材料化学第讲
- 格式:ppt
- 大小:12.48 MB
- 文档页数:89
第4章非金属及其化合物第1节碳、硅及无机非金属材料考试说明1.了解碳、硅单质及其化合物的主要性质及应用.2.了解碳、硅及其化合物对环境质量的影响。
3.了解常见无机非金属材料的性质和用途.命题规律碳、硅及其化合物的性质是高考的常考点,其考查方式有:结合原子结构、元素周期律以选择题型考查碳、硅及其化合物的性质及应用;以新材料、新技术为背景结合工艺流程图以填空题型考查碳、硅的化合物的性质及应用等。
考点1碳、硅单质及其氧化物的性质1.碳单质的存在、性质和用途2.硅单质的存在、性质和制备(1)结构及物理性质(2)化学性质硅的化学性质不活泼,常温下不能被浓硫酸、浓硝酸等强氧化剂氧化,只能与F2、氢氟酸、强碱溶液反应;在加热条件下,能与O2、Cl2等少数非金属单质化合.写出下列相关反应的化学方程式:(3)工业制备反应原理:①制粗硅SiO2+2C错误!Si+2CO↑,②粗硅的提纯Si+2Cl2错误!SiCl4、SiCl4+2H2错误!Si+4HCl。
3.碳和硅的氧化物(1)一氧化碳CO是无色无味的有毒气体,不溶于水,可用作气体燃料和冶金工业的还原剂。
(2)二氧化碳和二氧化硅(1)硅与碱溶液反应时,硅为还原剂,H2O为氧化剂.(2)不能依据反应2C+SiO2错误!Si+2CO↑来说明C的还原性比Si强,也不能依据反应SiO2+Na2CO3错误!Na2SiO3+CO2↑来说明SiO2水化物的酸性比H2CO3强。
(3)用于半导体材料的是高纯的晶体硅,用作光导纤维材料的是SiO2。
(4)SiO2是碱性氧化物,但能与HF反应,因此盛放氢氟酸不能用玻璃瓶,要用特制的塑料瓶。
盛放碱性溶液的试剂瓶不能用玻璃塞,因为SiO2与碱溶液反应生成具有黏性的Na2SiO3。
【基础辨析】判断正误,正确的画“√",错误的画“×”。
(1)硅单质广泛存在于自然界中,天然存在的单质硅叫硅石。
(×)(2)SiO2既可以和氢氟酸反应,又可以和NaOH溶液反应,是两性氧化物。
材料化学第⼆版(曾兆华版)课后答案解析第⼀章1.什么是材料化学?其主要特点是什么?答:材料化学是有关于材料的结构、性质、制备及应⽤的化学。
主要特点:跨学科性,实践性。
2.材料与试剂的主要区别是什么?答:试剂在使⽤过程中通常被消耗并转化为其他物质,⽽材料通常是可重复的、连续的,除了正常的消耗外,它不会不可逆地转化为其他物质。
3.观察⼀只灯泡,列举制造灯泡所需的材料。
4.材料按其组成和结构可以分为哪⼏类?如果按功能和⽤途对材料分类,列举⼗种不同功能或⽤途的材料。
答:(1)⾦属材料,⽆机⾮⾦属材料,⾼分⼦材料,复合材料(2)导电材料、绝缘材料、⽣物医⽤材料、航天航空材料、能源材料、电⼦信息材料、感光材料5.简述材料化学的主要内容。
答:结构:原⼦和分⼦在不同层次彼此结合的形式、状态和空间分布。
特性:材料固有的化学、物理和⼒学特性。
制备:将原⼦和分⼦结合在⼀起,并最终将其转化为有⽤的产品应⽤。
第⼆章1.原⼦间的结合键共有⼏种?各⾃特点如何?(1)体⼼⽴⽅单位晶胞原⼦数n = 2(2)六⽅密堆n=6(3)⾯⼼⽴⽅n=410. 单质Mn有⼀种同素异构体为⽴⽅结构,其晶胞参数为0.6326nm,密度= 7.26 g cm-3,原⼦半径r = 0.112nm,计算Mn晶胞中有⼏个原⼦,其堆积系数为多少?74.)3(3812)3/4(6)2321(6)3/4(6=33hcp==R a a c RππξR a a R 2 4 2 4== 74 . ) 2 / 4 ( )3 / 4 (4 )3 / 4 (433fcc==RRaRππξ11. 固溶体与溶液有何异同?固溶体有⼏种类型?固体溶液与液体溶液的共同点:均具有均⼀性、稳定性,均为混合物,均存在溶解性问题(对固态溶液称为固溶度,对液体溶液称为溶解度);(1)均⼀性:溶液各处的密度、组成和性质完全⼀样;(2)稳定性:温度不变,溶剂量不变时,溶质和溶剂长期不会分离;(3)混合物:溶液⼀定是混合物。
