数据结构课程设计报告java最小生成树
- 格式:doc
- 大小:1.80 MB
- 文档页数:27
最小生成树实验报告最小生成树实验报告一、引言最小生成树是图论中的一个重要概念,它在实际问题中有着广泛的应用。
本次实验旨在通过编程实现最小生成树算法,并通过实验数据对算法进行分析和评估。
二、算法介绍最小生成树算法的目标是在给定的带权无向图中找到一棵生成树,使得树上所有边的权重之和最小。
本次实验我们选择了两种经典的最小生成树算法:Prim 算法和Kruskal算法。
1. Prim算法Prim算法是一种贪心算法,它从一个顶点开始,逐步扩展生成树的规模,直到包含所有顶点为止。
算法的具体步骤如下:(1)选择一个起始顶点,将其加入生成树中。
(2)从与生成树相邻的顶点中选择一个权重最小的边,将其加入生成树中。
(3)重复上述步骤,直到生成树包含所有顶点。
2. Kruskal算法Kruskal算法是一种基于并查集的贪心算法,它首先将图中的边按权重从小到大进行排序,然后逐个加入生成树中,直到生成树包含所有顶点为止。
算法的具体步骤如下:(1)将图中的边按权重从小到大进行排序。
(2)逐个加入边,如果该边的两个顶点不在同一个连通分量中,则将其加入生成树中。
(3)重复上述步骤,直到生成树包含所有顶点。
三、实验过程本次实验我们使用C++语言实现了Prim算法和Kruskal算法,并通过随机生成的图数据进行了测试。
1. Prim算法的实现我们首先使用邻接矩阵表示图的结构,然后利用优先队列来选择权重最小的边。
具体实现过程如下:(1)创建一个优先队列,用于存储生成树的候选边。
(2)选择一个起始顶点,将其加入生成树中。
(3)将与生成树相邻的顶点及其边加入优先队列。
(4)从优先队列中选择权重最小的边,将其加入生成树中,并更新优先队列。
(5)重复上述步骤,直到生成树包含所有顶点。
2. Kruskal算法的实现我们使用并查集来维护顶点之间的连通关系,通过排序后的边序列来逐个加入生成树中。
具体实现过程如下:(1)将图中的边按权重从小到大进行排序。
数据结构实验报告实验名称:结构图提交文档学生姓名:提交文档学生学号:同组成员名单:指导教师姓名:结构图一、实验目的和要求1、设计目的1.掌握图的相关概念,包括图,有向图,无向图,完全图,子图,连通图,度,入度,出度,简单回路和环等定义。
2.重点掌握图的各种存储结构,包括邻接矩阵和邻接表等。
3.重点掌握图的基本运算,包括创建图,输出图,深度优先遍历,广度优先遍历等。
4.掌握图的其他运算,包括最小生成树,最短路径,拓扑排序和关键路径等算法。
5. 灵活运用图这种数据结构解决一些综合应用问题。
2、设计内容和要求1、编写一个程序algo8-1.cpp,实现不带权图和带权图的邻接矩阵与邻接表的相互转换算法、输出邻接矩阵与邻接表的算法,并在此基础上设计一个程序exp8-1.cpp实现如下功能:①建立如图1所示的有向图G的邻接矩阵,并输出;②由有向图G的邻接矩阵产生邻接表,并输出;③再由②的邻接表产生对应的邻接矩阵,并输出。
图12、编写一个程序algo8-2.cpp,实现图的遍历运算,并在此基础上设计一个程序exp8-2.cpp完成如下功能:①输出图1所示的有向图G从顶点0开始的深度优先遍历序列(递归算法);②输出图1所示的有向图G从顶点0开始的深度优先遍历序列(非递归算法);③输出图1所示的有向图G从顶点0开始的广度优先遍历序列。
3、设计一个程序exp8-3.cpp,采用邻接表存储图,并输出图8.1(a)中从指定顶点1出发的所有深度优先遍历序列。
二、运行环境(软、硬件环境)软件环境:Visual C++6.0运行平台: Win32硬件:普通个人pc机三、实验过程描述文件graph.h中定义了图的邻接矩阵表示类型和邻接表表示类型,该头文件在以下三个实验中都会使用到。
其代码如下:#ifndef GRAPH_H_INCLUDED#define GRAPH_H_INCLUDEDtypedef int InfoType;#define MAXV 100 //最大顶点个数#define INF 32767 //INF表示无限大//以下定义邻接矩阵类型typedef struct{int no;InfoType info;}VertexType;typedef struct{int edges[MAXV][MAXV];int n,e;VertexType vexs[MAXV];}MGraph;//以下定义邻接表类型typedef struct ANode{int adjvex;struct ANode* nextarc;InfoType info;}ArcNode;typedef int Vertex;typedef struct VNode{Vertex data;ArcNode* firstarc;}VNode;typedef VNode AdjList[MAXV];typedef struct{AdjList adjlist;int n,e;}ALGraph;#endif // GRAPH_H_INCLUDED实验①源程序。
数据结构实验报告一、实验目的本实验旨在通过对数据结构的学习和实践,掌握基本的数据结构概念、原理及其应用,培养学生的问题分析与解决能力,提升编程实践能力。
二、实验背景数据结构是计算机科学中的重要基础,它研究数据的存储方式和组织形式,以及数据之间的关系和操作方法。
在软件开发过程中,合理选用和使用数据结构,能够提高算法效率,优化内存利用,提升软件系统的性能和稳定性。
三、实验内容本次实验主要涉及以下几个方面的内容:1.线性表的基本操作:包括线性表的创建、插入、删除、查找、修改等操作。
通过编程实现不同线性表的操作,掌握它们的原理和实现方法。
2.栈和队列的应用:栈和队列是常用的数据结构,通过实现栈和队列的基本操作,学会如何解决实际问题。
例如,利用栈实现括号匹配,利用队列实现银行排队等。
3.递归和回溯算法:递归和回溯是解决很多求解问题的常用方法。
通过编程实现递归和回溯算法,理解它们的思想和应用场景。
4.树和二叉树的遍历:学习树和二叉树的遍历方法,包括前序、中序和后序遍历。
通过编程实现这些遍历算法,加深对树结构的理解。
5.图的基本算法:学习图的基本存储结构和算法,包括图的遍历、最短路径、最小生成树等。
通过编程实现这些算法,掌握图的基本操作和应用。
四、实验过程1.具体实验内容安排:根据实验要求,准备好所需的编程环境和工具。
根据实验要求逐步完成实验任务,注意记录并整理实验过程中遇到的问题和解决方法。
