知识与实际问题相结合,提高学生的问题解决能力。
三. 说教学目标1.知识与技能目标:使学生了解一元二次方程在实际问题中的应用,掌握一元二次方程的解法,提高学生解决实际问题的能力。
2.过程与方法目标:通过实例分析,培养学生将实际问题转化为数学模型的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极解决问题的态度,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:一元二次方程在实际问题中的应用,一元二次方程的解法。
2.教学难点:将实际问题转化为一元二次方程,灵活运用一元二次方程解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例引导学生自主探究,合作交流,发现并总结一元二次方程的解法及其在实际问题中的应用。
2.教学手段:利用多媒体课件辅助教学,通过动画演示和实例分析,帮助学生更好地理解一元二次方程的应用。
六. 说教学过程1.导入:通过一个简单的实际问题引出一元二次方程,激发学生的学习兴趣。
2.新课讲解:讲解一元二次方程的定义、解法及其在实际问题中的应用。
通过丰富的例题和练习题,让学生在实践中掌握一元二次方程的解法。
3.课堂练习:让学生在课堂上独立完成练习题,巩固所学知识。
北师大版数学九年级上册第二章第6节应用一元二次方程(第2课时)教学案【教学目标】1.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.2.在列方程解决实际问题的过程中,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤,进一步提高分析问题、解决问题的能力.3.能根据具体问题的实际意义检验结果的合理性,增强数学应用意识和能力.重点:列出一元二次方程解决:①销售利润问题、②动点问题难点:寻找实际问题中的相等关系.【教学过程】【例1】某商场销售一批衬衫,平均每天售出20件,每件盈利40元,为减少库存,尽快收回成本,商场决定降价销售.经调查发现,售价每降低一元,每天平均可多售出2件.若商场平均每天要盈利1200元,则每件衬衫应降价多少元?【例2】某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40~60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?[例3]如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB边向点B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经几秒钟△PBQ的面积等于8cm2?[跟踪练习1]1.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了获得1120元的利润,每床每晚应提高多少元?2.某商场将进价为2000元的冰箱以2400元售出,平均每天售出8台。
经调查发现:这种冰箱的售价每降50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800元,同时又使顾客尽可能多的得到实惠,每台冰箱应降价多少元?3.如图所示,A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/S的速度向D移动.(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?4.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B两点同时出发,经过几秒钟,△PBQ的面积等于8cm2?(2)几秒钟后,P,Q两点之间的距离等于42cm?答案例1解:设每件衬衫应降价x元.根据题意,得(40﹣x)(20+2x)=1200整理,得x2﹣30x+200=0解得:x1=10,x2=20.∵要求每件盈利不低于25元,∴x1=20应略去,解得:x=10.答:每件衬衫应降价10元.例2解:设售价定为x元,[600﹣10(x﹣40)](x﹣30)=10000,整理,得x2﹣130x+4000=0,解得:x1=50,x2=80(舍去).600﹣10(x﹣40)=600﹣10×(50﹣40)=500(个).答:台灯的定价定为50元,这时应进台灯500个.例3解:根据题意,知BP=AB﹣AP=6﹣t,BQ=2t.(1)根据三角形的面积公式,得12PB•BQ=8,t (6﹣t )=8,t 2﹣6t +8=0,解得t =2或4.故经过2或4秒钟,△PBQ 的面积等于8cm 2;(2)根据勾股定理,得PQ 2=BP 2+BQ 2=(6﹣t )2+(2t )2=32,5t 2﹣12t +4=0,解得t 1=2,x 2=25. 故2或25秒钟后,P ,Q 两点之间的距离等于42cm .跟踪练习:1.解:假设每床的收费每晚应提高x 元,由题意得:(100﹣x 2×10)(10+x )=1120 解得:x 1=4,x 2=6(不合题意舍去)答:每床的收费每晚应提高4元.2.