《动车组牵引系统维护与检修》教学课件—CRH5动车组牵引电机结构特点
- 格式:ppt
- 大小:680.00 KB
- 文档页数:13
第七章 CRH5型动车组牵引传动系统第一节 概 述CRH5型动车组牵引系统使用交-直-交传动方式,主要由受电弓、主断路器、牵引变压器、牵引变流器及牵引电机组成。
受电弓通过电网接入25kV的高压交流电,输送给牵引变压器,降压成1770V的交流电。
降压后的交流电再输入牵引变流器,逆变成电压和频率均可控制的三相交流电,输送给牵引电机牵引整个列车。
牵引传动系统工作原理示意图如图7-1-1所示。
图7-1-1 牵引传动系统工作原理示意图CRH5型动车组牵引系统主变压器使用油冷方式,牵引变流器使用成熟的IGBT技术。
异步牵引电机的功率为550kW,采用体悬方式,由万向轴传递牵引力。
动车组有两个相对独立的主牵引系统,每个牵引单元配备一个完整的集电、牵引及辅助系统,以实现所需的牵引和辅助电路冗余,其中一个单元由3辆动车加1辆拖车构成(M-M-T-M),另一个单元由2辆动车加2辆拖车构成(T-T-M-M)。
动车组编组及动力设备的配置见图7-1-2。
图7-1-2 牵引设备的布置每个动力单元带有一个主变压器和受电弓。
在正常运行中,每列车只启用1个受电弓。
每个牵引动力单元的牵引设备都由下列设备组成:1.一个高压单元,带受电弓和保护装置;2.一个主变压器;3.两套或三套IGBT水冷技术的主牵引套件;4.四台或六台异步牵引电机,底架悬挂,最大设计负载550kW(轮缘处功率)。
由于每台电机是由一个独立的牵引逆变器驱动的,在同一车辆内轮对间轮径差最大为15mm的情况下,无需减小负载。
每节动车装有两台牵引电机。
正常情况下,两个牵引系统均工作,当一个牵引系统发生故障时,可以自动切断故障源,继续运行。
第二节 牵引传动系统7.2.1 牵引/电制特性(包括技术参数)在正常负载条件下(定员载客)、平直线路、车轮平均磨耗(即车轮直径为850mm)和网压在22.5KV AC-29KV AC范围内电压时,列车的牵引性能如下:1.平均启动加速度(0~40km/h) 0.50m/s2.200km/h 时的剩余加速度 0.11m/s3.220km/h时的剩余加速度 0.09m/s4.250km/h时的剩余加速度 0.05m/s5.平均最大车轮-磨耗粘着系数 0.226.爬行坡度(100%牵引力) 30‰7.在一个牵引变流器故障(80%牵引功率)条件下的爬行坡度>30 ‰;8.在二个牵引变流器故障或一个牵引变压器故障条件下(可获得60% 的牵引功率)的爬行坡度 27‰(连续运行);30‰(以73km/h速度运行25km);9.轮周处的最大牵引功率 5500kW;10.轮周处的最大牵引力 302kN;11.轮周处的最大制动功率 5785kW;12.列车在全功率和一半故障条件下的牵引曲线,如图7-2-1所示。
CRH5型动车组牵引传动系统故障解析及维护保养摘要:随着人民对出行安全的高要求,车辆的安全系数成为了研发、工艺、质量人员关注焦点。
人们的出行安全系数和动车的安全质量也成为人们关注的热点。
CRH5型动车组近些年已经发展的技术成熟、稳定性强的车型。
我国CRH5型动车组的传动系统的作用是动力传偷,它的牵引传动装置与其他高速动车组传动系统是有很大区别的。
CRH5型动车组牵引传动系统由牵引电机、万向轴、齿轮箱三大部件组成。
牵引电机产生的牵引力通过万向轴及齿轮箱传导至车轮上,最终产生了牵引作用。
本文通过牵引系统常见故障的分析,研究出可行性的预防方法,可以有效地规避动车组运行风险。
关键词:CRH5型动车;结构特点;故障分析;牵引传动前言:CRH5型动车组牵引传动装置区别于其他高速动车组传动系统,牵引电机、万向轴、齿轮箱组成的牵引传动装置是CRH5型动车组独自具有的特点,其中牵引电机为动车组的动力产生装置;万向轴作为牵引传动装置的中枢传输系统,在动车组运行平稳性中起到举足轻重的作用CRH5型动车组牵引传动系统由万向轴、齿轮箱、牵引电机这三大重要部分组成,执行原理是动车组的万向轴与齿轮箱将牵引电机产生的牵引力传导至车轮上形成牵引作用。
一、CRH5型动车组牵引传动装置的基本特点CRH5型动车组每辆动车组配置两个动力转向架,其中1,2,4,7,8车为动车,全列共有动力转向架10个,动力转向架是由一根动轴和一根拖轴组成的两轴转向架。
动轴布置在车厢的内侧。
动轴传动系统由牵引电机、扭矩过载保护器、万向轴、车轴齿轮传动箱、轮对组成。
电机纵向布置在车体下方,并采用螺旋弹簧弹性悬挂。
齿轮传动箱通过轴承安装在动轴上,抗齿轮箱回转的反作用杆安装在齿轮箱下方,反作用杆在齿轮箱端装有橡胶弹性关节,在构架端装有球形关节。
机械传动装置仅动力转向架具备,由齿轮箱、万向轴、安全装置和电机组成,减速齿轮按安装在动力轴上通过万向轴和安全装置与电机相连,为改善转向架动力学性能,在转向架设计过程中,特别关注了质量分配的最优化以及纵向面和横向面惯性的最小化,尽可能把所有的质量都分配在二系悬挂系统上,使簧间质量达到最小化。