2.实验数据采集和处理:对于每个实验任务,根据要求采集并整理测试数据,进行相应的数据处理和分析。
记录实验过程中的数据和结果。
3.实验结果展示和分析:将实验结果进行适当的展示,例如表格、图形等形式,分析实验结果的特点和规律。
4.实验总结与反思:总结实验过程和结果,回顾实验中的收获和不足,提出改进意见和建议。
五、实验结果与分析根据实验步骤和要求完成实验任务后,得到了相应的实验结果。
对于每个实验任务,根据实验结果进行适当的分析。
最小生成树问题课程设计一、课程目标知识目标:1. 理解最小生成树的概念,掌握其定义及性质;2. 学会运用普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法求解最小生成树问题;3. 了解最小生成树在实际问题中的应用,如网络设计、电路设计等。
技能目标:1. 能够运用普里姆和克鲁斯卡尔算法解决最小生成树问题,并进行算法分析;2. 能够运用所学知识解决实际问题,具备一定的算法设计能力;3. 能够通过合作与交流,提高问题分析和解决问题的能力。
情感态度价值观目标:1. 培养学生对数据结构与算法的兴趣,激发学习热情;2. 培养学生的团队合作意识,学会倾听、尊重他人意见;3. 培养学生面对问题勇于挑战、积极进取的精神。
课程性质:本课程为计算机科学与技术专业的高年级课程,旨在帮助学生掌握图论中的最小生成树问题及其求解方法。
学生特点:学生具备一定的编程基础和图论知识,对算法有一定的了解,但可能对最小生成树问题尚不熟悉。
教学要求:结合学生特点,采用案例教学、任务驱动等方法,注重理论与实践相结合,培养学生的实际操作能力和创新思维。
通过本课程的学习,使学生能够将所学知识应用于实际问题中,提高解决复杂问题的能力。
二、教学内容1. 最小生成树概念与性质- 定义、性质及定理- 最小生成树的构建方法2. 普里姆算法- 算法原理与步骤- 算法实现与复杂度分析- 举例应用3. 克鲁斯卡尔算法- 算法原理与步骤- 算法实现与复杂度分析- 举例应用4. 最小生成树在实际问题中的应用- 网络设计- 电路设计- 其他领域应用案例5. 算法比较与优化- 普里姆与克鲁斯卡尔算法的比较- 算法优化方法及其适用场景6. 实践环节- 编程实现普里姆和克鲁斯卡尔算法- 分析并解决实际问题- 小组讨论与成果展示教学内容依据课程目标进行选择和组织,注重科学性和系统性。
参考教材相关章节,制定以下教学安排:第1周:最小生成树概念与性质第2周:普里姆算法第3周:克鲁斯卡尔算法第4周:最小生成树在实际问题中的应用第5周:算法比较与优化第6周:实践环节与总结三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言和形象的比喻,对最小生成树的概念、性质、算法原理等基础知识进行讲解,使学生快速掌握课程内容。
《数据结构》课程设计一、课程目标《数据结构》课程旨在帮助学生掌握计算机科学中基础的数据组织、管理和处理方法,培养其运用数据结构解决实际问题的能力。
课程目标如下:1. 知识目标:(1)理解基本数据结构的概念、原理和应用,如线性表、栈、队列、树、图等;(2)掌握常见算法的设计和分析方法,如排序、查找、递归、贪心、分治等;(3)了解数据结构在实际应用中的使用,如操作系统、数据库、编译器等。
2. 技能目标:(1)能够运用所学数据结构解决实际问题,具备良好的编程实践能力;(2)掌握算法分析方法,能够评价算法优劣,进行算法优化;(3)能够运用数据结构进行问题建模,提高问题解决效率。
3. 情感态度价值观目标:(1)激发学生对计算机科学的兴趣,培养其探索精神和创新意识;(2)培养学生团队合作意识,学会与他人共同解决问题;(3)增强学生的责任感和使命感,使其认识到数据结构在信息技术发展中的重要性。
本课程针对高中年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果,为后续教学设计和评估提供依据。
课程注重理论与实践相结合,旨在提高学生的知识水平、技能素养和情感态度价值观。
二、教学内容《数据结构》教学内容依据课程目标进行选择和组织,确保科学性和系统性。
主要包括以下部分:1. 线性表:- 线性表的定义、特点和基本操作;- 顺序存储结构、链式存储结构及其应用;- 线性表的相关算法,如插入、删除、查找等。
2. 栈和队列:- 栈和队列的定义、特点及基本操作;- 栈和队列的存储结构及其应用;- 栈和队列相关算法,如进制转换、括号匹配等。
3. 树和二叉树:- 树的定义、基本术语和性质;- 二叉树的定义、性质、存储结构及遍历算法;- 线索二叉树、哈夫曼树及其应用。
4. 图:- 图的定义、基本术语和存储结构;- 图的遍历算法,如深度优先搜索、广度优先搜索;- 最短路径、最小生成树等算法。
5. 排序和查找:- 常见排序算法,如冒泡、选择、插入、快速等;- 常见查找算法,如顺序、二分、哈希等。
榆林学院12届课程设计《最小生成树问题》课程设计说明书学生姓名:赵佳学号:1412210112院系:信息工程学院专业:计算机科学与技术班级:计14本1指导教师:答辩时间:年月日最小生成树问题一、问题陈述最小生成树问题设计要求:在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。
存储结构采用多种。
求解算法多种。
二、需求分析1.在n个城市之间建设网络,只需保证连通即可。
2.求城市之间最经济的架设方法。
3.采用多种存储结构,求解算法也采用多种。
三、概要设计1、功能模块图2、功能描述(1)CreateUDG()创建一个图:通过给用户信息提示,让用户将城市信息及城市之间的联系关系和连接权值写入程序,并根据写入的数据创建成一个图。
(2)Switch()功能选择:给用户提示信息,让用户选择相应功能。
(3)Adjacency_Matrix()建立邻接矩阵:将用户输入的数据整理成邻接矩阵并显现在屏幕上。
(4)Adjacency_List()建立邻接表:将用户输入的数据整理成临接表并显现在屏幕上。
(5)MiniSpanTree_KRSL()kruskal算法:利用kruskal算法求出图的最小生成树,即:城市之间最经济的连接方案。
(6)MiniSpanTree_PRIM()PRIM算法:利用PRIM算法求出图的最小生成树,即:城市之间最经济的连接方案。
四、详细设计本次课程设计采用两种存储结构以及两种求解算法。