材料化学教材材料化学是一门研究材料结构、性能和制备方法的学科,它在现代科学技术中扮演着重要的角色。
本教材旨在系统地介绍材料化学的基本理论、实验方法和应用,帮助学生全面了解材料化学的基本知识和发展趋势。
首先,我们将介绍材料的基本分类和性能。
材料可以分为金属材料、无机非金属材料和有机高分子材料三大类。
金属材料具有良好的导电、导热性能,广泛应用于工程领域;无机非金属材料包括陶瓷、玻璃等,具有优良的耐高温、耐腐蚀性能;有机高分子材料主要包括塑料、橡胶等,具有轻质、柔软、绝缘等特点。
不同材料的性能差异主要源于其微观结构和化学成分的差异。
其次,我们将介绍材料的制备方法和表征技术。
材料的制备方法包括物理方法、化学方法和生物方法等,其中化学方法是最常用的制备方法之一。
而材料的表征技术则包括X射线衍射、电子显微镜、质谱分析等,这些技术可以帮助我们了解材料的结构和性能。
接下来,我们将重点介绍材料的性能调控和应用。
材料的性能可以通过改变其组成、结构和形貌来进行调控,例如通过合金化、掺杂等方法来改变材料的导电性能;而材料的应用涉及到材料在能源、环境、医药、电子等领域的广泛应用,例如太阳能电池、催化剂、生物材料等。
最后,我们将展望材料化学的未来发展。
随着科学技术的不断进步,材料化学将会迎来更多的突破和创新,例如纳米材料、功能材料等将成为材料化学的研究热点,同时,材料的可持续发展和环保性能也将成为未来材料研究的重要方向。
总之,材料化学是一门重要的学科,它对于推动科学技术的发展和应用具有重要意义。
本教材将帮助学生全面了解材料化学的基本知识和发展趋势,为他们今后的学习和研究打下坚实的基础。
希望本教材能够对学生们的学习和研究有所帮助,也希望材料化学领域的研究能够取得更多的突破和进展。
《材料化学》课程教学大纲一、课程的基本信息适应对象:本科层次,应用化学、化学课程代码:18E00615学时分配:36赋予学分:2先修课程:无机化学、有机化学、分析化学、物理化学后续课程:二、课程性质与任务《材料化学》是应用化学的专业选修课程。
应用化学是一门以化学为基础的专门学科,因此对于该学科的本科学生来讲开设化学基础课尤显重要。
本课程的作用和任务在于指导学生切实地了解和掌握材料(主要是无机材料)化学所涉及的基本原理和一些基本概念,初步了解材料化学基本概念和原理,有利于学生今后从事相关工作。
三、教学目的与要求通过材料化学课程的学习,使学生了解当代材料科学的新概念、新理论、新技术、新工艺,掌握金属材料、无机非金属材料、高分子材料的基本知识,以及物理化学、电化学、光化学等化学基础知识在材料科学研究中的应用。
注重培养学生综合运用化学知识解决问题的能力;树立“多学科知识交叉与渗透”的观念。
四、教学内容与安排第一章晶体学基础1.1 晶体结构的周期性1.1.1 晶体结构的周期性与点阵1.1.2 晶体结构参数1.1.3 晶体缺陷1.2 晶体结构的对称性1.2.1 对称性基本概念1.2.2 晶体的宏观对称性1.2.3 晶体的微观对称性1.3 晶体的X射线衍射1.3.1 晶体X射线衍射基本原理1.3.2 衍射方向1.3.3 衍射强度1.3.4 常用晶体X射线衍射实验方法1.4 晶体结构的描述第二章晶态和非晶态材料的特性2.1 晶体特征的结构基础2.2晶体学点群和晶体的性质2.2.1 