单片机抗干扰技术4开关量输入输出通道隔离
- 格式:ppt
- 大小:337.50 KB
- 文档页数:51
单片机测控系统的抗干扰能力分析摘要:由于工作环境的多样性,单片机测控系统在工作过程中所受干扰比较大。
为了减少这种影响,提出了抗干扰技术,它是一项系统性的工程,该系统开发的整个过程与环节都要进行抗干扰能力的设计。
本文分析了干扰的来源与形成以及其对单片机测控系统产生的不良影响,从硬件、软件两方面来讨论单片机的抗干扰能力,尽可能的提高整个单片机测控系统的稳定性与可靠性。
关键词:单片机;测控系统;抗干扰能力中图分类号:tp274 文献标识码:a文章编号:1007-9599 (2013) 05-0000-02随着单片微型计算机的应用越来越广泛,主要用于智能化仪表中,尤其是测量控制系统的微型计算机,它是一种新型的微电子设备,具有完善的智能化特性,因而在工业系统中高达90%采用的是单片机测控系统。
由于工业环境中到处都是强弱电设备,不仅有数字电路还有不同模拟电路形成一个强电与弱电数字与模拟共存的局面,同时工作环境电磁干扰强、环境恶劣,其工作性与可靠性都会收到极大的影响。
因此,有必要对单片机测控系统的抗干扰能力进行研究,提高其在电磁环境中的适应能力以及稳定性。
1干扰的来源及形成1.1干扰的来源。
(1)较恶劣的供电环境。
属于重工型企业的铝厂,设备多数是大功率、大感性负载,启动或停止它们都会造成电网电压的大幅度变化,出现欠压、过压的现象,甚至有时候是额定电压的10%,出现这种情况可能持续几分钟或更久。
另外,大功率开关的通断也会造成电网产生尖脉冲,当尖脉冲跟电网的正弦波两者相叠加的时候,其通过交流电源进入到计算机内,对计算机造成了极大的危害,通常情况下,使得计算机发生“飞程序”,出现鼠标乱跳、打印机误动作等故障,使得计算机系统半瘫痪。
(2)严重的噪声环境。
为了实现数据采集或实时控制,模拟量、开关量的输入/输出信号线和控制线长达十几米至几百米,从而对计算机系统的干扰无从避免。
在高压系统调试后,发现在足够大的干扰下,极大的影响了线路分布电容的参数,同时,它对微型计算机引入了够强的干扰,轻微情况只是程序发生错误,影响其正常工作,严重情况下可能导致程序被冲或微机芯片直接被损坏掉【1】。
如何解决单片机的抗干扰问题随着单片机的发展,单片机在家用电器、工业自动化、生产过程控制、智能仪器仪表等领域的应用越来越广泛。
然而处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备。
这对我们单片机系统的可靠性与安全性构成了极大的威胁。
单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。
因此单片机的抗干扰问题已经成为不容忽视的问题。
1 干扰对单片机应用系统的影响1.1测量数据误差加大干扰侵入单片机系统测量单元模拟信号的输入通道,叠加在测量信号上,会使数据采集误差加大。
特别是检测一些微弱信号,干扰信号甚至淹没测量信号。
1.2 控制系统失灵单片机输出的控制信号通常依赖于某些条件的状态输入信号和对这些信号的逻辑处理结果。
若这些输入的状态信号受到干扰,引入虚假状态信息,将导致输出控制误差加大,甚至控制失灵。
1.3 影响单片机RAM存储器和E2PROM等在单片机系统中,程序及表格、数据存在程序存储器EPROM或FLASH中,避免了这些数据受干扰破坏。
但是,对于片内RAM、外扩RAM、E2PROM 中的数据都有可能受到外界干扰而变化。
1.4 程序运行失常外界的干扰有时导致机器频繁复位而影响程序的正常运行。
若外界干扰导致单片机程序计数器PC值的改变,则破坏了程序的正常运行。
由于受干扰后的PC 值是随机的,程序将执行一系列毫无意义的指令,最后进入“死循环”,这将使输出严重混乱或死机。
2 如何提高我们设备的抗干扰能力2.1 解决来自电源端的干扰。
摘要:单片机应用系统在发动机电喷中得到了广泛的应用,然而由于发动机工作环境恶劣,提高控制系统的抗干扰性至关重要。