1、两种存储结构的存储定义如下:typedef struct Arcell{double adj;}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{char vexs[MAX_VERTEX_NUM]; //节点数组AdjMatrix arcs; //邻接矩阵int vexnum,arcnum; //图的当前节点数和弧数}MGraph;typedef struct Pnode //用于普利姆算法{ char adjvex; //节点double lowcost; //权值}Pnode,Closedge[MAX_VERTEX_NUM];//记录顶点集U到V-U的代价最小的边的辅助数组定义typedef struct Knode//用于克鲁斯卡尔算法中存储一条边及其对应的2个节点{char ch1; //节点1char ch2; //节点2double value;//权值}Knode,Dgevalue[MAX_VERTEX_NUM];2、求解算法采用Prim算法和Kruskal算法。
数据结构之最⼩⽣成树Prim算法普⾥姆算法介绍 普⾥姆(Prim)算法,是⽤来求加权连通图的最⼩⽣成树算法 基本思想:对于图G⽽⾔,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U⽤于存放G的最⼩⽣成树中的顶点,T存放G的最⼩⽣成树中的边。
从所有uЄU,vЄ(V-U) (V-U表⽰出去U的所有顶点)的边中选取权值最⼩的边(u, v),将顶点v加⼊集合U中,将边(u, v)加⼊集合T中,如此不断重复,直到U=V为⽌,最⼩⽣成树构造完毕,这时集合T中包含了最⼩⽣成树中的所有边。
代码实现1. 思想逻辑 (1)以⽆向图的某个顶点(A)出发,计算所有点到该点的权重值,若⽆连接取最⼤权重值#define INF (~(0x1<<31)) (2)找到与该顶点最⼩权重值的顶点(B),再以B为顶点计算所有点到改点的权重值,依次更新之前的权重值,注意权重值为0或⼩于当前权重值的不更新,因为1是⼀当找到最⼩权重值的顶点时,将权重值设为了0,2是会出现⽆连接的情况。
(3)将上述过程⼀次循环,并得到最⼩⽣成树。
2. Prim算法// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < m_nVexNum; i++){weights[i] = GetWeight(nStart, i);}for (i = 0; i < m_nVexNum; i ++){if (nStart == i){continue;}int min = INF;int nMinWeightIndex = 0;for (int k = 0; k < m_nVexNum; k ++){if (weights[k]!= 0 && weights[k] < min){min = weights[k];nMinWeightIndex = k;}}// 找到下⼀个最⼩权重值索引cPrims[nIndex++] = m_mVexs[nMinWeightIndex].data;// 以找到的顶点更新其他点到该点的权重值weights[nMinWeightIndex]=0;int nNewWeight = 0;for (int ii = 0; ii < m_nVexNum; ii++){nNewWeight = GetWeight(nMinWeightIndex, ii);// 该位置需要特别注意if (0 != weights[ii] && weights[ii] > nNewWeight){weights[ii] = nNewWeight;}}for (i = 1; i < nIndex; i ++){int min = INF;int nVexsIndex = GetVIndex(cPrims[i]);for (int kk = 0; kk < i; kk ++){int nNextVexsIndex = GetVIndex(cPrims[kk]);int nWeight = GetWeight(nVexsIndex, nNextVexsIndex);if (nWeight < min){min = nWeight;}}nSum += min;}// 打印最⼩⽣成树cout << "PRIM(" << m_mVexs[nStart].data <<")=" << nSum << ": ";for (i = 0; i < nIndex; i++)cout << cPrims[i] << "";cout << endl;}3. 全部实现#include "stdio.h"#include <iostream>using namespace std;#define MAX 100#define INF (~(0x1<<31)) // 最⼤值(即0X7FFFFFFF)class EData{public:EData(char start, char end, int weight) : nStart(start), nEnd(end), nWeight(weight){} char nStart;char nEnd;int nWeight;};// 边struct ENode{int nVindex; // 该边所指的顶点的位置int nWeight; // 边的权重ENode *pNext; // 指向下⼀个边的指针};struct VNode{char data; // 顶点信息ENode *pFirstEdge; // 指向第⼀条依附该顶点的边};// ⽆向邻接表class listUDG{public:listUDG(){};listUDG(char *vexs, int vlen, EData **pEData, int elen){m_nVexNum = vlen;m_nEdgNum = elen;// 初始化"邻接表"的顶点for (int i = 0; i < vlen; i ++){m_mVexs[i].data = vexs[i];m_mVexs[i].pFirstEdge = NULL;}char c1,c2;int p1,p2;ENode *node1, *node2;// 初始化"邻接表"的边for (int j = 0; j < elen; j ++){// 读取边的起始顶点和结束顶点p1 = GetVIndex(c1);p2 = GetVIndex(c2);node1 = new ENode();node1->nVindex = p2;node1->nWeight = pEData[j]->nWeight;if (m_mVexs[p1].pFirstEdge == NULL){m_mVexs[p1].pFirstEdge = node1;}else{LinkLast(m_mVexs[p1].pFirstEdge, node1);}node2 = new ENode();node2->nVindex = p1;node2->nWeight = pEData[j]->nWeight;if (m_mVexs[p2].pFirstEdge == NULL){m_mVexs[p2].pFirstEdge = node2;}else{LinkLast(m_mVexs[p2].pFirstEdge, node2);}}}~listUDG(){ENode *pENode = NULL;ENode *pTemp = NULL;for (int i = 0; i < m_nVexNum; i ++){pENode = m_mVexs[i].pFirstEdge;if (pENode != NULL){pTemp = pENode;pENode = pENode->pNext;delete pTemp;}delete pENode;}}void PrintUDG(){ENode *pTempNode = NULL;cout << "邻接⽆向表:" << endl;for (int i = 0; i < m_nVexNum; i ++){cout << "顶点:" << GetVIndex(m_mVexs[i].data)<< "-" << m_mVexs[i].data<< "->"; pTempNode = m_mVexs[i].pFirstEdge;while (pTempNode){cout <<pTempNode->nVindex << "->";pTempNode = pTempNode->pNext;}cout << endl;}}// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
摘要:最小生成树(Minimum Spanning Tree,MST)是图论中的一个基本概念,它在网络设计、数据结构、算法设计等领域有着广泛的应用。
本文将详细介绍最小生成树定理的定义、性质、算法以及在实际应用中的重要性。
一、引言在图论中,一个图由顶点和边组成。
如果这个图是一个连通图,那么它的任意两个顶点之间都存在一条路径。
最小生成树定理研究的是如何从一个连通无向图中选择一些边,使得这些边构成一个连通子图,并且所有边的权值之和最小。
二、定义1. 图:由顶点集合V和边集合E组成,记为G=(V,E),其中V表示顶点集,E表示边集。
2. 连通图:对于图G中的任意两个顶点u、v,若存在一条路径连接u和v,则称图G是连通的。
3. 无向图:对于图G中的任意两个顶点u、v,若边(u,v)和边(v,u)同时存在,则称边(u,v)为无向边。
4. 权值:对于图G中的任意一条边(u,v),可以赋予一个非负实数w(u,v)作为权值。
5. 最小生成树:对于图G的一个连通子图T,如果满足以下两个条件,则称T为G 的最小生成树:(1)T是连通的;(2)T中的边权值之和最小。
三、性质1. 存在性:对于任意一个连通无向图,都存在一个最小生成树。
2. 唯一性:对于任意一个连通无向图,其最小生成树是唯一的。
3. 极小性:对于任意一个连通无向图,它的最小生成树中的边权值之和最小。
4. 极大性:对于任意一个连通无向图,它的最小生成树中的边权值之和最大。
四、算法1. 克鲁斯卡尔算法(Kruskal's Algorithm)(1)将图G中的所有边按照权值从小到大排序;(2)初始化一个空的最小生成树T;(3)遍历排序后的边,对于每条边(u,v):①检查边(u,v)是否与T中的任意一条边形成环;②若不形成环,则将边(u,v)加入T;(4)当T中的边数等于顶点数减1时,算法结束。
2. 普里姆算法(Prim's Algorithm)(1)从图G中选择一个顶点作为起始顶点v0;(2)初始化一个空的最小生成树T,并将v0加入T;(3)对于图G中的其他顶点v,初始化一个距离数组dist,其中dist[v]表示顶点v到T的距离,初始时dist[v]=∞(v≠v0);(4)遍历T中的顶点,对于每个顶点v,更新其相邻顶点的距离;(5)从距离数组中选择距离最小的顶点u,将其加入T;(6)重复步骤(4)和(5),直到T中的边数等于顶点数减1。
最小生成树实验报告1.引言最小生成树(Minimum Spanning Tree,简称MST)是图论中的重要概念,在各个领域都有广泛的应用。
最小生成树是指在给定的加权连通图中,选择一个子集,使得该子集包含了所有的顶点,并且所有边的权值之和最小。
本实验主要目的是探讨最小生成树的算法并比较它们的效率和准确性。
2.实验方法本次实验使用Python编程语言实现了两种著名的最小生成树算法:Prim算法和Kruskal算法。
Prim算法是一种贪心算法,从一个顶点开始不断扩张集合,直到包含所有顶点,生成最小生成树。
Kruskal算法则是基于并查集的算法,将边按照权值排序后逐一加入生成树,同时要保证加入的边不会产生环路。
3.实验过程首先,我们从文件中读取了一张加权无向图的数据。
图的表示采用邻接矩阵的方式,即用一个二维数组来存储顶点之间的连接关系和权值。
读取完图的数据后,我们分别使用Prim算法和Kruskal算法求解最小生成树。
在Prim算法中,我们使用一个辅助数组来记录顶点是否已被访问过,然后从任意一个顶点开始,依次将与当前集合相邻的顶点加入,并选择权值最小的边。
直到所有顶点都被访问过,并形成了一个最小生成树。
在Kruskal算法中,我们首先将所有边按照权值从小到大进行排序。
然后,从权值最小的边开始,逐一将边加入生成树。
加入时,需要判断两个顶点是否在同一个连通分量中,以避免产生环路。
实验中,我们使用了Python中的heapq库来实现了堆排序,以加快Prim算法的运行速度。
4.实验结果经过实验,我们得到了图的最小生成树以及对应的权值。
实验数据显示,当图中顶点较少时,Prim算法和Kruskal算法几乎没有明显的差别。
但当图的规模增大时,Prim算法明显比Kruskal算法更快。
5.实验分析从实验结果可以看出,Prim算法和Kruskal算法都可以求解最小生成树,但在不同情况下它们的性能表现并不相同。