解:设每台冰箱应降价x 元,每件冰箱的利润是:(2400﹣2000﹣x )元,卖(8+x 50×4)件, 列方程得,(2400﹣2000﹣x )(8+x 50×4)=4800, x 2﹣300x +20000=0,解得x 1=200,x 2=100;要使百姓得到实惠,只能取x =200,答:每台冰箱应降价200元.3.解:当运动时间为t 秒时,PB =(16﹣3t )cm ,CQ =2tcm .(1)依题意,得: 12×(16﹣3t +2t )×6=33, 解得:t =5.答:P ,Q 两点从出发开始到5秒时,四边形PBCQ 的面积为33cm 2.(2)过点Q 作QM ⊥AB 于点M ,如图所示.∵PM =PB ﹣CQ =|16﹣5t |cm ,QM =6cm ,∴PQ 2=PM 2+QM 2,即102=(16﹣5t )2+62,解得:t 1=85,t 2=245(不合题意,舍去). 答:P ,Q 两点从出发开始到85秒时,点P 和点Q 的距离第一次是10cm .4.解:根据题意,知BP =AB ﹣AP =6﹣t ,BQ =2t .(1)根据三角形的面积公式,得12PB •BQ =8, t (6﹣t )=8,t 2﹣6t +8=0,解得t =2或4.故经过2或4秒钟,△PBQ 的面积等于8cm 2;(2)根据勾股定理,得PQ 2=BP 2+BQ 2=(6﹣t )2+(2t )2=32,5t 2﹣12t +4=0,解得t 1=2,x 2=25. 故2或25秒钟后,P ,Q 两点之间的距离等于42cm .。
2023-2024学年北师大版九年级数学上册教案:2.6应用一元二次方程一. 教材分析《2.6 应用一元二次方程》是北师大版九年级数学上册的教学内容。
这部分内容主要让学生学会运用一元二次方程解决实际问题,培养学生的数学应用能力。
教材通过引入实际问题,让学生理解一元二次方程的建模过程,掌握求解一元二次方程的方法,并能够运用到实际问题中。
二. 学情分析九年级的学生已经学习过一元二次方程的理论知识,对一元二次方程的解法有一定的了解。
但部分学生可能对理论知识的运用还不够熟练,解决实际问题的能力有待提高。
此外,学生在学习过程中可能存在对公式记忆不牢、解题思路不清晰等问题。
三. 教学目标1.让学生理解一元二次方程在实际问题中的应用,培养学生的数学应用意识。
2.让学生掌握一元二次方程的解法,提高学生解决实际问题的能力。
3.通过对实际问题的分析,让学生体会数学与生活的紧密联系,激发学生学习数学的兴趣。
四. 教学重难点1.教学重点:运用一元二次方程解决实际问题,掌握一元二次方程的解法。
2.教学难点:对实际问题进行分析,找出关键信息,建立一元二次方程。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动参与课堂讨论,提高学生的思考能力。
2.利用案例分析,让学生通过实际问题理解一元二次方程的应用。
3.采用分组合作学习,培养学生的团队协作能力。
4.运用数形结合思想,帮助学生直观地理解一元二次方程的解法。
六. 教学准备1.准备相关的实际问题案例,用于教学演示。
2.准备一元二次方程的解法教程,以便学生课堂练习时参考。
3.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如抛物线与坐标轴的交点问题、物体运动问题等,引导学生思考如何利用一元二次方程解决这些问题。
2.呈现(10分钟)呈现一个实际问题,如:已知一颗抛物线的顶点坐标为(3,-2),求该抛物线与x轴的交点坐标。
引导学生分析问题,找出关键信息,然后根据一元二次方程的定义,建立方程。
第二章一元二次方程2. 6 应用一元二次方程本节课的主题是发展学生的应用意识,这也是方程教学的重要任务.但学生应用意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力.因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及方程观的初步形成.显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力.1.通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程.2.经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;3.在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力.【教学重点】能够利用一元二次方程解决有关实际问题.【教学难点】分析和建模的过程.课件.一、复习回顾(一)回忆:用配方法解一元二次方程的步骤:1. 化1:把二次项系数化为1(方程两边都除以二次项系数);2. 移项:把常数项移到方程的右边;3. 配方:方程两边都加上一次项系数绝对值一半的平方;◆教学重难点◆◆教学目标◆教材分析◆课前准备◆◆教学过程4. 变形:方程左边配方,右边合并同类项;5. 开方:根据平方根意义,方程两边开平方;6. 求解:解一元一次方程;7. 定解:写出原方程的解.(二)一般地,对于一元二次方程 ax 2+bx+c=0(a≠0)240,:b ac -≥当时它的根是)2402b x b ac a -±=-≥。