分析了单片机干扰的主要来源,并从硬件和软件抗干扰设计中总结了一些取得良好抗干扰性的方法。
关键词在进行单片机应用开发的过程中,经常遇到在实验室调整很好的单片机一到工作现场就会出现这样或那样的问题,这主要是由于设计未充分考虑到外界环境存在的干扰,如机械震动、各种电磁波和环境温差都会影响硬件系统的性能,导致电控单元不能正常工作。
鉴于此本文较全面分析了干扰单片机应用系统的因素并结合自己的研究课题,提出一些可增强系统抗干扰性的方法。
1单片机系统的主要干扰源(1)无线电设施的射频干扰;(2)发动机上的高压点火线圈向外辐射磁场强度大、频带宽的电磁波;(3)单片机内部的晶振电路是内部干扰源之一;(4)数字电路本身门电路频繁的导通、截止造成电源地线电流变化,也会产生很大的高频电磁干扰,各种开关电子设备通断时产生的急剧变化的电流会产生较宽频谱干扰;(5)外界交流电路中产生的工频干扰亦会影响模拟电路输出信号的准确性。
2干扰的耦合方式隔离干扰源与控制系统之间的耦合信道。
表1列出了干扰源的主要干扰方式及特征。
3单片机的硬件抗干扰设计断干扰的传输信道。
常用的措施有:滤波技术、去耦技术、屏蔽技术和接地技术。
3.1电源电路的设计源耦合逻辑电路产生的干扰进入模拟电路,二是为了避免传感器通过电源耦合对ECU干扰。
各功能模块供电系统如图1所示,皆采用7812和7805三端稳压集成芯片,且都单独对电源进行负压差保护,这样不会因其中某一稳压电源出现故障而影响整个系统电路;使用低通滤波器亦可减少以高次谐波为主的干扰源,从而改善电源波形;在输出端采用了过压保护电路。
通过上述设计可大大提高供电的可靠性。
图中D1、D2用于负压差保护,防止压差击穿稳压器的be结使器件永久失效,稳压管WY1、晶闸管Q1用于过压保护,电容E1、E2、C1、C2使输出电压波3.2模拟电路抗干扰设计比较大,因此在模拟电路中应选择低温漂系数的集成放大器;在模拟电路中共模信号对电路板影响较大,故在模拟电路中采用差动放大电路,可得出两端输出信号;接收时,将双端信号转化为单端信号,可非常有效地抑制共模信号。
单片机抗干扰措施概述在单片机应用中,抗干扰是一个非常重要的问题。
由于电磁干扰的存在,单片机可能会受到干扰信号的影响,导致系统的性能下降甚至功能失效。
因此,为了确保单片机系统的稳定运行,需要采取一些抗干扰措施。
本文将介绍单片机常见的抗干扰措施,包括软件抗干扰措施和硬件抗干扰措施。
软件抗干扰措施1. 外部中断和定时中断技术外部中断是单片机接收外部信号的一种方式,通过设置中断触发条件,当接收到特定信号时触发中断处理程序。
通过使用外部中断技术,可以及时响应干扰信号的触发,进行干扰处理。
定时中断也是一种常见的抗干扰措施。
通过设置定时器,定时生成中断信号,进行对干扰信号的定时处理。
2. 硬件监控和重启单片机系统中,可以通过硬件监控电压、温度、电流等参数,并根据监控结果采取相应措施。
例如,如果电压过高或过低,可以通过监控电源电压的方式,自动重启系统,以恢复正常运行。
3. 硬件看门狗硬件看门狗是一种常见的抗干扰措施。
通过设置看门狗定时器,在预设时间内必须向看门狗喂狗,否则看门狗将复位单片机。
看门狗能够有效监控单片机运行,并在系统崩溃或运行异常时进行自动重启。
硬件抗干扰措施1. 接口屏蔽和过滤对于单片机与外部设备接口,可以通过屏蔽和过滤的方式降低干扰信号的影响。
接口屏蔽是通过在接口线上添加屏蔽层,减少干扰信号对于单片机的干扰。
常见的屏蔽层材料包括金属层、导电胶和导电纤维等。
接口过滤是通过添加滤波器或滤波电路,降低接口信号中的干扰成分。
常见的滤波器包括低通滤波器和带阻滤波器等。
2. 地线设计在单片机系统中,地线设计也是一个重要的抗干扰措施。
合理地划分地线,避免地线回路产生环形,可以有效减少共模干扰。
3. 电源干扰削弱技术电源干扰是单片机系统中常见的干扰源之一。
为了降低电源干扰,可以采取以下措施:•过滤电源线,加装滤波电容和滤波电阻,降低电源中的高频干扰成分。