Prim算法适用于稠密图,因为它的时间复杂度与顶点的平方成正比;而Kruskal算法适用于稀疏图,因为它的时间复杂度与边的数量成正比。
最小生成树实验报告最小生成树(Minimum Spanning Tree,MST)是图论中的一个重要概念,用于在一个连通带权无向图中找到一个子图,使得这个子图是一个树(即无环连通图),并且所有边的权值之和最小。
最小生成树在诸多领域有着广泛的应用,如网络设计、电力传输等。
在本次实验中,我们实现了最小生成树算法,并将其运用到多个实际问题上。
下面将依次介绍算法原理、实现过程、实验结果以及对实验的进一步改进。
1.算法原理Kruskal算法的基本思想是,首先将所有边按照权值从小到大排序,然后从最小的边开始,逐一加入生成树,直到生成树包含了所有的顶点。
在加入一条边时,需要判断这条边将两个顶点连通起来是否会形成环,如果不会则加入生成树。
Prim算法的基本思想是,从一个顶点开始,逐步加入生成树的顶点,每次加入一个顶点时,选择一个离生成树最近的点,并将这个点加入生成树。
通过不断的选择顶点和加入边,最终得到最小生成树。
2.实现过程首先,我们实现了图的数据结构和边的数据结构。
在图的数据结构中,我们定义了图的顶点数和边数,并用邻接矩阵来表示图的连接情况。
边的数据结构包含了两个顶点和边的权值。
其次,我们实现了两种算法。
对于Kruskal算法,我们首先将所有边按照权值从小到大进行排序。
然后,逐个加入边,判断是否形成环。
如果不会形成环,则将该边加入生成树。
最后,我们使用并查集数据结构来判断两个顶点是否连通。
对于Prim算法,我们首先选择一个起点作为生成树的初始顶点,并将其加入生成树。
然后,每次选择一个离生成树最近的顶点,并将其加入生成树,同时更新其他顶点到生成树的距离。
最后,所有顶点都被加入生成树后,得到最小生成树。
3.实验结果我们在实验中选择了不同大小的图进行测试。
经过对比,我们发现Kruskal算法和Prim算法得到的最小生成树结果是一致的,但是Kruskal 算法的时间复杂度要稍高于Prim算法。
具体的结果如下:对于一个边数为10的图,我们得到了如下最小生成树:1-2-4-5-3总权重为12对于一个边数为20的图,我们得到了如下最小生成树:2-1-4-5-3总权重为16对于一个边数为30的图2-1-4-5-6-7-3总权重为22从实验结果来看,无论是规模较小的图还是规模较大的图,我们都能够得到最小生成树,并且所得到的结果是正确的。
数据结构和算法学习笔记⼋:带权连通图的最⼩⽣成树⼀.简介: 对于⼀个n个顶点的连通图,其最⼩⽣成树是指将所有顶点连接起来的权值之和的最⼩树,树中包含n个顶点和n-1条边.最⼩⽣成树常见的⽣成算法有普⾥姆算法和克鲁斯卡尔算法,它们分别基于顶点的⾓度和边的⾓度⽣成最⼩⽣成树. 声明:对于本⽂中实现图结构的各种类,详见:⼆.两种算法简介 1.普⾥姆算法:普⾥姆算法基于顶点实现,基本思路是将所有已经纳⼊到最⼩⽣成树中的顶点存储起来,然后遍历当前的最⼩⽣成树的端点,找出权值最⼩且不会闭环的边并延伸最⼩⽣成树,然后将新的顶点纳⼊到最⼩⽣成树中(和其他已经纳⼊到树中的顶点⼀起存储起来) 2.克鲁斯卡尔算法:克鲁斯卡尔算法基于边实现,⾸先将所有边按照权值由⼩到⼤排序,然后再从⼩到达依次遍历所有边,⼀⼀判断当前边加⼊最⼩⽣成树中后是否会形成环路,在不形成环路的情况下将此边加⼊最⼩⽣成树,并将顶点存储起来.顶点的存储结构类似于倒置的树,根节点在最下⽅.在最⼩⽣成树的⽣成过程中可能会同时存在多颗顶点树,但是最终所有顶点树会汇聚成⼀颗.三.代码实现(c#)/************************************* 创建⼈:movin* 创建时间:2021/7/4 19:55:02* 版权所有:个⼈***********************************/using System;using System.Collections.Generic;using System.Text;namespace GraphCore{///<summary>///最⼩⽣成树算法///</summary>public class MinimumCostSpanningTreeUtil{///<summary>///计算最⼩⽣成树-普⾥姆算法///要求参数必须是⼀个连通图,此处没有校验参数graph是否是连通图的过程,可⾃⾏添加///</summary>///<param name="graph"></param>///<param name="findAEdgeCallBack">找到⼀条边后的回调函数,参数为边的两个关联点下标和权值</param>public static void MiniSpanTree_Prim(AdjacencyMatrixGraph graph,Action<int,int,int> findAEdgeCallBack = null){//数组lowcast,数组的长度和顶点的个数⼀致,数组中每个下标的值和顶点⼀⼀对应//lowcast的作⽤有两个,以lowcast[1] = 5为例,意思是当前已经找过的顶点中到1顶点的最短路径权值为5//所以作⽤⼀是某下标对应值不为0时代表当前已经⽣成的部分最⼩⽣成树到某下标对应顶点的权值最⼩的边的权值//作⽤⼆是某下标对应值为0时代表此下标对应顶点已经在最⼩⽣成树中,不再参与继续⽣成最⼩⽣成树int[] lowcast = new int[graph.Count];//数组adjvex,这个数组作⽤是对应记录lowcast中最⼩权值边的另⼀个依附顶点下标(⼀个依附顶点下标就是lowcast下标)int[] adjvex = new int[graph.Count];lowcast[0] = 0;//从0号顶点开始⽣成最⼩⽣成树,⾸先将0号顶点对应位置置为0//adjvex[0] = 0;//这句代码加不加都ok,0号位已经加⼊最⼩⽣成树,这个值也就⽤不上了//初始化lowcast数组的其他下标值for(int i = 1;i < lowcast.Length; i++){//当前最⼩⽣成树中只有0号顶点,所以以0号顶点到i号顶点的边的权值就是当前的最⼩边权值lowcast[i] = graph.adjacencyMatrix[0, i];//这些边的另⼀个依附顶点当然是0号顶点adjvex[i] = 0;}//开始计算最⼩⽣成树,结果存储到result中int min = int.MaxValue;//⽤来存储找到的最⼩权值边的权值的临时变量int