晶体学点群的分类2.2.2 晶体的点群和晶体的物理性质2.3 非正比化合物材料2.4液晶材料2.4.1 液晶和塑晶2.4.2 液晶的特性2.4.3 液晶材料2.4.4 液晶显示技术2.5 玻璃和陶瓷2.5.1 晶态材料与非晶态材料的异同2.5.2 玻璃2.5.3 陶瓷第三章金属材料3.1 金属特性与金属键3.1.1 自由电子理论3.1.2 能带理论3.2 金属单质结构3.2.1 金属单质结构的近似模型——等径圆球密堆积3.2.2 三维密堆积的三种典型型式3.2.3 金属单质结构概况3.2.4 金属原子半径3.3 合金结构3.3.1 金属固溶体3.3.2 金属化合物3.3.3 合金结构与性能3.4 金属材料3.4.1 轻质金属材料3.4.2 钢铁的结构与性能3.4.3 非晶态金属材料3.4.4 形状记忆合金第四章无机非金属材料4.1 离子晶体4.1.1 几种二元离子晶体的典型结构形式4.1.2 离子键与晶格能4.1.3 离子半径4.1.4 Goldschmidt结晶化学定律4.1.5 关于多元复杂离子晶体结构的规则——Pauling规则4.2 分子间做用力与超分子化学4.2.1 分子间作用力4.2.2 超分子化学4.2.3 晶体工程4.3 无机非金属材料4.3.1 无机非金属材料分类4.3.2 碳素材料4.3.3 单质硅4.3.4 无机化合物材料4.3.5 硅酸盐材料第五章高分子材料5.1 高分子材料的发展5.2 高分子材料的结构特点和性能5.2.1 高分子链的结构5.2.2 高聚物分子间的作用力5.2.3 晶态高分子的结构特点5.2.4 高聚物的物理状态转变5.2.5 高分子材料的性能5.3 高分子的聚合方法5.3.1 聚合机理5.3.2 加聚5.3.3 缩聚5.4 塑料5.4.1 塑料的分类5.4.2 塑料的应用5.4.3 塑料的加工5.5 橡胶5.5.1 天然橡胶5.5.2 合成橡胶5.5.3 橡胶的加工5.6 纤维5.6.1 纤维的分类5.6.2 合成纤维5.6.3 纤维加工成型5.7 复合材料5.7.1 复合材料的特性5.7.2 木质材料5.8 医用高分子材料5.8.1 概况5.8.2 生物医用高分子材料5.8.3 人造硬组织材料5.8.4 人工器官及其关键材料5.8.5 高分子药物5.9 导电高分子材料5.9.1 导电高分子材料的分类5.9.2 高分子导电机理5.9.3 共轭导电高分子材料5.9.4 新型导电聚合物体系5.9.5 导电高分子材料的应用5.10 高吸水性高分子材料5.10.1 发展概况5.10.2 超强吸水高分子材料的种类和特征5.10.3 超强吸水高分子材料的制备方法5.10.4 吸水高分子材料的应用第六章纳米材料6.1 纳米技术及纳米材料应用进展6.1.1 纳米科技进展6.1.2 纳米材料的种类6.1.3 纳米材料的特异性能6.2 纳米材料的制备6.2.1 纳米粉体的合成6.2.2 纳米复合材料的制备6.2.3 碳纳米管的制备6.3 纳米结构测试技术6.3.1 基本原理6.3.2 常用仪器6.3.3 检测技术的应用研究6.4 纳米材料的应用6.4.1 纳米材料在高科技中的地位6.4.2 磁学应用6.4.3 纳米催化6.4.4 陶瓷增韧6.4.5 光学应用6.4.6 医学应用6.4.7 环保应用第七章新型功能材料7.1 光学功能材料7.1.1 激光材料7.1.2 红外材料7.1.3 发光材料7.2 半导体材料7.2.1 半导体的导电机理7.2.2 半导体的分类7.2.3 半导体材料7.3 超导材料7.3.1 超导体的基本物理性质7.3.2 超导体的临界参数7.3.3 超导机理7.3.4 超导材料的种类7.3.5 超导材料的性能7.3.6 超导材料的应用7.4 热电压电和铁电材料7.4.1 热电材料7.4.2 压电材料7.4.3 铁电材料7.5 功能转换材料7.5.1 光电转化材料7.5.2 磁光材料7.5.3 声光材料教学安排及方式材料化学是一门理论性较强的基础理论课,其教学主要为课内讲授。