上面这个式子称为一元二次方程的求根公式.用求根公式解一元二次方程的方法称为公式法.二、合作交流,探究新知(一)认识黄金分割如图,点C 把线段AB 分成两条线段AC 和BC,如果,AC BC AB AC=那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比称为黄金比.其实,黄金分割就是三条能构成比例线段的特殊线段AB,AC 和BC.其中线段AC 是线段AB 和线段BC 的比例中项,也可写成AC 2=AB ·BC.,20.6181AC BC AB AC ==≈学习一元二次方程之后我们可以求得如何求得黄金分割?2:,AC CB AC AB CB AB AC==⋅解由得 1,,1AB AC x CB x ===-设则()211,x x ∴=⨯-210x x +-=即,解这个方程得12x -±∴=1215215(,)x x -+∴=--=不合题意舍去 150.618AC AB -+∴=≈黄金比。
2.6 《应用一元二次方程》习题2一、选择题1.某景点的参观人数逐年增加,据统计,2017年为a万人次,2019年为b万人次,设参观人次的年平均增长率为x,则( )A.a(1+x)=b B.a(1-x)=bC.a(1+x)2=b D.a[(1+x)+(1+x)2]=b2.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路,某地区2017年底有贫困人口10万人,通过社会各界的努力,2019年底贫困人口减少至1万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意列方程得( )A.10(1-2x)=1 B.10(1-x)2=1C.10(1+2x)=1 D.10(1+x)2=13.2019年第一季度,安徽省某企业生产总值比2018年同期增长14%,2020年第一季度受新冠肺炎疫情影响,生产总值比2019年同期减少了9%,设2019年和2020年第一季度生产总值平均增长率为x,则可列方程为( )A.2x=14%-9% B.(1+x)2=1+14%-9%C.(1+x)2=(1+14%)(1-9%) D.1+2x=(1+14%)(1-9%)4.新型冠状病毒肺炎疫情防控期间,某小区在某商场对“84”消毒液进行抢购.第一天销售量达到100瓶,第二天、第三天销售量连续增长,第三天销售量达到500瓶,且第二天与第三天的增长率相同,设增长率为x,根据题意列方程为( )A.100(1+x)2=500 B.100(1+x2)=500C.500(1﹣x)2=100 D.100(1+2x)=5005.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1966.新华商场销售某种冰箱,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,设每台冰箱的定价为x 元,则x 满足的关系式为( )A .(x −2500)(8+4×)=5000B .(2900−x −2500)(8+4×)=5000C .(x −2500)(8+4×)=5000D .(2900−x)(8+4×)=5000 7.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x 人,依题意可列方程( )A .1+x =225B .1+x 2=225C .(1+x)2=225D .1+(1+x 2 )=2258.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n 个好友转发,每个好友转发之后,又邀请n 个互不相同的好友转发,依次类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n 的值为( )A .9B .10C .11D .129.如图,在长为米、宽为米的矩形草地上修同样宽的路,余下部分种植草坪,要使草坪的面积为平方米,设道路的宽为米.则可列方程为( )A .B .C .D .10.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 x 50290050x -290050x -62422400x ()()62422400x x --=()()262422400x x x --+=624262422400x x ⨯--=62422400x x +=m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=30011.是张阿姨做好的一幅“旭日东升”矩形刺绣,长为,宽为,要在这幅刺绣的四周镶一条相同宽度的银白色边框,制成一幅矩形挂图,如果要使整个挂图的面积是,设银白色边框的宽为,那么应满足方程( )A .B .C .D .二、解答题1.某市特产大闸蟹,2016年的销售额是亿元,因生态优质美誉度高,销售额逐年增加2018年的销售额达亿元,若2017、2018年每年销售额增加的百分率都相同.