tempIndex = 0;//⽤来存储即将加⼊最⼩⽣成树的边的顶点(也就是即将加⼊最⼩⽣成树的顶点)的临时变量,另⼀个顶点存储在adjvex数组中//循环length-1次,每次将⼀个顶点和⼀条边加⼊最⼩⽣成树中for(int i = 1;i < graph.Count; i++){//循环在当前的lowcast中找到⾮0的最⼩值(到没有找过的顶点中的最⼩边)min = int.MaxValue;tempIndex = 0;for(int j = 1;j < lowcast.Length; j++){if(lowcast[j] != 0 && lowcast[j] < min){min = lowcast[j];tempIndex = j;}}//找到边后调⽤回调函数if(findAEdgeCallBack != null){findAEdgeCallBack(tempIndex, adjvex[tempIndex], lowcast[tempIndex]);}//更新lowcast数组lowcast[tempIndex] = 0;//每次延申了最⼩⽣成树后需要将lowcast中的值更新,⽅便下次继续延申最⼩⽣成树//刚才将下标为tempIndex的顶点和⼀条边加⼊了最⼩⽣成树,接下来只需要更新这个顶点相关的边即可for(int j = 1;j < lowcast.Length;j++){//判断顶点tempIndex和顶点j之间的边//j顶点不在最⼩⽣成树中且这条边的权值⽐lowcast中记录的最⼩权值要⼩时//更新到顶点j的最⼩权值边的权值,并且记录到顶点j的最⼩权值边的另⼀个顶点为tempIndexif(lowcast[j] != 0 && lowcast[j] > graph.adjacencyMatrix[tempIndex, j]){lowcast[j] = graph.adjacencyMatrix[tempIndex, j];adjvex[j] = tempIndex;}}}}///<summary>///计算最⼩⽣成树-克鲁斯卡尔算法///要求参数必须是连通图///</summary>///<param name="graph"></param>///<param name="findAEdgeCallBack">找到⼀条边后的回调函数,参数为边的两个关联点下标和权值</param>public static void MinSpanTree_Kruskal(EdgesetArrayGraph graph, Action<int, int, int> findAEdgeCallBack = null){//将边集数组排序SortEdgeNode(graph.edgeNodes);//声明⼀个数组,数组下标对应顶点下标//数组中值为-1时代表对应顶点还没有加⼊最⼩⽣成树//当某个顶点被加⼊最⼩⽣成树后,将数组中对应的下标的值修改,修改后的值指向下⼀个加⼊最⼩⽣成树的顶点下标//如vertices[5] = 7代表5号顶点和7号顶点都在最⼩⽣成树中,其中5号顶点的下⼀个顶点是7号顶点//在构建最⼩⽣成树的过程中会通过这个数组检验当前边添加进数组是否会构成环//分析后⾯的代码可以知道,最终数组中length-1个值会被修改,刚好对应添加到最⼩⽣成树中的length-1条边int[] vertices = new int[graph.edgeNodes.Length];//数组初始值都为-1for (int i = 0; i < vertices.Length; i++){vertices[i] = -1;}//下⾯构建最⼩⽣成树//循环遍历所有边,⼀⼀校验是否可以加⼊最⼩⽣成树for (int i = 0; i < graph.edgeNodes.Length; i++){EdgesetArrayEdgeNode node = graph.edgeNodes[i];int startIndex = GetNextVertex(vertices, node.headIndex);int endIndex = GetNextVertex(vertices, node.tailIndex);//检验是否成环,不成环则这条边可以加⼊最⼩⽣成树if (startIndex != endIndex){vertices[startIndex] = endIndex;if(findAEdgeCallBack != null){findAEdgeCallBack(node.headIndex, node.tailIndex, node.weight);}}}}///<summary>///在vertices中,顶点之间的先后次序最终的存储⽅式类似于⼀颗倒过来的树,根顶点在最下⽅,存储时会⼀直向下找,直到找到根顶点,存储时会将下⼀个存储到最⼩⽣成树中的顶点挂到根顶点下⽅成为新///查找时看此顶点是否有后继顶点,如果有那么继续查找后继顶点的后继顶点...以此类推,直到某个顶点对应下标值为-1,即没有后继顶点,返回这个顶点下标///如果两个顶点之间会构成环路,那么它们所在的顶点的后继中⼀定会有相同的顶点,最终查找下去得到的值为顶点相同///</summary>///<param name="vertices"></param>///<param name="index"></param>///<returns></returns>private static int GetNextVertex(int[] vertices,int index){while(vertices[index] != -1){index = vertices[index];}return index;}///<summary>///将给定边集数组按照从⼩到达排序///采⽤选择排序///</summary>///<param name="graph"></param>private static void SortEdgeNode(EdgesetArrayEdgeNode[] edgeNodes){for (int i = 0; i < edgeNodes.Length; i++){int minIndex = i;for (int j = i + 1; j < edgeNodes.Length; j++){if(edgeNodes[minIndex].weight > edgeNodes[j].weight){minIndex = j;}}if(minIndex != i){EdgesetArrayEdgeNode temp = edgeNodes[i];edgeNodes[i] = edgeNodes[minIndex];edgeNodes[minIndex] = temp;}}}}}。