材料化学教案
一、导言
材料化学是一门跨学科的学科,涉及化学、物理、工程等多个领域。
本教案旨在通过系统化的教学内容和生动有趣的教学方式,帮助学生
全面理解材料化学的基本概念和原理,培养学生的科学思维和实验技能。
二、基本概念
1.材料的分类
(1)金属材料
(2)非金属材料
(3)聚合物材料
(4)复合材料
2.材料的结构与性能
(1)晶体结构
(2)非晶结构
(3)晶体缺陷
(4)材料的力学性能
(5)材料的热学性能
三、实验教学
1.基本实验操作技能
(1)称量
(2)溶解
(3)过滤
(4)结晶
(5)干燥
2.实验内容
(1)金属材料的化学性质实验
(2)非金属材料的物理性质实验
(3)聚合物材料的合成实验
(4)复合材料的性能测试实验
四、教学方法
1.理论教学与实验教学相结合
2.案例教学
3.互动式教学
4.课堂讨论和小组合作
五、知识拓展
1.材料表面处理技术
2.新型材料研究与应用
3.材料在环境保护和可持续发展中的作用
六、评价方式
1.平时表现
2.实验报告
3.期末考核
七、总结
通过本教案的指导和学习,相信学生们能够全面了解材料化学的基本概念和原理,具备一定的实验操作技能和科学思维能力。
希望学生们在学习过程中保持好奇心和求知欲,不断探索材料化学这个广阔领域的奥秘。
愿大家在未来的学习和研究中不断成长,为材料化学的发展做出贡献。
材料化学导论第2章-完美晶体的结构第2章完美晶体的结构绝⼤多数材料以固体形态使⽤。
因此研究固体的结构⼗分重要。
固体可以划分为如下种类:⽆定形体和玻璃体[固体中原⼦排列近程有序、远程⽆序](Amorphous and Glassy)固体(Solid states) 完美晶体[原⼦在三维空间排列⽆限延伸(Perfect crystals)有序,并有严格周期性]晶体(Crystals)缺陷晶体[固体中原⼦排列有易位、错(Defect crystals)位以及本体组成以外的杂质] 由于晶体结构是固体结构描述的基础,我们在本章中描述完美晶体的结构,下⼀章则讲授缺陷晶体的结构。
§2.1 晶体的宏观特征和微观结构特点§2.1.1晶体的宏观特征晶体的宏观特征主要有四点:1.规则的⼏何形状所有晶体均具有⾃发地形成封闭的⼏何多⾯体外形能⼒的性质。
规则的⼏何多⾯体外形表明晶体内部结构是规则的。
当然晶体的外形由于受外界条件的影响,往往同⼀晶体物质的各种不同样品的外形可能不完全⼀样。
因此,晶体的外形不是晶体品种的特征因素。
例如,我们⼤家熟知的⾷盐晶体在正常结晶条件下呈⽴⽅晶体外形,当在含有尿素的母液中结晶时,则呈现出削取顶⾓的⽴⽅体甚或⼋⾯体外形。
2.晶⾯⾓守恒在适当条件下晶体能⾃发地围成⼀个凸多⾯体形的单晶体。
围成这样⼀个多⾯体的⾯称作晶⾯。
实验测试表明,同⼀晶体物质的各种不同样品中,相对应的各晶⾯之间的夹⾓保持恒定,称作晶⾯⾓守恒。
例如,⽯英晶体根据结晶条件不同,可有各种⼏何外形,但对应晶⾯之间的夹⾓却是不变。
晶体的晶⾯相对⼤⼩和外形都是不重要的,重要的是晶⾯的相对⽅向。
所以,可以采⽤晶⾯法线的取向表征晶⾯的⽅位,⽽共顶点的晶⾯法线的夹⾓表⽰晶⾯之间的夹⾓。
3.有固定的熔点晶体熔化过程是晶体长程序解体的过程。
破坏长程序所需的能量就是熔化热。
所以晶体具有特定的熔点。
反之,也说明晶体内部结构的规则性是长程有序的。