•使用稳压器或电源滤波器,确保电源稳定,并降低电源线上的干扰噪声。
单片机的抗干扰能力在我一次产品中有AVR 和PIC 两种芯片同时存在,当用AVR 推动继电器-- 再推动接触器。
用PIC 来显示。
发现PIC 居然有点小小的干扰,不得不在外围电路上加措施才解决问题。
都说PIC 的抗干扰一流的,我怀疑之下对两种单片机做一个小小的测试。
首先说明,我只是比较单个芯片的最小系统,比较单片机的自身抗干扰能力。
1。
电源用变压器变压12V ,7805 稳压,输入输出均接电解电容和104 电容。
2。
单片机最小系统,用3 个I/O ,按钮,指示灯,驱动三极管(继电器-- 再推动接触器)不用的管脚不管。
3。
干扰源,由于没有仪器,只好用接触器的线圈来做干扰源,为了加强干扰,接触器线圈两端没有加104 电容。
4。
软件,最小最简单,不加任何处理只推动作用。
5。
元件选择,PIC 的用PIC16C54 ,PIC16F54 ,PIC16F877A , PIC16F716。
AVR 的选用M8。
AT28 , AT13。
接下来做测试了:PIC16C54 :先是接触器放在芯片旁边。
无论怎么按动按钮,接触器的干扰对它一点反映也没有,真是稳如泰山。
再用接触器线圈引线缠绕芯片。
在6 圈以下还是稳如泰山。
上了7 圈就有干扰了。
看来PIC16C54 真是强悍啊。
佩服。
接下去就试PIC16F54了。
PIC16F54 :先是接触器放在芯片旁边。
不得了!程序简直没有办法运行,和PIC16C54 简直一个在天上,一个在地下。
万思不得其解。
查阅PIC 资料都说PIC 的F 系列比C 系列差,就是F 系列的不同产品抗干扰也不一样。
于是又测试PIC16F716 。
PIC16F716 :先是接触器放在芯片旁边。
果然好多了,10 次也就1 次复位。
PIC16F877A :先是接触器放在芯片旁边。
无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。
在1 圈就有干扰复位了。
以上就是对我有的几种PIC 片子的测试结果。
单片机抗干扰措施单片机在实际应用中,由于周围环境的电磁干扰和电源干扰等原因,很容易受到各种干扰信号的影响,从而导致系统不稳定、运行异常甚至崩溃。
为了保证单片机正常工作和提高系统稳定性,需要采取一系列的抗干扰措施。
本文将从硬件和软件两方面,重点讨论单片机的抗干扰措施。
1.电源滤波器:在单片机外围电路中添加电源滤波器,用于滤除电源中的高频和低频噪声。
常见的电源滤波器有电容滤波器和电感滤波器等。
其中,电容滤波器可以滤除高频噪声,而电感滤波器可以滤除低频噪声。
2.地线设计:合理布局地线,减小地线回路的面积。
在单片机电路中,地线是一个重要的参考信号,合理设计地线可以减小电磁干扰。
同时,还可以采用单点接地的方式,将各个模块的地线连接在一起,减少地线回路的面积。
3.信号线布线:将信号线与电源线和高功率线分开布线,避免相互干扰。
信号线间的距离尽量保持一定的间隔,可以有效减小电磁干扰。
4.屏蔽:对于特别敏感的模拟信号线,可以采用屏蔽措施,如采用屏蔽线、屏蔽罩等。
屏蔽可以防止外界电磁干扰对信号线的影响。
5.滤波电容:在单片机电路中,可以在需要进行滤波的信号线两端串联一个滤波电容,用于滤除高频噪声。
常见的滤波电容有电容器和电容二极管等。
6.增加抗干扰电路:可以在单片机电路中添加抗干扰电路,如抗干扰电容、抗干扰电感等。
这些电路可以有效地抑制外界干扰信号。
7.使用稳压器:在单片机电路中,可以使用稳压器来提供稳定的电压,防止电源干扰引起的系统不稳定。
1.软件滤波:在单片机程序中,可以通过软件滤波的方式来滤除干扰信号。
例如,在读取模拟传感器信号时,可以进行多次采样并求平均值,以减小采样误差和滤除干扰。
2.软件延时:在一些对实时性要求不高的任务中,可以通过软件增加适当的延时,以减小干扰对系统的影响。
例如,在控制器输入信号采样之前,可以先进行一段延时。