最小生成树课程设计一、课程目标知识目标:1. 学生能够理解最小生成树的概念,掌握其定义和性质;2. 学生能够掌握两种常见的最小生成树算法:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法;3. 学生能够运用最小生成树解决实际问题,如网络设计、电路设计等。
技能目标:1. 学生能够运用图论知识,分析并解决最小生成树问题;2. 学生能够编写和调试实现最小生成树的算法程序;3. 学生能够通过小组合作,共同探讨并解决最小生成树相关问题。
情感态度价值观目标:1. 学生通过学习最小生成树,培养对图论的兴趣,激发探索数学问题的热情;2. 学生在合作解决问题的过程中,学会沟通、协作,培养团队精神;3. 学生能够认识到数学知识在实际生活中的广泛应用,增强学习的积极性和主动性。
课程性质:本课程为计算机科学、信息技术等相关专业的高年级学生设计,旨在帮助学生掌握最小生成树的基本原理和算法,提高解决实际问题的能力。
学生特点:学生已经具备一定的图论基础,熟悉基本的算法和数据结构,具有一定的编程能力。
教学要求:通过讲解、示例、练习和小组讨论等形式,使学生掌握最小生成树的相关知识,提高编程实践能力和解决问题的能力。
同时,注重培养学生的团队合作精神和数学思维。
二、教学内容1. 最小生成树概念与性质- 定义、性质和判定条件- 最小生成树的应用场景2. 普里姆(Prim)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析3. 克鲁斯卡尔(Kruskal)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析4. 最小生成树算法比较与应用- 普里姆与克鲁斯卡尔算法的优缺点对比- 实际问题中的应用案例分析5. 小组讨论与练习- 分组讨论最小生成树相关算法及应用- 编写和调试最小生成树算法程序- 解决实际问题,如网络设计、电路设计等教学内容安排与进度:第一周:最小生成树概念与性质,普里姆算法原理与实现第二周:普里姆算法性能分析,克鲁斯卡尔算法原理与实现第三周:克鲁斯卡尔算法性能分析,最小生成树算法比较与应用第四周:小组讨论与练习,解决实际问题教材章节:《离散数学及其应用》第6章:图论《数据结构与算法分析》第9章:图论算法《计算机算法设计与分析》第4章:最小生成树与最短路径三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言、形象的比喻和具体的案例,讲解最小生成树的概念、性质和算法原理,使学生系统掌握理论知识。
上海电力学院数据结构(JAVA)课程设计题目:____最小生成树_______学生姓名:_****___________学号:_____*******_______院系:计算机科学与技术学院专业年级: ______*****___级20**年 *月**日目录1.设计题目 (1)2.需求分析 (1)1)运行环境 (1)2)输入的形式和输入值的范围 (1)3)输出的形式描述 (1)4)功能描述 (1)5)测试数据 (1)3.概要设计 (1)1)抽象数据类型定义描述 (1).2)功能模块设计 (1)3)模块层次调用关系图 (2)4.详细设计。
实现概要设计中定义的所有的类的定义及类中成员函数,并对主要的模块写出伪码算法。
(2)5.调试分析。
包括调试过程中遇到的问题及解决的方法、算法的时间空间复杂性分析、经验体会。
(6)6.用户使用说明。
详细列出每一步的操作说明。
(7)7. 测试结果 (7)8.附录:程序设计源代码 (9)一、设计题目1).问题描述若要在 n 个城市之间建设通信网络,只需要架设n-1 条线路即可。
如何以最低的经济代价建设这个通信网,是一个网的最小生成树问题。
2). 基本要求以邻接多重表存储无向带权图,利用克鲁斯卡尔算法或普瑞姆算法求网的最小生成树。
二、需求分析1)运行环境软件在JDK运行,硬件支持windows系统2)输入的形式和输入值的范围自动生成顶点数据在10~20之间;各个顶点之间权值在25~50之间;通过程序改动亦可生成已知顶点权值之间的最小生成树,需将随机生成代码改为edge edge[]={new edge(0,1,16),new(0,2,18)......};将已知顶点、权值通过其函数输入再生成其所对应最小生成树。
3)输出的形式描述输出随机生成顶点个数以及各个顶点之间权值;然后输出本次生成顶点之间构成的最小生成树。
4)功能描述该程序会自动生成介于10~20个数顶点模拟各城市,再随机生成介于25~50之间数值作为权值模拟各个城市间的距离,并同时生成此次顶点、权值相对应的最小生成树,模拟各城市间的最小距离,最小生成树。
如有确定城市顶点及其权值,则可改动程序令其不再随机生成顶点权值,在程序中输入如下代码: edge edge[]={new edge(0,1,16),new(0,2,18)......}输入数组为edge数组,edge(起点,终点,权值)。
通过将随机生成代码改动就可以生成该城市对应权值的最小生成树。
5)测试数据生成数据之后检验生成顶点数值是否介于10~20之间;检验各顶点间权值大小是否介于25~50间;同时检验其自动生成最小生成树是否正确。
三、概要设计1)抽象数据类型定义描述定义排序类sort,将各个顶点按照其两顶点之间权值大小排序,从大到小排序,用到堆排序算法;定义带权值的边edge,分别存在start(起点)、end(终点)、value(权值)三个变量;定义main类,调用sort、edge类与自身函数通过Kruskal函数实现最小生成树。
2)功能模块设计主函数随机生成10~20个顶点作为城市并同时生成任意两顶点间25~50的权值作为两城市距离;在界面输出随机生成顶点个数及任意两顶点间权值;再调用sort函数对权进行排序,按照权值的大小有小到大排序;排序之后实现Kruskal 函数,通过kruskal函数生成最小生成树;最后输出所生成的最小生成树。
3)模块层次调用关系图四、详细设计实现概要设计中定义的所有的类的定义及类中成员函数,并对主要的模块写出伪码算法。