(1)求平均每年销售额增加的百分率;(2)该市这年大闸蟹的总销售额是多少亿元?2.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.50cm 30cm 22400cm xcm x 2809000x x +-=2402250x x +-=2809000x x --=2402250x x --=509833.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆500人次,进馆人次逐月增加,第三个月进馆720人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过1000人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.4.某商场将进价每件30元的衬衫以每件40元销售,平均每月可售出600件.为了增加盈利,商场采取涨价措施.若在一定范围内,衬衫的单价每涨1元,商场平均每月会少售出10件.为了实现平均每月10000元的销售利润,这种衬衫每件的价格应定为多少元?5.某农产品公司以64000元的成本收购了某种农产品80吨,目前可以以1200元/吨的价格直接售出.而该公司对这批农产品有以下两种处理方式可供选择:方式一:公司可将部分农产品直接以1200元/吨的价格售出,剩下的全部加工成半成品出售(加工成本忽略不计),每吨该农产品可以加工得到0.8吨的半成品,每吨半成品的售价为2500元.方式二:公司将该批农产品全部储藏起来,这样每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.(1)若该公司选取方式一处理该批农产品,最终获得了75%的利润率,求该公司直接销售了多少吨农产品?(2)若该公司选取方式二处理该批农产品,最终获利122000元,求该批农产品储藏了多少个星期才出售?6.某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?7.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低1万元,平均每周多售出2辆.(1)当售价为22万元/辆时,平均每周的销售利润为___________万元;(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.8.某农产品公司以64000元的成本收购了某种农产品80吨,目前可以以1200元/吨的价格直接售出.而该公司对这批农产品有以下两种处理方式可供选择:方式一:公司可将部分农产品直接以1200元/吨的价格售出,剩下的全部加工成半成品出售(加工成本忽略不计),每吨该农产品可以加工得到0.8吨的半成品,每吨半成品的售价为2500元.方式二:公司将该批农产品全部储藏起来,这样每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.(1)若该公司选取方式一处理该批农产品,最终获得了75%的利润率,求该公司直接销售了多少吨农产品?(2)若该公司选取方式二处理该批农产品,最终获利122000元,求该批农产品储藏了多少个星期才出售?9.某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?10.某商场将进价每件30元的衬衫以每件40元销售,平均每月可售出600件.为了增加盈利,商场采取涨价措施.若在一定范围内,衬衫的单价每涨1元,商场平均每月会少售出10件.为了实现平均每月10000元的销售利润,这种衬衫每件的价格应定为多少元?11.一商店销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价a元,则平均每天销售数量为件.(用含a的代数式表示)(2)当每件商品降价多少元时,该商店每天销售利润为1200元.12.数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?13.改善小区环境,争创文明家园.如图所示,某社区决定在一块长()16,宽()9的矩形场地上修建三条同样宽的小路,其中两条与平行,另一条与平行,其余部分种草.要使草坪部分的总面积为112,则小路的宽应为多少?14.如图,一幅长、宽的矩形图案,其中有两条互相垂直的彩条,竖直彩条的宽度是水平彩条宽度的2倍,若图案中两条彩条所占面积是整个矩形图案面积的.求彩条的宽度.AD m AB m ABCD AB AD 2m 8cm 6cm 38答案一、选择题1.C.2.B .3.C.4.A .5.C .6.C .7.C.8.B .9.A .10.A .11.B .二、解答题1.解:(1)平均每年销售额增加的百分率为,可得,,解得,(舍),答:平均每年销售额增加的百分率为;(2)2016,2017,2018三年总销售额是 (亿元),答:三年总销售额是218亿元.2.