3.软件重发:对于容易受到干扰的信号,可以通过软件重发的方式来提高信号的可靠性。
开关量输入/输出电路一、开关量的隔离与抗干扰1、开关量的隔离(1)隔离的作用隔离的主要作用是:使低压输入电路与大功率的电源隔离;外部现场器件与传输线同数字电路隔离,以免计算机受损;限制地回路电流与地线的错接而带来的干扰;多个输入电路之间的隔离。
(2)开关量的隔离方法常用的开关量的隔离方法主要有以下方式。
○1光电隔离。
(图3-28 光电耦合器原理接线图)○2继电器隔离。
(图3-29 采用继电器隔离的开关原理接线图)○3继电器和光电耦合器双重隔离。
2、抗干扰软件抗干扰措施主要是适当增加延时,以躲开触点抖动的影响。
二、开关量的采集、检测与变位识别1、开关量的采集方式(图3—30 中断申请电路图)当开关状态发生变化时,由于Q端仍保持原状态,D、Q异或的结果使输出由低电平跳变为高电平,通过非门变成低电平向CPU申请一次中断。
当CPU 响应中断以后,发出INTA信号使触发器触发。
D、Q状态趋于一致,异或门输出又成为低电平。
2、开关动作的检测把3次采样的开关量用A、B、C三个布尔数来表示,从中任取出两个进分“与”运算,如果其中有两个或两个以上为“1”,则运算结果必定有一个为“1”;反之,若有两个或两个以上为“0”,则运算结果必定全为“0”。
另外,再根据“或”运算的规则,在N个数中只要有一个是“1”,则运算结果必定是“1”;只有当N个数全为“0”时,结果才为“0”。
可以把三取二表决的算法用以下逻辑算式来处理(A·B)+(B·C)+(C·A)(3-15)3、开关变位的识别开关量的状态通常用一位二进制数来表示,例如用“1”代表闭合,用“0”代表断开。
变电所的开关量数目很多,为了简化分析,下面只对用一个字节的二进制数表示的8个开关状态进行分析,但所得到的结论具有普遍的意义。
○1现状○+原状,若有变位则该位为1;若无变位,则该位为0。
○2(现状○+原状)∧原状,若为1,则该位由1→0。
○3(现状○+原状)∧现状,若为1,则该位由0→1。
开关量输入/输出电路一、开关量的隔离与抗干扰1、开关量的隔离(1)隔离的作用隔离的主要作用是:使低压输入电路与大功率的电源隔离;外部现场器件与传输线同数字电路隔离,以免计算机受损;限制地回路电流与地线的错接而带来的干扰;多个输入电路之间的隔离。
(2)开关量的隔离方法常用的开关量的隔离方法主要有以下方式。
○1光电隔离。
(图3-28 光电耦合器原理接线图)○2继电器隔离。
(图3-29 采用继电器隔离的开关原理接线图)○3继电器和光电耦合器双重隔离。
2、抗干扰软件抗干扰措施主要是适当增加延时,以躲开触点抖动的影响。
二、开关量的采集、检测与变位识别1、开关量的采集方式(图3—30 中断申请电路图)当开关状态发生变化时,由于Q端仍保持原状态,D、Q异或的结果使输出由低电平跳变为高电平,通过非门变成低电平向CPU申请一次中断。
当CPU 响应中断以后,发出INTA信号使触发器触发。
D、Q状态趋于一致,异或门输出又成为低电平。
2、开关动作的检测把3次采样的开关量用A、B、C三个布尔数来表示,从中任取出两个进分“与”运算,如果其中有两个或两个以上为“1”,则运算结果必定有一个为“1”;反之,若有两个或两个以上为“0”,则运算结果必定全为“0”。
另外,再根据“或”运算的规则,在N个数中只要有一个是“1”,则运算结果必定是“1”;只有当N个数全为“0”时,结果才为“0”。
可以把三取二表决的算法用以下逻辑算式来处理(A·B)+(B·C)+(C·A)(3-15)3、开关变位的识别开关量的状态通常用一位二进制数来表示,例如用“1”代表闭合,用“0”代表断开。
变电所的开关量数目很多,为了简化分析,下面只对用一个字节的二进制数表示的8个开关状态进行分析,但所得到的结论具有普遍的意义。
○1现状○+原状,若有变位则该位为1;若无变位,则该位为0。
○2(现状○+原状)∧原状,若为1,则该位由1→0。
○3(现状○+原状)∧现状,若为1,则该位由0→1。