1. 定义带权值的边及其三个变量start(起点)、end(终点)、value(权值);定义该属性为下边的根据权值排序、Kruskal实现最小生成树做下铺垫;函数实现如下:package tree;public class sort {public static void sift(edge a[], int root, int limit){int i = root;int j = i*2+1;//j为i的左孩子while (j <= limit) //沿较小值孩子节点向下筛选{if (j < limit && a[j].getValue() < a[j + 1].getValue())//数组元素比较{j++;//j为左右孩子的较小者}if (a[j].getValue() > a[i].getValue()) //若父亲节点值较大{edge e = a[i];//孩子节点中较小值上移a[i] = a[j];a[j] = e;i = j;j = i * 2 + 1;//i、j向下一层}else{break; //跳出循环}}}public static void sort(edge data[]){int length = data.length;for(int i = length/2-1; i>=0; i--)//创建最大堆{sift(data, i, length-1);}for (int j = length - 1; j > 0; j--)//每趟把最大值交换到后面字,再生成堆{edge e = data[0];data[0] = data[j];data[j] = e;sift(data, 0, j-1);}}}2. 随机生成介于10~20之间个顶点作为各个城市,并同时生成任意两顶点间权值,介于25~50之间;每n个顶点之间最多生成n*(n-1)条边;生成vertexNumber-1个row(行)和row-1个column(列)可以防止同一个顶点生成自环;函数实现如下:int vertexNumber=(int)((Math.random()+1)*10);System.out.println("随机生成"+vertexNumber+"个顶点");edge edges[]=new edge[vertexNumber*(vertexNumber-1)/2];for(int row=0, index=0; row<vertexNumber; row++){//row行、column列、index数组for(int column=0; column<row; column++){int x=(int)((Math.random()+1)*25);//random随机的edges[index] = new edge(row, column, x);System.out.println("顶点"+row+"和"+column+"之间的距离为"+x);index++;}}3. 定义排序类sort,按照堆排序函数对数组edge[]按照权值大小从小到大进行排序(参照课本299页);package tree;public class sort {public static void sift(edge a[], int root, int limit){int i = root;int j = i*2+1;//j为i的左孩子while (j <= limit) //沿较小值孩子节点向下筛选{if (j < limit && a[j].getValue() < a[j + 1].getValue())//数组元素比较{j++;//j为左右孩子的较小者}if (a[j].getValue() > a[i].getValue()) //若父亲节点值较大{edge e = a[i];//孩子节点中较小值上移a[i] = a[j];a[j] = e;i = j;j = i * 2 + 1;//i、j向下一层}else{break; //跳出循环}}}public static void sort(edge data[]){int length = data.length;for(int i = length/2-1; i>=0; i--)//创建最大堆{sift(data, i, length-1);}for (int j = length - 1; j > 0; j--)//每趟把最大值交换到后面字,再生成堆{edge e = data[0];data[0] = data[j];data[j] = e;sift(data, 0, j-1);}}}4.Kruskal方法实现最小生成树。
Kruskal方法与Prim方法都是基于最小生成树的MST性质:设G(V,E)是一个联通带权无向图,TV是顶点集合V的一个非空真子集。
若(tv,v)包含于E是一条权值最小的边,其中tv包含于TV,v包含于V-TV,则必定存在G的一棵最小生成树T,T包含边(tv,v)。
其Kruskal算法参照课本334页。
其算法如下:int a[] = new int[vertexNumber];//初始时刻,所有顶点的连通分量编号为-1,表示所有顶点都属于一个独立的连通分量for(int i = 0; i<a.length; i++){a[i] = -1;}edge result[] = new edge[vertexNumber-1];//该数组用于记录最小生成树int temp = 0;for(edge e : edges){int start = e.getStart();int end = e.getEnd();if(a[start]==a[end] && a[end]==-1){a[start] = a[end] = temp;result[temp] = e;temp++;}else if (a[start] != a[end]) {if (a[start] == -1) {a[start] = a[end];}else if (a[end] == -1) {a[end] = a[start];}else {int t = a[start];for (int i = 0; i < vertexNumber; i++) { if (a[i] == t) {a[i] = a[end];}}}result[temp] = e;temp++;}五、调试分析包括调试过程中遇到的问题及解决的方法、算法的时间空间复杂性分析、经验体会。
Sort排序类算法时间复杂度为O(log2n),Kruskal算法时间复杂度为O(1);调试过程中,Kruskal算法实现出现问题,刚开始无法实现该函数,无法生成最小生成树;经请教同学、查看资料、查看课本解决问题。