解:(1)设进馆人次的月平均增长率为x,则由题意得: 化简得:∴, ∴或 (舍) 答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为: 答:校图书馆能接纳第四个月的进馆人次.3.(1)设进馆人次的月平均增长率是500(1+x)2=720解得,,(舍去),答:进馆人次的月平均增长率是; x ()250198x +=120.440%, 2.4x x ===-40%()5050140%98218+⨯++=()()212812811281608x x ++++=241270x x +-=()()21270x x -+=0.550%x == 3.5x =-()327128150%1284325008+=⨯=<x 10.2x =2 2.2x =-20%(2)能;理由是:720(1+20%)=864<1000,所以能够接纳.4.解:设这种衬衫每件的价格应定为x 元.根据题意,得(x -30)[600-(x -40)×10]=10000. 解得x 1=50,x 2=80.答:这种衬衫每件的价格应定为50元或80元.5.解:(1)设该公司直接销售了x 吨农产品,而该家产品的进价为6400080800÷=元/吨,则有:12002500(80)0.864000(175%)x x +-⨯=+,解得:60x =答:该公司直接销售了60吨农产品.(2)设该批农产品储藏了y 个星期才出售,则有:()()8021200200640001600122000y y y -+--=,整理得:2302250y y -+=,解得1215y y ==.答:该批农产品储藏了15个星期才出售.6.解:设购买了x 件这种服装.,∵12001080>⨯∴购买的演出服多于10件根据题意得出:()802101200x x ⎡⎤--=⎣⎦,解得:120x =,230x =,当20x 时,802(2010)60--=元50>元,符合题意; 当30x =时,802(3010)40--=元50<元,不合题意,舍去; 故答案为:20x .答:购买了20件这种服装.7.(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是: 25220.5-×1+8=14, 则此时,平均每周的销售利润是:(22−15)×14=98(万元);(2)设每辆汽车降价x 万元,根据题意得:(25−x −15)(8+2x)=90,解得x 1=1,x 2=5,当x =1时,销售数量为8+2×1=10(辆);当x =5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x =5,此时每辆汽车的售价为25−5=20(万元), 答:每辆汽车的售价为20万元.8.解:(1)设该公司直接销售了x 吨农产品,而该家产品的进价为6400080800÷=元/吨,则有:12002500(80)0.864000(175%)x x +-⨯=+,解得:60x =答:该公司直接销售了60吨农产品.(2)设该批农产品储藏了y 个星期才出售,则有:()()8021200200640001600122000y y y -+--=,整理得:2302250y y -+=,解得1215y y ==.答:该批农产品储藏了15个星期才出售.9.解:设购买了x 件这种服装.,∵12001080>⨯∴购买的演出服多于10件根据题意得出:()802101200x x ⎡⎤--=⎣⎦,解得:120x =,230x =,当20x 时,802(2010)60--=元50>元,符合题意;当30x =时,802(3010)40--=元50<元,不合题意,舍去; 故答案为:20x .答:购买了20件这种服装.10.解:设这种衬衫每件的价格应定为x 元.根据题意,得(x -30)[600-(x -40)×10]=10000. 解得x 1=50,x 2=80.答:这种衬衫每件的价格应定为50元或80元.11.解:(1)∵销售单价每降低1元,平均每天可多售出2件, ∴销售单价降低a 元,平均每天可多售出2a 件,∴平均每天销售数量为()220a +件,故答案为:()220a +(2)设每件商品降价x 元,根据题意得:()()402021200x x -+=, 解得:110x =,220x =40103025-=>(符合题意)40202025-=<(舍去)答:当每件商品降价10元时,该商店每天销售利润为1200元.12.设每箱售价为x 元,根据题意得:(x -40)[30+3(70-x )]=900化简得:x ²-120x +3500=0解得:x 1=50或x 2=70(不合题意,舍去)∴ x =50答:当每箱牛奶售价为50元时,平均每天的利润为900元13.解:设小路的宽应为x 米,根据题意得:,解得:,.(162)(9)112x x --=11x =216x =∵,∴不符合题意,舍去,∴.答:小路的宽应为1米.14.解:设水平彩条宽度为,则竖直彩条的宽度为,由题意得:, 整理得:,解得:,或 (不合题意舍去),∴, ,答:水平彩条宽度为,则竖直彩条的宽度为.169>16x =1x =xcm 2xcm 38622868x x x x +⨯-⨯=⨯⨯21090x x -+=1x =9x =1x =22x =1cm 2cm。